| Index: gcc/gmp/mpn/generic/dc_bdiv_qr.c
|
| diff --git a/gcc/gmp/mpn/generic/dc_bdiv_qr.c b/gcc/gmp/mpn/generic/dc_bdiv_qr.c
|
| deleted file mode 100644
|
| index 8b59bbd860cd2b3870b9465a2382c7cbafd25cb8..0000000000000000000000000000000000000000
|
| --- a/gcc/gmp/mpn/generic/dc_bdiv_qr.c
|
| +++ /dev/null
|
| @@ -1,163 +0,0 @@
|
| -/* mpn_dc_bdiv_qr -- divide-and-conquer Hensel division with precomputed
|
| - inverse, returning quotient and remainder.
|
| -
|
| - Contributed to the GNU project by Niels Möller and Torbjörn Granlund.
|
| -
|
| - THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH A MUTABLE INTERFACE. IT IS
|
| - ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS
|
| - ALMOST GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP
|
| - RELEASE.
|
| -
|
| -Copyright 2006, 2007 Free Software Foundation, Inc.
|
| -
|
| -This file is part of the GNU MP Library.
|
| -
|
| -The GNU MP Library is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU Lesser General Public License as published by
|
| -the Free Software Foundation; either version 3 of the License, or (at your
|
| -option) any later version.
|
| -
|
| -The GNU MP Library is distributed in the hope that it will be useful, but
|
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| -License for more details.
|
| -
|
| -You should have received a copy of the GNU Lesser General Public License
|
| -along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
|
| -
|
| -#include "gmp.h"
|
| -#include "gmp-impl.h"
|
| -
|
| -
|
| -/* Computes Hensel binary division of {np, 2*n} by {dp, n}.
|
| -
|
| - Output:
|
| -
|
| - q = n * d^{-1} mod 2^{qn * GMP_NUMB_BITS},
|
| -
|
| - r = (n - q * d) * 2^{-qn * GMP_NUMB_BITS}
|
| -
|
| - Stores q at qp. Stores the n least significant limbs of r at the high half
|
| - of np, and returns the borrow from the subtraction n - q*d.
|
| -
|
| - d must be odd. dinv is (-d)^-1 mod 2^GMP_NUMB_BITS. */
|
| -
|
| -mp_size_t
|
| -mpn_dc_bdiv_qr_n_itch (mp_size_t n)
|
| -{
|
| - return n;
|
| -}
|
| -
|
| -mp_limb_t
|
| -mpn_dc_bdiv_qr_n (mp_ptr qp, mp_ptr np, mp_srcptr dp, mp_size_t n,
|
| - mp_limb_t dinv, mp_ptr tp)
|
| -{
|
| - mp_size_t lo, hi;
|
| - mp_limb_t cy;
|
| - mp_limb_t rh;
|
| -
|
| - lo = n >> 1; /* floor(n/2) */
|
| - hi = n - lo; /* ceil(n/2) */
|
| -
|
| - if (BELOW_THRESHOLD (lo, DC_BDIV_QR_THRESHOLD))
|
| - cy = mpn_sb_bdiv_qr (qp, np, 2 * lo, dp, lo, dinv);
|
| - else
|
| - cy = mpn_dc_bdiv_qr_n (qp, np, dp, lo, dinv, tp);
|
| -
|
| - mpn_mul (tp, dp + lo, hi, qp, lo);
|
| -
|
| - mpn_incr_u (tp + lo, cy);
|
| - rh = mpn_sub (np + lo, np + lo, n + hi, tp, n);
|
| -
|
| - if (BELOW_THRESHOLD (hi, DC_BDIV_QR_THRESHOLD))
|
| - cy = mpn_sb_bdiv_qr (qp + lo, np + lo, 2 * hi, dp, hi, dinv);
|
| - else
|
| - cy = mpn_dc_bdiv_qr_n (qp + lo, np + lo, dp, hi, dinv, tp);
|
| -
|
| - mpn_mul (tp, qp + lo, hi, dp + hi, lo);
|
| -
|
| - mpn_incr_u (tp + hi, cy);
|
| - rh += mpn_sub_n (np + n, np + n, tp, n);
|
| -
|
| - return rh;
|
| -}
|
| -
|
| -mp_limb_t
|
| -mpn_dc_bdiv_qr (mp_ptr qp, mp_ptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn,
|
| - mp_limb_t dinv)
|
| -{
|
| - mp_size_t qn;
|
| - mp_limb_t rr, cy;
|
| - mp_ptr tp;
|
| - TMP_DECL;
|
| -
|
| - TMP_MARK;
|
| -
|
| - tp = TMP_SALLOC_LIMBS (dn);
|
| -
|
| - qn = nn - dn;
|
| -
|
| - if (qn > dn)
|
| - {
|
| - /* Reduce qn mod dn without division, optimizing small operations. */
|
| - do
|
| - qn -= dn;
|
| - while (qn > dn);
|
| -
|
| - /* Perform the typically smaller block first. */
|
| - if (BELOW_THRESHOLD (qn, DC_BDIV_QR_THRESHOLD))
|
| - cy = mpn_sb_bdiv_qr (qp, np, 2 * qn, dp, qn, dinv);
|
| - else
|
| - cy = mpn_dc_bdiv_qr_n (qp, np, dp, qn, dinv, tp);
|
| -
|
| - rr = 0;
|
| - if (qn != dn)
|
| - {
|
| - if (qn > dn - qn)
|
| - mpn_mul (tp, qp, qn, dp + qn, dn - qn);
|
| - else
|
| - mpn_mul (tp, dp + qn, dn - qn, qp, qn);
|
| - mpn_incr_u (tp + qn, cy);
|
| -
|
| - rr = mpn_sub (np + qn, np + qn, nn - qn, tp, dn);
|
| - cy = 0;
|
| - }
|
| -
|
| - np += qn;
|
| - qp += qn;
|
| -
|
| - qn = nn - dn - qn;
|
| - do
|
| - {
|
| - rr += mpn_sub_1 (np + dn, np + dn, qn, cy);
|
| - cy = mpn_dc_bdiv_qr_n (qp, np, dp, dn, dinv, tp);
|
| - qp += dn;
|
| - np += dn;
|
| - qn -= dn;
|
| - }
|
| - while (qn > 0);
|
| - TMP_FREE;
|
| - return rr + cy;
|
| - }
|
| -
|
| - if (BELOW_THRESHOLD (qn, DC_BDIV_QR_THRESHOLD))
|
| - cy = mpn_sb_bdiv_qr (qp, np, 2 * qn, dp, qn, dinv);
|
| - else
|
| - cy = mpn_dc_bdiv_qr_n (qp, np, dp, qn, dinv, tp);
|
| -
|
| - rr = 0;
|
| - if (qn != dn)
|
| - {
|
| - if (qn > dn - qn)
|
| - mpn_mul (tp, qp, qn, dp + qn, dn - qn);
|
| - else
|
| - mpn_mul (tp, dp + qn, dn - qn, qp, qn);
|
| - mpn_incr_u (tp + qn, cy);
|
| -
|
| - rr = mpn_sub (np + qn, np + qn, nn - qn, tp, dn);
|
| - cy = 0;
|
| - }
|
| -
|
| - TMP_FREE;
|
| - return rr + cy;
|
| -}
|
|
|