| Index: gcc/mpfr/tan.c
|
| diff --git a/gcc/mpfr/tan.c b/gcc/mpfr/tan.c
|
| deleted file mode 100644
|
| index a0207ff48fd875378f74539de0a201d15695c49f..0000000000000000000000000000000000000000
|
| --- a/gcc/mpfr/tan.c
|
| +++ /dev/null
|
| @@ -1,87 +0,0 @@
|
| -/* mpfr_tan -- tangent of a floating-point number
|
| -
|
| -Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
| -Contributed by the Arenaire and Cacao projects, INRIA.
|
| -
|
| -This file is part of the GNU MPFR Library.
|
| -
|
| -The GNU MPFR Library is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU Lesser General Public License as published by
|
| -the Free Software Foundation; either version 2.1 of the License, or (at your
|
| -option) any later version.
|
| -
|
| -The GNU MPFR Library is distributed in the hope that it will be useful, but
|
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| -License for more details.
|
| -
|
| -You should have received a copy of the GNU Lesser General Public License
|
| -along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
|
| -the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
| -MA 02110-1301, USA. */
|
| -
|
| -#define MPFR_NEED_LONGLONG_H
|
| -#include "mpfr-impl.h"
|
| -
|
| -/* computes tan(x) = sign(x)*sqrt(1/cos(x)^2-1) */
|
| -int
|
| -mpfr_tan (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
|
| -{
|
| - mp_prec_t precy, m;
|
| - int inexact;
|
| - mpfr_t s, c;
|
| - MPFR_ZIV_DECL (loop);
|
| - MPFR_SAVE_EXPO_DECL (expo);
|
| - MPFR_GROUP_DECL (group);
|
| -
|
| - MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
|
| - ("y[%#R]=%R inexact=%d", y, y, inexact));
|
| -
|
| - if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
|
| - {
|
| - if (MPFR_IS_NAN(x) || MPFR_IS_INF(x))
|
| - {
|
| - MPFR_SET_NAN(y);
|
| - MPFR_RET_NAN;
|
| - }
|
| - else /* x is zero */
|
| - {
|
| - MPFR_ASSERTD(MPFR_IS_ZERO(x));
|
| - MPFR_SET_ZERO(y);
|
| - MPFR_SET_SAME_SIGN(y, x);
|
| - MPFR_RET(0);
|
| - }
|
| - }
|
| -
|
| - /* tan(x) = x + x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
|
| - MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 1, 1,
|
| - rnd_mode, {});
|
| -
|
| - MPFR_SAVE_EXPO_MARK (expo);
|
| -
|
| - /* Compute initial precision */
|
| - precy = MPFR_PREC (y);
|
| - m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13;
|
| - MPFR_ASSERTD (m >= 2); /* needed for the error analysis in algorithms.tex */
|
| -
|
| - MPFR_GROUP_INIT_2 (group, m, s, c);
|
| - MPFR_ZIV_INIT (loop, m);
|
| - for (;;)
|
| - {
|
| - /* The only way to get an overflow is to get ~ Pi/2
|
| - But the result will be ~ 2^Prec(y). */
|
| - mpfr_sin_cos (s, c, x, GMP_RNDN); /* err <= 1/2 ulp on s and c */
|
| - mpfr_div (c, s, c, GMP_RNDN); /* err <= 4 ulps */
|
| - MPFR_ASSERTD (!MPFR_IS_SINGULAR (c));
|
| - if (MPFR_LIKELY (MPFR_CAN_ROUND (c, m - 2, precy, rnd_mode)))
|
| - break;
|
| - MPFR_ZIV_NEXT (loop, m);
|
| - MPFR_GROUP_REPREC_2 (group, m, s, c);
|
| - }
|
| - MPFR_ZIV_FREE (loop);
|
| - inexact = mpfr_set (y, c, rnd_mode);
|
| - MPFR_GROUP_CLEAR (group);
|
| -
|
| - MPFR_SAVE_EXPO_FREE (expo);
|
| - return mpfr_check_range (y, inexact, rnd_mode);
|
| -}
|
|
|