| Index: gcc/mpfr/pow_ui.c
|
| diff --git a/gcc/mpfr/pow_ui.c b/gcc/mpfr/pow_ui.c
|
| deleted file mode 100644
|
| index 67894da0e0f8ec96b10fc443ea514be67e640f3e..0000000000000000000000000000000000000000
|
| --- a/gcc/mpfr/pow_ui.c
|
| +++ /dev/null
|
| @@ -1,161 +0,0 @@
|
| -/* mpfr_pow_ui-- compute the power of a floating-point
|
| - by a machine integer
|
| -
|
| -Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
|
| -Contributed by the Arenaire and Cacao projects, INRIA.
|
| -
|
| -This file is part of the GNU MPFR Library.
|
| -
|
| -The GNU MPFR Library is free software; you can redistribute it and/or modify
|
| -it under the terms of the GNU Lesser General Public License as published by
|
| -the Free Software Foundation; either version 2.1 of the License, or (at your
|
| -option) any later version.
|
| -
|
| -The GNU MPFR Library is distributed in the hope that it will be useful, but
|
| -WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
| -or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
| -License for more details.
|
| -
|
| -You should have received a copy of the GNU Lesser General Public License
|
| -along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to
|
| -the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
|
| -MA 02110-1301, USA. */
|
| -
|
| -#define MPFR_NEED_LONGLONG_H
|
| -#include "mpfr-impl.h"
|
| -
|
| -/* sets y to x^n, and return 0 if exact, non-zero otherwise */
|
| -int
|
| -mpfr_pow_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int n, mp_rnd_t rnd)
|
| -{
|
| - unsigned long m;
|
| - mpfr_t res;
|
| - mp_prec_t prec, err;
|
| - int inexact;
|
| - mp_rnd_t rnd1;
|
| - MPFR_SAVE_EXPO_DECL (expo);
|
| - MPFR_ZIV_DECL (loop);
|
| - MPFR_BLOCK_DECL (flags);
|
| -
|
| - MPFR_LOG_FUNC (("x[%#R]=%R n=%lu rnd=%d", x, x, n, rnd),
|
| - ("y[%#R]=%R inexact=%d", y, y, inexact));
|
| -
|
| - /* x^0 = 1 for any x, even a NaN */
|
| - if (MPFR_UNLIKELY (n == 0))
|
| - return mpfr_set_ui (y, 1, rnd);
|
| -
|
| - if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
| - {
|
| - if (MPFR_IS_NAN (x))
|
| - {
|
| - MPFR_SET_NAN (y);
|
| - MPFR_RET_NAN;
|
| - }
|
| - else if (MPFR_IS_INF (x))
|
| - {
|
| - /* Inf^n = Inf, (-Inf)^n = Inf for n even, -Inf for n odd */
|
| - if (MPFR_IS_NEG (x) && (n & 1) == 1)
|
| - MPFR_SET_NEG (y);
|
| - else
|
| - MPFR_SET_POS (y);
|
| - MPFR_SET_INF (y);
|
| - MPFR_RET (0);
|
| - }
|
| - else /* x is zero */
|
| - {
|
| - MPFR_ASSERTD (MPFR_IS_ZERO (x));
|
| - /* 0^n = 0 for any n */
|
| - MPFR_SET_ZERO (y);
|
| - if (MPFR_IS_POS (x) || (n & 1) == 0)
|
| - MPFR_SET_POS (y);
|
| - else
|
| - MPFR_SET_NEG (y);
|
| - MPFR_RET (0);
|
| - }
|
| - }
|
| - else if (MPFR_UNLIKELY (n <= 2))
|
| - {
|
| - if (n < 2)
|
| - /* x^1 = x */
|
| - return mpfr_set (y, x, rnd);
|
| - else
|
| - /* x^2 = sqr(x) */
|
| - return mpfr_sqr (y, x, rnd);
|
| - }
|
| -
|
| - /* Augment exponent range */
|
| - MPFR_SAVE_EXPO_MARK (expo);
|
| -
|
| - /* setup initial precision */
|
| - prec = MPFR_PREC (y) + 3 + BITS_PER_MP_LIMB
|
| - + MPFR_INT_CEIL_LOG2 (MPFR_PREC (y));
|
| - mpfr_init2 (res, prec);
|
| -
|
| - rnd1 = MPFR_IS_POS (x) ? GMP_RNDU : GMP_RNDD; /* away */
|
| -
|
| - MPFR_ZIV_INIT (loop, prec);
|
| - for (;;)
|
| - {
|
| - int i;
|
| -
|
| - for (m = n, i = 0; m; i++, m >>= 1)
|
| - ;
|
| - /* now 2^(i-1) <= n < 2^i */
|
| - MPFR_ASSERTD (prec > (mpfr_prec_t) i);
|
| - err = prec - 1 - (mpfr_prec_t) i;
|
| - /* First step: compute square from x */
|
| - MPFR_BLOCK (flags,
|
| - inexact = mpfr_mul (res, x, x, GMP_RNDU);
|
| - MPFR_ASSERTD (i >= 2);
|
| - if (n & (1UL << (i-2)))
|
| - inexact |= mpfr_mul (res, res, x, rnd1);
|
| - for (i -= 3; i >= 0 && !MPFR_BLOCK_EXCEP; i--)
|
| - {
|
| - inexact |= mpfr_mul (res, res, res, GMP_RNDU);
|
| - if (n & (1UL << i))
|
| - inexact |= mpfr_mul (res, res, x, rnd1);
|
| - });
|
| - /* let r(n) be the number of roundings: we have r(2)=1, r(3)=2,
|
| - and r(2n)=2r(n)+1, r(2n+1)=2r(n)+2, thus r(n)=n-1.
|
| - Using Higham's method, to each rounding corresponds a factor
|
| - (1-theta) with 0 <= theta <= 2^(1-p), thus at the end the
|
| - absolute error is bounded by (n-1)*2^(1-p)*res <= 2*(n-1)*ulp(res)
|
| - since 2^(-p)*x <= ulp(x). Since n < 2^i, this gives a maximal
|
| - error of 2^(1+i)*ulp(res).
|
| - */
|
| - if (MPFR_LIKELY (inexact == 0
|
| - || MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags)
|
| - || MPFR_CAN_ROUND (res, err, MPFR_PREC (y), rnd)))
|
| - break;
|
| - /* Actualisation of the precision */
|
| - MPFR_ZIV_NEXT (loop, prec);
|
| - mpfr_set_prec (res, prec);
|
| - }
|
| - MPFR_ZIV_FREE (loop);
|
| -
|
| - if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags) || MPFR_UNDERFLOW (flags)))
|
| - {
|
| - mpz_t z;
|
| -
|
| - /* Internal overflow or underflow. However the approximation error has
|
| - * not been taken into account. So, let's solve this problem by using
|
| - * mpfr_pow_z, which can handle it. This case could be improved in the
|
| - * future, without having to use mpfr_pow_z.
|
| - */
|
| - MPFR_LOG_MSG (("Internal overflow or underflow,"
|
| - " let's use mpfr_pow_z.\n", 0));
|
| - mpfr_clear (res);
|
| - MPFR_SAVE_EXPO_FREE (expo);
|
| - mpz_init (z);
|
| - mpz_set_ui (z, n);
|
| - inexact = mpfr_pow_z (y, x, z, rnd);
|
| - mpz_clear (z);
|
| - return inexact;
|
| - }
|
| -
|
| - inexact = mpfr_set (y, res, rnd);
|
| - mpfr_clear (res);
|
| -
|
| - MPFR_SAVE_EXPO_FREE (expo);
|
| - return mpfr_check_range (y, inexact, rnd);
|
| -}
|
|
|