| Index: gcc/mpfr/acosh.c
|
| diff --git a/gcc/mpfr/acosh.c b/gcc/mpfr/acosh.c
|
| deleted file mode 100644
|
| index 1d0c42781bed617f2b0ab2696edb3776bb632456..0000000000000000000000000000000000000000
|
| --- a/gcc/mpfr/acosh.c
|
| +++ /dev/null
|
| @@ -1,156 +0,0 @@
|
| -/* mpfr_acosh -- inverse hyperbolic cosine
|
| -
|
| -Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
| -Contributed by the Arenaire and Cacao projects, INRIA.
|
| -
|
| -This file is part of the GNU MPFR Library.
|
| -
|
| -The GNU MPFR Library is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU Lesser General Public License as published by
|
| -the Free Software Foundation; either version 2.1 of the License, or (at your
|
| -option) any later version.
|
| -
|
| -The GNU MPFR Library is distributed in the hope that it will be useful, but
|
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| -License for more details.
|
| -
|
| -You should have received a copy of the GNU Lesser General Public License
|
| -along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
|
| -the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
| -MA 02110-1301, USA. */
|
| -
|
| -#define MPFR_NEED_LONGLONG_H
|
| -#include "mpfr-impl.h"
|
| -
|
| -/* The computation of acosh is done by *
|
| - * acosh= ln(x + sqrt(x^2-1)) */
|
| -
|
| -int
|
| -mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mp_rnd_t rnd_mode)
|
| -{
|
| - MPFR_SAVE_EXPO_DECL (expo);
|
| - int inexact;
|
| - int comp;
|
| -
|
| - MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
|
| - ("y[%#R]=%R inexact=%d", y, y, inexact));
|
| -
|
| - /* Deal with special cases */
|
| - if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
| - {
|
| - /* Nan, or zero or -Inf */
|
| - if (MPFR_IS_INF (x) && MPFR_IS_POS (x))
|
| - {
|
| - MPFR_SET_INF (y);
|
| - MPFR_SET_POS (y);
|
| - MPFR_RET (0);
|
| - }
|
| - else /* Nan, or zero or -Inf */
|
| - {
|
| - MPFR_SET_NAN (y);
|
| - MPFR_RET_NAN;
|
| - }
|
| - }
|
| - comp = mpfr_cmp_ui (x, 1);
|
| - if (MPFR_UNLIKELY (comp < 0))
|
| - {
|
| - MPFR_SET_NAN (y);
|
| - MPFR_RET_NAN;
|
| - }
|
| - else if (MPFR_UNLIKELY (comp == 0))
|
| - {
|
| - MPFR_SET_ZERO (y); /* acosh(1) = 0 */
|
| - MPFR_SET_POS (y);
|
| - MPFR_RET (0);
|
| - }
|
| - MPFR_SAVE_EXPO_MARK (expo);
|
| -
|
| - /* General case */
|
| - {
|
| - /* Declaration of the intermediary variables */
|
| - mpfr_t t;
|
| - /* Declaration of the size variables */
|
| - mp_prec_t Ny = MPFR_PREC(y); /* Precision of output variable */
|
| - mp_prec_t Nt; /* Precision of the intermediary variable */
|
| - mp_exp_t err, exp_te, d; /* Precision of error */
|
| - MPFR_ZIV_DECL (loop);
|
| -
|
| - /* compute the precision of intermediary variable */
|
| - /* the optimal number of bits : see algorithms.tex */
|
| - Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny);
|
| -
|
| - /* initialization of intermediary variables */
|
| - mpfr_init2 (t, Nt);
|
| -
|
| - /* First computation of acosh */
|
| - MPFR_ZIV_INIT (loop, Nt);
|
| - for (;;)
|
| - {
|
| - MPFR_BLOCK_DECL (flags);
|
| -
|
| - /* compute acosh */
|
| - MPFR_BLOCK (flags, mpfr_mul (t, x, x, GMP_RNDD)); /* x^2 */
|
| - if (MPFR_OVERFLOW (flags))
|
| - {
|
| - mpfr_t ln2;
|
| - mp_prec_t pln2;
|
| -
|
| - /* As x is very large and the precision is not too large, we
|
| - assume that we obtain the same result by evaluating ln(2x).
|
| - We need to compute ln(x) + ln(2) as 2x can overflow. TODO:
|
| - write a proof and add an MPFR_ASSERTN. */
|
| - mpfr_log (t, x, GMP_RNDN); /* err(log) < 1/2 ulp(t) */
|
| - pln2 = Nt - MPFR_PREC_MIN < MPFR_GET_EXP (t) ?
|
| - MPFR_PREC_MIN : Nt - MPFR_GET_EXP (t);
|
| - mpfr_init2 (ln2, pln2);
|
| - mpfr_const_log2 (ln2, GMP_RNDN); /* err(ln2) < 1/2 ulp(t) */
|
| - mpfr_add (t, t, ln2, GMP_RNDN); /* err <= 3/2 ulp(t) */
|
| - mpfr_clear (ln2);
|
| - err = 1;
|
| - }
|
| - else
|
| - {
|
| - exp_te = MPFR_GET_EXP (t);
|
| - mpfr_sub_ui (t, t, 1, GMP_RNDD); /* x^2-1 */
|
| - if (MPFR_UNLIKELY (MPFR_IS_ZERO (t)))
|
| - {
|
| - /* This means that x is very close to 1: x = 1 + t with
|
| - t < 2^(-Nt). We have: acosh(x) = sqrt(2t) (1 - eps(t))
|
| - with 0 < eps(t) < t / 12. */
|
| - mpfr_sub_ui (t, x, 1, GMP_RNDD); /* t = x - 1 */
|
| - mpfr_mul_2ui (t, t, 1, GMP_RNDN); /* 2t */
|
| - mpfr_sqrt (t, t, GMP_RNDN); /* sqrt(2t) */
|
| - err = 1;
|
| - }
|
| - else
|
| - {
|
| - d = exp_te - MPFR_GET_EXP (t);
|
| - mpfr_sqrt (t, t, GMP_RNDN); /* sqrt(x^2-1) */
|
| - mpfr_add (t, t, x, GMP_RNDN); /* sqrt(x^2-1)+x */
|
| - mpfr_log (t, t, GMP_RNDN); /* ln(sqrt(x^2-1)+x) */
|
| -
|
| - /* error estimate -- see algorithms.tex */
|
| - err = 3 + MAX (1, d) - MPFR_GET_EXP (t);
|
| - /* error is bounded by 1/2 + 2^err <= 2^(max(0,1+err)) */
|
| - err = MAX (0, 1 + err);
|
| - }
|
| - }
|
| -
|
| - if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Ny, rnd_mode)))
|
| - break;
|
| -
|
| - /* reactualisation of the precision */
|
| - MPFR_ZIV_NEXT (loop, Nt);
|
| - mpfr_set_prec (t, Nt);
|
| - }
|
| - MPFR_ZIV_FREE (loop);
|
| -
|
| - inexact = mpfr_set (y, t, rnd_mode);
|
| -
|
| - mpfr_clear (t);
|
| - }
|
| -
|
| - MPFR_SAVE_EXPO_FREE (expo);
|
| - return mpfr_check_range (y, inexact, rnd_mode);
|
| -}
|
|
|