Index: gcc/mpfr/lngamma.c |
diff --git a/gcc/mpfr/lngamma.c b/gcc/mpfr/lngamma.c |
deleted file mode 100644 |
index ca318530c6f76c030de254843bf059add8602871..0000000000000000000000000000000000000000 |
--- a/gcc/mpfr/lngamma.c |
+++ /dev/null |
@@ -1,690 +0,0 @@ |
-/* mpfr_lngamma -- lngamma function |
- |
-Copyright 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
-Contributed by the Arenaire and Cacao projects, INRIA. |
- |
-This file is part of the GNU MPFR Library. |
- |
-The GNU MPFR Library is free software; you can redistribute it and/or modify |
-it under the terms of the GNU Lesser General Public License as published by |
-the Free Software Foundation; either version 2.1 of the License, or (at your |
-option) any later version. |
- |
-The GNU MPFR Library is distributed in the hope that it will be useful, but |
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
-License for more details. |
- |
-You should have received a copy of the GNU Lesser General Public License |
-along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to |
-the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, |
-MA 02110-1301, USA. */ |
- |
-#define MPFR_NEED_LONGLONG_H |
-#include "mpfr-impl.h" |
- |
-/* assuming b[0]...b[2(n-1)] are computed, computes and stores B[2n]*(2n+1)! |
- |
- t/(exp(t)-1) = sum(B[j]*t^j/j!, j=0..infinity) |
- thus t = (exp(t)-1) * sum(B[j]*t^j/j!, n=0..infinity). |
- Taking the coefficient of degree n+1 > 1, we get: |
- 0 = sum(1/(n+1-k)!*B[k]/k!, k=0..n) |
- which gives: |
- B[n] = -sum(binomial(n+1,k)*B[k], k=0..n-1)/(n+1). |
- |
- Let C[n] = B[n]*(n+1)!. |
- Then C[n] = -sum(binomial(n+1,k)*C[k]*n!/(k+1)!, k=0..n-1), |
- which proves that the C[n] are integers. |
-*/ |
-static mpz_t* |
-bernoulli (mpz_t *b, unsigned long n) |
-{ |
- if (n == 0) |
- { |
- b = (mpz_t *) (*__gmp_allocate_func) (sizeof (mpz_t)); |
- mpz_init_set_ui (b[0], 1); |
- } |
- else |
- { |
- mpz_t t; |
- unsigned long k; |
- |
- b = (mpz_t *) (*__gmp_reallocate_func) |
- (b, n * sizeof (mpz_t), (n + 1) * sizeof (mpz_t)); |
- mpz_init (b[n]); |
- /* b[n] = -sum(binomial(2n+1,2k)*C[k]*(2n)!/(2k+1)!, k=0..n-1) */ |
- mpz_init_set_ui (t, 2 * n + 1); |
- mpz_mul_ui (t, t, 2 * n - 1); |
- mpz_mul_ui (t, t, 2 * n); |
- mpz_mul_ui (t, t, n); |
- mpz_div_ui (t, t, 3); /* exact: t=binomial(2*n+1,2*k)*(2*n)!/(2*k+1)! |
- for k=n-1 */ |
- mpz_mul (b[n], t, b[n-1]); |
- for (k = n - 1; k-- > 0;) |
- { |
- mpz_mul_ui (t, t, 2 * k + 1); |
- mpz_mul_ui (t, t, 2 * k + 2); |
- mpz_mul_ui (t, t, 2 * k + 2); |
- mpz_mul_ui (t, t, 2 * k + 3); |
- mpz_div_ui (t, t, 2 * (n - k) + 1); |
- mpz_div_ui (t, t, 2 * (n - k)); |
- mpz_addmul (b[n], t, b[k]); |
- } |
- /* take into account C[1] */ |
- mpz_mul_ui (t, t, 2 * n + 1); |
- mpz_div_2exp (t, t, 1); |
- mpz_sub (b[n], b[n], t); |
- mpz_neg (b[n], b[n]); |
- mpz_clear (t); |
- } |
- return b; |
-} |
- |
-/* given a precision p, return alpha, such that the argument reduction |
- will use k = alpha*p*log(2). |
- |
- Warning: we should always have alpha >= log(2)/(2Pi) ~ 0.11, |
- and the smallest value of alpha multiplied by the smallest working |
- precision should be >= 4. |
-*/ |
-static double |
-mpfr_gamma_alpha (mp_prec_t p) |
-{ |
- if (p <= 100) |
- return 0.6; |
- else if (p <= 200) |
- return 0.8; |
- else if (p <= 500) |
- return 0.8; |
- else if (p <= 1000) |
- return 1.3; |
- else if (p <= 2000) |
- return 1.7; |
- else if (p <= 5000) |
- return 2.2; |
- else if (p <= 10000) |
- return 3.4; |
- else /* heuristic fit from above */ |
- return 0.26 * (double) MPFR_INT_CEIL_LOG2 ((unsigned long) p); |
-} |
- |
-#ifndef IS_GAMMA |
-static int |
-unit_bit (mpfr_srcptr (x)) |
-{ |
- mp_exp_t expo; |
- mp_prec_t prec; |
- mp_limb_t x0; |
- |
- expo = MPFR_GET_EXP (x); |
- if (expo <= 0) |
- return 0; /* |x| < 1 */ |
- |
- prec = MPFR_PREC (x); |
- if (expo > prec) |
- return 0; /* y is a multiple of 2^(expo-prec), thus an even integer */ |
- |
- /* Now, the unit bit is represented. */ |
- |
- prec = ((prec - 1) / BITS_PER_MP_LIMB + 1) * BITS_PER_MP_LIMB - expo; |
- /* number of represented fractional bits (including the trailing 0's) */ |
- |
- x0 = *(MPFR_MANT (x) + prec / BITS_PER_MP_LIMB); |
- /* limb containing the unit bit */ |
- |
- return (x0 >> (prec % BITS_PER_MP_LIMB)) & 1; |
-} |
-#endif |
- |
-/* lngamma(x) = log(gamma(x)). |
- We use formula [6.1.40] from Abramowitz&Stegun: |
- lngamma(z) = (z-1/2)*log(z) - z + 1/2*log(2*Pi) |
- + sum (Bernoulli[2n]/(2m)/(2m-1)/z^(2m-1),m=1..infinity) |
- According to [6.1.42], if the sum is truncated after m=n, the error |
- R_n(z) is bounded by |B[2n+2]|*K(z)/(2n+1)/(2n+2)/|z|^(2n+1) |
- where K(z) = max (z^2/(u^2+z^2)) for u >= 0. |
- For z real, |K(z)| <= 1 thus R_n(z) is bounded by the first neglected term. |
- */ |
-#ifdef IS_GAMMA |
-#define GAMMA_FUNC mpfr_gamma_aux |
-#else |
-#define GAMMA_FUNC mpfr_lngamma_aux |
-#endif |
- |
-static int |
-GAMMA_FUNC (mpfr_ptr y, mpfr_srcptr z0, mp_rnd_t rnd) |
-{ |
- mp_prec_t precy, w; /* working precision */ |
- mpfr_t s, t, u, v, z; |
- unsigned long m, k, maxm; |
- mpz_t *INITIALIZED(B); /* variable B declared as initialized */ |
- int inexact, compared; |
- mp_exp_t err_s, err_t; |
- unsigned long Bm = 0; /* number of allocated B[] */ |
- unsigned long oldBm; |
- double d; |
- MPFR_SAVE_EXPO_DECL (expo); |
- |
- compared = mpfr_cmp_ui (z0, 1); |
- |
- MPFR_SAVE_EXPO_MARK (expo); |
- |
-#ifndef IS_GAMMA /* lngamma or lgamma */ |
- if (compared == 0 || (compared > 0 && mpfr_cmp_ui (z0, 2) == 0)) |
- { |
- MPFR_SAVE_EXPO_FREE (expo); |
- return mpfr_set_ui (y, 0, GMP_RNDN); /* lngamma(1 or 2) = +0 */ |
- } |
- |
- /* Deal here with tiny inputs. We have for -0.3 <= x <= 0.3: |
- - log|x| - gamma*x <= log|gamma(x)| <= - log|x| - gamma*x + x^2 */ |
- if (MPFR_EXP(z0) <= - (mp_exp_t) MPFR_PREC(y)) |
- { |
- mpfr_t l, h, g; |
- int ok, inex2; |
- mp_prec_t prec = MPFR_PREC(y) + 14; |
- MPFR_ZIV_DECL (loop); |
- |
- MPFR_ZIV_INIT (loop, prec); |
- do |
- { |
- mpfr_init2 (l, prec); |
- if (MPFR_IS_POS(z0)) |
- { |
- mpfr_log (l, z0, GMP_RNDU); /* upper bound for log(z0) */ |
- mpfr_init2 (h, MPFR_PREC(l)); |
- } |
- else |
- { |
- mpfr_init2 (h, MPFR_PREC(z0)); |
- mpfr_neg (h, z0, GMP_RNDN); /* exact */ |
- mpfr_log (l, h, GMP_RNDU); /* upper bound for log(-z0) */ |
- mpfr_set_prec (h, MPFR_PREC(l)); |
- } |
- mpfr_neg (l, l, GMP_RNDD); /* lower bound for -log(|z0|) */ |
- mpfr_set (h, l, GMP_RNDD); /* exact */ |
- mpfr_nextabove (h); /* upper bound for -log(|z0|), avoids two calls |
- to mpfr_log */ |
- mpfr_init2 (g, MPFR_PREC(l)); |
- /* if z0>0, we need an upper approximation of Euler's constant |
- for the left bound */ |
- mpfr_const_euler (g, MPFR_IS_POS(z0) ? GMP_RNDU : GMP_RNDD); |
- mpfr_mul (g, g, z0, GMP_RNDD); |
- mpfr_sub (l, l, g, GMP_RNDD); |
- mpfr_const_euler (g, MPFR_IS_POS(z0) ? GMP_RNDD : GMP_RNDU); /* cached */ |
- mpfr_mul (g, g, z0, GMP_RNDU); |
- mpfr_sub (h, h, g, GMP_RNDD); |
- mpfr_mul (g, z0, z0, GMP_RNDU); |
- mpfr_add (h, h, g, GMP_RNDU); |
- inexact = mpfr_prec_round (l, MPFR_PREC(y), rnd); |
- inex2 = mpfr_prec_round (h, MPFR_PREC(y), rnd); |
- /* Caution: we not only need l = h, but both inexact flags should |
- agree. Indeed, one of the inexact flags might be zero. In that |
- case if we assume lngamma(z0) cannot be exact, the other flag |
- should be correct. We are conservative here and request that both |
- inexact flags agree. */ |
- ok = SAME_SIGN (inexact, inex2) && mpfr_cmp (l, h) == 0; |
- if (ok) |
- mpfr_set (y, h, rnd); /* exact */ |
- mpfr_clear (l); |
- mpfr_clear (h); |
- mpfr_clear (g); |
- if (ok) |
- { |
- MPFR_SAVE_EXPO_FREE (expo); |
- return mpfr_check_range (y, inexact, rnd); |
- } |
- /* since we have log|gamma(x)| = - log|x| - gamma*x + O(x^2), |
- if x ~ 2^(-n), then we have a n-bit approximation, thus |
- we can try again with a working precision of n bits, |
- especially when n >> PREC(y). |
- Otherwise we would use the reflection formula evaluating x-1, |
- which would need precision n. */ |
- MPFR_ZIV_NEXT (loop, prec); |
- } |
- while (prec <= -MPFR_EXP(z0)); |
- MPFR_ZIV_FREE (loop); |
- } |
-#endif |
- |
- precy = MPFR_PREC(y); |
- |
- mpfr_init2 (s, MPFR_PREC_MIN); |
- mpfr_init2 (t, MPFR_PREC_MIN); |
- mpfr_init2 (u, MPFR_PREC_MIN); |
- mpfr_init2 (v, MPFR_PREC_MIN); |
- mpfr_init2 (z, MPFR_PREC_MIN); |
- |
- if (compared < 0) |
- { |
- mp_exp_t err_u; |
- |
- /* use reflection formula: |
- gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) |
- thus lngamma(x) = log(Pi*(x-1)/sin(Pi*(2-x))) - lngamma(2-x) */ |
- |
- w = precy + MPFR_INT_CEIL_LOG2 (precy); |
- while (1) |
- { |
- w += MPFR_INT_CEIL_LOG2 (w) + 14; |
- MPFR_ASSERTD(w >= 3); |
- mpfr_set_prec (s, w); |
- mpfr_set_prec (t, w); |
- mpfr_set_prec (u, w); |
- mpfr_set_prec (v, w); |
- /* In the following, we write r for a real of absolute value |
- at most 2^(-w). Different instances of r may represent different |
- values. */ |
- mpfr_ui_sub (s, 2, z0, GMP_RNDD); /* s = (2-z0) * (1+2r) >= 1 */ |
- mpfr_const_pi (t, GMP_RNDN); /* t = Pi * (1+r) */ |
- mpfr_lngamma (u, s, GMP_RNDN); /* lngamma(2-x) */ |
- /* Let s = (2-z0) + h. By construction, -(2-z0)*2^(1-w) <= h <= 0. |
- We have lngamma(s) = lngamma(2-z0) + h*Psi(z), z in [2-z0+h,2-z0]. |
- Since 2-z0+h = s >= 1 and |Psi(x)| <= max(1,log(x)) for x >= 1, |
- the error on u is bounded by |
- ulp(u)/2 + (2-z0)*max(1,log(2-z0))*2^(1-w) |
- = (1/2 + (2-z0)*max(1,log(2-z0))*2^(1-E(u))) ulp(u) */ |
- d = (double) MPFR_GET_EXP(s) * 0.694; /* upper bound for log(2-z0) */ |
- err_u = MPFR_GET_EXP(s) + __gmpfr_ceil_log2 (d) + 1 - MPFR_GET_EXP(u); |
- err_u = (err_u >= 0) ? err_u + 1 : 0; |
- /* now the error on u is bounded by 2^err_u ulps */ |
- |
- mpfr_mul (s, s, t, GMP_RNDN); /* Pi*(2-x) * (1+r)^4 */ |
- err_s = MPFR_GET_EXP(s); /* 2-x <= 2^err_s */ |
- mpfr_sin (s, s, GMP_RNDN); /* sin(Pi*(2-x)) */ |
- /* the error on s is bounded by 1/2*ulp(s) + [(1+2^(-w))^4-1]*(2-x) |
- <= 1/2*ulp(s) + 5*2^(-w)*(2-x) for w >= 3 |
- <= (1/2 + 5 * 2^(-E(s)) * (2-x)) ulp(s) */ |
- err_s += 3 - MPFR_GET_EXP(s); |
- err_s = (err_s >= 0) ? err_s + 1 : 0; |
- /* the error on s is bounded by 2^err_s ulp(s), thus by |
- 2^(err_s+1)*2^(-w)*|s| since ulp(s) <= 2^(1-w)*|s|. |
- Now n*2^(-w) can always be written |(1+r)^n-1| for some |
- |r|<=2^(-w), thus taking n=2^(err_s+1) we see that |
- |S - s| <= |(1+r)^(2^(err_s+1))-1| * |s|, where S is the |
- true value. |
- In fact if ulp(s) <= ulp(S) the same inequality holds for |
- |S| instead of |s| in the right hand side, i.e., we can |
- write s = (1+r)^(2^(err_s+1)) * S. |
- But if ulp(S) < ulp(s), we need to add one ``bit'' to the error, |
- to get s = (1+r)^(2^(err_s+2)) * S. This is true since with |
- E = n*2^(-w) we have |s - S| <= E * |s|, thus |
- |s - S| <= E/(1-E) * |S|. |
- Now E/(1-E) is bounded by 2E as long as E<=1/2, |
- and 2E can be written (1+r)^(2n)-1 as above. |
- */ |
- err_s += 2; /* exponent of relative error */ |
- |
- mpfr_sub_ui (v, z0, 1, GMP_RNDN); /* v = (x-1) * (1+r) */ |
- mpfr_mul (v, v, t, GMP_RNDN); /* v = Pi*(x-1) * (1+r)^3 */ |
- mpfr_div (v, v, s, GMP_RNDN); /* Pi*(x-1)/sin(Pi*(2-x)) */ |
- mpfr_abs (v, v, GMP_RNDN); |
- /* (1+r)^(3+2^err_s+1) */ |
- err_s = (err_s <= 1) ? 3 : err_s + 1; |
- /* now (1+r)^M with M <= 2^err_s */ |
- mpfr_log (v, v, GMP_RNDN); |
- /* log(v*(1+e)) = log(v)+log(1+e) where |e| <= 2^(err_s-w). |
- Since |log(1+e)| <= 2*e for |e| <= 1/4, the error on v is |
- bounded by ulp(v)/2 + 2^(err_s+1-w). */ |
- if (err_s + 2 > w) |
- { |
- w += err_s + 2; |
- } |
- else |
- { |
- err_s += 1 - MPFR_GET_EXP(v); |
- err_s = (err_s >= 0) ? err_s + 1 : 0; |
- /* the error on v is bounded by 2^err_s ulps */ |
- err_u += MPFR_GET_EXP(u); /* absolute error on u */ |
- err_s += MPFR_GET_EXP(v); /* absolute error on v */ |
- mpfr_sub (s, v, u, GMP_RNDN); |
- /* the total error on s is bounded by ulp(s)/2 + 2^(err_u-w) |
- + 2^(err_s-w) <= ulp(s)/2 + 2^(max(err_u,err_s)+1-w) */ |
- err_s = (err_s >= err_u) ? err_s : err_u; |
- err_s += 1 - MPFR_GET_EXP(s); /* error is 2^err_s ulp(s) */ |
- err_s = (err_s >= 0) ? err_s + 1 : 0; |
- if (mpfr_can_round (s, w - err_s, GMP_RNDN, GMP_RNDZ, precy |
- + (rnd == GMP_RNDN))) |
- goto end; |
- } |
- } |
- } |
- |
- /* now z0 > 1 */ |
- |
- MPFR_ASSERTD (compared > 0); |
- |
- /* since k is O(w), the value of log(z0*...*(z0+k-1)) is about w*log(w), |
- so there is a cancellation of ~log(w) in the argument reconstruction */ |
- w = precy + MPFR_INT_CEIL_LOG2 (precy); |
- |
- do |
- { |
- w += MPFR_INT_CEIL_LOG2 (w) + 13; |
- MPFR_ASSERTD (w >= 3); |
- |
- mpfr_set_prec (s, 53); |
- /* we need z >= w*log(2)/(2*Pi) to get an absolute error less than 2^(-w) |
- but the optimal value is about 0.155665*w */ |
- /* FIXME: replace double by mpfr_t types. */ |
- mpfr_set_d (s, mpfr_gamma_alpha (precy) * (double) w, GMP_RNDU); |
- if (mpfr_cmp (z0, s) < 0) |
- { |
- mpfr_sub (s, s, z0, GMP_RNDU); |
- k = mpfr_get_ui (s, GMP_RNDU); |
- if (k < 3) |
- k = 3; |
- } |
- else |
- k = 3; |
- |
- mpfr_set_prec (s, w); |
- mpfr_set_prec (t, w); |
- mpfr_set_prec (u, w); |
- mpfr_set_prec (v, w); |
- mpfr_set_prec (z, w); |
- |
- mpfr_add_ui (z, z0, k, GMP_RNDN); |
- /* z = (z0+k)*(1+t1) with |t1| <= 2^(-w) */ |
- |
- /* z >= 4 ensures the relative error on log(z) is small, |
- and also (z-1/2)*log(z)-z >= 0 */ |
- MPFR_ASSERTD (mpfr_cmp_ui (z, 4) >= 0); |
- |
- mpfr_log (s, z, GMP_RNDN); /* log(z) */ |
- /* we have s = log((z0+k)*(1+t1))*(1+t2) with |t1|, |t2| <= 2^(-w). |
- Since w >= 2 and z0+k >= 4, we can write log((z0+k)*(1+t1)) |
- = log(z0+k) * (1+t3) with |t3| <= 2^(-w), thus we have |
- s = log(z0+k) * (1+t4)^2 with |t4| <= 2^(-w) */ |
- mpfr_mul_2ui (t, z, 1, GMP_RNDN); /* t = 2z * (1+t5) */ |
- mpfr_sub_ui (t, t, 1, GMP_RNDN); /* t = 2z-1 * (1+t6)^3 */ |
- /* since we can write 2z*(1+t5) = (2z-1)*(1+t5') with |
- t5' = 2z/(2z-1) * t5, thus |t5'| <= 8/7 * t5 */ |
- mpfr_mul (s, s, t, GMP_RNDN); /* (2z-1)*log(z) * (1+t7)^6 */ |
- mpfr_div_2ui (s, s, 1, GMP_RNDN); /* (z-1/2)*log(z) * (1+t7)^6 */ |
- mpfr_sub (s, s, z, GMP_RNDN); /* (z-1/2)*log(z)-z */ |
- /* s = [(z-1/2)*log(z)-z]*(1+u)^14, s >= 1/2 */ |
- |
- mpfr_ui_div (u, 1, z, GMP_RNDN); /* 1/z * (1+u), u <= 1/4 since z >= 4 */ |
- |
- /* the first term is B[2]/2/z = 1/12/z: t=1/12/z, C[2]=1 */ |
- mpfr_div_ui (t, u, 12, GMP_RNDN); /* 1/(12z) * (1+u)^2, t <= 3/128 */ |
- mpfr_set (v, t, GMP_RNDN); /* (1+u)^2, v < 2^(-5) */ |
- mpfr_add (s, s, v, GMP_RNDN); /* (1+u)^15 */ |
- |
- mpfr_mul (u, u, u, GMP_RNDN); /* 1/z^2 * (1+u)^3 */ |
- |
- if (Bm == 0) |
- { |
- B = bernoulli ((mpz_t *) 0, 0); |
- B = bernoulli (B, 1); |
- Bm = 2; |
- } |
- |
- /* m <= maxm ensures that 2*m*(2*m+1) <= ULONG_MAX */ |
- maxm = 1UL << (BITS_PER_MP_LIMB / 2 - 1); |
- |
- /* s:(1+u)^15, t:(1+u)^2, t <= 3/128 */ |
- |
- for (m = 2; MPFR_GET_EXP(v) + (mp_exp_t) w >= MPFR_GET_EXP(s); m++) |
- { |
- mpfr_mul (t, t, u, GMP_RNDN); /* (1+u)^(10m-14) */ |
- if (m <= maxm) |
- { |
- mpfr_mul_ui (t, t, 2*(m-1)*(2*m-3), GMP_RNDN); |
- mpfr_div_ui (t, t, 2*m*(2*m-1), GMP_RNDN); |
- mpfr_div_ui (t, t, 2*m*(2*m+1), GMP_RNDN); |
- } |
- else |
- { |
- mpfr_mul_ui (t, t, 2*(m-1), GMP_RNDN); |
- mpfr_mul_ui (t, t, 2*m-3, GMP_RNDN); |
- mpfr_div_ui (t, t, 2*m, GMP_RNDN); |
- mpfr_div_ui (t, t, 2*m-1, GMP_RNDN); |
- mpfr_div_ui (t, t, 2*m, GMP_RNDN); |
- mpfr_div_ui (t, t, 2*m+1, GMP_RNDN); |
- } |
- /* (1+u)^(10m-8) */ |
- /* invariant: t=1/(2m)/(2m-1)/z^(2m-1)/(2m+1)! */ |
- if (Bm <= m) |
- { |
- B = bernoulli (B, m); /* B[2m]*(2m+1)!, exact */ |
- Bm ++; |
- } |
- mpfr_mul_z (v, t, B[m], GMP_RNDN); /* (1+u)^(10m-7) */ |
- MPFR_ASSERTD(MPFR_GET_EXP(v) <= - (2 * m + 3)); |
- mpfr_add (s, s, v, GMP_RNDN); |
- } |
- /* m <= 1/2*Pi*e*z ensures that |v[m]| < 1/2^(2m+3) */ |
- MPFR_ASSERTD ((double) m <= 4.26 * mpfr_get_d (z, GMP_RNDZ)); |
- |
- /* We have sum([(1+u)^(10m-7)-1]*1/2^(2m+3), m=2..infinity) |
- <= 1.46*u for u <= 2^(-3). |
- We have 0 < lngamma(z) - [(z - 1/2) ln(z) - z + 1/2 ln(2 Pi)] < 0.021 |
- for z >= 4, thus since the initial s >= 0.85, the different values of |
- s differ by at most one binade, and the total rounding error on s |
- in the for-loop is bounded by 2*(m-1)*ulp(final_s). |
- The error coming from the v's is bounded by |
- 1.46*2^(-w) <= 2*ulp(final_s). |
- Thus the total error so far is bounded by [(1+u)^15-1]*s+2m*ulp(s) |
- <= (2m+47)*ulp(s). |
- Taking into account the truncation error (which is bounded by the last |
- term v[] according to 6.1.42 in A&S), the bound is (2m+48)*ulp(s). |
- */ |
- |
- /* add 1/2*log(2*Pi) and subtract log(z0*(z0+1)*...*(z0+k-1)) */ |
- mpfr_const_pi (v, GMP_RNDN); /* v = Pi*(1+u) */ |
- mpfr_mul_2ui (v, v, 1, GMP_RNDN); /* v = 2*Pi * (1+u) */ |
- if (k) |
- { |
- unsigned long l; |
- mpfr_set (t, z0, GMP_RNDN); /* t = z0*(1+u) */ |
- for (l = 1; l < k; l++) |
- { |
- mpfr_add_ui (u, z0, l, GMP_RNDN); /* u = (z0+l)*(1+u) */ |
- mpfr_mul (t, t, u, GMP_RNDN); /* (1+u)^(2l+1) */ |
- } |
- /* now t: (1+u)^(2k-1) */ |
- /* instead of computing log(sqrt(2*Pi)/t), we compute |
- 1/2*log(2*Pi/t^2), which trades a square root for a square */ |
- mpfr_mul (t, t, t, GMP_RNDN); /* (z0*...*(z0+k-1))^2, (1+u)^(4k-1) */ |
- mpfr_div (v, v, t, GMP_RNDN); |
- /* 2*Pi/(z0*...*(z0+k-1))^2 (1+u)^(4k+1) */ |
- } |
-#ifdef IS_GAMMA |
- err_s = MPFR_GET_EXP(s); |
- mpfr_exp (s, s, GMP_RNDN); |
- /* before the exponential, we have s = s0 + h where |
- |h| <= (2m+48)*ulp(s), thus exp(s0) = exp(s) * exp(-h). |
- For |h| <= 1/4, we have |exp(h)-1| <= 1.2*|h| thus |
- |exp(s) - exp(s0)| <= 1.2 * exp(s) * (2m+48)* 2^(EXP(s)-w). */ |
- d = 1.2 * (2.0 * (double) m + 48.0); |
- /* the error on s is bounded by d*2^err_s * 2^(-w) */ |
- mpfr_sqrt (t, v, GMP_RNDN); |
- /* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1), |
- thus t = sqrt(v0)*(1+u)^(2k+3/2). */ |
- mpfr_mul (s, s, t, GMP_RNDN); |
- /* the error on input s is bounded by (1+u)^(d*2^err_s), |
- and that on t is (1+u)^(2k+3/2), thus the |
- total error is (1+u)^(d*2^err_s+2k+5/2) */ |
- err_s += __gmpfr_ceil_log2 (d); |
- err_t = __gmpfr_ceil_log2 (2.0 * (double) k + 2.5); |
- err_s = (err_s >= err_t) ? err_s + 1 : err_t + 1; |
-#else |
- mpfr_log (t, v, GMP_RNDN); |
- /* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1), |
- thus log(v) = log(v0) + (4k+1)*log(1+u). Since |log(1+u)/u| <= 1.07 |
- for |u| <= 2^(-3), the absolute error on log(v) is bounded by |
- 1.07*(4k+1)*u, and the rounding error by ulp(t). */ |
- mpfr_div_2ui (t, t, 1, GMP_RNDN); |
- /* the error on t is now bounded by ulp(t) + 0.54*(4k+1)*2^(-w). |
- We have sqrt(2*Pi)/(z0*(z0+1)*...*(z0+k-1)) <= sqrt(2*Pi)/k! <= 0.5 |
- since k>=3, thus t <= -0.5 and ulp(t) >= 2^(-w). |
- Thus the error on t is bounded by (2.16*k+1.54)*ulp(t). */ |
- err_t = MPFR_GET_EXP(t) + (mp_exp_t) |
- __gmpfr_ceil_log2 (2.2 * (double) k + 1.6); |
- err_s = MPFR_GET_EXP(s) + (mp_exp_t) |
- __gmpfr_ceil_log2 (2.0 * (double) m + 48.0); |
- mpfr_add (s, s, t, GMP_RNDN); /* this is a subtraction in fact */ |
- /* the final error in ulp(s) is |
- <= 1 + 2^(err_t-EXP(s)) + 2^(err_s-EXP(s)) |
- <= 2^(1+max(err_t,err_s)-EXP(s)) if err_t <> err_s |
- <= 2^(2+max(err_t,err_s)-EXP(s)) if err_t = err_s */ |
- err_s = (err_t == err_s) ? 1 + err_s : ((err_t > err_s) ? err_t : err_s); |
- err_s += 1 - MPFR_GET_EXP(s); |
-#endif |
- } |
- while (MPFR_UNLIKELY (!MPFR_CAN_ROUND (s, w - err_s, precy, rnd))); |
- |
- oldBm = Bm; |
- while (Bm--) |
- mpz_clear (B[Bm]); |
- (*__gmp_free_func) (B, oldBm * sizeof (mpz_t)); |
- |
- end: |
- inexact = mpfr_set (y, s, rnd); |
- |
- mpfr_clear (s); |
- mpfr_clear (t); |
- mpfr_clear (u); |
- mpfr_clear (v); |
- mpfr_clear (z); |
- |
- MPFR_SAVE_EXPO_FREE (expo); |
- return mpfr_check_range (y, inexact, rnd); |
-} |
- |
-#ifndef IS_GAMMA |
- |
-int |
-mpfr_lngamma (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd) |
-{ |
- int inex; |
- |
- MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd), |
- ("lngamma[%#R]=%R inexact=%d", y, y, inex)); |
- |
- /* special cases */ |
- if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) |
- { |
- if (MPFR_IS_NAN (x) || MPFR_IS_NEG (x)) |
- { |
- MPFR_SET_NAN (y); |
- MPFR_RET_NAN; |
- } |
- else /* lngamma(+Inf) = lngamma(+0) = +Inf */ |
- { |
- MPFR_SET_INF (y); |
- MPFR_SET_POS (y); |
- MPFR_RET (0); /* exact */ |
- } |
- } |
- |
- /* if x < 0 and -2k-1 <= x <= -2k, then lngamma(x) = NaN */ |
- if (MPFR_IS_NEG (x) && (unit_bit (x) == 0 || mpfr_integer_p (x))) |
- { |
- MPFR_SET_NAN (y); |
- MPFR_RET_NAN; |
- } |
- |
- inex = mpfr_lngamma_aux (y, x, rnd); |
- return inex; |
-} |
- |
-int |
-mpfr_lgamma (mpfr_ptr y, int *signp, mpfr_srcptr x, mp_rnd_t rnd) |
-{ |
- int inex; |
- |
- MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd), |
- ("lgamma[%#R]=%R inexact=%d", y, y, inex)); |
- |
- *signp = 1; /* most common case */ |
- |
- if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) |
- { |
- if (MPFR_IS_NAN (x)) |
- { |
- MPFR_SET_NAN (y); |
- MPFR_RET_NAN; |
- } |
- else |
- { |
- *signp = MPFR_INT_SIGN (x); |
- MPFR_SET_INF (y); |
- MPFR_SET_POS (y); |
- MPFR_RET (0); |
- } |
- } |
- |
- if (MPFR_IS_NEG (x)) |
- { |
- if (mpfr_integer_p (x)) |
- { |
- MPFR_SET_INF (y); |
- MPFR_SET_POS (y); |
- MPFR_RET (0); |
- } |
- |
- if (unit_bit (x) == 0) |
- *signp = -1; |
- |
- /* For tiny negative x, we have gamma(x) = 1/x - euler + O(x), |
- thus |gamma(x)| = -1/x + euler + O(x), and |
- log |gamma(x)| = -log(-x) - euler*x + O(x^2). |
- More precisely we have for -0.4 <= x < 0: |
- -log(-x) <= log |gamma(x)| <= -log(-x) - x. |
- Since log(x) is not representable, we may have an instance of the |
- Table Maker Dilemma. The only way to ensure correct rounding is to |
- compute an interval [l,h] such that l <= -log(-x) and |
- -log(-x) - x <= h, and check whether l and h round to the same number |
- for the target precision and rounding modes. */ |
- if (MPFR_EXP(x) + 1 <= - (mp_exp_t) MPFR_PREC(y)) |
- /* since PREC(y) >= 1, this ensures EXP(x) <= -2, |
- thus |x| <= 0.25 < 0.4 */ |
- { |
- mpfr_t l, h; |
- int ok, inex2; |
- mp_prec_t w = MPFR_PREC (y) + 14; |
- |
- while (1) |
- { |
- mpfr_init2 (l, w); |
- mpfr_init2 (h, w); |
- /* we want a lower bound on -log(-x), thus an upper bound |
- on log(-x), thus an upper bound on -x. */ |
- mpfr_neg (l, x, GMP_RNDU); /* upper bound on -x */ |
- mpfr_log (l, l, GMP_RNDU); /* upper bound for log(-x) */ |
- mpfr_neg (l, l, GMP_RNDD); /* lower bound for -log(-x) */ |
- mpfr_neg (h, x, GMP_RNDD); /* lower bound on -x */ |
- mpfr_log (h, h, GMP_RNDD); /* lower bound on log(-x) */ |
- mpfr_neg (h, h, GMP_RNDU); /* upper bound for -log(-x) */ |
- mpfr_sub (h, h, x, GMP_RNDU); /* upper bound for -log(-x) - x */ |
- inex = mpfr_prec_round (l, MPFR_PREC (y), rnd); |
- inex2 = mpfr_prec_round (h, MPFR_PREC (y), rnd); |
- /* Caution: we not only need l = h, but both inexact flags |
- should agree. Indeed, one of the inexact flags might be |
- zero. In that case if we assume ln|gamma(x)| cannot be |
- exact, the other flag should be correct. We are conservative |
- here and request that both inexact flags agree. */ |
- ok = SAME_SIGN (inex, inex2) && mpfr_equal_p (l, h); |
- if (ok) |
- mpfr_set (y, h, rnd); /* exact */ |
- mpfr_clear (l); |
- mpfr_clear (h); |
- if (ok) |
- return inex; |
- /* if ulp(log(-x)) <= |x| there is no reason to loop, |
- since the width of [l, h] will be at least |x| */ |
- if (MPFR_EXP(l) < MPFR_EXP(x) + (mp_exp_t) w) |
- break; |
- w += MPFR_INT_CEIL_LOG2(w) + 3; |
- } |
- } |
- } |
- |
- inex = mpfr_lngamma_aux (y, x, rnd); |
- return inex; |
-} |
- |
-#endif |