| Index: gcc/gcc/tree-ssa-loop-ivcanon.c
|
| diff --git a/gcc/gcc/tree-ssa-loop-ivcanon.c b/gcc/gcc/tree-ssa-loop-ivcanon.c
|
| index e278c55b08bbd3f0387bf8f03a968f13fd1e9441..2b0988d1e52a827bcdf160d8192017b670eebb47 100644
|
| --- a/gcc/gcc/tree-ssa-loop-ivcanon.c
|
| +++ b/gcc/gcc/tree-ssa-loop-ivcanon.c
|
| @@ -1,24 +1,25 @@
|
| /* Induction variable canonicalization.
|
| - Copyright (C) 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
|
| -
|
| + Copyright (C) 2004, 2005, 2007, 2008, 2010
|
| + Free Software Foundation, Inc.
|
| +
|
| This file is part of GCC.
|
| -
|
| +
|
| GCC is free software; you can redistribute it and/or modify it
|
| under the terms of the GNU General Public License as published by the
|
| Free Software Foundation; either version 3, or (at your option) any
|
| later version.
|
| -
|
| +
|
| GCC is distributed in the hope that it will be useful, but WITHOUT
|
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| for more details.
|
| -
|
| +
|
| You should have received a copy of the GNU General Public License
|
| along with GCC; see the file COPYING3. If not see
|
| <http://www.gnu.org/licenses/>. */
|
|
|
| /* This pass detects the loops that iterate a constant number of times,
|
| - adds a canonical induction variable (step -1, tested against 0)
|
| + adds a canonical induction variable (step -1, tested against 0)
|
| and replaces the exit test. This enables the less powerful rtl
|
| level analysis to use this information.
|
|
|
| @@ -53,6 +54,7 @@ along with GCC; see the file COPYING3. If not see
|
| #include "params.h"
|
| #include "flags.h"
|
| #include "tree-inline.h"
|
| +#include "target.h"
|
|
|
| /* Specifies types of loops that may be unrolled. */
|
|
|
| @@ -118,7 +120,7 @@ tree_num_loop_insns (struct loop *loop, eni_weights *weights)
|
| {
|
| basic_block *body = get_loop_body (loop);
|
| gimple_stmt_iterator gsi;
|
| - unsigned size = 1, i;
|
| + unsigned size = 0, i;
|
|
|
| for (i = 0; i < loop->num_nodes; i++)
|
| for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
|
| @@ -128,34 +130,201 @@ tree_num_loop_insns (struct loop *loop, eni_weights *weights)
|
| return size;
|
| }
|
|
|
| -/* Estimate number of insns of completely unrolled loop. We assume
|
| - that the size of the unrolled loop is decreased in the
|
| - following way (the numbers of insns are based on what
|
| - estimate_num_insns returns for appropriate statements):
|
| +/* Describe size of loop as detected by tree_estimate_loop_size. */
|
| +struct loop_size
|
| +{
|
| + /* Number of instructions in the loop. */
|
| + int overall;
|
| +
|
| + /* Number of instructions that will be likely optimized out in
|
| + peeled iterations of loop (i.e. computation based on induction
|
| + variable where induction variable starts at known constant.) */
|
| + int eliminated_by_peeling;
|
| +
|
| + /* Same statistics for last iteration of loop: it is smaller because
|
| + instructions after exit are not executed. */
|
| + int last_iteration;
|
| + int last_iteration_eliminated_by_peeling;
|
| +};
|
| +
|
| +/* Return true if OP in STMT will be constant after peeling LOOP. */
|
| +
|
| +static bool
|
| +constant_after_peeling (tree op, gimple stmt, struct loop *loop)
|
| +{
|
| + affine_iv iv;
|
| +
|
| + if (is_gimple_min_invariant (op))
|
| + return true;
|
|
|
| - 1) exit condition gets removed (2 insns)
|
| - 2) increment of the control variable gets removed (2 insns)
|
| - 3) All remaining statements are likely to get simplified
|
| - due to constant propagation. Hard to estimate; just
|
| - as a heuristics we decrease the rest by 1/3.
|
| + /* We can still fold accesses to constant arrays when index is known. */
|
| + if (TREE_CODE (op) != SSA_NAME)
|
| + {
|
| + tree base = op;
|
| +
|
| + /* First make fast look if we see constant array inside. */
|
| + while (handled_component_p (base))
|
| + base = TREE_OPERAND (base, 0);
|
| + if ((DECL_P (base)
|
| + && TREE_STATIC (base)
|
| + && TREE_READONLY (base)
|
| + && (DECL_INITIAL (base)
|
| + || (!DECL_EXTERNAL (base)
|
| + && targetm.binds_local_p (base))))
|
| + || CONSTANT_CLASS_P (base))
|
| + {
|
| + /* If so, see if we understand all the indices. */
|
| + base = op;
|
| + while (handled_component_p (base))
|
| + {
|
| + if (TREE_CODE (base) == ARRAY_REF
|
| + && !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop))
|
| + return false;
|
| + base = TREE_OPERAND (base, 0);
|
| + }
|
| + return true;
|
| + }
|
| + return false;
|
| + }
|
|
|
| - NINSNS is the number of insns in the loop before unrolling.
|
| - NUNROLL is the number of times the loop is unrolled. */
|
| + /* Induction variables are constants. */
|
| + if (!simple_iv (loop, loop_containing_stmt (stmt), op, &iv, false))
|
| + return false;
|
| + if (!is_gimple_min_invariant (iv.base))
|
| + return false;
|
| + if (!is_gimple_min_invariant (iv.step))
|
| + return false;
|
| + return true;
|
| +}
|
| +
|
| +/* Computes an estimated number of insns in LOOP, weighted by WEIGHTS.
|
| + Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT. */
|
| +
|
| +static void
|
| +tree_estimate_loop_size (struct loop *loop, edge exit, struct loop_size *size)
|
| +{
|
| + basic_block *body = get_loop_body (loop);
|
| + gimple_stmt_iterator gsi;
|
| + unsigned int i;
|
| + bool after_exit;
|
| +
|
| + size->overall = 0;
|
| + size->eliminated_by_peeling = 0;
|
| + size->last_iteration = 0;
|
| + size->last_iteration_eliminated_by_peeling = 0;
|
| +
|
| + if (dump_file && (dump_flags & TDF_DETAILS))
|
| + fprintf (dump_file, "Estimating sizes for loop %i\n", loop->num);
|
| + for (i = 0; i < loop->num_nodes; i++)
|
| + {
|
| + if (exit && body[i] != exit->src
|
| + && dominated_by_p (CDI_DOMINATORS, body[i], exit->src))
|
| + after_exit = true;
|
| + else
|
| + after_exit = false;
|
| + if (dump_file && (dump_flags & TDF_DETAILS))
|
| + fprintf (dump_file, " BB: %i, after_exit: %i\n", body[i]->index, after_exit);
|
| +
|
| + for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
|
| + {
|
| + gimple stmt = gsi_stmt (gsi);
|
| + int num = estimate_num_insns (stmt, &eni_size_weights);
|
| + bool likely_eliminated = false;
|
| +
|
| + if (dump_file && (dump_flags & TDF_DETAILS))
|
| + {
|
| + fprintf (dump_file, " size: %3i ", num);
|
| + print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
|
| + }
|
| +
|
| + /* Look for reasons why we might optimize this stmt away. */
|
| +
|
| + /* Exit conditional. */
|
| + if (body[i] == exit->src && stmt == last_stmt (exit->src))
|
| + {
|
| + if (dump_file && (dump_flags & TDF_DETAILS))
|
| + fprintf (dump_file, " Exit condition will be eliminated.\n");
|
| + likely_eliminated = true;
|
| + }
|
| + /* Sets of IV variables */
|
| + else if (gimple_code (stmt) == GIMPLE_ASSIGN
|
| + && constant_after_peeling (gimple_assign_lhs (stmt), stmt, loop))
|
| + {
|
| + if (dump_file && (dump_flags & TDF_DETAILS))
|
| + fprintf (dump_file, " Induction variable computation will"
|
| + " be folded away.\n");
|
| + likely_eliminated = true;
|
| + }
|
| + /* Assignments of IV variables. */
|
| + else if (gimple_code (stmt) == GIMPLE_ASSIGN
|
| + && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
|
| + && constant_after_peeling (gimple_assign_rhs1 (stmt), stmt,loop)
|
| + && (gimple_assign_rhs_class (stmt) != GIMPLE_BINARY_RHS
|
| + || constant_after_peeling (gimple_assign_rhs2 (stmt),
|
| + stmt, loop)))
|
| + {
|
| + if (dump_file && (dump_flags & TDF_DETAILS))
|
| + fprintf (dump_file, " Constant expression will be folded away.\n");
|
| + likely_eliminated = true;
|
| + }
|
| + /* Conditionals. */
|
| + else if (gimple_code (stmt) == GIMPLE_COND
|
| + && constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop)
|
| + && constant_after_peeling (gimple_cond_rhs (stmt), stmt, loop))
|
| + {
|
| + if (dump_file && (dump_flags & TDF_DETAILS))
|
| + fprintf (dump_file, " Constant conditional.\n");
|
| + likely_eliminated = true;
|
| + }
|
| +
|
| + size->overall += num;
|
| + if (likely_eliminated)
|
| + size->eliminated_by_peeling += num;
|
| + if (!after_exit)
|
| + {
|
| + size->last_iteration += num;
|
| + if (likely_eliminated)
|
| + size->last_iteration_eliminated_by_peeling += num;
|
| + }
|
| + }
|
| + }
|
| + if (dump_file && (dump_flags & TDF_DETAILS))
|
| + fprintf (dump_file, "size: %i-%i, last_iteration: %i-%i\n", size->overall,
|
| + size->eliminated_by_peeling, size->last_iteration,
|
| + size->last_iteration_eliminated_by_peeling);
|
| +
|
| + free (body);
|
| +}
|
| +
|
| +/* Estimate number of insns of completely unrolled loop.
|
| + It is (NUNROLL + 1) * size of loop body with taking into account
|
| + the fact that in last copy everything after exit conditional
|
| + is dead and that some instructions will be eliminated after
|
| + peeling.
|
| +
|
| + Loop body is likely going to simplify futher, this is difficult
|
| + to guess, we just decrease the result by 1/3. */
|
|
|
| static unsigned HOST_WIDE_INT
|
| -estimated_unrolled_size (unsigned HOST_WIDE_INT ninsns,
|
| +estimated_unrolled_size (struct loop_size *size,
|
| unsigned HOST_WIDE_INT nunroll)
|
| {
|
| - HOST_WIDE_INT unr_insns = 2 * ((HOST_WIDE_INT) ninsns - 4) / 3;
|
| + HOST_WIDE_INT unr_insns = ((nunroll)
|
| + * (HOST_WIDE_INT) (size->overall
|
| + - size->eliminated_by_peeling));
|
| + if (!nunroll)
|
| + unr_insns = 0;
|
| + unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling;
|
| +
|
| + unr_insns = unr_insns * 2 / 3;
|
| if (unr_insns <= 0)
|
| unr_insns = 1;
|
| - unr_insns *= (nunroll + 1);
|
|
|
| return unr_insns;
|
| }
|
|
|
| /* Tries to unroll LOOP completely, i.e. NITER times.
|
| - UL determines which loops we are allowed to unroll.
|
| + UL determines which loops we are allowed to unroll.
|
| EXIT is the exit of the loop that should be eliminated. */
|
|
|
| static bool
|
| @@ -165,6 +334,7 @@ try_unroll_loop_completely (struct loop *loop,
|
| {
|
| unsigned HOST_WIDE_INT n_unroll, ninsns, max_unroll, unr_insns;
|
| gimple cond;
|
| + struct loop_size size;
|
|
|
| if (loop->inner)
|
| return false;
|
| @@ -182,9 +352,10 @@ try_unroll_loop_completely (struct loop *loop,
|
| if (ul == UL_SINGLE_ITER)
|
| return false;
|
|
|
| - ninsns = tree_num_loop_insns (loop, &eni_size_weights);
|
| + tree_estimate_loop_size (loop, exit, &size);
|
| + ninsns = size.overall;
|
|
|
| - unr_insns = estimated_unrolled_size (ninsns, n_unroll);
|
| + unr_insns = estimated_unrolled_size (&size, n_unroll);
|
| if (dump_file && (dump_flags & TDF_DETAILS))
|
| {
|
| fprintf (dump_file, " Loop size: %d\n", (int) ninsns);
|
| @@ -261,9 +432,9 @@ try_unroll_loop_completely (struct loop *loop,
|
| }
|
|
|
| /* Adds a canonical induction variable to LOOP if suitable.
|
| - CREATE_IV is true if we may create a new iv. UL determines
|
| + CREATE_IV is true if we may create a new iv. UL determines
|
| which loops we are allowed to completely unroll. If TRY_EVAL is true, we try
|
| - to determine the number of iterations of a loop by direct evaluation.
|
| + to determine the number of iterations of a loop by direct evaluation.
|
| Returns true if cfg is changed. */
|
|
|
| static bool
|
| @@ -324,7 +495,7 @@ canonicalize_induction_variables (void)
|
| loop_iterator li;
|
| struct loop *loop;
|
| bool changed = false;
|
| -
|
| +
|
| FOR_EACH_LOOP (li, loop, 0)
|
| {
|
| changed |= canonicalize_loop_induction_variables (loop,
|
| @@ -352,6 +523,7 @@ tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer)
|
| struct loop *loop;
|
| bool changed;
|
| enum unroll_level ul;
|
| + int iteration = 0;
|
|
|
| do
|
| {
|
| @@ -384,192 +556,8 @@ tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer)
|
| scev_reset ();
|
| }
|
| }
|
| - while (changed);
|
| -
|
| - return 0;
|
| -}
|
| -
|
| -/* Checks whether LOOP is empty. */
|
| -
|
| -static bool
|
| -empty_loop_p (struct loop *loop)
|
| -{
|
| - edge exit;
|
| - struct tree_niter_desc niter;
|
| - basic_block *body;
|
| - gimple_stmt_iterator gsi;
|
| - unsigned i;
|
| -
|
| - /* If the loop has multiple exits, it is too hard for us to handle.
|
| - Similarly, if the exit is not dominating, we cannot determine
|
| - whether the loop is not infinite. */
|
| - exit = single_dom_exit (loop);
|
| - if (!exit)
|
| - return false;
|
| -
|
| - /* The loop must be finite. */
|
| - if (!number_of_iterations_exit (loop, exit, &niter, false))
|
| - return false;
|
| -
|
| - /* Values of all loop exit phi nodes must be invariants. */
|
| - for (gsi = gsi_start(phi_nodes (exit->dest)); !gsi_end_p (gsi); gsi_next (&gsi))
|
| - {
|
| - gimple phi = gsi_stmt (gsi);
|
| - tree def;
|
| -
|
| - if (!is_gimple_reg (PHI_RESULT (phi)))
|
| - continue;
|
| -
|
| - def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
|
| -
|
| - if (!expr_invariant_in_loop_p (loop, def))
|
| - return false;
|
| - }
|
| -
|
| - /* And there should be no memory modifying or from other reasons
|
| - unremovable statements. */
|
| - body = get_loop_body (loop);
|
| - for (i = 0; i < loop->num_nodes; i++)
|
| - {
|
| - /* Irreducible region might be infinite. */
|
| - if (body[i]->flags & BB_IRREDUCIBLE_LOOP)
|
| - {
|
| - free (body);
|
| - return false;
|
| - }
|
| -
|
| - for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
|
| - {
|
| - gimple stmt = gsi_stmt (gsi);
|
| -
|
| - if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS)
|
| - || gimple_has_volatile_ops (stmt))
|
| - {
|
| - free (body);
|
| - return false;
|
| - }
|
| -
|
| - /* Also, asm statements and calls may have side effects and we
|
| - cannot change the number of times they are executed. */
|
| - switch (gimple_code (stmt))
|
| - {
|
| - case GIMPLE_CALL:
|
| - if (gimple_has_side_effects (stmt))
|
| - {
|
| - free (body);
|
| - return false;
|
| - }
|
| - break;
|
| -
|
| - case GIMPLE_ASM:
|
| - /* We cannot remove volatile assembler. */
|
| - if (gimple_asm_volatile_p (stmt))
|
| - {
|
| - free (body);
|
| - return false;
|
| - }
|
| - break;
|
| -
|
| - default:
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - free (body);
|
| -
|
| - return true;
|
| -}
|
| -
|
| -/* Remove LOOP by making it exit in the first iteration. */
|
| -
|
| -static void
|
| -remove_empty_loop (struct loop *loop)
|
| -{
|
| - edge exit = single_dom_exit (loop), non_exit;
|
| - gimple cond_stmt = last_stmt (exit->src);
|
| - basic_block *body;
|
| - unsigned n_before, freq_in, freq_h;
|
| - gcov_type exit_count = exit->count;
|
| -
|
| - if (dump_file)
|
| - fprintf (dump_file, "Removing empty loop %d\n", loop->num);
|
| -
|
| - non_exit = EDGE_SUCC (exit->src, 0);
|
| - if (non_exit == exit)
|
| - non_exit = EDGE_SUCC (exit->src, 1);
|
| -
|
| - if (exit->flags & EDGE_TRUE_VALUE)
|
| - gimple_cond_make_true (cond_stmt);
|
| - else
|
| - gimple_cond_make_false (cond_stmt);
|
| - update_stmt (cond_stmt);
|
| -
|
| - /* Let us set the probabilities of the edges coming from the exit block. */
|
| - exit->probability = REG_BR_PROB_BASE;
|
| - non_exit->probability = 0;
|
| - non_exit->count = 0;
|
| -
|
| - /* Update frequencies and counts. Everything before
|
| - the exit needs to be scaled FREQ_IN/FREQ_H times,
|
| - where FREQ_IN is the frequency of the entry edge
|
| - and FREQ_H is the frequency of the loop header.
|
| - Everything after the exit has zero frequency. */
|
| - freq_h = loop->header->frequency;
|
| - freq_in = EDGE_FREQUENCY (loop_preheader_edge (loop));
|
| - if (freq_h != 0)
|
| - {
|
| - body = get_loop_body_in_dom_order (loop);
|
| - for (n_before = 1; n_before <= loop->num_nodes; n_before++)
|
| - if (body[n_before - 1] == exit->src)
|
| - break;
|
| - scale_bbs_frequencies_int (body, n_before, freq_in, freq_h);
|
| - scale_bbs_frequencies_int (body + n_before, loop->num_nodes - n_before,
|
| - 0, 1);
|
| - free (body);
|
| - }
|
| -
|
| - /* Number of executions of exit is not changed, thus we need to restore
|
| - the original value. */
|
| - exit->count = exit_count;
|
| -}
|
| -
|
| -/* Removes LOOP if it is empty. Returns true if LOOP is removed. CHANGED
|
| - is set to true if LOOP or any of its subloops is removed. */
|
| -
|
| -static bool
|
| -try_remove_empty_loop (struct loop *loop, bool *changed)
|
| -{
|
| - bool nonempty_subloop = false;
|
| - struct loop *sub;
|
| + while (changed
|
| + && ++iteration <= PARAM_VALUE (PARAM_MAX_UNROLL_ITERATIONS));
|
|
|
| - /* First, all subloops must be removed. */
|
| - for (sub = loop->inner; sub; sub = sub->next)
|
| - nonempty_subloop |= !try_remove_empty_loop (sub, changed);
|
| -
|
| - if (nonempty_subloop || !empty_loop_p (loop))
|
| - return false;
|
| -
|
| - remove_empty_loop (loop);
|
| - *changed = true;
|
| - return true;
|
| -}
|
| -
|
| -/* Remove the empty loops. */
|
| -
|
| -unsigned int
|
| -remove_empty_loops (void)
|
| -{
|
| - bool changed = false;
|
| - struct loop *loop;
|
| -
|
| - for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
|
| - try_remove_empty_loop (loop, &changed);
|
| -
|
| - if (changed)
|
| - {
|
| - scev_reset ();
|
| - return TODO_cleanup_cfg;
|
| - }
|
| return 0;
|
| }
|
| -
|
|
|