Index: gcc/gmp/mpn/x86/k7/mmx/divrem_1.asm |
diff --git a/gcc/gmp/mpn/x86/k7/mmx/divrem_1.asm b/gcc/gmp/mpn/x86/k7/mmx/divrem_1.asm |
deleted file mode 100644 |
index fa5824c7b9863da3a1d9eddead7dd3353a17b646..0000000000000000000000000000000000000000 |
--- a/gcc/gmp/mpn/x86/k7/mmx/divrem_1.asm |
+++ /dev/null |
@@ -1,821 +0,0 @@ |
-dnl AMD K7 mpn_divrem_1, mpn_divrem_1c, mpn_preinv_divrem_1 -- mpn by limb |
-dnl division. |
- |
-dnl Copyright 1999, 2000, 2001, 2002, 2004 Free Software Foundation, Inc. |
-dnl |
-dnl This file is part of the GNU MP Library. |
-dnl |
-dnl The GNU MP Library is free software; you can redistribute it and/or |
-dnl modify it under the terms of the GNU Lesser General Public License as |
-dnl published by the Free Software Foundation; either version 3 of the |
-dnl License, or (at your option) any later version. |
-dnl |
-dnl The GNU MP Library is distributed in the hope that it will be useful, |
-dnl but WITHOUT ANY WARRANTY; without even the implied warranty of |
-dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
-dnl Lesser General Public License for more details. |
-dnl |
-dnl You should have received a copy of the GNU Lesser General Public License |
-dnl along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. |
- |
-include(`../config.m4') |
- |
- |
-C K7: 17.0 cycles/limb integer part, 15.0 cycles/limb fraction part. |
- |
- |
-C mp_limb_t mpn_divrem_1 (mp_ptr dst, mp_size_t xsize, |
-C mp_srcptr src, mp_size_t size, |
-C mp_limb_t divisor); |
-C mp_limb_t mpn_divrem_1c (mp_ptr dst, mp_size_t xsize, |
-C mp_srcptr src, mp_size_t size, |
-C mp_limb_t divisor, mp_limb_t carry); |
-C mp_limb_t mpn_preinv_divrem_1 (mp_ptr dst, mp_size_t xsize, |
-C mp_srcptr src, mp_size_t size, |
-C mp_limb_t divisor, mp_limb_t inverse, |
-C unsigned shift); |
-C |
-C Algorithm: |
-C |
-C The method and nomenclature follow part 8 of "Division by Invariant |
-C Integers using Multiplication" by Granlund and Montgomery, reference in |
-C gmp.texi. |
-C |
-C The "and"s shown in the paper are done here with "cmov"s. "m" is written |
-C for m', and "d" for d_norm, which won't cause any confusion since it's |
-C only the normalized divisor that's of any use in the code. "b" is written |
-C for 2^N, the size of a limb, N being 32 here. |
-C |
-C The step "sdword dr = n - 2^N*d + (2^N-1-q1) * d" is instead done as |
-C "n-(q1+1)*d"; this rearrangement gives the same two-limb answer. If |
-C q1==0xFFFFFFFF, then q1+1 would overflow. We branch to a special case |
-C "q1_ff" if this occurs. Since the true quotient is either q1 or q1+1 then |
-C if q1==0xFFFFFFFF that must be the right value. |
-C |
-C For the last and second last steps q1==0xFFFFFFFF is instead handled by an |
-C sbbl to go back to 0xFFFFFFFF if an overflow occurs when adding 1. This |
-C then goes through as normal, and finding no addback required. sbbl costs |
-C an extra cycle over what the main loop code does, but it keeps code size |
-C and complexity down. |
-C |
-C Notes: |
-C |
-C mpn_divrem_1 and mpn_preinv_divrem_1 avoid one division if the src high |
-C limb is less than the divisor. mpn_divrem_1c doesn't check for a zero |
-C carry, since in normal circumstances that will be a very rare event. |
-C |
-C The test for skipping a division is branch free (once size>=1 is tested). |
-C The store to the destination high limb is 0 when a divide is skipped, or |
-C if it's not skipped then a copy of the src high limb is used. The latter |
-C is in case src==dst. |
-C |
-C There's a small bias towards expecting xsize==0, by having code for |
-C xsize==0 in a straight line and xsize!=0 under forward jumps. |
-C |
-C Alternatives: |
-C |
-C If the divisor is normalized (high bit set) then a division step can |
-C always be skipped, since the high destination limb is always 0 or 1 in |
-C that case. It doesn't seem worth checking for this though, since it |
-C probably occurs infrequently, in particular note that big_base for a |
-C decimal mpn_get_str is not normalized in a 32-bit limb. |
- |
- |
-dnl MUL_THRESHOLD is the value of xsize+size at which the multiply by |
-dnl inverse method is used, rather than plain "divl"s. Minimum value 1. |
-dnl |
-dnl The inverse takes about 50 cycles to calculate, but after that the |
-dnl multiply is 17 c/l versus division at 42 c/l. |
-dnl |
-dnl At 3 limbs the mul is a touch faster than div on the integer part, and |
-dnl even more so on the fractional part. |
- |
-deflit(MUL_THRESHOLD, 3) |
- |
- |
-defframe(PARAM_PREINV_SHIFT, 28) dnl mpn_preinv_divrem_1 |
-defframe(PARAM_PREINV_INVERSE, 24) dnl mpn_preinv_divrem_1 |
-defframe(PARAM_CARRY, 24) dnl mpn_divrem_1c |
-defframe(PARAM_DIVISOR,20) |
-defframe(PARAM_SIZE, 16) |
-defframe(PARAM_SRC, 12) |
-defframe(PARAM_XSIZE, 8) |
-defframe(PARAM_DST, 4) |
- |
-defframe(SAVE_EBX, -4) |
-defframe(SAVE_ESI, -8) |
-defframe(SAVE_EDI, -12) |
-defframe(SAVE_EBP, -16) |
- |
-defframe(VAR_NORM, -20) |
-defframe(VAR_INVERSE, -24) |
-defframe(VAR_SRC, -28) |
-defframe(VAR_DST, -32) |
-defframe(VAR_DST_STOP,-36) |
- |
-deflit(STACK_SPACE, 36) |
- |
- TEXT |
- ALIGN(32) |
- |
-PROLOGUE(mpn_preinv_divrem_1) |
-deflit(`FRAME',0) |
- movl PARAM_XSIZE, %ecx |
- movl PARAM_DST, %edx |
- subl $STACK_SPACE, %esp FRAME_subl_esp(STACK_SPACE) |
- |
- movl %esi, SAVE_ESI |
- movl PARAM_SRC, %esi |
- |
- movl %ebx, SAVE_EBX |
- movl PARAM_SIZE, %ebx |
- |
- leal 8(%edx,%ecx,4), %edx C &dst[xsize+2] |
- movl %ebp, SAVE_EBP |
- movl PARAM_DIVISOR, %ebp |
- |
- movl %edx, VAR_DST_STOP C &dst[xsize+2] |
- movl %edi, SAVE_EDI |
- xorl %edi, %edi C carry |
- |
- movl -4(%esi,%ebx,4), %eax C src high limb |
- xor %ecx, %ecx |
- |
- C |
- |
- C |
- |
- cmpl %ebp, %eax C high cmp divisor |
- |
- cmovc( %eax, %edi) C high is carry if high<divisor |
- cmovnc( %eax, %ecx) C 0 if skip div, src high if not |
- C (the latter in case src==dst) |
- |
- movl %ecx, -12(%edx,%ebx,4) C dst high limb |
- sbbl $0, %ebx C skip one division if high<divisor |
- movl PARAM_PREINV_SHIFT, %ecx |
- |
- leal -8(%edx,%ebx,4), %edx C &dst[xsize+size] |
- movl $32, %eax |
- |
- movl %edx, VAR_DST C &dst[xsize+size] |
- |
- shll %cl, %ebp C d normalized |
- subl %ecx, %eax |
- movl %ecx, VAR_NORM |
- |
- movd %eax, %mm7 C rshift |
- movl PARAM_PREINV_INVERSE, %eax |
- jmp L(start_preinv) |
- |
-EPILOGUE() |
- |
- |
- ALIGN(16) |
- |
-PROLOGUE(mpn_divrem_1c) |
-deflit(`FRAME',0) |
- movl PARAM_CARRY, %edx |
- movl PARAM_SIZE, %ecx |
- subl $STACK_SPACE, %esp |
-deflit(`FRAME',STACK_SPACE) |
- |
- movl %ebx, SAVE_EBX |
- movl PARAM_XSIZE, %ebx |
- |
- movl %edi, SAVE_EDI |
- movl PARAM_DST, %edi |
- |
- movl %ebp, SAVE_EBP |
- movl PARAM_DIVISOR, %ebp |
- |
- movl %esi, SAVE_ESI |
- movl PARAM_SRC, %esi |
- |
- leal -4(%edi,%ebx,4), %edi C &dst[xsize-1] |
- jmp L(start_1c) |
- |
-EPILOGUE() |
- |
- |
- C offset 0xa1, close enough to aligned |
-PROLOGUE(mpn_divrem_1) |
-deflit(`FRAME',0) |
- |
- movl PARAM_SIZE, %ecx |
- movl $0, %edx C initial carry (if can't skip a div) |
- subl $STACK_SPACE, %esp |
-deflit(`FRAME',STACK_SPACE) |
- |
- movl %esi, SAVE_ESI |
- movl PARAM_SRC, %esi |
- |
- movl %ebx, SAVE_EBX |
- movl PARAM_XSIZE, %ebx |
- |
- movl %ebp, SAVE_EBP |
- movl PARAM_DIVISOR, %ebp |
- orl %ecx, %ecx C size |
- |
- movl %edi, SAVE_EDI |
- movl PARAM_DST, %edi |
- leal -4(%edi,%ebx,4), %edi C &dst[xsize-1] |
- |
- jz L(no_skip_div) C if size==0 |
- movl -4(%esi,%ecx,4), %eax C src high limb |
- xorl %esi, %esi |
- |
- cmpl %ebp, %eax C high cmp divisor |
- |
- cmovc( %eax, %edx) C high is carry if high<divisor |
- cmovnc( %eax, %esi) C 0 if skip div, src high if not |
- |
- movl %esi, (%edi,%ecx,4) C dst high limb |
- sbbl $0, %ecx C size-1 if high<divisor |
- movl PARAM_SRC, %esi C reload |
-L(no_skip_div): |
- |
- |
-L(start_1c): |
- C eax |
- C ebx xsize |
- C ecx size |
- C edx carry |
- C esi src |
- C edi &dst[xsize-1] |
- C ebp divisor |
- |
- leal (%ebx,%ecx), %eax C size+xsize |
- cmpl $MUL_THRESHOLD, %eax |
- jae L(mul_by_inverse) |
- |
- |
-C With MUL_THRESHOLD set to 3, the simple loops here only do 0 to 2 limbs. |
-C It'd be possible to write them out without the looping, but no speedup |
-C would be expected. |
-C |
-C Using PARAM_DIVISOR instead of %ebp measures 1 cycle/loop faster on the |
-C integer part, but curiously not on the fractional part, where %ebp is a |
-C (fixed) couple of cycles faster. |
- |
- orl %ecx, %ecx |
- jz L(divide_no_integer) |
- |
-L(divide_integer): |
- C eax scratch (quotient) |
- C ebx xsize |
- C ecx counter |
- C edx scratch (remainder) |
- C esi src |
- C edi &dst[xsize-1] |
- C ebp divisor |
- |
- movl -4(%esi,%ecx,4), %eax |
- |
- divl PARAM_DIVISOR |
- |
- movl %eax, (%edi,%ecx,4) |
- decl %ecx |
- jnz L(divide_integer) |
- |
- |
-L(divide_no_integer): |
- movl PARAM_DST, %edi |
- orl %ebx, %ebx |
- jnz L(divide_fraction) |
- |
-L(divide_done): |
- movl SAVE_ESI, %esi |
- movl SAVE_EDI, %edi |
- movl %edx, %eax |
- |
- movl SAVE_EBX, %ebx |
- movl SAVE_EBP, %ebp |
- addl $STACK_SPACE, %esp |
- |
- ret |
- |
- |
-L(divide_fraction): |
- C eax scratch (quotient) |
- C ebx counter |
- C ecx |
- C edx scratch (remainder) |
- C esi |
- C edi dst |
- C ebp divisor |
- |
- movl $0, %eax |
- |
- divl %ebp |
- |
- movl %eax, -4(%edi,%ebx,4) |
- decl %ebx |
- jnz L(divide_fraction) |
- |
- jmp L(divide_done) |
- |
- |
- |
-C ----------------------------------------------------------------------------- |
- |
-L(mul_by_inverse): |
- C eax |
- C ebx xsize |
- C ecx size |
- C edx carry |
- C esi src |
- C edi &dst[xsize-1] |
- C ebp divisor |
- |
- bsrl %ebp, %eax C 31-l |
- |
- leal 12(%edi), %ebx C &dst[xsize+2], loop dst stop |
- leal 4(%edi,%ecx,4), %edi C &dst[xsize+size] |
- |
- movl %edi, VAR_DST |
- movl %ebx, VAR_DST_STOP |
- |
- movl %ecx, %ebx C size |
- movl $31, %ecx |
- |
- movl %edx, %edi C carry |
- movl $-1, %edx |
- |
- C |
- |
- xorl %eax, %ecx C l |
- incl %eax C 32-l |
- |
- shll %cl, %ebp C d normalized |
- movl %ecx, VAR_NORM |
- |
- movd %eax, %mm7 |
- |
- movl $-1, %eax |
- subl %ebp, %edx C (b-d)-1 giving edx:eax = b*(b-d)-1 |
- |
- divl %ebp C floor (b*(b-d)-1) / d |
- |
-L(start_preinv): |
- C eax inverse |
- C ebx size |
- C ecx shift |
- C edx |
- C esi src |
- C edi carry |
- C ebp divisor |
- C |
- C mm7 rshift |
- |
- orl %ebx, %ebx C size |
- movl %eax, VAR_INVERSE |
- leal -12(%esi,%ebx,4), %eax C &src[size-3] |
- |
- jz L(start_zero) |
- movl %eax, VAR_SRC |
- cmpl $1, %ebx |
- |
- movl 8(%eax), %esi C src high limb |
- jz L(start_one) |
- |
-L(start_two_or_more): |
- movl 4(%eax), %edx C src second highest limb |
- |
- shldl( %cl, %esi, %edi) C n2 = carry,high << l |
- |
- shldl( %cl, %edx, %esi) C n10 = high,second << l |
- |
- cmpl $2, %ebx |
- je L(integer_two_left) |
- jmp L(integer_top) |
- |
- |
-L(start_one): |
- shldl( %cl, %esi, %edi) C n2 = carry,high << l |
- |
- shll %cl, %esi C n10 = high << l |
- movl %eax, VAR_SRC |
- jmp L(integer_one_left) |
- |
- |
-L(start_zero): |
- C Can be here with xsize==0 if mpn_preinv_divrem_1 had size==1 and |
- C skipped a division. |
- |
- shll %cl, %edi C n2 = carry << l |
- movl %edi, %eax C return value for zero_done |
- cmpl $0, PARAM_XSIZE |
- |
- je L(zero_done) |
- jmp L(fraction_some) |
- |
- |
- |
-C ----------------------------------------------------------------------------- |
-C |
-C The multiply by inverse loop is 17 cycles, and relies on some out-of-order |
-C execution. The instruction scheduling is important, with various |
-C apparently equivalent forms running 1 to 5 cycles slower. |
-C |
-C A lower bound for the time would seem to be 16 cycles, based on the |
-C following successive dependencies. |
-C |
-C cycles |
-C n2+n1 1 |
-C mul 6 |
-C q1+1 1 |
-C mul 6 |
-C sub 1 |
-C addback 1 |
-C --- |
-C 16 |
-C |
-C This chain is what the loop has already, but 16 cycles isn't achieved. |
-C K7 has enough decode, and probably enough execute (depending maybe on what |
-C a mul actually consumes), but nothing running under 17 has been found. |
-C |
-C In theory n2+n1 could be done in the sub and addback stages (by |
-C calculating both n2 and n2+n1 there), but lack of registers makes this an |
-C unlikely proposition. |
-C |
-C The jz in the loop keeps the q1+1 stage to 1 cycle. Handling an overflow |
-C from q1+1 with an "sbbl $0, %ebx" would add a cycle to the dependent |
-C chain, and nothing better than 18 cycles has been found when using it. |
-C The jump is taken only when q1 is 0xFFFFFFFF, and on random data this will |
-C be an extremely rare event. |
-C |
-C Branch mispredictions will hit random occurrances of q1==0xFFFFFFFF, but |
-C if some special data is coming out with this always, the q1_ff special |
-C case actually runs at 15 c/l. 0x2FFF...FFFD divided by 3 is a good way to |
-C induce the q1_ff case, for speed measurements or testing. Note that |
-C 0xFFF...FFF divided by 1 or 2 doesn't induce it. |
-C |
-C The instruction groupings and empty comments show the cycles for a naive |
-C in-order view of the code (conveniently ignoring the load latency on |
-C VAR_INVERSE). This shows some of where the time is going, but is nonsense |
-C to the extent that out-of-order execution rearranges it. In this case |
-C there's 19 cycles shown, but it executes at 17. |
- |
- ALIGN(16) |
-L(integer_top): |
- C eax scratch |
- C ebx scratch (nadj, q1) |
- C ecx scratch (src, dst) |
- C edx scratch |
- C esi n10 |
- C edi n2 |
- C ebp divisor |
- C |
- C mm0 scratch (src qword) |
- C mm7 rshift for normalization |
- |
- cmpl $0x80000000, %esi C n1 as 0=c, 1=nc |
- movl %edi, %eax C n2 |
- movl VAR_SRC, %ecx |
- |
- leal (%ebp,%esi), %ebx |
- cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow |
- sbbl $-1, %eax C n2+n1 |
- |
- mull VAR_INVERSE C m*(n2+n1) |
- |
- movq (%ecx), %mm0 C next limb and the one below it |
- subl $4, %ecx |
- |
- movl %ecx, VAR_SRC |
- |
- C |
- |
- addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag |
- leal 1(%edi), %ebx C n2+1 |
- movl %ebp, %eax C d |
- |
- C |
- |
- adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1 |
- jz L(q1_ff) |
- movl VAR_DST, %ecx |
- |
- mull %ebx C (q1+1)*d |
- |
- psrlq %mm7, %mm0 |
- |
- leal -4(%ecx), %ecx |
- |
- C |
- |
- subl %eax, %esi |
- movl VAR_DST_STOP, %eax |
- |
- C |
- |
- sbbl %edx, %edi C n - (q1+1)*d |
- movl %esi, %edi C remainder -> n2 |
- leal (%ebp,%esi), %edx |
- |
- movd %mm0, %esi |
- |
- cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1 |
- sbbl $0, %ebx C q |
- cmpl %eax, %ecx |
- |
- movl %ebx, (%ecx) |
- movl %ecx, VAR_DST |
- jne L(integer_top) |
- |
- |
-L(integer_loop_done): |
- |
- |
-C ----------------------------------------------------------------------------- |
-C |
-C Here, and in integer_one_left below, an sbbl $0 is used rather than a jz |
-C q1_ff special case. This make the code a bit smaller and simpler, and |
-C costs only 1 cycle (each). |
- |
-L(integer_two_left): |
- C eax scratch |
- C ebx scratch (nadj, q1) |
- C ecx scratch (src, dst) |
- C edx scratch |
- C esi n10 |
- C edi n2 |
- C ebp divisor |
- C |
- C mm7 rshift |
- |
- cmpl $0x80000000, %esi C n1 as 0=c, 1=nc |
- movl %edi, %eax C n2 |
- movl PARAM_SRC, %ecx |
- |
- leal (%ebp,%esi), %ebx |
- cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow |
- sbbl $-1, %eax C n2+n1 |
- |
- mull VAR_INVERSE C m*(n2+n1) |
- |
- movd (%ecx), %mm0 C src low limb |
- |
- movl VAR_DST_STOP, %ecx |
- |
- C |
- |
- addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag |
- leal 1(%edi), %ebx C n2+1 |
- movl %ebp, %eax C d |
- |
- adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1 |
- |
- sbbl $0, %ebx |
- |
- mull %ebx C (q1+1)*d |
- |
- psllq $32, %mm0 |
- |
- psrlq %mm7, %mm0 |
- |
- C |
- |
- subl %eax, %esi |
- |
- C |
- |
- sbbl %edx, %edi C n - (q1+1)*d |
- movl %esi, %edi C remainder -> n2 |
- leal (%ebp,%esi), %edx |
- |
- movd %mm0, %esi |
- |
- cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1 |
- sbbl $0, %ebx C q |
- |
- movl %ebx, -4(%ecx) |
- |
- |
-C ----------------------------------------------------------------------------- |
-L(integer_one_left): |
- C eax scratch |
- C ebx scratch (nadj, q1) |
- C ecx dst |
- C edx scratch |
- C esi n10 |
- C edi n2 |
- C ebp divisor |
- C |
- C mm7 rshift |
- |
- movl VAR_DST_STOP, %ecx |
- cmpl $0x80000000, %esi C n1 as 0=c, 1=nc |
- movl %edi, %eax C n2 |
- |
- leal (%ebp,%esi), %ebx |
- cmovc( %esi, %ebx) C nadj = n10 + (-n1 & d), ignoring overflow |
- sbbl $-1, %eax C n2+n1 |
- |
- mull VAR_INVERSE C m*(n2+n1) |
- |
- C |
- |
- C |
- |
- C |
- |
- addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag |
- leal 1(%edi), %ebx C n2+1 |
- movl %ebp, %eax C d |
- |
- C |
- |
- adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1 |
- |
- sbbl $0, %ebx C q1 if q1+1 overflowed |
- |
- mull %ebx |
- |
- C |
- |
- C |
- |
- C |
- |
- subl %eax, %esi |
- |
- C |
- |
- sbbl %edx, %edi C n - (q1+1)*d |
- movl %esi, %edi C remainder -> n2 |
- leal (%ebp,%esi), %edx |
- |
- cmovc( %edx, %edi) C n - q1*d if underflow from using q1+1 |
- sbbl $0, %ebx C q |
- |
- movl %ebx, -8(%ecx) |
- subl $8, %ecx |
- |
- |
- |
-L(integer_none): |
- cmpl $0, PARAM_XSIZE |
- jne L(fraction_some) |
- |
- movl %edi, %eax |
-L(fraction_done): |
- movl VAR_NORM, %ecx |
-L(zero_done): |
- movl SAVE_EBP, %ebp |
- |
- movl SAVE_EDI, %edi |
- movl SAVE_ESI, %esi |
- |
- movl SAVE_EBX, %ebx |
- addl $STACK_SPACE, %esp |
- |
- shrl %cl, %eax |
- emms |
- |
- ret |
- |
- |
-C ----------------------------------------------------------------------------- |
-C |
-C Special case for q1=0xFFFFFFFF, giving q=0xFFFFFFFF meaning the low dword |
-C of q*d is simply -d and the remainder n-q*d = n10+d |
- |
-L(q1_ff): |
- C eax (divisor) |
- C ebx (q1+1 == 0) |
- C ecx |
- C edx |
- C esi n10 |
- C edi n2 |
- C ebp divisor |
- |
- movl VAR_DST, %ecx |
- movl VAR_DST_STOP, %edx |
- subl $4, %ecx |
- |
- psrlq %mm7, %mm0 |
- leal (%ebp,%esi), %edi C n-q*d remainder -> next n2 |
- movl %ecx, VAR_DST |
- |
- movd %mm0, %esi C next n10 |
- |
- movl $-1, (%ecx) |
- cmpl %ecx, %edx |
- jne L(integer_top) |
- |
- jmp L(integer_loop_done) |
- |
- |
- |
-C ----------------------------------------------------------------------------- |
-C |
-C Being the fractional part, the "source" limbs are all zero, meaning |
-C n10=0, n1=0, and hence nadj=0, leading to many instructions eliminated. |
-C |
-C The loop runs at 15 cycles. The dependent chain is the same as the |
-C general case above, but without the n2+n1 stage (due to n1==0), so 15 |
-C would seem to be the lower bound. |
-C |
-C A not entirely obvious simplification is that q1+1 never overflows a limb, |
-C and so there's no need for the sbbl $0 or jz q1_ff from the general case. |
-C q1 is the high word of m*n2+b*n2 and the following shows q1<=b-2 always. |
-C rnd() means rounding down to a multiple of d. |
-C |
-C m*n2 + b*n2 <= m*(d-1) + b*(d-1) |
-C = m*d + b*d - m - b |
-C = floor((b(b-d)-1)/d)*d + b*d - m - b |
-C = rnd(b(b-d)-1) + b*d - m - b |
-C = rnd(b(b-d)-1 + b*d) - m - b |
-C = rnd(b*b-1) - m - b |
-C <= (b-2)*b |
-C |
-C Unchanged from the general case is that the final quotient limb q can be |
-C either q1 or q1+1, and the q1+1 case occurs often. This can be seen from |
-C equation 8.4 of the paper which simplifies as follows when n1==0 and |
-C n0==0. |
-C |
-C n-q1*d = (n2*k+q0*d)/b <= d + (d*d-2d)/b |
-C |
-C As before, the instruction groupings and empty comments show a naive |
-C in-order view of the code, which is made a nonsense by out of order |
-C execution. There's 17 cycles shown, but it executes at 15. |
-C |
-C Rotating the store q and remainder->n2 instructions up to the top of the |
-C loop gets the run time down from 16 to 15. |
- |
- ALIGN(16) |
-L(fraction_some): |
- C eax |
- C ebx |
- C ecx |
- C edx |
- C esi |
- C edi carry |
- C ebp divisor |
- |
- movl PARAM_DST, %esi |
- movl VAR_DST_STOP, %ecx C &dst[xsize+2] |
- movl %edi, %eax |
- |
- subl $8, %ecx C &dst[xsize] |
- jmp L(fraction_entry) |
- |
- |
- ALIGN(16) |
-L(fraction_top): |
- C eax n2 carry, then scratch |
- C ebx scratch (nadj, q1) |
- C ecx dst, decrementing |
- C edx scratch |
- C esi dst stop point |
- C edi (will be n2) |
- C ebp divisor |
- |
- movl %ebx, (%ecx) C previous q |
- movl %eax, %edi C remainder->n2 |
- |
-L(fraction_entry): |
- mull VAR_INVERSE C m*n2 |
- |
- movl %ebp, %eax C d |
- subl $4, %ecx C dst |
- leal 1(%edi), %ebx |
- |
- C |
- |
- C |
- |
- C |
- |
- C |
- |
- addl %edx, %ebx C 1 + high(n2<<32 + m*n2) = q1+1 |
- |
- mull %ebx C (q1+1)*d |
- |
- C |
- |
- C |
- |
- C |
- |
- negl %eax C low of n - (q1+1)*d |
- |
- C |
- |
- sbbl %edx, %edi C high of n - (q1+1)*d, caring only about carry |
- leal (%ebp,%eax), %edx |
- |
- cmovc( %edx, %eax) C n - q1*d if underflow from using q1+1 |
- sbbl $0, %ebx C q |
- cmpl %esi, %ecx |
- |
- jne L(fraction_top) |
- |
- |
- movl %ebx, (%ecx) |
- jmp L(fraction_done) |
- |
-EPILOGUE() |