Index: gcc/gmp/mpn/x86/p6/mod_1.asm |
diff --git a/gcc/gmp/mpn/x86/p6/mod_1.asm b/gcc/gmp/mpn/x86/p6/mod_1.asm |
deleted file mode 100644 |
index b6eacf7e82e513a35f2bddf04ba902dfad0b8eeb..0000000000000000000000000000000000000000 |
--- a/gcc/gmp/mpn/x86/p6/mod_1.asm |
+++ /dev/null |
@@ -1,472 +0,0 @@ |
-dnl Intel P6 mpn_mod_1 -- mpn by limb remainder. |
- |
-dnl Copyright 1999, 2000, 2002 Free Software Foundation, Inc. |
-dnl |
-dnl This file is part of the GNU MP Library. |
-dnl |
-dnl The GNU MP Library is free software; you can redistribute it and/or |
-dnl modify it under the terms of the GNU Lesser General Public License as |
-dnl published by the Free Software Foundation; either version 3 of the |
-dnl License, or (at your option) any later version. |
-dnl |
-dnl The GNU MP Library is distributed in the hope that it will be useful, |
-dnl but WITHOUT ANY WARRANTY; without even the implied warranty of |
-dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
-dnl Lesser General Public License for more details. |
-dnl |
-dnl You should have received a copy of the GNU Lesser General Public License |
-dnl along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. |
- |
-include(`../config.m4') |
- |
- |
-C P6: 21.5 cycles/limb |
- |
- |
-C mp_limb_t mpn_mod_1 (mp_srcptr src, mp_size_t size, mp_limb_t divisor); |
-C mp_limb_t mpn_mod_1c (mp_srcptr src, mp_size_t size, mp_limb_t divisor, |
-C mp_limb_t carry); |
-C mp_limb_t mpn_preinv_mod_1 (mp_srcptr src, mp_size_t size, mp_limb_t divisor, |
-C mp_limb_t inverse); |
-C |
-C The code here is in two parts, a simple divl loop and a mul-by-inverse. |
-C The divl is used by mod_1 and mod_1c for small sizes, until the savings in |
-C the mul-by-inverse can overcome the time to calculate an inverse. |
-C preinv_mod_1 goes straight to the mul-by-inverse. |
-C |
-C The mul-by-inverse normalizes the divisor (or for preinv_mod_1 it's |
-C already normalized). The calculation done is r=a%(d*2^n) followed by a |
-C final (r*2^n)%(d*2^n), where a is the dividend, d the divisor, and n is |
-C the number of leading zero bits on d. This means there's no bit shifts in |
-C the main loop, at the cost of an extra divide step at the end. |
-C |
-C The simple divl for mod_1 is able to skip one divide step if high<divisor. |
-C For mod_1c the carry parameter is the high of the first divide step, and |
-C no attempt is make to skip that step since carry==0 will be very rare. |
-C |
-C The mul-by-inverse always skips one divide step, but then needs an extra |
-C step at the end, unless the divisor was already normalized (n==0). This |
-C leads to different mul-by-inverse thresholds for normalized and |
-C unnormalized divisors, in mod_1 and mod_1c. |
-C |
-C Alternatives: |
-C |
-C If n is small then the extra divide step could be done by a few shift and |
-C trial subtract steps instead of a full divide. That would probably be 3 |
-C or 4 cycles/bit, so say up to n=8 might benefit from that over a 21 cycle |
-C divide. However it's considered that small divisors, meaning biggish n, |
-C are more likely than small n, and that it's not worth the branch |
-C mispredicts of a loop. |
-C |
-C Past: |
-C |
-C There used to be some MMX based code for P-II and P-III, roughly following |
-C the K7 form, but it was slower (about 24.0 c/l) than the code here. That |
-C code did have an advantage that mod_1 was able to do one less divide step |
-C when high<divisor and the divisor unnormalized, but the speed advantage of |
-C the current code soon overcomes that. |
-C |
-C Future: |
-C |
-C It's not clear whether what's here is optimal. A rough count of micro-ops |
-C on the dependent chain would suggest a couple of cycles could be shaved, |
-C perhaps. |
- |
- |
-dnl The following thresholds are the sizes where the multiply by inverse |
-dnl method is used instead of plain divl's. Minimum value 2 each. |
-dnl |
-dnl MUL_NORM_THRESHOLD is for normalized divisors (high bit set), |
-dnl MUL_UNNORM_THRESHOLD for unnormalized divisors. |
-dnl |
-dnl With the divl loop at 39 c/l, and the inverse loop at 21.5 c/l but |
-dnl setups for the inverse of about 50, the threshold should be around |
-dnl 50/(39-21.5)==2.85. An unnormalized divisor gets an extra divide step |
-dnl at the end, so if that's about 25 cycles then that threshold might be |
-dnl around (50+25)/(39-21.5) == 4.3. |
- |
-deflit(MUL_NORM_THRESHOLD, 4) |
-deflit(MUL_UNNORM_THRESHOLD, 5) |
- |
-deflit(MUL_NORM_DELTA, eval(MUL_NORM_THRESHOLD - MUL_UNNORM_THRESHOLD)) |
- |
- |
-defframe(PARAM_INVERSE, 16) dnl mpn_preinv_mod_1 |
-defframe(PARAM_CARRY, 16) dnl mpn_mod_1c |
-defframe(PARAM_DIVISOR, 12) |
-defframe(PARAM_SIZE, 8) |
-defframe(PARAM_SRC, 4) |
- |
-defframe(SAVE_EBX, -4) |
-defframe(SAVE_ESI, -8) |
-defframe(SAVE_EDI, -12) |
-defframe(SAVE_EBP, -16) |
- |
-defframe(VAR_NORM, -20) |
-defframe(VAR_INVERSE, -24) |
- |
-deflit(STACK_SPACE, 24) |
- |
- TEXT |
- |
- ALIGN(16) |
-PROLOGUE(mpn_preinv_mod_1) |
-deflit(`FRAME',0) |
- |
- movl PARAM_SRC, %edx |
- subl $STACK_SPACE, %esp FRAME_subl_esp(STACK_SPACE) |
- |
- movl %ebx, SAVE_EBX |
- movl PARAM_SIZE, %ebx |
- |
- movl %ebp, SAVE_EBP |
- movl PARAM_DIVISOR, %ebp |
- |
- movl %esi, SAVE_ESI |
- movl PARAM_INVERSE, %eax |
- |
- movl %edi, SAVE_EDI |
- movl -4(%edx,%ebx,4), %edi C src high limb |
- |
- movl $0, VAR_NORM |
- leal -8(%edx,%ebx,4), %ecx C &src[size-2] |
- |
- C |
- |
- movl %edi, %esi |
- subl %ebp, %edi C high-divisor |
- |
- cmovc( %esi, %edi) C restore if underflow |
- decl %ebx |
- jnz L(preinv_entry) |
- |
- jmp L(done_edi) |
- |
-EPILOGUE() |
- |
- |
- ALIGN(16) |
-PROLOGUE(mpn_mod_1c) |
-deflit(`FRAME',0) |
- |
- movl PARAM_SIZE, %ecx |
- subl $STACK_SPACE, %esp FRAME_subl_esp(STACK_SPACE) |
- |
- movl %ebp, SAVE_EBP |
- movl PARAM_DIVISOR, %eax |
- |
- movl %esi, SAVE_ESI |
- movl PARAM_CARRY, %edx |
- |
- movl PARAM_SRC, %esi |
- orl %ecx, %ecx |
- jz L(done_edx) C result==carry if size==0 |
- |
- sarl $31, %eax |
- movl PARAM_DIVISOR, %ebp |
- |
- andl $MUL_NORM_DELTA, %eax |
- |
- addl $MUL_UNNORM_THRESHOLD, %eax |
- |
- cmpl %eax, %ecx |
- jb L(divide_top) |
- |
- |
- C The carry parameter pretends to be the src high limb. |
- |
- movl %ebx, SAVE_EBX |
- leal 1(%ecx), %ebx C size+1 |
- |
- movl %edx, %eax C carry |
- jmp L(mul_by_inverse_1c) |
- |
-EPILOGUE() |
- |
- |
- ALIGN(16) |
-PROLOGUE(mpn_mod_1) |
-deflit(`FRAME',0) |
- |
- movl PARAM_SIZE, %ecx |
- subl $STACK_SPACE, %esp FRAME_subl_esp(STACK_SPACE) |
- movl $0, %edx C initial carry (if can't skip a div) |
- |
- movl %esi, SAVE_ESI |
- movl PARAM_SRC, %eax |
- |
- movl %ebp, SAVE_EBP |
- movl PARAM_DIVISOR, %ebp |
- |
- movl PARAM_DIVISOR, %esi |
- orl %ecx, %ecx |
- jz L(done_edx) |
- |
- movl -4(%eax,%ecx,4), %eax C src high limb |
- |
- sarl $31, %ebp |
- |
- andl $MUL_NORM_DELTA, %ebp |
- |
- addl $MUL_UNNORM_THRESHOLD, %ebp |
- cmpl %esi, %eax C carry flag if high<divisor |
- |
- cmovc( %eax, %edx) C src high limb as initial carry |
- movl PARAM_SRC, %esi |
- |
- sbbl $0, %ecx C size-1 to skip one div |
- jz L(done_eax) C done if had size==1 |
- |
- cmpl %ebp, %ecx |
- movl PARAM_DIVISOR, %ebp |
- jae L(mul_by_inverse) |
- |
- |
-L(divide_top): |
- C eax scratch (quotient) |
- C ebx |
- C ecx counter, limbs, decrementing |
- C edx scratch (remainder) |
- C esi src |
- C edi |
- C ebp divisor |
- |
- movl -4(%esi,%ecx,4), %eax |
- |
- divl %ebp |
- |
- decl %ecx |
- jnz L(divide_top) |
- |
- |
-L(done_edx): |
- movl %edx, %eax |
-L(done_eax): |
- movl SAVE_ESI, %esi |
- |
- movl SAVE_EBP, %ebp |
- addl $STACK_SPACE, %esp |
- |
- ret |
- |
- |
-C ----------------------------------------------------------------------------- |
- |
-L(mul_by_inverse): |
- C eax src high limb |
- C ebx |
- C ecx |
- C edx |
- C esi src |
- C edi |
- C ebp divisor |
- |
- movl %ebx, SAVE_EBX |
- movl PARAM_SIZE, %ebx |
- |
-L(mul_by_inverse_1c): |
- bsrl %ebp, %ecx C 31-l |
- |
- movl %edi, SAVE_EDI |
- xorl $31, %ecx C l |
- |
- movl %ecx, VAR_NORM |
- shll %cl, %ebp C d normalized |
- |
- movl %eax, %edi C src high -> n2 |
- subl %ebp, %eax |
- |
- cmovnc( %eax, %edi) C n2-divisor if no underflow |
- |
- movl $-1, %eax |
- movl $-1, %edx |
- |
- subl %ebp, %edx C (b-d)-1 so edx:eax = b*(b-d)-1 |
- leal -8(%esi,%ebx,4), %ecx C &src[size-2] |
- |
- divl %ebp C floor (b*(b-d)-1) / d |
- |
-L(preinv_entry): |
- movl %eax, VAR_INVERSE |
- |
- |
- |
-C No special scheduling of loads is necessary in this loop, out of order |
-C execution hides the latencies already. |
-C |
-C The way q1+1 is generated in %ebx and d is moved to %eax for the multiply |
-C seems fastest. The obvious change to generate q1+1 in %eax and then just |
-C multiply by %ebp (as per mpn/x86/pentium/mod_1.asm in fact) runs 1 cycle |
-C slower, for no obvious reason. |
- |
- |
- ALIGN(16) |
-L(inverse_top): |
- C eax n10 (then scratch) |
- C ebx scratch (nadj, q1) |
- C ecx src pointer, decrementing |
- C edx scratch |
- C esi n10 |
- C edi n2 |
- C ebp divisor |
- |
- movl (%ecx), %eax C next src limb |
- movl %eax, %esi |
- |
- sarl $31, %eax C -n1 |
- movl %ebp, %ebx |
- |
- andl %eax, %ebx C -n1 & d |
- negl %eax C n1 |
- |
- addl %edi, %eax C n2+n1 |
- |
- mull VAR_INVERSE C m*(n2+n1) |
- |
- addl %esi, %ebx C nadj = n10 + (-n1 & d), ignoring overflow |
- subl $4, %ecx |
- |
- C |
- |
- addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag |
- leal 1(%edi), %ebx C n2+1 |
- movl %ebp, %eax C d |
- |
- adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1 |
- jz L(q1_ff) |
- |
- mull %ebx C (q1+1)*d |
- |
- C |
- |
- subl %eax, %esi C low n - (q1+1)*d |
- |
- sbbl %edx, %edi C high n - (q1+1)*d, 0 or -1 |
- |
- andl %ebp, %edi C d if underflow |
- |
- addl %esi, %edi C remainder with addback if necessary |
- |
- cmpl PARAM_SRC, %ecx |
- jae L(inverse_top) |
- |
- |
-C ----------------------------------------------------------------------------- |
-L(inverse_loop_done): |
- |
- C %edi is the remainder modulo d*2^n and now must be reduced to |
- C 0<=r<d by calculating r*2^n mod d*2^n and then right shifting by |
- C n. If d was already normalized on entry so that n==0 then nothing |
- C is needed here. The chance of n==0 is low, but it's true of say |
- C PP from gmp-impl.h. |
- C |
- C eax |
- C ebx |
- C ecx |
- C edx |
- C esi |
- C edi remainder |
- C ebp divisor (normalized) |
- |
- movl VAR_NORM, %ecx |
- movl $0, %esi |
- |
- orl %ecx, %ecx |
- jz L(done_edi) |
- |
- |
- C Here use %edi=n10 and %esi=n2, opposite to the loop above. |
- C |
- C The q1=0xFFFFFFFF case is handled with an sbbl to adjust q1+1 |
- C back, rather than q1_ff special case code. This is simpler and |
- C costs only 2 uops. |
- |
- shldl( %cl, %edi, %esi) |
- |
- shll %cl, %edi |
- |
- movl %edi, %eax C n10 |
- movl %ebp, %ebx C d |
- |
- sarl $31, %eax C -n1 |
- |
- andl %eax, %ebx C -n1 & d |
- negl %eax C n1 |
- |
- addl %edi, %ebx C nadj = n10 + (-n1 & d), ignoring overflow |
- addl %esi, %eax C n2+n1 |
- |
- mull VAR_INVERSE C m*(n2+n1) |
- |
- C |
- |
- addl %ebx, %eax C m*(n2+n1) + nadj, low giving carry flag |
- leal 1(%esi), %ebx C n2+1 |
- |
- adcl %edx, %ebx C 1 + high(n2<<32 + m*(n2+n1) + nadj) = q1+1 |
- |
- sbbl $0, %ebx |
- movl %ebp, %eax C d |
- |
- mull %ebx C (q1+1)*d |
- |
- movl SAVE_EBX, %ebx |
- |
- C |
- |
- subl %eax, %edi C low n - (q1+1)*d is remainder |
- |
- sbbl %edx, %esi C high n - (q1+1)*d, 0 or -1 |
- |
- andl %ebp, %esi |
- movl SAVE_EBP, %ebp |
- |
- leal (%esi,%edi), %eax C remainder |
- movl SAVE_ESI, %esi |
- |
- shrl %cl, %eax C denorm remainder |
- movl SAVE_EDI, %edi |
- addl $STACK_SPACE, %esp |
- |
- ret |
- |
- |
-L(done_edi): |
- movl SAVE_EBX, %ebx |
- movl %edi, %eax |
- |
- movl SAVE_ESI, %esi |
- |
- movl SAVE_EDI, %edi |
- |
- movl SAVE_EBP, %ebp |
- addl $STACK_SPACE, %esp |
- |
- ret |
- |
- |
-C ----------------------------------------------------------------------------- |
-C |
-C Special case for q1=0xFFFFFFFF, giving q=0xFFFFFFFF meaning the low dword |
-C of q*d is simply -d and the remainder n-q*d = n10+d. |
-C |
-C This is reached only very rarely. |
- |
-L(q1_ff): |
- C eax (divisor) |
- C ebx (q1+1 == 0) |
- C ecx src pointer |
- C edx |
- C esi n10 |
- C edi (n2) |
- C ebp divisor |
- |
- leal (%ebp,%esi), %edi C n-q*d remainder -> next n2 |
- |
- cmpl PARAM_SRC, %ecx |
- jae L(inverse_top) |
- |
- jmp L(inverse_loop_done) |
- |
- |
-EPILOGUE() |