| Index: gcc/libgfortran/generated/product_i2.c
|
| diff --git a/gcc/libgfortran/generated/product_i2.c b/gcc/libgfortran/generated/product_i2.c
|
| index b43e871c35d108a13a3d182ec7d0279a9652d577..c5bfc293e55b57ac2d7d3d1dcdfabfe963a29e83 100644
|
| --- a/gcc/libgfortran/generated/product_i2.c
|
| +++ b/gcc/libgfortran/generated/product_i2.c
|
| @@ -57,24 +57,23 @@ product_i2 (gfc_array_i2 * const restrict retarray,
|
| dim = (*pdim) - 1;
|
| rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
| - len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
|
| + len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
| if (len < 0)
|
| len = 0;
|
| - delta = array->dim[dim].stride;
|
| + delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
|
|
| for (n = 0; n < dim; n++)
|
| {
|
| - sstride[n] = array->dim[n].stride;
|
| - extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
| + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
| + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
| if (extent[n] < 0)
|
| extent[n] = 0;
|
| }
|
| for (n = dim; n < rank; n++)
|
| {
|
| - sstride[n] = array->dim[n + 1].stride;
|
| - extent[n] =
|
| - array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
| + sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
|
| + extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
| if (extent[n] < 0)
|
| extent[n] = 0;
|
| @@ -82,30 +81,31 @@ product_i2 (gfc_array_i2 * const restrict retarray,
|
|
|
| if (retarray->data == NULL)
|
| {
|
| - size_t alloc_size;
|
| + size_t alloc_size, str;
|
|
|
| for (n = 0; n < rank; n++)
|
| - {
|
| - retarray->dim[n].lbound = 0;
|
| - retarray->dim[n].ubound = extent[n]-1;
|
| - if (n == 0)
|
| - retarray->dim[n].stride = 1;
|
| - else
|
| - retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
| - }
|
| + {
|
| + if (n == 0)
|
| + str = 1;
|
| + else
|
| + str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
| +
|
| + GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
| +
|
| + }
|
|
|
| retarray->offset = 0;
|
| retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
|
| - alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
|
| + alloc_size = sizeof (GFC_INTEGER_2) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
|
| * extent[rank-1];
|
|
|
| if (alloc_size == 0)
|
| {
|
| /* Make sure we have a zero-sized array. */
|
| - retarray->dim[0].lbound = 0;
|
| - retarray->dim[0].ubound = -1;
|
| + GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
| return;
|
| +
|
| }
|
| else
|
| retarray->data = internal_malloc_size (alloc_size);
|
| @@ -119,28 +119,16 @@ product_i2 (gfc_array_i2 * const restrict retarray,
|
| (long int) rank);
|
|
|
| if (unlikely (compile_options.bounds_check))
|
| - {
|
| - for (n=0; n < rank; n++)
|
| - {
|
| - index_type ret_extent;
|
| -
|
| - ret_extent = retarray->dim[n].ubound + 1
|
| - - retarray->dim[n].lbound;
|
| - if (extent[n] != ret_extent)
|
| - runtime_error ("Incorrect extent in return value of"
|
| - " PRODUCT intrinsic in dimension %ld:"
|
| - " is %ld, should be %ld", (long int) n + 1,
|
| - (long int) ret_extent, (long int) extent[n]);
|
| - }
|
| - }
|
| + bounds_ifunction_return ((array_t *) retarray, extent,
|
| + "return value", "PRODUCT");
|
| }
|
|
|
| for (n = 0; n < rank; n++)
|
| {
|
| count[n] = 0;
|
| - dstride[n] = retarray->dim[n].stride;
|
| + dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
| if (extent[n] <= 0)
|
| - len = 0;
|
| + len = 0;
|
| }
|
|
|
| base = array->data;
|
| @@ -155,7 +143,7 @@ product_i2 (gfc_array_i2 * const restrict retarray,
|
| {
|
|
|
| result = 1;
|
| - if (len <= 0)
|
| + if (len <= 0)
|
| *dest = 1;
|
| else
|
| {
|
| @@ -163,7 +151,7 @@ product_i2 (gfc_array_i2 * const restrict retarray,
|
| {
|
|
|
| result *= *src;
|
| - }
|
| + }
|
| *dest = result;
|
| }
|
| }
|
| @@ -173,28 +161,28 @@ product_i2 (gfc_array_i2 * const restrict retarray,
|
| dest += dstride[0];
|
| n = 0;
|
| while (count[n] == extent[n])
|
| - {
|
| - /* When we get to the end of a dimension, reset it and increment
|
| - the next dimension. */
|
| - count[n] = 0;
|
| - /* We could precalculate these products, but this is a less
|
| - frequently used path so probably not worth it. */
|
| - base -= sstride[n] * extent[n];
|
| - dest -= dstride[n] * extent[n];
|
| - n++;
|
| - if (n == rank)
|
| - {
|
| - /* Break out of the look. */
|
| + {
|
| + /* When we get to the end of a dimension, reset it and increment
|
| + the next dimension. */
|
| + count[n] = 0;
|
| + /* We could precalculate these products, but this is a less
|
| + frequently used path so probably not worth it. */
|
| + base -= sstride[n] * extent[n];
|
| + dest -= dstride[n] * extent[n];
|
| + n++;
|
| + if (n == rank)
|
| + {
|
| + /* Break out of the look. */
|
| continue_loop = 0;
|
| break;
|
| - }
|
| - else
|
| - {
|
| - count[n]++;
|
| - base += sstride[n];
|
| - dest += dstride[n];
|
| - }
|
| - }
|
| + }
|
| + else
|
| + {
|
| + count[n]++;
|
| + base += sstride[n];
|
| + dest += dstride[n];
|
| + }
|
| + }
|
| }
|
| }
|
|
|
| @@ -229,7 +217,7 @@ mproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| dim = (*pdim) - 1;
|
| rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
| - len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
|
| + len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
| if (len <= 0)
|
| return;
|
|
|
| @@ -246,14 +234,14 @@ mproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| else
|
| runtime_error ("Funny sized logical array");
|
|
|
| - delta = array->dim[dim].stride;
|
| - mdelta = mask->dim[dim].stride * mask_kind;
|
| + delta = GFC_DESCRIPTOR_STRIDE(array,dim);
|
| + mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
|
|
|
| for (n = 0; n < dim; n++)
|
| {
|
| - sstride[n] = array->dim[n].stride;
|
| - mstride[n] = mask->dim[n].stride * mask_kind;
|
| - extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
| + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
|
| + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
| + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
| if (extent[n] < 0)
|
| extent[n] = 0;
|
| @@ -261,10 +249,9 @@ mproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| }
|
| for (n = dim; n < rank; n++)
|
| {
|
| - sstride[n] = array->dim[n + 1].stride;
|
| - mstride[n] = mask->dim[n + 1].stride * mask_kind;
|
| - extent[n] =
|
| - array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
| + sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
|
| + mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
|
| + extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
| if (extent[n] < 0)
|
| extent[n] = 0;
|
| @@ -272,19 +259,20 @@ mproduct_i2 (gfc_array_i2 * const restrict retarray,
|
|
|
| if (retarray->data == NULL)
|
| {
|
| - size_t alloc_size;
|
| + size_t alloc_size, str;
|
|
|
| for (n = 0; n < rank; n++)
|
| - {
|
| - retarray->dim[n].lbound = 0;
|
| - retarray->dim[n].ubound = extent[n]-1;
|
| - if (n == 0)
|
| - retarray->dim[n].stride = 1;
|
| - else
|
| - retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
| - }
|
| -
|
| - alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
|
| + {
|
| + if (n == 0)
|
| + str = 1;
|
| + else
|
| + str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
| +
|
| + GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
| +
|
| + }
|
| +
|
| + alloc_size = sizeof (GFC_INTEGER_2) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
|
| * extent[rank-1];
|
|
|
| retarray->offset = 0;
|
| @@ -293,8 +281,7 @@ mproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| if (alloc_size == 0)
|
| {
|
| /* Make sure we have a zero-sized array. */
|
| - retarray->dim[0].lbound = 0;
|
| - retarray->dim[0].ubound = -1;
|
| + GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
| return;
|
| }
|
| else
|
| @@ -308,39 +295,19 @@ mproduct_i2 (gfc_array_i2 * const restrict retarray,
|
|
|
| if (unlikely (compile_options.bounds_check))
|
| {
|
| - for (n=0; n < rank; n++)
|
| - {
|
| - index_type ret_extent;
|
| -
|
| - ret_extent = retarray->dim[n].ubound + 1
|
| - - retarray->dim[n].lbound;
|
| - if (extent[n] != ret_extent)
|
| - runtime_error ("Incorrect extent in return value of"
|
| - " PRODUCT intrinsic in dimension %ld:"
|
| - " is %ld, should be %ld", (long int) n + 1,
|
| - (long int) ret_extent, (long int) extent[n]);
|
| - }
|
| - for (n=0; n<= rank; n++)
|
| - {
|
| - index_type mask_extent, array_extent;
|
| -
|
| - array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
| - mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
|
| - if (array_extent != mask_extent)
|
| - runtime_error ("Incorrect extent in MASK argument of"
|
| - " PRODUCT intrinsic in dimension %ld:"
|
| - " is %ld, should be %ld", (long int) n + 1,
|
| - (long int) mask_extent, (long int) array_extent);
|
| - }
|
| + bounds_ifunction_return ((array_t *) retarray, extent,
|
| + "return value", "PRODUCT");
|
| + bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
| + "MASK argument", "PRODUCT");
|
| }
|
| }
|
|
|
| for (n = 0; n < rank; n++)
|
| {
|
| count[n] = 0;
|
| - dstride[n] = retarray->dim[n].stride;
|
| + dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
| if (extent[n] <= 0)
|
| - return;
|
| + return;
|
| }
|
|
|
| dest = retarray->data;
|
| @@ -356,7 +323,7 @@ mproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| {
|
|
|
| result = 1;
|
| - if (len <= 0)
|
| + if (len <= 0)
|
| *dest = 1;
|
| else
|
| {
|
| @@ -365,7 +332,7 @@ mproduct_i2 (gfc_array_i2 * const restrict retarray,
|
|
|
| if (*msrc)
|
| result *= *src;
|
| - }
|
| + }
|
| *dest = result;
|
| }
|
| }
|
| @@ -376,30 +343,30 @@ mproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| dest += dstride[0];
|
| n = 0;
|
| while (count[n] == extent[n])
|
| - {
|
| - /* When we get to the end of a dimension, reset it and increment
|
| - the next dimension. */
|
| - count[n] = 0;
|
| - /* We could precalculate these products, but this is a less
|
| - frequently used path so probably not worth it. */
|
| - base -= sstride[n] * extent[n];
|
| - mbase -= mstride[n] * extent[n];
|
| - dest -= dstride[n] * extent[n];
|
| - n++;
|
| - if (n == rank)
|
| - {
|
| - /* Break out of the look. */
|
| - base = NULL;
|
| - break;
|
| - }
|
| - else
|
| - {
|
| - count[n]++;
|
| - base += sstride[n];
|
| - mbase += mstride[n];
|
| - dest += dstride[n];
|
| - }
|
| - }
|
| + {
|
| + /* When we get to the end of a dimension, reset it and increment
|
| + the next dimension. */
|
| + count[n] = 0;
|
| + /* We could precalculate these products, but this is a less
|
| + frequently used path so probably not worth it. */
|
| + base -= sstride[n] * extent[n];
|
| + mbase -= mstride[n] * extent[n];
|
| + dest -= dstride[n] * extent[n];
|
| + n++;
|
| + if (n == rank)
|
| + {
|
| + /* Break out of the look. */
|
| + base = NULL;
|
| + break;
|
| + }
|
| + else
|
| + {
|
| + count[n]++;
|
| + base += sstride[n];
|
| + mbase += mstride[n];
|
| + dest += dstride[n];
|
| + }
|
| + }
|
| }
|
| }
|
|
|
| @@ -417,7 +384,6 @@ sproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| {
|
| index_type count[GFC_MAX_DIMENSIONS];
|
| index_type extent[GFC_MAX_DIMENSIONS];
|
| - index_type sstride[GFC_MAX_DIMENSIONS];
|
| index_type dstride[GFC_MAX_DIMENSIONS];
|
| GFC_INTEGER_2 * restrict dest;
|
| index_type rank;
|
| @@ -436,8 +402,7 @@ sproduct_i2 (gfc_array_i2 * const restrict retarray,
|
|
|
| for (n = 0; n < dim; n++)
|
| {
|
| - sstride[n] = array->dim[n].stride;
|
| - extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
| + extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
| if (extent[n] <= 0)
|
| extent[n] = 0;
|
| @@ -445,39 +410,38 @@ sproduct_i2 (gfc_array_i2 * const restrict retarray,
|
|
|
| for (n = dim; n < rank; n++)
|
| {
|
| - sstride[n] = array->dim[n + 1].stride;
|
| extent[n] =
|
| - array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
| + GFC_DESCRIPTOR_EXTENT(array,n + 1);
|
|
|
| if (extent[n] <= 0)
|
| - extent[n] = 0;
|
| + extent[n] = 0;
|
| }
|
|
|
| if (retarray->data == NULL)
|
| {
|
| - size_t alloc_size;
|
| + size_t alloc_size, str;
|
|
|
| for (n = 0; n < rank; n++)
|
| - {
|
| - retarray->dim[n].lbound = 0;
|
| - retarray->dim[n].ubound = extent[n]-1;
|
| - if (n == 0)
|
| - retarray->dim[n].stride = 1;
|
| - else
|
| - retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
| - }
|
| + {
|
| + if (n == 0)
|
| + str = 1;
|
| + else
|
| + str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
| +
|
| + GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
| +
|
| + }
|
|
|
| retarray->offset = 0;
|
| retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
|
|
| - alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
|
| + alloc_size = sizeof (GFC_INTEGER_2) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
|
| * extent[rank-1];
|
|
|
| if (alloc_size == 0)
|
| {
|
| /* Make sure we have a zero-sized array. */
|
| - retarray->dim[0].lbound = 0;
|
| - retarray->dim[0].ubound = -1;
|
| + GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
| return;
|
| }
|
| else
|
| @@ -497,8 +461,7 @@ sproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| {
|
| index_type ret_extent;
|
|
|
| - ret_extent = retarray->dim[n].ubound + 1
|
| - - retarray->dim[n].lbound;
|
| + ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
|
| if (extent[n] != ret_extent)
|
| runtime_error ("Incorrect extent in return value of"
|
| " PRODUCT intrinsic in dimension %ld:"
|
| @@ -511,7 +474,7 @@ sproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| for (n = 0; n < rank; n++)
|
| {
|
| count[n] = 0;
|
| - dstride[n] = retarray->dim[n].stride;
|
| + dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
| }
|
|
|
| dest = retarray->data;
|
| @@ -523,21 +486,21 @@ sproduct_i2 (gfc_array_i2 * const restrict retarray,
|
| dest += dstride[0];
|
| n = 0;
|
| while (count[n] == extent[n])
|
| - {
|
| + {
|
| /* When we get to the end of a dimension, reset it and increment
|
| - the next dimension. */
|
| - count[n] = 0;
|
| - /* We could precalculate these products, but this is a less
|
| - frequently used path so probably not worth it. */
|
| - dest -= dstride[n] * extent[n];
|
| - n++;
|
| - if (n == rank)
|
| + the next dimension. */
|
| + count[n] = 0;
|
| + /* We could precalculate these products, but this is a less
|
| + frequently used path so probably not worth it. */
|
| + dest -= dstride[n] * extent[n];
|
| + n++;
|
| + if (n == rank)
|
| return;
|
| - else
|
| - {
|
| - count[n]++;
|
| - dest += dstride[n];
|
| - }
|
| + else
|
| + {
|
| + count[n]++;
|
| + dest += dstride[n];
|
| + }
|
| }
|
| }
|
| }
|
|
|