Index: gcc/mpfr/tan.c |
diff --git a/gcc/mpfr/tan.c b/gcc/mpfr/tan.c |
deleted file mode 100644 |
index a0207ff48fd875378f74539de0a201d15695c49f..0000000000000000000000000000000000000000 |
--- a/gcc/mpfr/tan.c |
+++ /dev/null |
@@ -1,87 +0,0 @@ |
-/* mpfr_tan -- tangent of a floating-point number |
- |
-Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
-Contributed by the Arenaire and Cacao projects, INRIA. |
- |
-This file is part of the GNU MPFR Library. |
- |
-The GNU MPFR Library is free software; you can redistribute it and/or modify |
-it under the terms of the GNU Lesser General Public License as published by |
-the Free Software Foundation; either version 2.1 of the License, or (at your |
-option) any later version. |
- |
-The GNU MPFR Library is distributed in the hope that it will be useful, but |
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
-License for more details. |
- |
-You should have received a copy of the GNU Lesser General Public License |
-along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to |
-the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, |
-MA 02110-1301, USA. */ |
- |
-#define MPFR_NEED_LONGLONG_H |
-#include "mpfr-impl.h" |
- |
-/* computes tan(x) = sign(x)*sqrt(1/cos(x)^2-1) */ |
-int |
-mpfr_tan (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) |
-{ |
- mp_prec_t precy, m; |
- int inexact; |
- mpfr_t s, c; |
- MPFR_ZIV_DECL (loop); |
- MPFR_SAVE_EXPO_DECL (expo); |
- MPFR_GROUP_DECL (group); |
- |
- MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode), |
- ("y[%#R]=%R inexact=%d", y, y, inexact)); |
- |
- if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x))) |
- { |
- if (MPFR_IS_NAN(x) || MPFR_IS_INF(x)) |
- { |
- MPFR_SET_NAN(y); |
- MPFR_RET_NAN; |
- } |
- else /* x is zero */ |
- { |
- MPFR_ASSERTD(MPFR_IS_ZERO(x)); |
- MPFR_SET_ZERO(y); |
- MPFR_SET_SAME_SIGN(y, x); |
- MPFR_RET(0); |
- } |
- } |
- |
- /* tan(x) = x + x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */ |
- MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 1, 1, |
- rnd_mode, {}); |
- |
- MPFR_SAVE_EXPO_MARK (expo); |
- |
- /* Compute initial precision */ |
- precy = MPFR_PREC (y); |
- m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13; |
- MPFR_ASSERTD (m >= 2); /* needed for the error analysis in algorithms.tex */ |
- |
- MPFR_GROUP_INIT_2 (group, m, s, c); |
- MPFR_ZIV_INIT (loop, m); |
- for (;;) |
- { |
- /* The only way to get an overflow is to get ~ Pi/2 |
- But the result will be ~ 2^Prec(y). */ |
- mpfr_sin_cos (s, c, x, GMP_RNDN); /* err <= 1/2 ulp on s and c */ |
- mpfr_div (c, s, c, GMP_RNDN); /* err <= 4 ulps */ |
- MPFR_ASSERTD (!MPFR_IS_SINGULAR (c)); |
- if (MPFR_LIKELY (MPFR_CAN_ROUND (c, m - 2, precy, rnd_mode))) |
- break; |
- MPFR_ZIV_NEXT (loop, m); |
- MPFR_GROUP_REPREC_2 (group, m, s, c); |
- } |
- MPFR_ZIV_FREE (loop); |
- inexact = mpfr_set (y, c, rnd_mode); |
- MPFR_GROUP_CLEAR (group); |
- |
- MPFR_SAVE_EXPO_FREE (expo); |
- return mpfr_check_range (y, inexact, rnd_mode); |
-} |