Index: gcc/gmp/mpn/generic/binvert.c |
diff --git a/gcc/gmp/mpn/generic/binvert.c b/gcc/gmp/mpn/generic/binvert.c |
deleted file mode 100644 |
index 24d4dcdb6f89142f2af1f5d1eed51224c3da0ac0..0000000000000000000000000000000000000000 |
--- a/gcc/gmp/mpn/generic/binvert.c |
+++ /dev/null |
@@ -1,117 +0,0 @@ |
-/* Compute {up,n}^(-1) mod 2(n*GMP_NUMB_BITS). |
- |
- Contributed to the GNU project by Torbjorn Granlund. |
- |
- THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH A MUTABLE INTERFACE. IT IS |
- ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS |
- ALMOST GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GMP |
- RELEASE. |
- |
-Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc. |
- |
-This file is part of the GNU MP Library. |
- |
-The GNU MP Library is free software; you can redistribute it and/or modify |
-it under the terms of the GNU Lesser General Public License as published by |
-the Free Software Foundation; either version 3 of the License, or (at your |
-option) any later version. |
- |
-The GNU MP Library is distributed in the hope that it will be useful, but |
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
-License for more details. |
- |
-You should have received a copy of the GNU Lesser General Public License |
-along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */ |
- |
-#include "gmp.h" |
-#include "gmp-impl.h" |
- |
- |
-/* |
- r[k+1] = r[k] - r[k] * (u*r[k] - 1) |
- r[k+1] = r[k] + r[k] - r[k]*(u*r[k]) |
-*/ |
- |
-/* This is intended for constant THRESHOLDs only, where the compiler can |
- completely fold the result. */ |
-#define LOG2C(n) \ |
- (((n) >= 0x1) + ((n) >= 0x2) + ((n) >= 0x4) + ((n) >= 0x8) + \ |
- ((n) >= 0x10) + ((n) >= 0x20) + ((n) >= 0x40) + ((n) >= 0x80) + \ |
- ((n) >= 0x100) + ((n) >= 0x200) + ((n) >= 0x400) + ((n) >= 0x800) + \ |
- ((n) >= 0x1000) + ((n) >= 0x2000) + ((n) >= 0x4000) + ((n) >= 0x8000)) |
- |
-#if TUNE_PROGRAM_BUILD |
-#define NPOWS \ |
- ((sizeof(mp_size_t) > 6 ? 48 : 8*sizeof(mp_size_t))) |
-#else |
-#define NPOWS \ |
- ((sizeof(mp_size_t) > 6 ? 48 : 8*sizeof(mp_size_t)) - LOG2C (BINV_NEWTON_THRESHOLD)) |
-#endif |
- |
-mp_size_t |
-mpn_binvert_itch (mp_size_t n) |
-{ |
-#if WANT_FFT |
- if (ABOVE_THRESHOLD (n, 2 * MUL_FFT_MODF_THRESHOLD)) |
- return mpn_fft_next_size (n, mpn_fft_best_k (n, 0)); |
- else |
-#endif |
- return 3 * (n - (n >> 1)); |
-} |
- |
-void |
-mpn_binvert (mp_ptr rp, mp_srcptr up, mp_size_t n, mp_ptr scratch) |
-{ |
- mp_ptr xp; |
- mp_size_t rn, newrn; |
- mp_size_t sizes[NPOWS], *sizp; |
- mp_limb_t di; |
- |
- /* Compute the computation precisions from highest to lowest, leaving the |
- base case size in 'rn'. */ |
- sizp = sizes; |
- for (rn = n; ABOVE_THRESHOLD (rn, BINV_NEWTON_THRESHOLD); rn = (rn + 1) >> 1) |
- *sizp++ = rn; |
- |
- xp = scratch; |
- |
- /* Compute a base value using a low-overhead O(n^2) algorithm. FIXME: We |
- should call some divide-and-conquer lsb division function here for an |
- operand subrange. */ |
- MPN_ZERO (xp, rn); |
- xp[0] = 1; |
- binvert_limb (di, up[0]); |
- if (BELOW_THRESHOLD (rn, DC_BDIV_Q_THRESHOLD)) |
- mpn_sb_bdiv_q (rp, xp, rn, up, rn, -di); |
- else |
- mpn_dc_bdiv_q (rp, xp, rn, up, rn, -di); |
- |
- /* Use Newton iterations to get the desired precision. */ |
- for (; rn < n; rn = newrn) |
- { |
- newrn = *--sizp; |
- |
-#if WANT_FFT |
- if (ABOVE_THRESHOLD (newrn, 2 * MUL_FFT_MODF_THRESHOLD)) |
- { |
- int k; |
- mp_size_t m, i; |
- |
- k = mpn_fft_best_k (newrn, 0); |
- m = mpn_fft_next_size (newrn, k); |
- mpn_mul_fft (xp, m, up, newrn, rp, rn, k); |
- for (i = rn - 1; i >= 0; i--) |
- if (xp[i] > (i == 0)) |
- { |
- mpn_add_1 (xp + rn, xp + rn, newrn - rn, 1); |
- break; |
- } |
- } |
- else |
-#endif |
- mpn_mul (xp, up, newrn, rp, rn); |
- mpn_mullow_n (rp + rn, rp, xp + rn, newrn - rn); |
- mpn_neg_n (rp + rn, rp + rn, newrn - rn); |
- } |
-} |