Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(81)

Unified Diff: gcc/gmp/mpn/x86/k7/mmx/divrem_1.asm

Issue 3050029: [gcc] GCC 4.5.0=>4.5.1 (Closed) Base URL: ssh://git@gitrw.chromium.org:9222/nacl-toolchain.git
Patch Set: Created 10 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « gcc/gmp/mpn/x86/k7/mmx/com_n.asm ('k') | gcc/gmp/mpn/x86/k7/mmx/lshift.asm » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: gcc/gmp/mpn/x86/k7/mmx/divrem_1.asm
diff --git a/gcc/gmp/mpn/x86/k7/mmx/divrem_1.asm b/gcc/gmp/mpn/x86/k7/mmx/divrem_1.asm
deleted file mode 100644
index fa5824c7b9863da3a1d9eddead7dd3353a17b646..0000000000000000000000000000000000000000
--- a/gcc/gmp/mpn/x86/k7/mmx/divrem_1.asm
+++ /dev/null
@@ -1,821 +0,0 @@
-dnl AMD K7 mpn_divrem_1, mpn_divrem_1c, mpn_preinv_divrem_1 -- mpn by limb
-dnl division.
-
-dnl Copyright 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc.
-dnl
-dnl This file is part of the GNU MP Library.
-dnl
-dnl The GNU MP Library is free software; you can redistribute it and/or
-dnl modify it under the terms of the GNU Lesser General Public License as
-dnl published by the Free Software Foundation; either version 3 of the
-dnl License, or (at your option) any later version.
-dnl
-dnl The GNU MP Library is distributed in the hope that it will be useful,
-dnl but WITHOUT ANY WARRANTY; without even the implied warranty of
-dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-dnl Lesser General Public License for more details.
-dnl
-dnl You should have received a copy of the GNU Lesser General Public License
-dnl along with the GNU MP Library. If not, see http://www.gnu.org/licenses/.
-
-include(`../config.m4')
-
-
-C K7: 17.0 cycles/limb integer part, 15.0 cycles/limb fraction part.
-
-
-C mp_limb_t mpn_divrem_1 (mp_ptr dst, mp_size_t xsize,
-C mp_srcptr src, mp_size_t size,
-C mp_limb_t divisor);
-C mp_limb_t mpn_divrem_1c (mp_ptr dst, mp_size_t xsize,
-C mp_srcptr src, mp_size_t size,
-C mp_limb_t divisor, mp_limb_t carry);
-C mp_limb_t mpn_preinv_divrem_1 (mp_ptr dst, mp_size_t xsize,
-C mp_srcptr src, mp_size_t size,
-C mp_limb_t divisor, mp_limb_t inverse,
-C unsigned shift);
-C
-C Algorithm:
-C
-C The method and nomenclature follow part 8 of "Division by Invariant
-C Integers using Multiplication" by Granlund and Montgomery, reference in
-C gmp.texi.
-C
-C The "and"s shown in the paper are done here with "cmov"s. "m" is written
-C for m', and "d" for d_norm, which won't cause any confusion since it's
-C only the normalized divisor that's of any use in the code. "b" is written
-C for 2^N, the size of a limb, N being 32 here.
-C
-C The step "sdword dr = n - 2^N*d + (2^N-1-q1) * d" is instead done as
-C "n-(q1+1)*d"; this rearrangement gives the same two-limb answer. If
-C q1==0xFFFFFFFF, then q1+1 would overflow. We branch to a special case
-C "q1_ff" if this occurs. Since the true quotient is either q1 or q1+1 then
-C if q1==0xFFFFFFFF that must be the right value.
-C
-C For the last and second last steps q1==0xFFFFFFFF is instead handled by an
-C sbbl to go back to 0xFFFFFFFF if an overflow occurs when adding 1. This
-C then goes through as normal, and finding no addback required. sbbl costs
-C an extra cycle over what the main loop code does, but it keeps code size
-C and complexity down.
-C
-C Notes:
-C
-C mpn_divrem_1 and mpn_preinv_divrem_1 avoid one division if the src high
-C limb is less than the divisor. mpn_divrem_1c doesn't check for a zero
-C carry, since in normal circumstances that will be a very rare event.
-C
-C The test for skipping a division is branch free (once size>=1 is tested).
-C The store to the destination high limb is 0 when a divide is skipped, or
-C if it's not skipped then a copy of the src high limb is used. The latter
-C is in case src==dst.
-C
-C There's a small bias towards expecting xsize==0, by having code for
-C xsize==0 in a straight line and xsize!=0 under forward jumps.
-C
-C Alternatives:
-C
-C If the divisor is normalized (high bit set) then a division step can
-C always be skipped, since the high destination limb is always 0 or 1 in
-C that case. It doesn't seem worth checking for this though, since it
-C probably occurs infrequently, in particular note that big_base for a
-C decimal mpn_get_str is not normalized in a 32-bit limb.
-
-
-dnl MUL_THRESHOLD is the value of xsize+size at which the multiply by
-dnl inverse method is used, rather than plain "divl"s. Minimum value 1.
-dnl
-dnl The inverse takes about 50 cycles to calculate, but after that the
-dnl multiply is 17 c/l versus division at 42 c/l.
-dnl
-dnl At 3 limbs the mul is a touch faster than div on the integer part, and
-dnl even more so on the fractional part.
-
-deflit(MUL_THRESHOLD, 3)
-
-
-defframe(PARAM_PREINV_SHIFT, 28) dnl mpn_preinv_divrem_1
-defframe(PARAM_PREINV_INVERSE, 24) dnl mpn_preinv_divrem_1
-defframe(PARAM_CARRY, 24) dnl mpn_divrem_1c
-defframe(PARAM_DIVISOR,20)
-defframe(PARAM_SIZE, 16)
-defframe(PARAM_SRC, 12)
-defframe(PARAM_XSIZE, 8)
-defframe(PARAM_DST, 4)
-
-defframe(SAVE_EBX, -4)
-defframe(SAVE_ESI, -8)
-defframe(SAVE_EDI, -12)
-defframe(SAVE_EBP, -16)
-
-defframe(VAR_NORM, -20)
-defframe(VAR_INVERSE, -24)
-defframe(VAR_SRC, -28)
-defframe(VAR_DST, -32)
-defframe(VAR_DST_STOP,-36)
-
-deflit(STACK_SPACE, 36)
-
- TEXT
- ALIGN(32)
-
-PROLOGUE(mpn_preinv_divrem_1)
-deflit(`FRAME',0)
- movl PARAM_XSIZE, %ecx
- movl PARAM_DST, %edx
- subl $STACK_SPACE, %esp FRAME_subl_esp(STACK_SPACE)
-
- movl %esi, SAVE_ESI
- movl PARAM_SRC, %esi
-
- movl %ebx, SAVE_EBX
- movl PARAM_SIZE, %ebx
-
- leal 8(%edx,%ecx,4), %edx C &dst[xsize+2]
- movl %ebp, SAVE_EBP
- movl PARAM_DIVISOR, %ebp
-
- movl %edx, VAR_DST_STOP C &dst[xsize+2]
- movl %edi, SAVE_EDI
- xorl %edi, %edi C carry
-
- movl -4(%esi,%ebx,4), %eax C src high limb
- xor %ecx, %ecx
-
- C
-
- C
-
- cmpl %ebp, %eax C high cmp divisor
-
- cmovc( %eax, %edi) C high is carry if high<divisor
- cmovnc( %eax, %ecx) C 0 if skip div, src high if not
- C (the latter in case src==dst)
-
- movl %ecx, -12(%edx,%ebx,4) C dst high limb
- sbbl $0, %ebx C skip one division if high<divisor
- movl PARAM_PREINV_SHIFT, %ecx
-
- leal -8(%edx,%ebx,4), %edx C &dst[xsize+size]
- movl $32, %eax
-
- movl %edx, VAR_DST C &dst[xsize+size]
-
- shll %cl, %ebp C d normalized
- subl %ecx, %eax
- movl %ecx, VAR_NORM
-
- movd %eax, %mm7 C rshift
- movl PARAM_PREINV_INVERSE, %eax
- jmp L(start_preinv)
-
-EPILOGUE()
-
-
- ALIGN(16)
-
-PROLOGUE(mpn_divrem_1c)
-deflit(`FRAME',0)
- movl PARAM_CARRY, %edx
- movl PARAM_SIZE, %ecx
- subl $STACK_SPACE, %esp
-deflit(`FRAME',STACK_SPACE)
-
- movl %ebx, SAVE_EBX
- movl PARAM_XSIZE, %ebx
-
- movl %edi, SAVE_EDI
- movl PARAM_DST, %edi
-
- movl %ebp, SAVE_EBP
- movl PARAM_DIVISOR, %ebp
-
- movl %esi, SAVE_ESI
- movl PARAM_SRC, %esi
-
- leal -4(%edi,%ebx,4), %edi C &dst[xsize-1]
- jmp L(start_1c)
-
-EPILOGUE()
-
-
- C offset 0xa1, close enough to aligned
-PROLOGUE(mpn_divrem_1)
-deflit(`FRAME',0)
-
- movl PARAM_SIZE, %ecx
- movl $0, %edx C initial carry (if can't skip a div)
- subl $STACK_SPACE, %esp
-deflit(`FRAME',STACK_SPACE)
-
- movl %esi, SAVE_ESI
- movl PARAM_SRC, %esi
-
- movl %ebx, SAVE_EBX
- movl PARAM_XSIZE, %ebx
-
- movl %ebp, SAVE_EBP
- movl PARAM_DIVISOR, %ebp
- orl %ecx, %ecx C size
-
- movl %edi, SAVE_EDI
- movl PARAM_DST, %edi
- leal -4(%edi,%ebx,4), %edi C &dst[xsize-1]
-
- jz L(no_skip_div) C if size==0
- movl -4(%esi,%ecx,4), %eax C src high limb
- xorl %esi, %esi
-
- cmpl %ebp, %eax C high cmp divisor
-
- cmovc( %eax, %edx) C high is carry if high<divisor
- cmovnc( %eax, %esi) C 0 if skip div, src high if not
-
- movl %esi, (%edi,%ecx,4) C dst high limb
- sbbl $0, %ecx C size-1 if high<divisor
- movl PARAM_SRC, %esi C reload
-L(no_skip_div):
-
-
-L(start_1c):
- C eax
- C ebx xsize
- C ecx size
- C edx carry
- C esi src
- C edi &dst[xsize-1]
- C ebp divisor
-
- leal (%ebx,%ecx), %eax C size+xsize
- cmpl $MUL_THRESHOLD, %eax
- jae L(mul_by_inverse)
-
-
-C With MUL_THRESHOLD set to 3, the simple loops here only do 0 to 2 limbs.
-C It'd be possible to write them out without the looping, but no speedup
-C would be expected.
-C
-C Using PARAM_DIVISOR instead of %ebp measures 1 cycle/loop faster on the
-C integer part, but curiously not on the fractional part, where %ebp is a
-C (fixed) couple of cycles faster.
-
- orl %ecx, %ecx
- jz L(divide_no_integer)
-
-L(divide_integer):
- C eax scratch (quotient)
- C ebx xsize
- C ecx counter
- C edx scratch (remainder)
- C esi src
- C edi &dst[xsize-1]
- C ebp divisor
-
- movl -4(%esi,%ecx,4), %eax
-
- divl PARAM_DIVISOR
-
- movl %eax, (%edi,%ecx,4)
- decl %ecx
- jnz L(divide_integer)
-
-
-L(divide_no_integer):
- movl PARAM_DST, %edi
- orl %ebx, %ebx
- jnz L(divide_fraction)
-
-L(divide_done):
- movl SAVE_ESI, %esi
- movl SAVE_EDI, %edi
- movl %edx, %eax
-
- movl SAVE_EBX, %ebx
- movl SAVE_EBP, %ebp
- addl $STACK_SPACE, %esp
-
- ret
-
-
-L(divide_fraction):
- C eax scratch (quotient)
- C ebx counter
- C ecx
- C edx scratch (remainder)
- C esi
- C edi dst
- C ebp divisor
-
- movl $0, %eax
-
- divl %ebp
-
- movl %eax, -4(%edi,%ebx,4)
- decl %ebx
- jnz L(divide_fraction)
-
- jmp L(divide_done)
-
-
-
-C -----------------------------------------------------------------------------
-
-L(mul_by_inverse):
- C eax
- C ebx xsize
- C ecx size
- C edx carry
- C esi src
- C edi &dst[xsize-1]
- C ebp divisor
-
- bsrl %ebp, %eax C 31-l
-
- leal 12(%edi), %ebx C &dst[xsize+2], loop dst stop
- leal 4(%edi,%ecx,4), %edi C &dst[xsize+size]
-
- movl %edi, VAR_DST
- movl %ebx, VAR_DST_STOP
-
- movl %ecx, %ebx C size
- movl $31, %ecx
-
- movl %edx, %edi C carry
- movl $-1, %edx
-
- C
-
- xorl %eax, %ecx C l
- incl %eax C 32-l
-
- shll %cl, %ebp C d normalized
- movl %ecx, VAR_NORM
-
- movd %eax, %mm7
-
- movl $-1, %eax
- subl %ebp, %edx C (b-d)-1 giving edx:eax = b*(b-d)-1
-
- divl %ebp C floor (b*(b-d)-1) / d
-
-L(start_preinv):
- C eax inverse
- C ebx size
- C ecx shift
- C edx
- C esi src
- C edi carry
- C ebp divisor
- C
- C mm7 rshift
-
- orl %ebx, %ebx C size
- movl %eax, VAR_INVERSE
- leal -12(%esi,%ebx,4), %eax C &src[size-3]
-
- jz L(start_zero)
- movl %eax, VAR_SRC
- cmpl $1, %ebx
-
- movl 8(%eax), %esi C src high limb
- jz L(start_one)
-
-L(start_two_or_more):
- movl 4(%eax), %edx C src second highest limb
-
- shldl( %cl, %esi, %edi) C n2 = carry,high << l
-
- shldl( %cl, %edx, %esi) C n10 = high,second << l
-
- cmpl $2, %ebx
- je L(integer_two_left)
- jmp L(integer_top)
-
-
-L(start_one):
- shldl( %cl, %esi, %edi) C n2 = carry,high << l
-
- shll %cl, %esi C n10 = high << l
- movl %eax, VAR_SRC
- jmp L(integer_one_left)
-
-
-L(start_zero):
- C Can be here with xsize==0 if mpn_preinv_divrem_1 had size==1 and
- C skipped a division.
-
- shll %cl, %edi C n2 = carry << l
- movl %edi, %eax C return value for zero_done
- cmpl $0, PARAM_XSIZE
-
- je L(zero_done)
- jmp L(fraction_some)
-
-
-
-C -----------------------------------------------------------------------------
-C
-C The multiply by inverse loop is 17 cycles, and relies on some out-of-order
-C execution. The instruction scheduling is important, with various
-C apparently equivalent forms running 1 to 5 cycles slower.
-C
-C A lower bound for the time would seem to be 16 cycles, based on the
-C following successive dependencies.
-C
-C cycles
-C n2+n1 1
-C mul 6
-C q1+1 1
-C mul 6
-C sub 1
-C addback 1
-C ---
-C 16
-C
-C This chain is what the loop has already, but 16 cycles isn't achieved.
-C K7 has enough decode, and probably enough execute (depending maybe on what
-C a mul actually consumes), but nothing running under 17 has been found.
-C
-C In theory n2+n1 could be done in the sub and addback stages (by
-C calculating both n2 and n2+n1 there), but lack of registers makes this an
-C unlikely proposition.
-C
-C The jz in the loop keeps the q1+1 stage to 1 cycle. Handling an overflow
-C from q1+1 with an "sbbl $0, %ebx" would add a cycle to the dependent
-C chain, and nothing better than 18 cycles has been found when using it.
-C The jump is taken only when q1 is 0xFFFFFFFF, and on random data this will
-C be an extremely rare event.
-C
-C Branch mispredictions will hit random occurrances of q1==0xFFFFFFFF, but
-C if some special data is coming out with this always, the q1_ff special
-C case actually runs at 15 c/l. 0x2FFF...FFFD divided by 3 is a good way to
-C induce the q1_ff case, for speed measurements or testing. Note that
-C 0xFFF...FFF divided by 1 or 2 doesn't induce it.
-C
-C The instruction groupings and empty comments show the cycles for a naive
-C in-order view of the code (conveniently ignoring the load latency on
-C VAR_INVERSE). This shows some of where the time is going, but is nonsense
-C to the extent that out-of-order execution rearranges it. In this case
-C there's 19 cycles shown, but it executes at 17.
-
- ALIGN(16)
-L(integer_top):
- C eax scratch
- C ebx scratch (nadj, q1)
- C ecx scratch (src, dst)
- C edx scratch
- C esi n10
- C edi n2
- C ebp divisor
- C
- C mm0 scratch (src qword)
- C mm7 rshift for normalization
-
- cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
- movl %edi, %eax C n2
- movl VAR_SRC, %ecx
-
- leal (%ebp,%esi), %ebx
- cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
- sbbl $-1, %eax C n2+n1
-
- mull VAR_INVERSE C m*(n2+n1)
-
- movq (%ecx), %mm0 C next limb and the one below it
- subl $4, %ecx
-
- movl %ecx, VAR_SRC
-
- C
-
- addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
- leal 1(%edi), %ebx C n2+1
- movl %ebp, %eax C d
-
- C
-
- adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
- jz L(q1_ff)
- movl VAR_DST, %ecx
-
- mull %ebx C (q1+1)*d
-
- psrlq %mm7, %mm0
-
- leal -4(%ecx), %ecx
-
- C
-
- subl %eax, %esi
- movl VAR_DST_STOP, %eax
-
- C
-
- sbbl %edx, %edi C n - (q1+1)*d
- movl %esi, %edi C remainder -> n2
- leal (%ebp,%esi), %edx
-
- movd %mm0, %esi
-
- cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
- sbbl $0, %ebx C q
- cmpl %eax, %ecx
-
- movl %ebx, (%ecx)
- movl %ecx, VAR_DST
- jne L(integer_top)
-
-
-L(integer_loop_done):
-
-
-C -----------------------------------------------------------------------------
-C
-C Here, and in integer_one_left below, an sbbl $0 is used rather than a jz
-C q1_ff special case. This make the code a bit smaller and simpler, and
-C costs only 1 cycle (each).
-
-L(integer_two_left):
- C eax scratch
- C ebx scratch (nadj, q1)
- C ecx scratch (src, dst)
- C edx scratch
- C esi n10
- C edi n2
- C ebp divisor
- C
- C mm7 rshift
-
- cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
- movl %edi, %eax C n2
- movl PARAM_SRC, %ecx
-
- leal (%ebp,%esi), %ebx
- cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
- sbbl $-1, %eax C n2+n1
-
- mull VAR_INVERSE C m*(n2+n1)
-
- movd (%ecx), %mm0 C src low limb
-
- movl VAR_DST_STOP, %ecx
-
- C
-
- addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
- leal 1(%edi), %ebx C n2+1
- movl %ebp, %eax C d
-
- adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
-
- sbbl $0, %ebx
-
- mull %ebx C (q1+1)*d
-
- psllq $32, %mm0
-
- psrlq %mm7, %mm0
-
- C
-
- subl %eax, %esi
-
- C
-
- sbbl %edx, %edi C n - (q1+1)*d
- movl %esi, %edi C remainder -> n2
- leal (%ebp,%esi), %edx
-
- movd %mm0, %esi
-
- cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
- sbbl $0, %ebx C q
-
- movl %ebx, -4(%ecx)
-
-
-C -----------------------------------------------------------------------------
-L(integer_one_left):
- C eax scratch
- C ebx scratch (nadj, q1)
- C ecx dst
- C edx scratch
- C esi n10
- C edi n2
- C ebp divisor
- C
- C mm7 rshift
-
- movl VAR_DST_STOP, %ecx
- cmpl $0x80000000, %esi C n1 as 0=c, 1=nc
- movl %edi, %eax C n2
-
- leal (%ebp,%esi), %ebx
- cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow
- sbbl $-1, %eax C n2+n1
-
- mull VAR_INVERSE C m*(n2+n1)
-
- C
-
- C
-
- C
-
- addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag
- leal 1(%edi), %ebx C n2+1
- movl %ebp, %eax C d
-
- C
-
- adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1
-
- sbbl $0, %ebx C q1 if q1+1 overflowed
-
- mull %ebx
-
- C
-
- C
-
- C
-
- subl %eax, %esi
-
- C
-
- sbbl %edx, %edi C n - (q1+1)*d
- movl %esi, %edi C remainder -> n2
- leal (%ebp,%esi), %edx
-
- cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1
- sbbl $0, %ebx C q
-
- movl %ebx, -8(%ecx)
- subl $8, %ecx
-
-
-
-L(integer_none):
- cmpl $0, PARAM_XSIZE
- jne L(fraction_some)
-
- movl %edi, %eax
-L(fraction_done):
- movl VAR_NORM, %ecx
-L(zero_done):
- movl SAVE_EBP, %ebp
-
- movl SAVE_EDI, %edi
- movl SAVE_ESI, %esi
-
- movl SAVE_EBX, %ebx
- addl $STACK_SPACE, %esp
-
- shrl %cl, %eax
- emms
-
- ret
-
-
-C -----------------------------------------------------------------------------
-C
-C Special case for q1=0xFFFFFFFF, giving q=0xFFFFFFFF meaning the low dword
-C of q*d is simply -d and the remainder n-q*d = n10+d
-
-L(q1_ff):
- C eax (divisor)
- C ebx (q1+1 == 0)
- C ecx
- C edx
- C esi n10
- C edi n2
- C ebp divisor
-
- movl VAR_DST, %ecx
- movl VAR_DST_STOP, %edx
- subl $4, %ecx
-
- psrlq %mm7, %mm0
- leal (%ebp,%esi), %edi C n-q*d remainder -> next n2
- movl %ecx, VAR_DST
-
- movd %mm0, %esi C next n10
-
- movl $-1, (%ecx)
- cmpl %ecx, %edx
- jne L(integer_top)
-
- jmp L(integer_loop_done)
-
-
-
-C -----------------------------------------------------------------------------
-C
-C Being the fractional part, the "source" limbs are all zero, meaning
-C n10=0, n1=0, and hence nadj=0, leading to many instructions eliminated.
-C
-C The loop runs at 15 cycles. The dependent chain is the same as the
-C general case above, but without the n2+n1 stage (due to n1==0), so 15
-C would seem to be the lower bound.
-C
-C A not entirely obvious simplification is that q1+1 never overflows a limb,
-C and so there's no need for the sbbl $0 or jz q1_ff from the general case.
-C q1 is the high word of m*n2+b*n2 and the following shows q1<=b-2 always.
-C rnd() means rounding down to a multiple of d.
-C
-C m*n2 + b*n2 <= m*(d-1) + b*(d-1)
-C = m*d + b*d - m - b
-C = floor((b(b-d)-1)/d)*d + b*d - m - b
-C = rnd(b(b-d)-1) + b*d - m - b
-C = rnd(b(b-d)-1 + b*d) - m - b
-C = rnd(b*b-1) - m - b
-C <= (b-2)*b
-C
-C Unchanged from the general case is that the final quotient limb q can be
-C either q1 or q1+1, and the q1+1 case occurs often. This can be seen from
-C equation 8.4 of the paper which simplifies as follows when n1==0 and
-C n0==0.
-C
-C n-q1*d = (n2*k+q0*d)/b <= d + (d*d-2d)/b
-C
-C As before, the instruction groupings and empty comments show a naive
-C in-order view of the code, which is made a nonsense by out of order
-C execution. There's 17 cycles shown, but it executes at 15.
-C
-C Rotating the store q and remainder->n2 instructions up to the top of the
-C loop gets the run time down from 16 to 15.
-
- ALIGN(16)
-L(fraction_some):
- C eax
- C ebx
- C ecx
- C edx
- C esi
- C edi carry
- C ebp divisor
-
- movl PARAM_DST, %esi
- movl VAR_DST_STOP, %ecx C &dst[xsize+2]
- movl %edi, %eax
-
- subl $8, %ecx C &dst[xsize]
- jmp L(fraction_entry)
-
-
- ALIGN(16)
-L(fraction_top):
- C eax n2 carry, then scratch
- C ebx scratch (nadj, q1)
- C ecx dst, decrementing
- C edx scratch
- C esi dst stop point
- C edi (will be n2)
- C ebp divisor
-
- movl %ebx, (%ecx) C previous q
- movl %eax, %edi C remainder->n2
-
-L(fraction_entry):
- mull VAR_INVERSE C m*n2
-
- movl %ebp, %eax C d
- subl $4, %ecx C dst
- leal 1(%edi), %ebx
-
- C
-
- C
-
- C
-
- C
-
- addl %edx, %ebx C 1 + high(n2<<32 + m*n2) = q1+1
-
- mull %ebx C (q1+1)*d
-
- C
-
- C
-
- C
-
- negl %eax C low of n - (q1+1)*d
-
- C
-
- sbbl %edx, %edi C high of n - (q1+1)*d, caring only about carry
- leal (%ebp,%eax), %edx
-
- cmovc( %edx, %eax) C n - q1*d if underflow from using q1+1
- sbbl $0, %ebx C q
- cmpl %esi, %ecx
-
- jne L(fraction_top)
-
-
- movl %ebx, (%ecx)
- jmp L(fraction_done)
-
-EPILOGUE()
« no previous file with comments | « gcc/gmp/mpn/x86/k7/mmx/com_n.asm ('k') | gcc/gmp/mpn/x86/k7/mmx/lshift.asm » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698