| Index: gcc/libstdc++-v3/include/tr1/legendre_function.tcc
|
| diff --git a/gcc/libstdc++-v3/include/tr1/legendre_function.tcc b/gcc/libstdc++-v3/include/tr1/legendre_function.tcc
|
| deleted file mode 100644
|
| index 8b59814da4f335498ce3b1a00e2875fe18943de5..0000000000000000000000000000000000000000
|
| --- a/gcc/libstdc++-v3/include/tr1/legendre_function.tcc
|
| +++ /dev/null
|
| @@ -1,305 +0,0 @@
|
| -// Special functions -*- C++ -*-
|
| -
|
| -// Copyright (C) 2006, 2007, 2008, 2009
|
| -// Free Software Foundation, Inc.
|
| -//
|
| -// This file is part of the GNU ISO C++ Library. This library is free
|
| -// software; you can redistribute it and/or modify it under the
|
| -// terms of the GNU General Public License as published by the
|
| -// Free Software Foundation; either version 3, or (at your option)
|
| -// any later version.
|
| -//
|
| -// This library is distributed in the hope that it will be useful,
|
| -// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| -// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| -// GNU General Public License for more details.
|
| -//
|
| -// Under Section 7 of GPL version 3, you are granted additional
|
| -// permissions described in the GCC Runtime Library Exception, version
|
| -// 3.1, as published by the Free Software Foundation.
|
| -
|
| -// You should have received a copy of the GNU General Public License and
|
| -// a copy of the GCC Runtime Library Exception along with this program;
|
| -// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
| -// <http://www.gnu.org/licenses/>.
|
| -
|
| -/** @file tr1/legendre_function.tcc
|
| - * This is an internal header file, included by other library headers.
|
| - * You should not attempt to use it directly.
|
| - */
|
| -
|
| -//
|
| -// ISO C++ 14882 TR1: 5.2 Special functions
|
| -//
|
| -
|
| -// Written by Edward Smith-Rowland based on:
|
| -// (1) Handbook of Mathematical Functions,
|
| -// ed. Milton Abramowitz and Irene A. Stegun,
|
| -// Dover Publications,
|
| -// Section 8, pp. 331-341
|
| -// (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
|
| -// (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky,
|
| -// W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992),
|
| -// 2nd ed, pp. 252-254
|
| -
|
| -#ifndef _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
|
| -#define _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC 1
|
| -
|
| -#include "special_function_util.h"
|
| -
|
| -namespace std
|
| -{
|
| -namespace tr1
|
| -{
|
| -
|
| - // [5.2] Special functions
|
| -
|
| - // Implementation-space details.
|
| - namespace __detail
|
| - {
|
| -
|
| - /**
|
| - * @brief Return the Legendre polynomial by recursion on order
|
| - * @f$ l @f$.
|
| - *
|
| - * The Legendre function of @f$ l @f$ and @f$ x @f$,
|
| - * @f$ P_l(x) @f$, is defined by:
|
| - * @f[
|
| - * P_l(x) = \frac{1}{2^l l!}\frac{d^l}{dx^l}(x^2 - 1)^{l}
|
| - * @f]
|
| - *
|
| - * @param l The order of the Legendre polynomial. @f$l >= 0@f$.
|
| - * @param x The argument of the Legendre polynomial. @f$|x| <= 1@f$.
|
| - */
|
| - template<typename _Tp>
|
| - _Tp
|
| - __poly_legendre_p(const unsigned int __l, const _Tp __x)
|
| - {
|
| -
|
| - if ((__x < _Tp(-1)) || (__x > _Tp(+1)))
|
| - std::__throw_domain_error(__N("Argument out of range"
|
| - " in __poly_legendre_p."));
|
| - else if (__isnan(__x))
|
| - return std::numeric_limits<_Tp>::quiet_NaN();
|
| - else if (__x == +_Tp(1))
|
| - return +_Tp(1);
|
| - else if (__x == -_Tp(1))
|
| - return (__l % 2 == 1 ? -_Tp(1) : +_Tp(1));
|
| - else
|
| - {
|
| - _Tp __p_lm2 = _Tp(1);
|
| - if (__l == 0)
|
| - return __p_lm2;
|
| -
|
| - _Tp __p_lm1 = __x;
|
| - if (__l == 1)
|
| - return __p_lm1;
|
| -
|
| - _Tp __p_l = 0;
|
| - for (unsigned int __ll = 2; __ll <= __l; ++__ll)
|
| - {
|
| - // This arrangement is supposed to be better for roundoff
|
| - // protection, Arfken, 2nd Ed, Eq 12.17a.
|
| - __p_l = _Tp(2) * __x * __p_lm1 - __p_lm2
|
| - - (__x * __p_lm1 - __p_lm2) / _Tp(__ll);
|
| - __p_lm2 = __p_lm1;
|
| - __p_lm1 = __p_l;
|
| - }
|
| -
|
| - return __p_l;
|
| - }
|
| - }
|
| -
|
| -
|
| - /**
|
| - * @brief Return the associated Legendre function by recursion
|
| - * on @f$ l @f$.
|
| - *
|
| - * The associated Legendre function is derived from the Legendre function
|
| - * @f$ P_l(x) @f$ by the Rodrigues formula:
|
| - * @f[
|
| - * P_l^m(x) = (1 - x^2)^{m/2}\frac{d^m}{dx^m}P_l(x)
|
| - * @f]
|
| - *
|
| - * @param l The order of the associated Legendre function.
|
| - * @f$ l >= 0 @f$.
|
| - * @param m The order of the associated Legendre function.
|
| - * @f$ m <= l @f$.
|
| - * @param x The argument of the associated Legendre function.
|
| - * @f$ |x| <= 1 @f$.
|
| - */
|
| - template<typename _Tp>
|
| - _Tp
|
| - __assoc_legendre_p(const unsigned int __l, const unsigned int __m,
|
| - const _Tp __x)
|
| - {
|
| -
|
| - if (__x < _Tp(-1) || __x > _Tp(+1))
|
| - std::__throw_domain_error(__N("Argument out of range"
|
| - " in __assoc_legendre_p."));
|
| - else if (__m > __l)
|
| - std::__throw_domain_error(__N("Degree out of range"
|
| - " in __assoc_legendre_p."));
|
| - else if (__isnan(__x))
|
| - return std::numeric_limits<_Tp>::quiet_NaN();
|
| - else if (__m == 0)
|
| - return __poly_legendre_p(__l, __x);
|
| - else
|
| - {
|
| - _Tp __p_mm = _Tp(1);
|
| - if (__m > 0)
|
| - {
|
| - // Two square roots seem more accurate more of the time
|
| - // than just one.
|
| - _Tp __root = std::sqrt(_Tp(1) - __x) * std::sqrt(_Tp(1) + __x);
|
| - _Tp __fact = _Tp(1);
|
| - for (unsigned int __i = 1; __i <= __m; ++__i)
|
| - {
|
| - __p_mm *= -__fact * __root;
|
| - __fact += _Tp(2);
|
| - }
|
| - }
|
| - if (__l == __m)
|
| - return __p_mm;
|
| -
|
| - _Tp __p_mp1m = _Tp(2 * __m + 1) * __x * __p_mm;
|
| - if (__l == __m + 1)
|
| - return __p_mp1m;
|
| -
|
| - _Tp __p_lm2m = __p_mm;
|
| - _Tp __P_lm1m = __p_mp1m;
|
| - _Tp __p_lm = _Tp(0);
|
| - for (unsigned int __j = __m + 2; __j <= __l; ++__j)
|
| - {
|
| - __p_lm = (_Tp(2 * __j - 1) * __x * __P_lm1m
|
| - - _Tp(__j + __m - 1) * __p_lm2m) / _Tp(__j - __m);
|
| - __p_lm2m = __P_lm1m;
|
| - __P_lm1m = __p_lm;
|
| - }
|
| -
|
| - return __p_lm;
|
| - }
|
| - }
|
| -
|
| -
|
| - /**
|
| - * @brief Return the spherical associated Legendre function.
|
| - *
|
| - * The spherical associated Legendre function of @f$ l @f$, @f$ m @f$,
|
| - * and @f$ \theta @f$ is defined as @f$ Y_l^m(\theta,0) @f$ where
|
| - * @f[
|
| - * Y_l^m(\theta,\phi) = (-1)^m[\frac{(2l+1)}{4\pi}
|
| - * \frac{(l-m)!}{(l+m)!}]
|
| - * P_l^m(\cos\theta) \exp^{im\phi}
|
| - * @f]
|
| - * is the spherical harmonic function and @f$ P_l^m(x) @f$ is the
|
| - * associated Legendre function.
|
| - *
|
| - * This function differs from the associated Legendre function by
|
| - * argument (@f$x = \cos(\theta)@f$) and by a normalization factor
|
| - * but this factor is rather large for large @f$ l @f$ and @f$ m @f$
|
| - * and so this function is stable for larger differences of @f$ l @f$
|
| - * and @f$ m @f$.
|
| - *
|
| - * @param l The order of the spherical associated Legendre function.
|
| - * @f$ l >= 0 @f$.
|
| - * @param m The order of the spherical associated Legendre function.
|
| - * @f$ m <= l @f$.
|
| - * @param theta The radian angle argument of the spherical associated
|
| - * Legendre function.
|
| - */
|
| - template <typename _Tp>
|
| - _Tp
|
| - __sph_legendre(const unsigned int __l, const unsigned int __m,
|
| - const _Tp __theta)
|
| - {
|
| - if (__isnan(__theta))
|
| - return std::numeric_limits<_Tp>::quiet_NaN();
|
| -
|
| - const _Tp __x = std::cos(__theta);
|
| -
|
| - if (__l < __m)
|
| - {
|
| - std::__throw_domain_error(__N("Bad argument "
|
| - "in __sph_legendre."));
|
| - }
|
| - else if (__m == 0)
|
| - {
|
| - _Tp __P = __poly_legendre_p(__l, __x);
|
| - _Tp __fact = std::sqrt(_Tp(2 * __l + 1)
|
| - / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
| - __P *= __fact;
|
| - return __P;
|
| - }
|
| - else if (__x == _Tp(1) || __x == -_Tp(1))
|
| - {
|
| - // m > 0 here
|
| - return _Tp(0);
|
| - }
|
| - else
|
| - {
|
| - // m > 0 and |x| < 1 here
|
| -
|
| - // Starting value for recursion.
|
| - // Y_m^m(x) = sqrt( (2m+1)/(4pi m) gamma(m+1/2)/gamma(m) )
|
| - // (-1)^m (1-x^2)^(m/2) / pi^(1/4)
|
| - const _Tp __sgn = ( __m % 2 == 1 ? -_Tp(1) : _Tp(1));
|
| - const _Tp __y_mp1m_factor = __x * std::sqrt(_Tp(2 * __m + 3));
|
| -#if _GLIBCXX_USE_C99_MATH_TR1
|
| - const _Tp __lncirc = std::tr1::log1p(-__x * __x);
|
| -#else
|
| - const _Tp __lncirc = std::log(_Tp(1) - __x * __x);
|
| -#endif
|
| - // Gamma(m+1/2) / Gamma(m)
|
| -#if _GLIBCXX_USE_C99_MATH_TR1
|
| - const _Tp __lnpoch = std::tr1::lgamma(_Tp(__m + _Tp(0.5L)))
|
| - - std::tr1::lgamma(_Tp(__m));
|
| -#else
|
| - const _Tp __lnpoch = __log_gamma(_Tp(__m + _Tp(0.5L)))
|
| - - __log_gamma(_Tp(__m));
|
| -#endif
|
| - const _Tp __lnpre_val =
|
| - -_Tp(0.25L) * __numeric_constants<_Tp>::__lnpi()
|
| - + _Tp(0.5L) * (__lnpoch + __m * __lncirc);
|
| - _Tp __sr = std::sqrt((_Tp(2) + _Tp(1) / __m)
|
| - / (_Tp(4) * __numeric_constants<_Tp>::__pi()));
|
| - _Tp __y_mm = __sgn * __sr * std::exp(__lnpre_val);
|
| - _Tp __y_mp1m = __y_mp1m_factor * __y_mm;
|
| -
|
| - if (__l == __m)
|
| - {
|
| - return __y_mm;
|
| - }
|
| - else if (__l == __m + 1)
|
| - {
|
| - return __y_mp1m;
|
| - }
|
| - else
|
| - {
|
| - _Tp __y_lm = _Tp(0);
|
| -
|
| - // Compute Y_l^m, l > m+1, upward recursion on l.
|
| - for ( int __ll = __m + 2; __ll <= __l; ++__ll)
|
| - {
|
| - const _Tp __rat1 = _Tp(__ll - __m) / _Tp(__ll + __m);
|
| - const _Tp __rat2 = _Tp(__ll - __m - 1) / _Tp(__ll + __m - 1);
|
| - const _Tp __fact1 = std::sqrt(__rat1 * _Tp(2 * __ll + 1)
|
| - * _Tp(2 * __ll - 1));
|
| - const _Tp __fact2 = std::sqrt(__rat1 * __rat2 * _Tp(2 * __ll + 1)
|
| - / _Tp(2 * __ll - 3));
|
| - __y_lm = (__x * __y_mp1m * __fact1
|
| - - (__ll + __m - 1) * __y_mm * __fact2) / _Tp(__ll - __m);
|
| - __y_mm = __y_mp1m;
|
| - __y_mp1m = __y_lm;
|
| - }
|
| -
|
| - return __y_lm;
|
| - }
|
| - }
|
| - }
|
| -
|
| - } // namespace std::tr1::__detail
|
| -}
|
| -}
|
| -
|
| -#endif // _GLIBCXX_TR1_LEGENDRE_FUNCTION_TCC
|
|
|