| Index: gcc/mpfr/zeta_ui.c
|
| diff --git a/gcc/mpfr/zeta_ui.c b/gcc/mpfr/zeta_ui.c
|
| deleted file mode 100644
|
| index b2c6b92306c0736e46adc978ba79d082e6690d25..0000000000000000000000000000000000000000
|
| --- a/gcc/mpfr/zeta_ui.c
|
| +++ /dev/null
|
| @@ -1,224 +0,0 @@
|
| -/* mpfr_zeta_ui -- compute the Riemann Zeta function for integer argument.
|
| -
|
| -Copyright 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
| -Contributed by the Arenaire and Cacao projects, INRIA.
|
| -
|
| -This file is part of the GNU MPFR Library.
|
| -
|
| -The GNU MPFR Library is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU Lesser General Public License as published by
|
| -the Free Software Foundation; either version 2.1 of the License, or (at your
|
| -option) any later version.
|
| -
|
| -The GNU MPFR Library is distributed in the hope that it will be useful, but
|
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| -License for more details.
|
| -
|
| -You should have received a copy of the GNU Lesser General Public License
|
| -along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
|
| -the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
| -MA 02110-1301, USA. */
|
| -
|
| -#define MPFR_NEED_LONGLONG_H
|
| -#include "mpfr-impl.h"
|
| -
|
| -int
|
| -mpfr_zeta_ui (mpfr_ptr z, unsigned long m, mp_rnd_t r)
|
| -{
|
| - MPFR_ZIV_DECL (loop);
|
| -
|
| - if (m == 0)
|
| - {
|
| - mpfr_set_ui (z, 1, r);
|
| - mpfr_div_2ui (z, z, 1, r);
|
| - MPFR_CHANGE_SIGN (z);
|
| - MPFR_RET (0);
|
| - }
|
| - else if (m == 1)
|
| - {
|
| - MPFR_SET_INF (z);
|
| - MPFR_SET_POS (z);
|
| - return 0;
|
| - }
|
| - else /* m >= 2 */
|
| - {
|
| - mp_prec_t p = MPFR_PREC(z);
|
| - unsigned long n, k, err, kbits;
|
| - mpz_t d, t, s, q;
|
| - mpfr_t y;
|
| - int inex;
|
| -
|
| - if (m >= p) /* 2^(-m) < ulp(1) = 2^(1-p). This means that
|
| - 2^(-m) <= 1/2*ulp(1). We have 3^(-m)+4^(-m)+... < 2^(-m)
|
| - i.e. zeta(m) < 1+2*2^(-m) for m >= 3 */
|
| -
|
| - {
|
| - if (m == 2) /* necessarily p=2 */
|
| - return mpfr_set_ui_2exp (z, 13, -3, r);
|
| - else if (r == GMP_RNDZ || r == GMP_RNDD || (r == GMP_RNDN && m > p))
|
| - {
|
| - mpfr_set_ui (z, 1, r);
|
| - return -1;
|
| - }
|
| - else
|
| - {
|
| - mpfr_set_ui (z, 1, r);
|
| - mpfr_nextabove (z);
|
| - return 1;
|
| - }
|
| - }
|
| -
|
| - /* now treat also the case where zeta(m) - (1+1/2^m) < 1/2*ulp(1),
|
| - and the result is either 1+2^(-m) or 1+2^(-m)+2^(1-p). */
|
| - mpfr_init2 (y, 31);
|
| -
|
| - if (m >= p / 2) /* otherwise 4^(-m) > 2^(-p) */
|
| - {
|
| - /* the following is a lower bound for log(3)/log(2) */
|
| - mpfr_set_str_binary (y, "1.100101011100000000011010001110");
|
| - mpfr_mul_ui (y, y, m, GMP_RNDZ); /* lower bound for log2(3^m) */
|
| - if (mpfr_cmp_ui (y, p + 2) >= 0)
|
| - {
|
| - mpfr_clear (y);
|
| - mpfr_set_ui (z, 1, GMP_RNDZ);
|
| - mpfr_div_2ui (z, z, m, GMP_RNDZ);
|
| - mpfr_add_ui (z, z, 1, GMP_RNDZ);
|
| - if (r != GMP_RNDU)
|
| - return -1;
|
| - mpfr_nextabove (z);
|
| - return 1;
|
| - }
|
| - }
|
| -
|
| - mpz_init (s);
|
| - mpz_init (d);
|
| - mpz_init (t);
|
| - mpz_init (q);
|
| -
|
| - p += MPFR_INT_CEIL_LOG2(p); /* account of the n term in the error */
|
| -
|
| - p += MPFR_INT_CEIL_LOG2(p) + 15; /* initial value */
|
| -
|
| - MPFR_ZIV_INIT (loop, p);
|
| - for(;;)
|
| - {
|
| - /* 0.39321985067869744 = log(2)/log(3+sqrt(8)) */
|
| - n = 1 + (unsigned long) (0.39321985067869744 * (double) p);
|
| - err = n + 4;
|
| -
|
| - mpfr_set_prec (y, p);
|
| -
|
| - /* computation of the d[k] */
|
| - mpz_set_ui (s, 0);
|
| - mpz_set_ui (t, 1);
|
| - mpz_mul_2exp (t, t, 2 * n - 1); /* t[n] */
|
| - mpz_set (d, t);
|
| - for (k = n; k > 0; k--)
|
| - {
|
| - count_leading_zeros (kbits, k);
|
| - kbits = BITS_PER_MP_LIMB - kbits;
|
| - /* if k^m is too large, use mpz_tdiv_q */
|
| - if (m * kbits > 2 * BITS_PER_MP_LIMB)
|
| - {
|
| - /* if we know in advance that k^m > d, then floor(d/k^m) will
|
| - be zero below, so there is no need to compute k^m */
|
| - kbits = (kbits - 1) * m + 1;
|
| - /* k^m has at least kbits bits */
|
| - if (kbits > mpz_sizeinbase (d, 2))
|
| - mpz_set_ui (q, 0);
|
| - else
|
| - {
|
| - mpz_ui_pow_ui (q, k, m);
|
| - mpz_tdiv_q (q, d, q);
|
| - }
|
| - }
|
| - else /* use several mpz_tdiv_q_ui calls */
|
| - {
|
| - unsigned long km = k, mm = m - 1;
|
| - while (mm > 0 && km < ULONG_MAX / k)
|
| - {
|
| - km *= k;
|
| - mm --;
|
| - }
|
| - mpz_tdiv_q_ui (q, d, km);
|
| - while (mm > 0)
|
| - {
|
| - km = k;
|
| - mm --;
|
| - while (mm > 0 && km < ULONG_MAX / k)
|
| - {
|
| - km *= k;
|
| - mm --;
|
| - }
|
| - mpz_tdiv_q_ui (q, q, km);
|
| - }
|
| - }
|
| - if (k % 2)
|
| - mpz_add (s, s, q);
|
| - else
|
| - mpz_sub (s, s, q);
|
| -
|
| - /* we have d[k] = sum(t[i], i=k+1..n)
|
| - with t[i] = n*(n+i-1)!*4^i/(n-i)!/(2i)!
|
| - t[k-1]/t[k] = k*(2k-1)/(n-k+1)/(n+k-1)/2 */
|
| -#if (BITS_PER_MP_LIMB == 32)
|
| -#define KMAX 46341 /* max k such that k*(2k-1) < 2^32 */
|
| -#elif (BITS_PER_MP_LIMB == 64)
|
| -#define KMAX 3037000500
|
| -#endif
|
| -#ifdef KMAX
|
| - if (k <= KMAX)
|
| - mpz_mul_ui (t, t, k * (2 * k - 1));
|
| - else
|
| -#endif
|
| - {
|
| - mpz_mul_ui (t, t, k);
|
| - mpz_mul_ui (t, t, 2 * k - 1);
|
| - }
|
| - mpz_div_2exp (t, t, 1);
|
| - if (n < 1UL << (BITS_PER_MP_LIMB / 2))
|
| - /* (n - k + 1) * (n + k - 1) < n^2 */
|
| - mpz_divexact_ui (t, t, (n - k + 1) * (n + k - 1));
|
| - else
|
| - {
|
| - mpz_divexact_ui (t, t, n - k + 1);
|
| - mpz_divexact_ui (t, t, n + k - 1);
|
| - }
|
| - mpz_add (d, d, t);
|
| - }
|
| -
|
| - /* multiply by 1/(1-2^(1-m)) = 1 + 2^(1-m) + 2^(2-m) + ... */
|
| - mpz_div_2exp (t, s, m - 1);
|
| - do
|
| - {
|
| - err ++;
|
| - mpz_add (s, s, t);
|
| - mpz_div_2exp (t, t, m - 1);
|
| - }
|
| - while (mpz_cmp_ui (t, 0) > 0);
|
| -
|
| - /* divide by d[n] */
|
| - mpz_mul_2exp (s, s, p);
|
| - mpz_tdiv_q (s, s, d);
|
| - mpfr_set_z (y, s, GMP_RNDN);
|
| - mpfr_div_2ui (y, y, p, GMP_RNDN);
|
| -
|
| - err = MPFR_INT_CEIL_LOG2 (err);
|
| -
|
| - if (MPFR_LIKELY(MPFR_CAN_ROUND (y, p - err, MPFR_PREC(z), r)))
|
| - break;
|
| -
|
| - MPFR_ZIV_NEXT (loop, p);
|
| - }
|
| - MPFR_ZIV_FREE (loop);
|
| -
|
| - mpz_clear (d);
|
| - mpz_clear (t);
|
| - mpz_clear (q);
|
| - mpz_clear (s);
|
| - inex = mpfr_set (z, y, r);
|
| - mpfr_clear (y);
|
| - return inex;
|
| - }
|
| -}
|
|
|