| Index: gcc/libstdc++-v3/include/parallel/multiseq_selection.h
|
| diff --git a/gcc/libstdc++-v3/include/parallel/multiseq_selection.h b/gcc/libstdc++-v3/include/parallel/multiseq_selection.h
|
| deleted file mode 100644
|
| index 279e298e9ce8be8362aaaa74f27c0886229dda90..0000000000000000000000000000000000000000
|
| --- a/gcc/libstdc++-v3/include/parallel/multiseq_selection.h
|
| +++ /dev/null
|
| @@ -1,619 +0,0 @@
|
| -// -*- C++ -*-
|
| -
|
| -// Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
|
| -//
|
| -// This file is part of the GNU ISO C++ Library. This library is free
|
| -// software; you can redistribute it and/or modify it under the terms
|
| -// of the GNU General Public License as published by the Free Software
|
| -// Foundation; either version 3, or (at your option) any later
|
| -// version.
|
| -
|
| -// This library is distributed in the hope that it will be useful, but
|
| -// WITHOUT ANY WARRANTY; without even the implied warranty of
|
| -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| -// General Public License for more details.
|
| -
|
| -// Under Section 7 of GPL version 3, you are granted additional
|
| -// permissions described in the GCC Runtime Library Exception, version
|
| -// 3.1, as published by the Free Software Foundation.
|
| -
|
| -// You should have received a copy of the GNU General Public License and
|
| -// a copy of the GCC Runtime Library Exception along with this program;
|
| -// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| -// <http://www.gnu.org/licenses/>.
|
| -
|
| -/** @file parallel/multiseq_selection.h
|
| - * @brief Functions to find elements of a certain global rank in
|
| - * multiple sorted sequences. Also serves for splitting such
|
| - * sequence sets.
|
| - *
|
| - * The algorithm description can be found in
|
| - *
|
| - * P. J. Varman, S. D. Scheufler, B. R. Iyer, and G. R. Ricard.
|
| - * Merging Multiple Lists on Hierarchical-Memory Multiprocessors.
|
| - * Journal of Parallel and Distributed Computing, 12(2):171–177, 1991.
|
| - *
|
| - * This file is a GNU parallel extension to the Standard C++ Library.
|
| - */
|
| -
|
| -// Written by Johannes Singler.
|
| -
|
| -#ifndef _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H
|
| -#define _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H 1
|
| -
|
| -#include <vector>
|
| -#include <queue>
|
| -
|
| -#include <bits/stl_algo.h>
|
| -
|
| -#include <parallel/sort.h>
|
| -
|
| -namespace __gnu_parallel
|
| -{
|
| - /** @brief Compare a pair of types lexicographically, ascending. */
|
| - template<typename T1, typename T2, typename Comparator>
|
| - class lexicographic
|
| - : public std::binary_function<std::pair<T1, T2>, std::pair<T1, T2>, bool>
|
| - {
|
| - private:
|
| - Comparator& comp;
|
| -
|
| - public:
|
| - lexicographic(Comparator& _comp) : comp(_comp) { }
|
| -
|
| - bool
|
| - operator()(const std::pair<T1, T2>& p1,
|
| - const std::pair<T1, T2>& p2) const
|
| - {
|
| - if (comp(p1.first, p2.first))
|
| - return true;
|
| -
|
| - if (comp(p2.first, p1.first))
|
| - return false;
|
| -
|
| - // Firsts are equal.
|
| - return p1.second < p2.second;
|
| - }
|
| - };
|
| -
|
| - /** @brief Compare a pair of types lexicographically, descending. */
|
| - template<typename T1, typename T2, typename Comparator>
|
| - class lexicographic_reverse : public std::binary_function<T1, T2, bool>
|
| - {
|
| - private:
|
| - Comparator& comp;
|
| -
|
| - public:
|
| - lexicographic_reverse(Comparator& _comp) : comp(_comp) { }
|
| -
|
| - bool
|
| - operator()(const std::pair<T1, T2>& p1,
|
| - const std::pair<T1, T2>& p2) const
|
| - {
|
| - if (comp(p2.first, p1.first))
|
| - return true;
|
| -
|
| - if (comp(p1.first, p2.first))
|
| - return false;
|
| -
|
| - // Firsts are equal.
|
| - return p2.second < p1.second;
|
| - }
|
| - };
|
| -
|
| - /**
|
| - * @brief Splits several sorted sequences at a certain global rank,
|
| - * resulting in a splitting point for each sequence.
|
| - * The sequences are passed via a sequence of random-access
|
| - * iterator pairs, none of the sequences may be empty. If there
|
| - * are several equal elements across the split, the ones on the
|
| - * left side will be chosen from sequences with smaller number.
|
| - * @param begin_seqs Begin of the sequence of iterator pairs.
|
| - * @param end_seqs End of the sequence of iterator pairs.
|
| - * @param rank The global rank to partition at.
|
| - * @param begin_offsets A random-access sequence begin where the
|
| - * result will be stored in. Each element of the sequence is an
|
| - * iterator that points to the first element on the greater part of
|
| - * the respective sequence.
|
| - * @param comp The ordering functor, defaults to std::less<T>.
|
| - */
|
| - template<typename RanSeqs, typename RankType, typename RankIterator,
|
| - typename Comparator>
|
| - void
|
| - multiseq_partition(RanSeqs begin_seqs, RanSeqs end_seqs,
|
| - RankType rank,
|
| - RankIterator begin_offsets,
|
| - Comparator comp = std::less<
|
| - typename std::iterator_traits<typename
|
| - std::iterator_traits<RanSeqs>::value_type::
|
| - first_type>::value_type>()) // std::less<T>
|
| - {
|
| - _GLIBCXX_CALL(end_seqs - begin_seqs)
|
| -
|
| - typedef typename std::iterator_traits<RanSeqs>::value_type::first_type
|
| - It;
|
| - typedef typename std::iterator_traits<It>::difference_type
|
| - difference_type;
|
| - typedef typename std::iterator_traits<It>::value_type value_type;
|
| -
|
| - lexicographic<value_type, int, Comparator> lcomp(comp);
|
| - lexicographic_reverse<value_type, int, Comparator> lrcomp(comp);
|
| -
|
| - // Number of sequences, number of elements in total (possibly
|
| - // including padding).
|
| - difference_type m = std::distance(begin_seqs, end_seqs), N = 0,
|
| - nmax, n, r;
|
| -
|
| - for (int i = 0; i < m; i++)
|
| - {
|
| - N += std::distance(begin_seqs[i].first, begin_seqs[i].second);
|
| - _GLIBCXX_PARALLEL_ASSERT(
|
| - std::distance(begin_seqs[i].first, begin_seqs[i].second) > 0);
|
| - }
|
| -
|
| - if (rank == N)
|
| - {
|
| - for (int i = 0; i < m; i++)
|
| - begin_offsets[i] = begin_seqs[i].second; // Very end.
|
| - // Return m - 1;
|
| - return;
|
| - }
|
| -
|
| - _GLIBCXX_PARALLEL_ASSERT(m != 0);
|
| - _GLIBCXX_PARALLEL_ASSERT(N != 0);
|
| - _GLIBCXX_PARALLEL_ASSERT(rank >= 0);
|
| - _GLIBCXX_PARALLEL_ASSERT(rank < N);
|
| -
|
| - difference_type* ns = new difference_type[m];
|
| - difference_type* a = new difference_type[m];
|
| - difference_type* b = new difference_type[m];
|
| - difference_type l;
|
| -
|
| - ns[0] = std::distance(begin_seqs[0].first, begin_seqs[0].second);
|
| - nmax = ns[0];
|
| - for (int i = 0; i < m; i++)
|
| - {
|
| - ns[i] = std::distance(begin_seqs[i].first, begin_seqs[i].second);
|
| - nmax = std::max(nmax, ns[i]);
|
| - }
|
| -
|
| - r = __log2(nmax) + 1;
|
| -
|
| - // Pad all lists to this length, at least as long as any ns[i],
|
| - // equality iff nmax = 2^k - 1.
|
| - l = (1ULL << r) - 1;
|
| -
|
| - for (int i = 0; i < m; i++)
|
| - {
|
| - a[i] = 0;
|
| - b[i] = l;
|
| - }
|
| - n = l / 2;
|
| -
|
| - // Invariants:
|
| - // 0 <= a[i] <= ns[i], 0 <= b[i] <= l
|
| -
|
| -#define S(i) (begin_seqs[i].first)
|
| -
|
| - // Initial partition.
|
| - std::vector<std::pair<value_type, int> > sample;
|
| -
|
| - for (int i = 0; i < m; i++)
|
| - if (n < ns[i]) //sequence long enough
|
| - sample.push_back(std::make_pair(S(i)[n], i));
|
| - __gnu_sequential::sort(sample.begin(), sample.end(), lcomp);
|
| -
|
| - for (int i = 0; i < m; i++) //conceptual infinity
|
| - if (n >= ns[i]) //sequence too short, conceptual infinity
|
| - sample.push_back(std::make_pair(S(i)[0] /*dummy element*/, i));
|
| -
|
| - difference_type localrank = rank / l;
|
| -
|
| - int j;
|
| - for (j = 0; j < localrank && ((n + 1) <= ns[sample[j].second]); ++j)
|
| - a[sample[j].second] += n + 1;
|
| - for (; j < m; j++)
|
| - b[sample[j].second] -= n + 1;
|
| -
|
| - // Further refinement.
|
| - while (n > 0)
|
| - {
|
| - n /= 2;
|
| -
|
| - int lmax_seq = -1; // to avoid warning
|
| - const value_type* lmax = NULL; // impossible to avoid the warning?
|
| - for (int i = 0; i < m; i++)
|
| - {
|
| - if (a[i] > 0)
|
| - {
|
| - if (!lmax)
|
| - {
|
| - lmax = &(S(i)[a[i] - 1]);
|
| - lmax_seq = i;
|
| - }
|
| - else
|
| - {
|
| - // Max, favor rear sequences.
|
| - if (!comp(S(i)[a[i] - 1], *lmax))
|
| - {
|
| - lmax = &(S(i)[a[i] - 1]);
|
| - lmax_seq = i;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - int i;
|
| - for (i = 0; i < m; i++)
|
| - {
|
| - difference_type middle = (b[i] + a[i]) / 2;
|
| - if (lmax && middle < ns[i] &&
|
| - lcomp(std::make_pair(S(i)[middle], i),
|
| - std::make_pair(*lmax, lmax_seq)))
|
| - a[i] = std::min(a[i] + n + 1, ns[i]);
|
| - else
|
| - b[i] -= n + 1;
|
| - }
|
| -
|
| - difference_type leftsize = 0;
|
| - for (int i = 0; i < m; i++)
|
| - leftsize += a[i] / (n + 1);
|
| -
|
| - difference_type skew = rank / (n + 1) - leftsize;
|
| -
|
| - if (skew > 0)
|
| - {
|
| - // Move to the left, find smallest.
|
| - std::priority_queue<std::pair<value_type, int>,
|
| - std::vector<std::pair<value_type, int> >,
|
| - lexicographic_reverse<value_type, int, Comparator> >
|
| - pq(lrcomp);
|
| -
|
| - for (int i = 0; i < m; i++)
|
| - if (b[i] < ns[i])
|
| - pq.push(std::make_pair(S(i)[b[i]], i));
|
| -
|
| - for (; skew != 0 && !pq.empty(); --skew)
|
| - {
|
| - int source = pq.top().second;
|
| - pq.pop();
|
| -
|
| - a[source] = std::min(a[source] + n + 1, ns[source]);
|
| - b[source] += n + 1;
|
| -
|
| - if (b[source] < ns[source])
|
| - pq.push(std::make_pair(S(source)[b[source]], source));
|
| - }
|
| - }
|
| - else if (skew < 0)
|
| - {
|
| - // Move to the right, find greatest.
|
| - std::priority_queue<std::pair<value_type, int>,
|
| - std::vector<std::pair<value_type, int> >,
|
| - lexicographic<value_type, int, Comparator> > pq(lcomp);
|
| -
|
| - for (int i = 0; i < m; i++)
|
| - if (a[i] > 0)
|
| - pq.push(std::make_pair(S(i)[a[i] - 1], i));
|
| -
|
| - for (; skew != 0; ++skew)
|
| - {
|
| - int source = pq.top().second;
|
| - pq.pop();
|
| -
|
| - a[source] -= n + 1;
|
| - b[source] -= n + 1;
|
| -
|
| - if (a[source] > 0)
|
| - pq.push(std::make_pair(S(source)[a[source] - 1], source));
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Postconditions:
|
| - // a[i] == b[i] in most cases, except when a[i] has been clamped
|
| - // because of having reached the boundary
|
| -
|
| - // Now return the result, calculate the offset.
|
| -
|
| - // Compare the keys on both edges of the border.
|
| -
|
| - // Maximum of left edge, minimum of right edge.
|
| - value_type* maxleft = NULL;
|
| - value_type* minright = NULL;
|
| - for (int i = 0; i < m; i++)
|
| - {
|
| - if (a[i] > 0)
|
| - {
|
| - if (!maxleft)
|
| - maxleft = &(S(i)[a[i] - 1]);
|
| - else
|
| - {
|
| - // Max, favor rear sequences.
|
| - if (!comp(S(i)[a[i] - 1], *maxleft))
|
| - maxleft = &(S(i)[a[i] - 1]);
|
| - }
|
| - }
|
| - if (b[i] < ns[i])
|
| - {
|
| - if (!minright)
|
| - minright = &(S(i)[b[i]]);
|
| - else
|
| - {
|
| - // Min, favor fore sequences.
|
| - if (comp(S(i)[b[i]], *minright))
|
| - minright = &(S(i)[b[i]]);
|
| - }
|
| - }
|
| - }
|
| -
|
| - int seq = 0;
|
| - for (int i = 0; i < m; i++)
|
| - begin_offsets[i] = S(i) + a[i];
|
| -
|
| - delete[] ns;
|
| - delete[] a;
|
| - delete[] b;
|
| - }
|
| -
|
| -
|
| - /**
|
| - * @brief Selects the element at a certain global rank from several
|
| - * sorted sequences.
|
| - *
|
| - * The sequences are passed via a sequence of random-access
|
| - * iterator pairs, none of the sequences may be empty.
|
| - * @param begin_seqs Begin of the sequence of iterator pairs.
|
| - * @param end_seqs End of the sequence of iterator pairs.
|
| - * @param rank The global rank to partition at.
|
| - * @param offset The rank of the selected element in the global
|
| - * subsequence of elements equal to the selected element. If the
|
| - * selected element is unique, this number is 0.
|
| - * @param comp The ordering functor, defaults to std::less.
|
| - */
|
| - template<typename T, typename RanSeqs, typename RankType,
|
| - typename Comparator>
|
| - T
|
| - multiseq_selection(RanSeqs begin_seqs, RanSeqs end_seqs, RankType rank,
|
| - RankType& offset, Comparator comp = std::less<T>())
|
| - {
|
| - _GLIBCXX_CALL(end_seqs - begin_seqs)
|
| -
|
| - typedef typename std::iterator_traits<RanSeqs>::value_type::first_type
|
| - It;
|
| - typedef typename std::iterator_traits<It>::difference_type
|
| - difference_type;
|
| -
|
| - lexicographic<T, int, Comparator> lcomp(comp);
|
| - lexicographic_reverse<T, int, Comparator> lrcomp(comp);
|
| -
|
| - // Number of sequences, number of elements in total (possibly
|
| - // including padding).
|
| - difference_type m = std::distance(begin_seqs, end_seqs);
|
| - difference_type N = 0;
|
| - difference_type nmax, n, r;
|
| -
|
| - for (int i = 0; i < m; i++)
|
| - N += std::distance(begin_seqs[i].first, begin_seqs[i].second);
|
| -
|
| - if (m == 0 || N == 0 || rank < 0 || rank >= N)
|
| - {
|
| - // Result undefined when there is no data or rank is outside bounds.
|
| - throw std::exception();
|
| - }
|
| -
|
| -
|
| - difference_type* ns = new difference_type[m];
|
| - difference_type* a = new difference_type[m];
|
| - difference_type* b = new difference_type[m];
|
| - difference_type l;
|
| -
|
| - ns[0] = std::distance(begin_seqs[0].first, begin_seqs[0].second);
|
| - nmax = ns[0];
|
| - for (int i = 0; i < m; ++i)
|
| - {
|
| - ns[i] = std::distance(begin_seqs[i].first, begin_seqs[i].second);
|
| - nmax = std::max(nmax, ns[i]);
|
| - }
|
| -
|
| - r = __log2(nmax) + 1;
|
| -
|
| - // Pad all lists to this length, at least as long as any ns[i],
|
| - // equality iff nmax = 2^k - 1
|
| - l = pow2(r) - 1;
|
| -
|
| - for (int i = 0; i < m; ++i)
|
| - {
|
| - a[i] = 0;
|
| - b[i] = l;
|
| - }
|
| - n = l / 2;
|
| -
|
| - // Invariants:
|
| - // 0 <= a[i] <= ns[i], 0 <= b[i] <= l
|
| -
|
| -#define S(i) (begin_seqs[i].first)
|
| -
|
| - // Initial partition.
|
| - std::vector<std::pair<T, int> > sample;
|
| -
|
| - for (int i = 0; i < m; i++)
|
| - if (n < ns[i])
|
| - sample.push_back(std::make_pair(S(i)[n], i));
|
| - __gnu_sequential::sort(sample.begin(), sample.end(),
|
| - lcomp, sequential_tag());
|
| -
|
| - // Conceptual infinity.
|
| - for (int i = 0; i < m; i++)
|
| - if (n >= ns[i])
|
| - sample.push_back(std::make_pair(S(i)[0] /*dummy element*/, i));
|
| -
|
| - difference_type localrank = rank / l;
|
| -
|
| - int j;
|
| - for (j = 0; j < localrank && ((n + 1) <= ns[sample[j].second]); ++j)
|
| - a[sample[j].second] += n + 1;
|
| - for (; j < m; ++j)
|
| - b[sample[j].second] -= n + 1;
|
| -
|
| - // Further refinement.
|
| - while (n > 0)
|
| - {
|
| - n /= 2;
|
| -
|
| - const T* lmax = NULL;
|
| - for (int i = 0; i < m; ++i)
|
| - {
|
| - if (a[i] > 0)
|
| - {
|
| - if (!lmax)
|
| - lmax = &(S(i)[a[i] - 1]);
|
| - else
|
| - {
|
| - if (comp(*lmax, S(i)[a[i] - 1])) //max
|
| - lmax = &(S(i)[a[i] - 1]);
|
| - }
|
| - }
|
| - }
|
| -
|
| - int i;
|
| - for (i = 0; i < m; i++)
|
| - {
|
| - difference_type middle = (b[i] + a[i]) / 2;
|
| - if (lmax && middle < ns[i] && comp(S(i)[middle], *lmax))
|
| - a[i] = std::min(a[i] + n + 1, ns[i]);
|
| - else
|
| - b[i] -= n + 1;
|
| - }
|
| -
|
| - difference_type leftsize = 0;
|
| - for (int i = 0; i < m; ++i)
|
| - leftsize += a[i] / (n + 1);
|
| -
|
| - difference_type skew = rank / (n + 1) - leftsize;
|
| -
|
| - if (skew > 0)
|
| - {
|
| - // Move to the left, find smallest.
|
| - std::priority_queue<std::pair<T, int>,
|
| - std::vector<std::pair<T, int> >,
|
| - lexicographic_reverse<T, int, Comparator> > pq(lrcomp);
|
| -
|
| - for (int i = 0; i < m; ++i)
|
| - if (b[i] < ns[i])
|
| - pq.push(std::make_pair(S(i)[b[i]], i));
|
| -
|
| - for (; skew != 0 && !pq.empty(); --skew)
|
| - {
|
| - int source = pq.top().second;
|
| - pq.pop();
|
| -
|
| - a[source] = std::min(a[source] + n + 1, ns[source]);
|
| - b[source] += n + 1;
|
| -
|
| - if (b[source] < ns[source])
|
| - pq.push(std::make_pair(S(source)[b[source]], source));
|
| - }
|
| - }
|
| - else if (skew < 0)
|
| - {
|
| - // Move to the right, find greatest.
|
| - std::priority_queue<std::pair<T, int>,
|
| - std::vector<std::pair<T, int> >,
|
| - lexicographic<T, int, Comparator> > pq(lcomp);
|
| -
|
| - for (int i = 0; i < m; ++i)
|
| - if (a[i] > 0)
|
| - pq.push(std::make_pair(S(i)[a[i] - 1], i));
|
| -
|
| - for (; skew != 0; ++skew)
|
| - {
|
| - int source = pq.top().second;
|
| - pq.pop();
|
| -
|
| - a[source] -= n + 1;
|
| - b[source] -= n + 1;
|
| -
|
| - if (a[source] > 0)
|
| - pq.push(std::make_pair(S(source)[a[source] - 1], source));
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Postconditions:
|
| - // a[i] == b[i] in most cases, except when a[i] has been clamped
|
| - // because of having reached the boundary
|
| -
|
| - // Now return the result, calculate the offset.
|
| -
|
| - // Compare the keys on both edges of the border.
|
| -
|
| - // Maximum of left edge, minimum of right edge.
|
| - bool maxleftset = false, minrightset = false;
|
| -
|
| - // Impossible to avoid the warning?
|
| - T maxleft, minright;
|
| - for (int i = 0; i < m; ++i)
|
| - {
|
| - if (a[i] > 0)
|
| - {
|
| - if (!maxleftset)
|
| - {
|
| - maxleft = S(i)[a[i] - 1];
|
| - maxleftset = true;
|
| - }
|
| - else
|
| - {
|
| - // Max.
|
| - if (comp(maxleft, S(i)[a[i] - 1]))
|
| - maxleft = S(i)[a[i] - 1];
|
| - }
|
| - }
|
| - if (b[i] < ns[i])
|
| - {
|
| - if (!minrightset)
|
| - {
|
| - minright = S(i)[b[i]];
|
| - minrightset = true;
|
| - }
|
| - else
|
| - {
|
| - // Min.
|
| - if (comp(S(i)[b[i]], minright))
|
| - minright = S(i)[b[i]];
|
| - }
|
| - }
|
| - }
|
| -
|
| - // Minright is the splitter, in any case.
|
| -
|
| - if (!maxleftset || comp(minright, maxleft))
|
| - {
|
| - // Good luck, everything is split unambiguously.
|
| - offset = 0;
|
| - }
|
| - else
|
| - {
|
| - // We have to calculate an offset.
|
| - offset = 0;
|
| -
|
| - for (int i = 0; i < m; ++i)
|
| - {
|
| - difference_type lb = std::lower_bound(S(i), S(i) + ns[i],
|
| - minright,
|
| - comp) - S(i);
|
| - offset += a[i] - lb;
|
| - }
|
| - }
|
| -
|
| - delete[] ns;
|
| - delete[] a;
|
| - delete[] b;
|
| -
|
| - return minright;
|
| - }
|
| -}
|
| -
|
| -#undef S
|
| -
|
| -#endif /* _GLIBCXX_PARALLEL_MULTISEQ_SELECTION_H */
|
|
|