Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(305)

Unified Diff: gcc/mpfr/atan.c

Issue 3050029: [gcc] GCC 4.5.0=>4.5.1 (Closed) Base URL: ssh://git@gitrw.chromium.org:9222/nacl-toolchain.git
Patch Set: Created 10 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « gcc/mpfr/asin.c ('k') | gcc/mpfr/atanh.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: gcc/mpfr/atan.c
diff --git a/gcc/mpfr/atan.c b/gcc/mpfr/atan.c
deleted file mode 100644
index 17b65aa1c1d90b8aa632c65f37d049cb44549995..0000000000000000000000000000000000000000
--- a/gcc/mpfr/atan.c
+++ /dev/null
@@ -1,385 +0,0 @@
-/* mpfr_atan -- arc-tangent of a floating-point number
-
-Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
-Contributed by the Arenaire and Cacao projects, INRIA.
-
-This file is part of the GNU MPFR Library, and was contributed by Mathieu Dutour.
-
-The GNU MPFR Library is free software; you can redistribute it and/or modify
-it under the terms of the GNU Lesser General Public License as published by
-the Free Software Foundation; either version 2.1 of the License, or (at your
-option) any later version.
-
-The GNU MPFR Library is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
-License for more details.
-
-You should have received a copy of the GNU Lesser General Public License
-along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
-the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
-MA 02110-1301, USA. */
-
-#define MPFR_NEED_LONGLONG_H
-#include "mpfr-impl.h"
-
-/* If x = p/2^r, put in y an approximation of atan(x)/x using 2^m terms
- for the series expansion, with an error of at most 1 ulp.
- Assumes |x| < 1.
-
- If X=x^2, we want 1 - X/3 + X^2/5 - ... + (-1)^k*X^k/(2k+1) + ...
-*/
-static void
-mpfr_atan_aux (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *tab)
-{
- mpz_t *S, *Q, *ptoj;
- unsigned long n, i, k, j, l;
- mp_exp_t diff, expo;
- int im, done;
- mp_prec_t mult, *accu, *log2_nb_terms;
- mp_prec_t precy = MPFR_PREC(y);
-
- if (mpz_cmp_ui (p, 0) == 0)
- {
- mpfr_set_ui (y, 1, GMP_RNDN); /* limit(atan(x)/x, x=0) */
- return;
- }
-
- accu = (mp_prec_t*) (*__gmp_allocate_func) ((2 * m + 2) * sizeof (mp_prec_t));
- log2_nb_terms = accu + m + 1;
-
- /* Set Tables */
- S = tab; /* S */
- ptoj = S + 1*(m+1); /* p^2^j Precomputed table */
- Q = S + 2*(m+1); /* Product of Odd integer table */
-
- /* From p to p^2, and r to 2r */
- mpz_mul (p, p, p);
- MPFR_ASSERTD (2 * r > r);
- r = 2 * r;
-
- /* Normalize p */
- n = mpz_scan1 (p, 0);
- mpz_tdiv_q_2exp (p, p, n); /* exact */
- MPFR_ASSERTD (r > n);
- r -= n;
- /* since |p/2^r| < 1, and p is a non-zero integer, necessarily r > 0 */
-
- MPFR_ASSERTD (mpz_sgn (p) > 0);
- MPFR_ASSERTD (m > 0);
-
- /* check if p=1 (special case) */
- l = 0;
- /*
- We compute by binary splitting, with X = x^2 = p/2^r:
- P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
- Q(a,b) = (2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
- S(a,b) = p*(2a+1) if a+1=b, Q(c,b)*S(a,c)+Q(a,c)*P(a,c)*S(c,b) otherwise
- Then atan(x)/x ~ S(0,i)/Q(0,i) for i so that (p/2^r)^i/i is small enough.
- The factor 2^(r*(b-a)) in Q(a,b) is implicit, thus we have to take it
- into account when we compute with Q.
- */
- accu[0] = 0; /* accu[k] = Mult[0] + ... + Mult[k], where Mult[j] is the
- number of bits of the corresponding term S[j]/Q[j] */
- if (mpz_cmp_ui (p, 1) != 0)
- {
- /* p <> 1: precompute ptoj table */
- mpz_set (ptoj[0], p);
- for (im = 1 ; im <= m ; im ++)
- mpz_mul (ptoj[im], ptoj[im - 1], ptoj[im - 1]);
- /* main loop */
- n = 1UL << m;
- /* the ith term being X^i/(2i+1) with X=p/2^r, we can stop when
- p^i/2^(r*i) < 2^(-precy), i.e. r*i > precy + log2(p^i) */
- for (i = k = done = 0; (i < n) && (done == 0); i += 2, k ++)
- {
- /* initialize both S[k],Q[k] and S[k+1],Q[k+1] */
- mpz_set_ui (Q[k+1], 2 * i + 3); /* Q(i+1,i+2) */
- mpz_mul_ui (S[k+1], p, 2 * i + 1); /* S(i+1,i+2) */
- mpz_mul_2exp (S[k], Q[k+1], r);
- mpz_sub (S[k], S[k], S[k+1]); /* S(i,i+2) */
- mpz_mul_ui (Q[k], Q[k+1], 2 * i + 1); /* Q(i,i+2) */
- log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
- for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l ++, j >>= 1, k --)
- {
- /* invariant: S[k-1]/Q[k-1] and S[k]/Q[k] correspond
- to 2^l terms each. We combine them into S[k-1]/Q[k-1] */
- MPFR_ASSERTD (k > 0);
- mpz_mul (S[k], S[k], Q[k-1]);
- mpz_mul (S[k], S[k], ptoj[l]);
- mpz_mul (S[k-1], S[k-1], Q[k]);
- mpz_mul_2exp (S[k-1], S[k-1], r << l);
- mpz_add (S[k-1], S[k-1], S[k]);
- mpz_mul (Q[k-1], Q[k-1], Q[k]);
- log2_nb_terms[k-1] = l + 1;
- /* now S[k-1]/Q[k-1] corresponds to 2^(l+1) terms */
- MPFR_MPZ_SIZEINBASE2(mult, ptoj[l+1]);
- /* FIXME: precompute bits(ptoj[l+1]) outside the loop? */
- mult = (r << (l + 1)) - mult - 1;
- accu[k-1] = (k == 1) ? mult : accu[k-2] + mult;
- if (accu[k-1] > precy)
- done = 1;
- }
- }
- }
- else /* special case p=1: the ith term being X^i/(2i+1) with X=1/2^r,
- we can stop when r*i > precy i.e. i > precy/r */
- {
- n = 1UL << m;
- for (i = k = 0; (i < n) && (i <= precy / r); i += 2, k ++)
- {
- mpz_set_ui (Q[k + 1], 2 * i + 3);
- mpz_mul_2exp (S[k], Q[k+1], r);
- mpz_sub_ui (S[k], S[k], 1 + 2 * i);
- mpz_mul_ui (Q[k], Q[k + 1], 1 + 2 * i);
- log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
- for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l++, j >>= 1, k --)
- {
- MPFR_ASSERTD (k > 0);
- mpz_mul (S[k], S[k], Q[k-1]);
- mpz_mul (S[k-1], S[k-1], Q[k]);
- mpz_mul_2exp (S[k-1], S[k-1], r << l);
- mpz_add (S[k-1], S[k-1], S[k]);
- mpz_mul (Q[k-1], Q[k-1], Q[k]);
- log2_nb_terms[k-1] = l + 1;
- }
- }
- }
-
- /* we need to combine S[0]/Q[0]...S[k-1]/Q[k-1] */
- l = 0; /* number of terms accumulated in S[k]/Q[k] */
- while (k > 1)
- {
- k --;
- /* combine S[k-1]/Q[k-1] and S[k]/Q[k] */
- j = log2_nb_terms[k-1];
- mpz_mul (S[k], S[k], Q[k-1]);
- if (mpz_cmp_ui (p, 1) != 0)
- mpz_mul (S[k], S[k], ptoj[j]);
- mpz_mul (S[k-1], S[k-1], Q[k]);
- l += 1 << log2_nb_terms[k];
- mpz_mul_2exp (S[k-1], S[k-1], r * l);
- mpz_add (S[k-1], S[k-1], S[k]);
- mpz_mul (Q[k-1], Q[k-1], Q[k]);
- }
- (*__gmp_free_func) (accu, (2 * m + 2) * sizeof (mp_prec_t));
-
- MPFR_MPZ_SIZEINBASE2 (diff, S[0]);
- diff -= 2 * precy;
- expo = diff;
- if (diff >= 0)
- mpz_tdiv_q_2exp (S[0], S[0], diff);
- else
- mpz_mul_2exp (S[0], S[0], -diff);
-
- MPFR_MPZ_SIZEINBASE2 (diff, Q[0]);
- diff -= precy;
- expo -= diff;
- if (diff >= 0)
- mpz_tdiv_q_2exp (Q[0], Q[0], diff);
- else
- mpz_mul_2exp (Q[0], Q[0], -diff);
-
- mpz_tdiv_q (S[0], S[0], Q[0]);
- mpfr_set_z (y, S[0], GMP_RNDD);
- MPFR_SET_EXP (y, MPFR_EXP(y) + expo - r * (i - 1));
-}
-
-int
-mpfr_atan (mpfr_ptr atan, mpfr_srcptr x, mp_rnd_t rnd_mode)
-{
- mpfr_t xp, arctgt, sk, tmp, tmp2;
- mpz_t ukz;
- mpz_t *tabz;
- mp_exp_t exptol;
- mp_prec_t prec, realprec;
- unsigned long twopoweri;
- int comparaison, inexact, inexact2;
- int i, n0, oldn0;
- MPFR_GROUP_DECL (group);
- MPFR_SAVE_EXPO_DECL (expo);
- MPFR_ZIV_DECL (loop);
-
- MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
- ("atan[%#R]=%R inexact=%d", atan, atan, inexact));
-
- /* Singular cases */
- if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
- {
- if (MPFR_IS_NAN (x))
- {
- MPFR_SET_NAN (atan);
- MPFR_RET_NAN;
- }
- else if (MPFR_IS_INF (x))
- {
- if (MPFR_IS_POS (x)) /* arctan(+inf) = Pi/2 */
- inexact = mpfr_const_pi (atan, rnd_mode);
- else /* arctan(-inf) = -Pi/2 */
- {
- inexact = -mpfr_const_pi (atan,
- MPFR_INVERT_RND (rnd_mode));
- MPFR_CHANGE_SIGN (atan);
- }
- inexact2 = mpfr_div_2ui (atan, atan, 1, rnd_mode);
- if (MPFR_UNLIKELY (inexact2))
- inexact = inexact2; /* An underflow occurs */
- MPFR_RET (inexact);
- }
- else /* x is necessarily 0 */
- {
- MPFR_ASSERTD (MPFR_IS_ZERO (x));
- MPFR_SET_ZERO (atan);
- MPFR_SET_SAME_SIGN (atan, x);
- MPFR_RET (0);
- }
- }
-
- /* atan(x) = x - x^3/3 + x^5/5...
- so the error is < 2^(3*EXP(x)-1)
- so `EXP(x)-(3*EXP(x)-1)` = -2*EXP(x)+1 */
- MPFR_FAST_COMPUTE_IF_SMALL_INPUT (atan, x, -2 * MPFR_GET_EXP (x), 1, 0,
- rnd_mode, {});
-
- /* Set x_p=|x| */
- MPFR_TMP_INIT_ABS (xp, x);
-
- /* Other simple case arctan(-+1)=-+pi/4 */
- comparaison = mpfr_cmp_ui (xp, 1);
- if (MPFR_UNLIKELY (comparaison == 0))
- {
- int neg = MPFR_IS_NEG (x);
- inexact = mpfr_const_pi (atan, MPFR_IS_POS (x) ? rnd_mode
- : MPFR_INVERT_RND (rnd_mode));
- if (neg)
- {
- inexact = -inexact;
- MPFR_CHANGE_SIGN (atan);
- }
- inexact2 = mpfr_div_2ui (atan, atan, 2, rnd_mode);
- if (MPFR_UNLIKELY (inexact2))
- inexact = inexact2; /* an underflow occurs */
- return inexact;
- }
-
- realprec = MPFR_PREC (atan) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (atan)) + 4;
- prec = realprec + BITS_PER_MP_LIMB;
-
- MPFR_SAVE_EXPO_MARK (expo);
-
- /* Initialisation */
- mpz_init (ukz);
- MPFR_GROUP_INIT_4 (group, prec, sk, tmp, tmp2, arctgt);
- oldn0 = 0;
- tabz = (mpz_t *) 0;
-
- MPFR_ZIV_INIT (loop, prec);
- for (;;)
- {
- /* First, if |x| < 1, we need to have more prec to be able to round (sup)
- n0 = ceil(log(prec_requested + 2 + 1+ln(2.4)/ln(2))/log(2)) */
- mp_prec_t sup;
-#if 0
- sup = 1;
- if (MPFR_GET_EXP (xp) < 0
- && (mpfr_uexp_t) (2-MPFR_GET_EXP (xp)) > realprec)
- sup = (mpfr_uexp_t) (2-MPFR_GET_EXP (xp)) - realprec;
-#else
- sup = MPFR_GET_EXP (xp) < 0 ? 2-MPFR_GET_EXP (xp) : 1;
-#endif
- n0 = MPFR_INT_CEIL_LOG2 ((realprec + sup) + 3);
- MPFR_ASSERTD (3*n0 > 2);
- prec = (realprec + sup) + 1 + MPFR_INT_CEIL_LOG2 (3*n0-2);
-
- /* Initialisation */
- MPFR_GROUP_REPREC_4 (group, prec, sk, tmp, tmp2, arctgt);
- if (MPFR_LIKELY (oldn0 == 0))
- {
- oldn0 = 3*(n0+1);
- tabz = (mpz_t *) (*__gmp_allocate_func) (oldn0*sizeof (mpz_t));
- for (i = 0; i < oldn0; i++)
- mpz_init (tabz[i]);
- }
- else if (MPFR_UNLIKELY (oldn0 < 3*n0+1))
- {
- tabz = (mpz_t *) (*__gmp_reallocate_func)
- (tabz, oldn0*sizeof (mpz_t), 3*(n0+1)*sizeof (mpz_t));
- for (i = oldn0; i < 3*(n0+1); i++)
- mpz_init (tabz[i]);
- oldn0 = 3*(n0+1);
- }
-
- if (comparaison > 0)
- mpfr_ui_div (sk, 1, xp, GMP_RNDN);
- else
- mpfr_set (sk, xp, GMP_RNDN);
-
- /* sk is 1/|x| if |x| > 1, and |x| otherwise, i.e. min(|x|, 1/|x|) */
-
- /* Assignation */
- MPFR_SET_ZERO (arctgt);
- twopoweri = 1<<0;
- MPFR_ASSERTD (n0 >= 4);
- /* FIXME: further reduce the argument so that it is less than
- 1/n where n is the output precision. In such a way, the
- first calls to mpfr_atan_aux will not be too expensive,
- since the number of needed terms will be n/log(n), so the
- factorial contribution will be O(n). */
- for (i = 0 ; i < n0; i++)
- {
- if (MPFR_UNLIKELY (MPFR_IS_ZERO (sk)))
- break;
- /* Calculation of trunc(tmp) --> mpz */
- mpfr_mul_2ui (tmp, sk, twopoweri, GMP_RNDN);
- mpfr_trunc (tmp, tmp);
- if (!MPFR_IS_ZERO (tmp))
- {
- exptol = mpfr_get_z_exp (ukz, tmp);
- /* since the s_k are decreasing (see algorithms.tex),
- and s_0 = min(|x|, 1/|x|) < 1, we have sk < 1,
- thus exptol < 0 */
- MPFR_ASSERTD (exptol < 0);
- mpz_tdiv_q_2exp (ukz, ukz, (unsigned long int) (-exptol));
- /* Calculation of arctan(Ak) */
- mpfr_set_z (tmp, ukz, GMP_RNDN);
- mpfr_div_2ui (tmp, tmp, twopoweri, GMP_RNDN);
- mpfr_atan_aux (tmp2, ukz, twopoweri, n0 - i, tabz);
- mpfr_mul (tmp2, tmp2, tmp, GMP_RNDN);
- /* Addition */
- mpfr_add (arctgt, arctgt, tmp2, GMP_RNDN);
- /* Next iteration */
- mpfr_sub (tmp2, sk, tmp, GMP_RNDN);
- mpfr_mul (sk, sk, tmp, GMP_RNDN);
- mpfr_add_ui (sk, sk, 1, GMP_RNDN);
- mpfr_div (sk, tmp2, sk, GMP_RNDN);
- }
- twopoweri <<= 1;
- }
- /* Add last step (Arctan(sk) ~= sk */
- mpfr_add (arctgt, arctgt, sk, GMP_RNDN);
- if (comparaison > 0)
- {
- mpfr_const_pi (tmp, GMP_RNDN);
- mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN);
- mpfr_sub (arctgt, tmp, arctgt, GMP_RNDN);
- }
- MPFR_SET_POS (arctgt);
-
- if (MPFR_LIKELY (MPFR_CAN_ROUND (arctgt, realprec, MPFR_PREC (atan),
- rnd_mode)))
- break;
- MPFR_ZIV_NEXT (loop, realprec);
- }
- MPFR_ZIV_FREE (loop);
-
- inexact = mpfr_set4 (atan, arctgt, rnd_mode, MPFR_SIGN (x));
-
- for (i = 0 ; i < oldn0 ; i++)
- mpz_clear (tabz[i]);
- mpz_clear (ukz);
- (*__gmp_free_func) (tabz, oldn0*sizeof (mpz_t));
- MPFR_GROUP_CLEAR (group);
-
- MPFR_SAVE_EXPO_FREE (expo);
- return mpfr_check_range (arctgt, inexact, rnd_mode);
-}
« no previous file with comments | « gcc/mpfr/asin.c ('k') | gcc/mpfr/atanh.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698