Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(96)

Unified Diff: gcc/gmp/mpz/pprime_p.c

Issue 3050029: [gcc] GCC 4.5.0=>4.5.1 (Closed) Base URL: ssh://git@gitrw.chromium.org:9222/nacl-toolchain.git
Patch Set: Created 10 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « gcc/gmp/mpz/powm_ui.c ('k') | gcc/gmp/mpz/random.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: gcc/gmp/mpz/pprime_p.c
diff --git a/gcc/gmp/mpz/pprime_p.c b/gcc/gmp/mpz/pprime_p.c
deleted file mode 100644
index 766155fa81591b2a57c7f6a1284f206075d22eb8..0000000000000000000000000000000000000000
--- a/gcc/gmp/mpz/pprime_p.c
+++ /dev/null
@@ -1,154 +0,0 @@
-/* mpz_probab_prime_p --
- An implementation of the probabilistic primality test found in Knuth's
- Seminumerical Algorithms book. If the function mpz_probab_prime_p()
- returns 0 then n is not prime. If it returns 1, then n is 'probably'
- prime. If it returns 2, n is surely prime. The probability of a false
- positive is (1/4)**reps, where reps is the number of internal passes of the
- probabilistic algorithm. Knuth indicates that 25 passes are reasonable.
-
-Copyright 1991, 1993, 1994, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2005 Free
-Software Foundation, Inc. Miller-Rabin code contributed by John Amanatides.
-
-This file is part of the GNU MP Library.
-
-The GNU MP Library is free software; you can redistribute it and/or modify
-it under the terms of the GNU Lesser General Public License as published by
-the Free Software Foundation; either version 3 of the License, or (at your
-option) any later version.
-
-The GNU MP Library is distributed in the hope that it will be useful, but
-WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
-or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
-License for more details.
-
-You should have received a copy of the GNU Lesser General Public License
-along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
-
-#include "gmp.h"
-#include "gmp-impl.h"
-#include "longlong.h"
-
-static int isprime __GMP_PROTO ((unsigned long int));
-
-
-/* MPN_MOD_OR_MODEXACT_1_ODD can be used instead of mpn_mod_1 for the trial
- division. It gives a result which is not the actual remainder r but a
- value congruent to r*2^n mod d. Since all the primes being tested are
- odd, r*2^n mod p will be 0 if and only if r mod p is 0. */
-
-int
-mpz_probab_prime_p (mpz_srcptr n, int reps)
-{
- mp_limb_t r;
- mpz_t n2;
-
- /* Handle small and negative n. */
- if (mpz_cmp_ui (n, 1000000L) <= 0)
- {
- int is_prime;
- if (mpz_cmpabs_ui (n, 1000000L) <= 0)
- {
- is_prime = isprime (mpz_get_ui (n));
- return is_prime ? 2 : 0;
- }
- /* Negative number. Negate and fall out. */
- PTR(n2) = PTR(n);
- SIZ(n2) = -SIZ(n);
- n = n2;
- }
-
- /* If n is now even, it is not a prime. */
- if ((mpz_get_ui (n) & 1) == 0)
- return 0;
-
-#if defined (PP)
- /* Check if n has small factors. */
-#if defined (PP_INVERTED)
- r = MPN_MOD_OR_PREINV_MOD_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP,
- (mp_limb_t) PP_INVERTED);
-#else
- r = mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) PP);
-#endif
- if (r % 3 == 0
-#if BITS_PER_MP_LIMB >= 4
- || r % 5 == 0
-#endif
-#if BITS_PER_MP_LIMB >= 8
- || r % 7 == 0
-#endif
-#if BITS_PER_MP_LIMB >= 16
- || r % 11 == 0 || r % 13 == 0
-#endif
-#if BITS_PER_MP_LIMB >= 32
- || r % 17 == 0 || r % 19 == 0 || r % 23 == 0 || r % 29 == 0
-#endif
-#if BITS_PER_MP_LIMB >= 64
- || r % 31 == 0 || r % 37 == 0 || r % 41 == 0 || r % 43 == 0
- || r % 47 == 0 || r % 53 == 0
-#endif
- )
- {
- return 0;
- }
-#endif /* PP */
-
- /* Do more dividing. We collect small primes, using umul_ppmm, until we
- overflow a single limb. We divide our number by the small primes product,
- and look for factors in the remainder. */
- {
- unsigned long int ln2;
- unsigned long int q;
- mp_limb_t p1, p0, p;
- unsigned int primes[15];
- int nprimes;
-
- nprimes = 0;
- p = 1;
- ln2 = mpz_sizeinbase (n, 2); /* FIXME: tune this limit */
- for (q = PP_FIRST_OMITTED; q < ln2; q += 2)
- {
- if (isprime (q))
- {
- umul_ppmm (p1, p0, p, q);
- if (p1 != 0)
- {
- r = MPN_MOD_OR_MODEXACT_1_ODD (PTR(n), (mp_size_t) SIZ(n), p);
- while (--nprimes >= 0)
- if (r % primes[nprimes] == 0)
- {
- ASSERT_ALWAYS (mpn_mod_1 (PTR(n), (mp_size_t) SIZ(n), (mp_limb_t) primes[nprimes]) == 0);
- return 0;
- }
- p = q;
- nprimes = 0;
- }
- else
- {
- p = p0;
- }
- primes[nprimes++] = q;
- }
- }
- }
-
- /* Perform a number of Miller-Rabin tests. */
- return mpz_millerrabin (n, reps);
-}
-
-static int
-isprime (unsigned long int t)
-{
- unsigned long int q, r, d;
-
- if (t < 3 || (t & 1) == 0)
- return t == 2;
-
- for (d = 3, r = 1; r != 0; d += 2)
- {
- q = t / d;
- r = t - q * d;
- if (q < d)
- return 1;
- }
- return 0;
-}
« no previous file with comments | « gcc/gmp/mpz/powm_ui.c ('k') | gcc/gmp/mpz/random.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698