| Index: gcc/mpfr/atan.c
|
| diff --git a/gcc/mpfr/atan.c b/gcc/mpfr/atan.c
|
| deleted file mode 100644
|
| index 17b65aa1c1d90b8aa632c65f37d049cb44549995..0000000000000000000000000000000000000000
|
| --- a/gcc/mpfr/atan.c
|
| +++ /dev/null
|
| @@ -1,385 +0,0 @@
|
| -/* mpfr_atan -- arc-tangent of a floating-point number
|
| -
|
| -Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
| -Contributed by the Arenaire and Cacao projects, INRIA.
|
| -
|
| -This file is part of the GNU MPFR Library, and was contributed by Mathieu Dutour.
|
| -
|
| -The GNU MPFR Library is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU Lesser General Public License as published by
|
| -the Free Software Foundation; either version 2.1 of the License, or (at your
|
| -option) any later version.
|
| -
|
| -The GNU MPFR Library is distributed in the hope that it will be useful, but
|
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| -License for more details.
|
| -
|
| -You should have received a copy of the GNU Lesser General Public License
|
| -along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
|
| -the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
| -MA 02110-1301, USA. */
|
| -
|
| -#define MPFR_NEED_LONGLONG_H
|
| -#include "mpfr-impl.h"
|
| -
|
| -/* If x = p/2^r, put in y an approximation of atan(x)/x using 2^m terms
|
| - for the series expansion, with an error of at most 1 ulp.
|
| - Assumes |x| < 1.
|
| -
|
| - If X=x^2, we want 1 - X/3 + X^2/5 - ... + (-1)^k*X^k/(2k+1) + ...
|
| -*/
|
| -static void
|
| -mpfr_atan_aux (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *tab)
|
| -{
|
| - mpz_t *S, *Q, *ptoj;
|
| - unsigned long n, i, k, j, l;
|
| - mp_exp_t diff, expo;
|
| - int im, done;
|
| - mp_prec_t mult, *accu, *log2_nb_terms;
|
| - mp_prec_t precy = MPFR_PREC(y);
|
| -
|
| - if (mpz_cmp_ui (p, 0) == 0)
|
| - {
|
| - mpfr_set_ui (y, 1, GMP_RNDN); /* limit(atan(x)/x, x=0) */
|
| - return;
|
| - }
|
| -
|
| - accu = (mp_prec_t*) (*__gmp_allocate_func) ((2 * m + 2) * sizeof (mp_prec_t));
|
| - log2_nb_terms = accu + m + 1;
|
| -
|
| - /* Set Tables */
|
| - S = tab; /* S */
|
| - ptoj = S + 1*(m+1); /* p^2^j Precomputed table */
|
| - Q = S + 2*(m+1); /* Product of Odd integer table */
|
| -
|
| - /* From p to p^2, and r to 2r */
|
| - mpz_mul (p, p, p);
|
| - MPFR_ASSERTD (2 * r > r);
|
| - r = 2 * r;
|
| -
|
| - /* Normalize p */
|
| - n = mpz_scan1 (p, 0);
|
| - mpz_tdiv_q_2exp (p, p, n); /* exact */
|
| - MPFR_ASSERTD (r > n);
|
| - r -= n;
|
| - /* since |p/2^r| < 1, and p is a non-zero integer, necessarily r > 0 */
|
| -
|
| - MPFR_ASSERTD (mpz_sgn (p) > 0);
|
| - MPFR_ASSERTD (m > 0);
|
| -
|
| - /* check if p=1 (special case) */
|
| - l = 0;
|
| - /*
|
| - We compute by binary splitting, with X = x^2 = p/2^r:
|
| - P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise
|
| - Q(a,b) = (2a+1)*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise
|
| - S(a,b) = p*(2a+1) if a+1=b, Q(c,b)*S(a,c)+Q(a,c)*P(a,c)*S(c,b) otherwise
|
| - Then atan(x)/x ~ S(0,i)/Q(0,i) for i so that (p/2^r)^i/i is small enough.
|
| - The factor 2^(r*(b-a)) in Q(a,b) is implicit, thus we have to take it
|
| - into account when we compute with Q.
|
| - */
|
| - accu[0] = 0; /* accu[k] = Mult[0] + ... + Mult[k], where Mult[j] is the
|
| - number of bits of the corresponding term S[j]/Q[j] */
|
| - if (mpz_cmp_ui (p, 1) != 0)
|
| - {
|
| - /* p <> 1: precompute ptoj table */
|
| - mpz_set (ptoj[0], p);
|
| - for (im = 1 ; im <= m ; im ++)
|
| - mpz_mul (ptoj[im], ptoj[im - 1], ptoj[im - 1]);
|
| - /* main loop */
|
| - n = 1UL << m;
|
| - /* the ith term being X^i/(2i+1) with X=p/2^r, we can stop when
|
| - p^i/2^(r*i) < 2^(-precy), i.e. r*i > precy + log2(p^i) */
|
| - for (i = k = done = 0; (i < n) && (done == 0); i += 2, k ++)
|
| - {
|
| - /* initialize both S[k],Q[k] and S[k+1],Q[k+1] */
|
| - mpz_set_ui (Q[k+1], 2 * i + 3); /* Q(i+1,i+2) */
|
| - mpz_mul_ui (S[k+1], p, 2 * i + 1); /* S(i+1,i+2) */
|
| - mpz_mul_2exp (S[k], Q[k+1], r);
|
| - mpz_sub (S[k], S[k], S[k+1]); /* S(i,i+2) */
|
| - mpz_mul_ui (Q[k], Q[k+1], 2 * i + 1); /* Q(i,i+2) */
|
| - log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
|
| - for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l ++, j >>= 1, k --)
|
| - {
|
| - /* invariant: S[k-1]/Q[k-1] and S[k]/Q[k] correspond
|
| - to 2^l terms each. We combine them into S[k-1]/Q[k-1] */
|
| - MPFR_ASSERTD (k > 0);
|
| - mpz_mul (S[k], S[k], Q[k-1]);
|
| - mpz_mul (S[k], S[k], ptoj[l]);
|
| - mpz_mul (S[k-1], S[k-1], Q[k]);
|
| - mpz_mul_2exp (S[k-1], S[k-1], r << l);
|
| - mpz_add (S[k-1], S[k-1], S[k]);
|
| - mpz_mul (Q[k-1], Q[k-1], Q[k]);
|
| - log2_nb_terms[k-1] = l + 1;
|
| - /* now S[k-1]/Q[k-1] corresponds to 2^(l+1) terms */
|
| - MPFR_MPZ_SIZEINBASE2(mult, ptoj[l+1]);
|
| - /* FIXME: precompute bits(ptoj[l+1]) outside the loop? */
|
| - mult = (r << (l + 1)) - mult - 1;
|
| - accu[k-1] = (k == 1) ? mult : accu[k-2] + mult;
|
| - if (accu[k-1] > precy)
|
| - done = 1;
|
| - }
|
| - }
|
| - }
|
| - else /* special case p=1: the ith term being X^i/(2i+1) with X=1/2^r,
|
| - we can stop when r*i > precy i.e. i > precy/r */
|
| - {
|
| - n = 1UL << m;
|
| - for (i = k = 0; (i < n) && (i <= precy / r); i += 2, k ++)
|
| - {
|
| - mpz_set_ui (Q[k + 1], 2 * i + 3);
|
| - mpz_mul_2exp (S[k], Q[k+1], r);
|
| - mpz_sub_ui (S[k], S[k], 1 + 2 * i);
|
| - mpz_mul_ui (Q[k], Q[k + 1], 1 + 2 * i);
|
| - log2_nb_terms[k] = 1; /* S[k]/Q[k] corresponds to 2 terms */
|
| - for (j = (i + 2) >> 1, l = 1; (j & 1) == 0; l++, j >>= 1, k --)
|
| - {
|
| - MPFR_ASSERTD (k > 0);
|
| - mpz_mul (S[k], S[k], Q[k-1]);
|
| - mpz_mul (S[k-1], S[k-1], Q[k]);
|
| - mpz_mul_2exp (S[k-1], S[k-1], r << l);
|
| - mpz_add (S[k-1], S[k-1], S[k]);
|
| - mpz_mul (Q[k-1], Q[k-1], Q[k]);
|
| - log2_nb_terms[k-1] = l + 1;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* we need to combine S[0]/Q[0]...S[k-1]/Q[k-1] */
|
| - l = 0; /* number of terms accumulated in S[k]/Q[k] */
|
| - while (k > 1)
|
| - {
|
| - k --;
|
| - /* combine S[k-1]/Q[k-1] and S[k]/Q[k] */
|
| - j = log2_nb_terms[k-1];
|
| - mpz_mul (S[k], S[k], Q[k-1]);
|
| - if (mpz_cmp_ui (p, 1) != 0)
|
| - mpz_mul (S[k], S[k], ptoj[j]);
|
| - mpz_mul (S[k-1], S[k-1], Q[k]);
|
| - l += 1 << log2_nb_terms[k];
|
| - mpz_mul_2exp (S[k-1], S[k-1], r * l);
|
| - mpz_add (S[k-1], S[k-1], S[k]);
|
| - mpz_mul (Q[k-1], Q[k-1], Q[k]);
|
| - }
|
| - (*__gmp_free_func) (accu, (2 * m + 2) * sizeof (mp_prec_t));
|
| -
|
| - MPFR_MPZ_SIZEINBASE2 (diff, S[0]);
|
| - diff -= 2 * precy;
|
| - expo = diff;
|
| - if (diff >= 0)
|
| - mpz_tdiv_q_2exp (S[0], S[0], diff);
|
| - else
|
| - mpz_mul_2exp (S[0], S[0], -diff);
|
| -
|
| - MPFR_MPZ_SIZEINBASE2 (diff, Q[0]);
|
| - diff -= precy;
|
| - expo -= diff;
|
| - if (diff >= 0)
|
| - mpz_tdiv_q_2exp (Q[0], Q[0], diff);
|
| - else
|
| - mpz_mul_2exp (Q[0], Q[0], -diff);
|
| -
|
| - mpz_tdiv_q (S[0], S[0], Q[0]);
|
| - mpfr_set_z (y, S[0], GMP_RNDD);
|
| - MPFR_SET_EXP (y, MPFR_EXP(y) + expo - r * (i - 1));
|
| -}
|
| -
|
| -int
|
| -mpfr_atan (mpfr_ptr atan, mpfr_srcptr x, mp_rnd_t rnd_mode)
|
| -{
|
| - mpfr_t xp, arctgt, sk, tmp, tmp2;
|
| - mpz_t ukz;
|
| - mpz_t *tabz;
|
| - mp_exp_t exptol;
|
| - mp_prec_t prec, realprec;
|
| - unsigned long twopoweri;
|
| - int comparaison, inexact, inexact2;
|
| - int i, n0, oldn0;
|
| - MPFR_GROUP_DECL (group);
|
| - MPFR_SAVE_EXPO_DECL (expo);
|
| - MPFR_ZIV_DECL (loop);
|
| -
|
| - MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
|
| - ("atan[%#R]=%R inexact=%d", atan, atan, inexact));
|
| -
|
| - /* Singular cases */
|
| - if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
| - {
|
| - if (MPFR_IS_NAN (x))
|
| - {
|
| - MPFR_SET_NAN (atan);
|
| - MPFR_RET_NAN;
|
| - }
|
| - else if (MPFR_IS_INF (x))
|
| - {
|
| - if (MPFR_IS_POS (x)) /* arctan(+inf) = Pi/2 */
|
| - inexact = mpfr_const_pi (atan, rnd_mode);
|
| - else /* arctan(-inf) = -Pi/2 */
|
| - {
|
| - inexact = -mpfr_const_pi (atan,
|
| - MPFR_INVERT_RND (rnd_mode));
|
| - MPFR_CHANGE_SIGN (atan);
|
| - }
|
| - inexact2 = mpfr_div_2ui (atan, atan, 1, rnd_mode);
|
| - if (MPFR_UNLIKELY (inexact2))
|
| - inexact = inexact2; /* An underflow occurs */
|
| - MPFR_RET (inexact);
|
| - }
|
| - else /* x is necessarily 0 */
|
| - {
|
| - MPFR_ASSERTD (MPFR_IS_ZERO (x));
|
| - MPFR_SET_ZERO (atan);
|
| - MPFR_SET_SAME_SIGN (atan, x);
|
| - MPFR_RET (0);
|
| - }
|
| - }
|
| -
|
| - /* atan(x) = x - x^3/3 + x^5/5...
|
| - so the error is < 2^(3*EXP(x)-1)
|
| - so `EXP(x)-(3*EXP(x)-1)` = -2*EXP(x)+1 */
|
| - MPFR_FAST_COMPUTE_IF_SMALL_INPUT (atan, x, -2 * MPFR_GET_EXP (x), 1, 0,
|
| - rnd_mode, {});
|
| -
|
| - /* Set x_p=|x| */
|
| - MPFR_TMP_INIT_ABS (xp, x);
|
| -
|
| - /* Other simple case arctan(-+1)=-+pi/4 */
|
| - comparaison = mpfr_cmp_ui (xp, 1);
|
| - if (MPFR_UNLIKELY (comparaison == 0))
|
| - {
|
| - int neg = MPFR_IS_NEG (x);
|
| - inexact = mpfr_const_pi (atan, MPFR_IS_POS (x) ? rnd_mode
|
| - : MPFR_INVERT_RND (rnd_mode));
|
| - if (neg)
|
| - {
|
| - inexact = -inexact;
|
| - MPFR_CHANGE_SIGN (atan);
|
| - }
|
| - inexact2 = mpfr_div_2ui (atan, atan, 2, rnd_mode);
|
| - if (MPFR_UNLIKELY (inexact2))
|
| - inexact = inexact2; /* an underflow occurs */
|
| - return inexact;
|
| - }
|
| -
|
| - realprec = MPFR_PREC (atan) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (atan)) + 4;
|
| - prec = realprec + BITS_PER_MP_LIMB;
|
| -
|
| - MPFR_SAVE_EXPO_MARK (expo);
|
| -
|
| - /* Initialisation */
|
| - mpz_init (ukz);
|
| - MPFR_GROUP_INIT_4 (group, prec, sk, tmp, tmp2, arctgt);
|
| - oldn0 = 0;
|
| - tabz = (mpz_t *) 0;
|
| -
|
| - MPFR_ZIV_INIT (loop, prec);
|
| - for (;;)
|
| - {
|
| - /* First, if |x| < 1, we need to have more prec to be able to round (sup)
|
| - n0 = ceil(log(prec_requested + 2 + 1+ln(2.4)/ln(2))/log(2)) */
|
| - mp_prec_t sup;
|
| -#if 0
|
| - sup = 1;
|
| - if (MPFR_GET_EXP (xp) < 0
|
| - && (mpfr_uexp_t) (2-MPFR_GET_EXP (xp)) > realprec)
|
| - sup = (mpfr_uexp_t) (2-MPFR_GET_EXP (xp)) - realprec;
|
| -#else
|
| - sup = MPFR_GET_EXP (xp) < 0 ? 2-MPFR_GET_EXP (xp) : 1;
|
| -#endif
|
| - n0 = MPFR_INT_CEIL_LOG2 ((realprec + sup) + 3);
|
| - MPFR_ASSERTD (3*n0 > 2);
|
| - prec = (realprec + sup) + 1 + MPFR_INT_CEIL_LOG2 (3*n0-2);
|
| -
|
| - /* Initialisation */
|
| - MPFR_GROUP_REPREC_4 (group, prec, sk, tmp, tmp2, arctgt);
|
| - if (MPFR_LIKELY (oldn0 == 0))
|
| - {
|
| - oldn0 = 3*(n0+1);
|
| - tabz = (mpz_t *) (*__gmp_allocate_func) (oldn0*sizeof (mpz_t));
|
| - for (i = 0; i < oldn0; i++)
|
| - mpz_init (tabz[i]);
|
| - }
|
| - else if (MPFR_UNLIKELY (oldn0 < 3*n0+1))
|
| - {
|
| - tabz = (mpz_t *) (*__gmp_reallocate_func)
|
| - (tabz, oldn0*sizeof (mpz_t), 3*(n0+1)*sizeof (mpz_t));
|
| - for (i = oldn0; i < 3*(n0+1); i++)
|
| - mpz_init (tabz[i]);
|
| - oldn0 = 3*(n0+1);
|
| - }
|
| -
|
| - if (comparaison > 0)
|
| - mpfr_ui_div (sk, 1, xp, GMP_RNDN);
|
| - else
|
| - mpfr_set (sk, xp, GMP_RNDN);
|
| -
|
| - /* sk is 1/|x| if |x| > 1, and |x| otherwise, i.e. min(|x|, 1/|x|) */
|
| -
|
| - /* Assignation */
|
| - MPFR_SET_ZERO (arctgt);
|
| - twopoweri = 1<<0;
|
| - MPFR_ASSERTD (n0 >= 4);
|
| - /* FIXME: further reduce the argument so that it is less than
|
| - 1/n where n is the output precision. In such a way, the
|
| - first calls to mpfr_atan_aux will not be too expensive,
|
| - since the number of needed terms will be n/log(n), so the
|
| - factorial contribution will be O(n). */
|
| - for (i = 0 ; i < n0; i++)
|
| - {
|
| - if (MPFR_UNLIKELY (MPFR_IS_ZERO (sk)))
|
| - break;
|
| - /* Calculation of trunc(tmp) --> mpz */
|
| - mpfr_mul_2ui (tmp, sk, twopoweri, GMP_RNDN);
|
| - mpfr_trunc (tmp, tmp);
|
| - if (!MPFR_IS_ZERO (tmp))
|
| - {
|
| - exptol = mpfr_get_z_exp (ukz, tmp);
|
| - /* since the s_k are decreasing (see algorithms.tex),
|
| - and s_0 = min(|x|, 1/|x|) < 1, we have sk < 1,
|
| - thus exptol < 0 */
|
| - MPFR_ASSERTD (exptol < 0);
|
| - mpz_tdiv_q_2exp (ukz, ukz, (unsigned long int) (-exptol));
|
| - /* Calculation of arctan(Ak) */
|
| - mpfr_set_z (tmp, ukz, GMP_RNDN);
|
| - mpfr_div_2ui (tmp, tmp, twopoweri, GMP_RNDN);
|
| - mpfr_atan_aux (tmp2, ukz, twopoweri, n0 - i, tabz);
|
| - mpfr_mul (tmp2, tmp2, tmp, GMP_RNDN);
|
| - /* Addition */
|
| - mpfr_add (arctgt, arctgt, tmp2, GMP_RNDN);
|
| - /* Next iteration */
|
| - mpfr_sub (tmp2, sk, tmp, GMP_RNDN);
|
| - mpfr_mul (sk, sk, tmp, GMP_RNDN);
|
| - mpfr_add_ui (sk, sk, 1, GMP_RNDN);
|
| - mpfr_div (sk, tmp2, sk, GMP_RNDN);
|
| - }
|
| - twopoweri <<= 1;
|
| - }
|
| - /* Add last step (Arctan(sk) ~= sk */
|
| - mpfr_add (arctgt, arctgt, sk, GMP_RNDN);
|
| - if (comparaison > 0)
|
| - {
|
| - mpfr_const_pi (tmp, GMP_RNDN);
|
| - mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN);
|
| - mpfr_sub (arctgt, tmp, arctgt, GMP_RNDN);
|
| - }
|
| - MPFR_SET_POS (arctgt);
|
| -
|
| - if (MPFR_LIKELY (MPFR_CAN_ROUND (arctgt, realprec, MPFR_PREC (atan),
|
| - rnd_mode)))
|
| - break;
|
| - MPFR_ZIV_NEXT (loop, realprec);
|
| - }
|
| - MPFR_ZIV_FREE (loop);
|
| -
|
| - inexact = mpfr_set4 (atan, arctgt, rnd_mode, MPFR_SIGN (x));
|
| -
|
| - for (i = 0 ; i < oldn0 ; i++)
|
| - mpz_clear (tabz[i]);
|
| - mpz_clear (ukz);
|
| - (*__gmp_free_func) (tabz, oldn0*sizeof (mpz_t));
|
| - MPFR_GROUP_CLEAR (group);
|
| -
|
| - MPFR_SAVE_EXPO_FREE (expo);
|
| - return mpfr_check_range (arctgt, inexact, rnd_mode);
|
| -}
|
|
|