Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(278)

Unified Diff: src/x64/codegen-x64.cc

Issue 2955004: Code cleanup: reorder functions in codegen-x64.cc to agree with the order in ... (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: Created 10 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « no previous file | no next file » | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/x64/codegen-x64.cc
===================================================================
--- src/x64/codegen-x64.cc (revision 5039)
+++ src/x64/codegen-x64.cc (working copy)
@@ -139,149 +139,6 @@
}
-// -------------------------------------------------------------------------
-// Deferred code objects
-//
-// These subclasses of DeferredCode add pieces of code to the end of generated
-// code. They are branched to from the generated code, and
-// keep some slower code out of the main body of the generated code.
-// Many of them call a code stub or a runtime function.
-
-class DeferredInlineSmiAdd: public DeferredCode {
- public:
- DeferredInlineSmiAdd(Register dst,
- Smi* value,
- OverwriteMode overwrite_mode)
- : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiAdd");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-// The result of value + src is in dst. It either overflowed or was not
-// smi tagged. Undo the speculative addition and call the appropriate
-// specialized stub for add. The result is left in dst.
-class DeferredInlineSmiAddReversed: public DeferredCode {
- public:
- DeferredInlineSmiAddReversed(Register dst,
- Smi* value,
- OverwriteMode overwrite_mode)
- : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiAddReversed");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-class DeferredInlineSmiSub: public DeferredCode {
- public:
- DeferredInlineSmiSub(Register dst,
- Smi* value,
- OverwriteMode overwrite_mode)
- : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiSub");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-// Call the appropriate binary operation stub to compute src op value
-// and leave the result in dst.
-class DeferredInlineSmiOperation: public DeferredCode {
- public:
- DeferredInlineSmiOperation(Token::Value op,
- Register dst,
- Register src,
- Smi* value,
- OverwriteMode overwrite_mode)
- : op_(op),
- dst_(dst),
- src_(src),
- value_(value),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiOperation");
- }
-
- virtual void Generate();
-
- private:
- Token::Value op_;
- Register dst_;
- Register src_;
- Smi* value_;
- OverwriteMode overwrite_mode_;
-};
-
-
-// Call the appropriate binary operation stub to compute value op src
-// and leave the result in dst.
-class DeferredInlineSmiOperationReversed: public DeferredCode {
- public:
- DeferredInlineSmiOperationReversed(Token::Value op,
- Register dst,
- Smi* value,
- Register src,
- OverwriteMode overwrite_mode)
- : op_(op),
- dst_(dst),
- value_(value),
- src_(src),
- overwrite_mode_(overwrite_mode) {
- set_comment("[ DeferredInlineSmiOperationReversed");
- }
-
- virtual void Generate();
-
- private:
- Token::Value op_;
- Register dst_;
- Smi* value_;
- Register src_;
- OverwriteMode overwrite_mode_;
-};
-
-
-class FloatingPointHelper : public AllStatic {
- public:
- // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
- // If the operands are not both numbers, jump to not_numbers.
- // Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
- // NumberOperands assumes both are smis or heap numbers.
- static void LoadSSE2SmiOperands(MacroAssembler* masm);
- static void LoadSSE2NumberOperands(MacroAssembler* masm);
- static void LoadSSE2UnknownOperands(MacroAssembler* masm,
- Label* not_numbers);
-
- // Takes the operands in rdx and rax and loads them as integers in rax
- // and rcx.
- static void LoadAsIntegers(MacroAssembler* masm,
- Label* operand_conversion_failure,
- Register heap_number_map);
- // As above, but we know the operands to be numbers. In that case,
- // conversion can't fail.
- static void LoadNumbersAsIntegers(MacroAssembler* masm);
-};
-
-
// -----------------------------------------------------------------------------
// CodeGenerator implementation.
@@ -298,21 +155,6 @@
}
-void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
- // Call the runtime to declare the globals. The inevitable call
- // will sync frame elements to memory anyway, so we do it eagerly to
- // allow us to push the arguments directly into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
-
- __ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT);
- frame_->EmitPush(rsi); // The context is the first argument.
- frame_->EmitPush(kScratchRegister);
- frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0));
- Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
- // Return value is ignored.
-}
-
-
void CodeGenerator::Generate(CompilationInfo* info) {
// Record the position for debugging purposes.
CodeForFunctionPosition(info->function());
@@ -543,212 +385,2080 @@
allocator_ = NULL;
}
-void CodeGenerator::GenerateReturnSequence(Result* return_value) {
- // The return value is a live (but not currently reference counted)
- // reference to rax. This is safe because the current frame does not
- // contain a reference to rax (it is prepared for the return by spilling
- // all registers).
- if (FLAG_trace) {
- frame_->Push(return_value);
- *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
+
+Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
+ // Currently, this assertion will fail if we try to assign to
+ // a constant variable that is constant because it is read-only
+ // (such as the variable referring to a named function expression).
+ // We need to implement assignments to read-only variables.
+ // Ideally, we should do this during AST generation (by converting
+ // such assignments into expression statements); however, in general
+ // we may not be able to make the decision until past AST generation,
+ // that is when the entire program is known.
+ ASSERT(slot != NULL);
+ int index = slot->index();
+ switch (slot->type()) {
+ case Slot::PARAMETER:
+ return frame_->ParameterAt(index);
+
+ case Slot::LOCAL:
+ return frame_->LocalAt(index);
+
+ case Slot::CONTEXT: {
+ // Follow the context chain if necessary.
+ ASSERT(!tmp.is(rsi)); // do not overwrite context register
+ Register context = rsi;
+ int chain_length = scope()->ContextChainLength(slot->var()->scope());
+ for (int i = 0; i < chain_length; i++) {
+ // Load the closure.
+ // (All contexts, even 'with' contexts, have a closure,
+ // and it is the same for all contexts inside a function.
+ // There is no need to go to the function context first.)
+ __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
+ // Load the function context (which is the incoming, outer context).
+ __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
+ context = tmp;
+ }
+ // We may have a 'with' context now. Get the function context.
+ // (In fact this mov may never be the needed, since the scope analysis
+ // may not permit a direct context access in this case and thus we are
+ // always at a function context. However it is safe to dereference be-
+ // cause the function context of a function context is itself. Before
+ // deleting this mov we should try to create a counter-example first,
+ // though...)
+ __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
+ return ContextOperand(tmp, index);
+ }
+
+ default:
+ UNREACHABLE();
+ return Operand(rsp, 0);
}
- return_value->ToRegister(rax);
+}
- // Add a label for checking the size of the code used for returning.
+
+Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
+ Result tmp,
+ JumpTarget* slow) {
+ ASSERT(slot->type() == Slot::CONTEXT);
+ ASSERT(tmp.is_register());
+ Register context = rsi;
+
+ for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_eval()) {
+ // Check that extension is NULL.
+ __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
+ Immediate(0));
+ slow->Branch(not_equal, not_taken);
+ }
+ __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
+ __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
+ context = tmp.reg();
+ }
+ }
+ // Check that last extension is NULL.
+ __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
+ slow->Branch(not_equal, not_taken);
+ __ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
+ return ContextOperand(tmp.reg(), slot->index());
+}
+
+
+// Emit code to load the value of an expression to the top of the
+// frame. If the expression is boolean-valued it may be compiled (or
+// partially compiled) into control flow to the control destination.
+// If force_control is true, control flow is forced.
+void CodeGenerator::LoadCondition(Expression* x,
+ ControlDestination* dest,
+ bool force_control) {
+ ASSERT(!in_spilled_code());
+ int original_height = frame_->height();
+
+ { CodeGenState new_state(this, dest);
+ Visit(x);
+
+ // If we hit a stack overflow, we may not have actually visited
+ // the expression. In that case, we ensure that we have a
+ // valid-looking frame state because we will continue to generate
+ // code as we unwind the C++ stack.
+ //
+ // It's possible to have both a stack overflow and a valid frame
+ // state (eg, a subexpression overflowed, visiting it returned
+ // with a dummied frame state, and visiting this expression
+ // returned with a normal-looking state).
+ if (HasStackOverflow() &&
+ !dest->is_used() &&
+ frame_->height() == original_height) {
+ dest->Goto(true);
+ }
+ }
+
+ if (force_control && !dest->is_used()) {
+ // Convert the TOS value into flow to the control destination.
+ // TODO(X64): Make control flow to control destinations work.
+ ToBoolean(dest);
+ }
+
+ ASSERT(!(force_control && !dest->is_used()));
+ ASSERT(dest->is_used() || frame_->height() == original_height + 1);
+}
+
+
+void CodeGenerator::LoadAndSpill(Expression* expression) {
+ // TODO(x64): No architecture specific code. Move to shared location.
+ ASSERT(in_spilled_code());
+ set_in_spilled_code(false);
+ Load(expression);
+ frame_->SpillAll();
+ set_in_spilled_code(true);
+}
+
+
+void CodeGenerator::Load(Expression* expr) {
#ifdef DEBUG
- Label check_exit_codesize;
- masm_->bind(&check_exit_codesize);
+ int original_height = frame_->height();
#endif
+ ASSERT(!in_spilled_code());
+ JumpTarget true_target;
+ JumpTarget false_target;
+ ControlDestination dest(&true_target, &false_target, true);
+ LoadCondition(expr, &dest, false);
- // Leave the frame and return popping the arguments and the
- // receiver.
- frame_->Exit();
- masm_->ret((scope()->num_parameters() + 1) * kPointerSize);
-#ifdef ENABLE_DEBUGGER_SUPPORT
- // Add padding that will be overwritten by a debugger breakpoint.
- // frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k"
- // with length 7 (3 + 1 + 3).
- const int kPadding = Assembler::kJSReturnSequenceLength - 7;
- for (int i = 0; i < kPadding; ++i) {
- masm_->int3();
+ if (dest.false_was_fall_through()) {
+ // The false target was just bound.
+ JumpTarget loaded;
+ frame_->Push(Factory::false_value());
+ // There may be dangling jumps to the true target.
+ if (true_target.is_linked()) {
+ loaded.Jump();
+ true_target.Bind();
+ frame_->Push(Factory::true_value());
+ loaded.Bind();
+ }
+
+ } else if (dest.is_used()) {
+ // There is true, and possibly false, control flow (with true as
+ // the fall through).
+ JumpTarget loaded;
+ frame_->Push(Factory::true_value());
+ if (false_target.is_linked()) {
+ loaded.Jump();
+ false_target.Bind();
+ frame_->Push(Factory::false_value());
+ loaded.Bind();
+ }
+
+ } else {
+ // We have a valid value on top of the frame, but we still may
+ // have dangling jumps to the true and false targets from nested
+ // subexpressions (eg, the left subexpressions of the
+ // short-circuited boolean operators).
+ ASSERT(has_valid_frame());
+ if (true_target.is_linked() || false_target.is_linked()) {
+ JumpTarget loaded;
+ loaded.Jump(); // Don't lose the current TOS.
+ if (true_target.is_linked()) {
+ true_target.Bind();
+ frame_->Push(Factory::true_value());
+ if (false_target.is_linked()) {
+ loaded.Jump();
+ }
+ }
+ if (false_target.is_linked()) {
+ false_target.Bind();
+ frame_->Push(Factory::false_value());
+ }
+ loaded.Bind();
+ }
}
- // Check that the size of the code used for returning matches what is
- // expected by the debugger.
- ASSERT_EQ(Assembler::kJSReturnSequenceLength,
- masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
-#endif
- DeleteFrame();
+
+ ASSERT(has_valid_frame());
+ ASSERT(frame_->height() == original_height + 1);
}
-#ifdef DEBUG
-bool CodeGenerator::HasValidEntryRegisters() {
- return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
- && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
- && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
- && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
- && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
- && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
- && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
- && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
- && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
- && (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0));
+void CodeGenerator::LoadGlobal() {
+ if (in_spilled_code()) {
+ frame_->EmitPush(GlobalObject());
+ } else {
+ Result temp = allocator_->Allocate();
+ __ movq(temp.reg(), GlobalObject());
+ frame_->Push(&temp);
+ }
}
-#endif
-class DeferredReferenceGetKeyedValue: public DeferredCode {
+void CodeGenerator::LoadGlobalReceiver() {
+ Result temp = allocator_->Allocate();
+ Register reg = temp.reg();
+ __ movq(reg, GlobalObject());
+ __ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
+ frame_->Push(&temp);
+}
+
+
+void CodeGenerator::LoadTypeofExpression(Expression* expr) {
+ // Special handling of identifiers as subexpressions of typeof.
+ Variable* variable = expr->AsVariableProxy()->AsVariable();
+ if (variable != NULL && !variable->is_this() && variable->is_global()) {
+ // For a global variable we build the property reference
+ // <global>.<variable> and perform a (regular non-contextual) property
+ // load to make sure we do not get reference errors.
+ Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
+ Literal key(variable->name());
+ Property property(&global, &key, RelocInfo::kNoPosition);
+ Reference ref(this, &property);
+ ref.GetValue();
+ } else if (variable != NULL && variable->slot() != NULL) {
+ // For a variable that rewrites to a slot, we signal it is the immediate
+ // subexpression of a typeof.
+ LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF);
+ } else {
+ // Anything else can be handled normally.
+ Load(expr);
+ }
+}
+
+
+ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
+ if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
+ ASSERT(scope()->arguments_shadow() != NULL);
+ // We don't want to do lazy arguments allocation for functions that
+ // have heap-allocated contexts, because it interfers with the
+ // uninitialized const tracking in the context objects.
+ return (scope()->num_heap_slots() > 0)
+ ? EAGER_ARGUMENTS_ALLOCATION
+ : LAZY_ARGUMENTS_ALLOCATION;
+}
+
+
+Result CodeGenerator::StoreArgumentsObject(bool initial) {
+ ArgumentsAllocationMode mode = ArgumentsMode();
+ ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
+
+ Comment cmnt(masm_, "[ store arguments object");
+ if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
+ // When using lazy arguments allocation, we store the hole value
+ // as a sentinel indicating that the arguments object hasn't been
+ // allocated yet.
+ frame_->Push(Factory::the_hole_value());
+ } else {
+ ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
+ frame_->PushFunction();
+ frame_->PushReceiverSlotAddress();
+ frame_->Push(Smi::FromInt(scope()->num_parameters()));
+ Result result = frame_->CallStub(&stub, 3);
+ frame_->Push(&result);
+ }
+
+
+ Variable* arguments = scope()->arguments()->var();
+ Variable* shadow = scope()->arguments_shadow()->var();
+ ASSERT(arguments != NULL && arguments->slot() != NULL);
+ ASSERT(shadow != NULL && shadow->slot() != NULL);
+ JumpTarget done;
+ bool skip_arguments = false;
+ if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
+ // We have to skip storing into the arguments slot if it has
+ // already been written to. This can happen if the a function
+ // has a local variable named 'arguments'.
+ LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
+ Result probe = frame_->Pop();
+ if (probe.is_constant()) {
+ // We have to skip updating the arguments object if it has been
+ // assigned a proper value.
+ skip_arguments = !probe.handle()->IsTheHole();
+ } else {
+ __ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex);
+ probe.Unuse();
+ done.Branch(not_equal);
+ }
+ }
+ if (!skip_arguments) {
+ StoreToSlot(arguments->slot(), NOT_CONST_INIT);
+ if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
+ }
+ StoreToSlot(shadow->slot(), NOT_CONST_INIT);
+ return frame_->Pop();
+}
+
+//------------------------------------------------------------------------------
+// CodeGenerator implementation of variables, lookups, and stores.
+
+//------------------------------------------------------------------------------
+// CodeGenerator implementation of variables, lookups, and stores.
+
+Reference::Reference(CodeGenerator* cgen,
+ Expression* expression,
+ bool persist_after_get)
+ : cgen_(cgen),
+ expression_(expression),
+ type_(ILLEGAL),
+ persist_after_get_(persist_after_get) {
+ cgen->LoadReference(this);
+}
+
+
+Reference::~Reference() {
+ ASSERT(is_unloaded() || is_illegal());
+}
+
+
+void CodeGenerator::LoadReference(Reference* ref) {
+ // References are loaded from both spilled and unspilled code. Set the
+ // state to unspilled to allow that (and explicitly spill after
+ // construction at the construction sites).
+ bool was_in_spilled_code = in_spilled_code_;
+ in_spilled_code_ = false;
+
+ Comment cmnt(masm_, "[ LoadReference");
+ Expression* e = ref->expression();
+ Property* property = e->AsProperty();
+ Variable* var = e->AsVariableProxy()->AsVariable();
+
+ if (property != NULL) {
+ // The expression is either a property or a variable proxy that rewrites
+ // to a property.
+ Load(property->obj());
+ if (property->key()->IsPropertyName()) {
+ ref->set_type(Reference::NAMED);
+ } else {
+ Load(property->key());
+ ref->set_type(Reference::KEYED);
+ }
+ } else if (var != NULL) {
+ // The expression is a variable proxy that does not rewrite to a
+ // property. Global variables are treated as named property references.
+ if (var->is_global()) {
+ // If rax is free, the register allocator prefers it. Thus the code
+ // generator will load the global object into rax, which is where
+ // LoadIC wants it. Most uses of Reference call LoadIC directly
+ // after the reference is created.
+ frame_->Spill(rax);
+ LoadGlobal();
+ ref->set_type(Reference::NAMED);
+ } else {
+ ASSERT(var->slot() != NULL);
+ ref->set_type(Reference::SLOT);
+ }
+ } else {
+ // Anything else is a runtime error.
+ Load(e);
+ frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
+ }
+
+ in_spilled_code_ = was_in_spilled_code;
+}
+
+
+void CodeGenerator::UnloadReference(Reference* ref) {
+ // Pop a reference from the stack while preserving TOS.
+ Comment cmnt(masm_, "[ UnloadReference");
+ frame_->Nip(ref->size());
+ ref->set_unloaded();
+}
+
+
+// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
+// convert it to a boolean in the condition code register or jump to
+// 'false_target'/'true_target' as appropriate.
+void CodeGenerator::ToBoolean(ControlDestination* dest) {
+ Comment cmnt(masm_, "[ ToBoolean");
+
+ // The value to convert should be popped from the frame.
+ Result value = frame_->Pop();
+ value.ToRegister();
+
+ if (value.is_number()) {
+ // Fast case if TypeInfo indicates only numbers.
+ if (FLAG_debug_code) {
+ __ AbortIfNotNumber(value.reg());
+ }
+ // Smi => false iff zero.
+ __ SmiCompare(value.reg(), Smi::FromInt(0));
+ if (value.is_smi()) {
+ value.Unuse();
+ dest->Split(not_zero);
+ } else {
+ dest->false_target()->Branch(equal);
+ Condition is_smi = masm_->CheckSmi(value.reg());
+ dest->true_target()->Branch(is_smi);
+ __ xorpd(xmm0, xmm0);
+ __ ucomisd(xmm0, FieldOperand(value.reg(), HeapNumber::kValueOffset));
+ value.Unuse();
+ dest->Split(not_zero);
+ }
+ } else {
+ // Fast case checks.
+ // 'false' => false.
+ __ CompareRoot(value.reg(), Heap::kFalseValueRootIndex);
+ dest->false_target()->Branch(equal);
+
+ // 'true' => true.
+ __ CompareRoot(value.reg(), Heap::kTrueValueRootIndex);
+ dest->true_target()->Branch(equal);
+
+ // 'undefined' => false.
+ __ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex);
+ dest->false_target()->Branch(equal);
+
+ // Smi => false iff zero.
+ __ SmiCompare(value.reg(), Smi::FromInt(0));
+ dest->false_target()->Branch(equal);
+ Condition is_smi = masm_->CheckSmi(value.reg());
+ dest->true_target()->Branch(is_smi);
+
+ // Call the stub for all other cases.
+ frame_->Push(&value); // Undo the Pop() from above.
+ ToBooleanStub stub;
+ Result temp = frame_->CallStub(&stub, 1);
+ // Convert the result to a condition code.
+ __ testq(temp.reg(), temp.reg());
+ temp.Unuse();
+ dest->Split(not_equal);
+ }
+}
+
+
+class FloatingPointHelper : public AllStatic {
public:
- explicit DeferredReferenceGetKeyedValue(Register dst,
- Register receiver,
- Register key)
- : dst_(dst), receiver_(receiver), key_(key) {
- set_comment("[ DeferredReferenceGetKeyedValue");
+ // Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
+ // If the operands are not both numbers, jump to not_numbers.
+ // Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
+ // NumberOperands assumes both are smis or heap numbers.
+ static void LoadSSE2SmiOperands(MacroAssembler* masm);
+ static void LoadSSE2NumberOperands(MacroAssembler* masm);
+ static void LoadSSE2UnknownOperands(MacroAssembler* masm,
+ Label* not_numbers);
+
+ // Takes the operands in rdx and rax and loads them as integers in rax
+ // and rcx.
+ static void LoadAsIntegers(MacroAssembler* masm,
+ Label* operand_conversion_failure,
+ Register heap_number_map);
+ // As above, but we know the operands to be numbers. In that case,
+ // conversion can't fail.
+ static void LoadNumbersAsIntegers(MacroAssembler* masm);
+};
+
+
+const char* GenericBinaryOpStub::GetName() {
+ if (name_ != NULL) return name_;
+ const int len = 100;
+ name_ = Bootstrapper::AllocateAutoDeletedArray(len);
+ if (name_ == NULL) return "OOM";
+ const char* op_name = Token::Name(op_);
+ const char* overwrite_name;
+ switch (mode_) {
+ case NO_OVERWRITE: overwrite_name = "Alloc"; break;
+ case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
+ case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
+ default: overwrite_name = "UnknownOverwrite"; break;
}
- virtual void Generate();
+ OS::SNPrintF(Vector<char>(name_, len),
+ "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
+ op_name,
+ overwrite_name,
+ (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
+ args_in_registers_ ? "RegArgs" : "StackArgs",
+ args_reversed_ ? "_R" : "",
+ static_operands_type_.ToString(),
+ BinaryOpIC::GetName(runtime_operands_type_));
+ return name_;
+}
- Label* patch_site() { return &patch_site_; }
+// Call the specialized stub for a binary operation.
+class DeferredInlineBinaryOperation: public DeferredCode {
+ public:
+ DeferredInlineBinaryOperation(Token::Value op,
+ Register dst,
+ Register left,
+ Register right,
+ OverwriteMode mode)
+ : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) {
+ set_comment("[ DeferredInlineBinaryOperation");
+ }
+
+ virtual void Generate();
+
private:
- Label patch_site_;
+ Token::Value op_;
Register dst_;
- Register receiver_;
- Register key_;
+ Register left_;
+ Register right_;
+ OverwriteMode mode_;
};
-void DeferredReferenceGetKeyedValue::Generate() {
- if (receiver_.is(rdx)) {
- if (!key_.is(rax)) {
- __ movq(rax, key_);
- } // else do nothing.
- } else if (receiver_.is(rax)) {
- if (key_.is(rdx)) {
- __ xchg(rax, rdx);
- } else if (key_.is(rax)) {
- __ movq(rdx, receiver_);
- } else {
- __ movq(rdx, receiver_);
- __ movq(rax, key_);
+void DeferredInlineBinaryOperation::Generate() {
+ Label done;
+ if ((op_ == Token::ADD)
+ || (op_ == Token::SUB)
+ || (op_ == Token::MUL)
+ || (op_ == Token::DIV)) {
+ Label call_runtime;
+ Label left_smi, right_smi, load_right, do_op;
+ __ JumpIfSmi(left_, &left_smi);
+ __ CompareRoot(FieldOperand(left_, HeapObject::kMapOffset),
+ Heap::kHeapNumberMapRootIndex);
+ __ j(not_equal, &call_runtime);
+ __ movsd(xmm0, FieldOperand(left_, HeapNumber::kValueOffset));
+ if (mode_ == OVERWRITE_LEFT) {
+ __ movq(dst_, left_);
}
- } else if (key_.is(rax)) {
- __ movq(rdx, receiver_);
+ __ jmp(&load_right);
+
+ __ bind(&left_smi);
+ __ SmiToInteger32(left_, left_);
+ __ cvtlsi2sd(xmm0, left_);
+ __ Integer32ToSmi(left_, left_);
+ if (mode_ == OVERWRITE_LEFT) {
+ Label alloc_failure;
+ __ AllocateHeapNumber(dst_, no_reg, &call_runtime);
+ }
+
+ __ bind(&load_right);
+ __ JumpIfSmi(right_, &right_smi);
+ __ CompareRoot(FieldOperand(right_, HeapObject::kMapOffset),
+ Heap::kHeapNumberMapRootIndex);
+ __ j(not_equal, &call_runtime);
+ __ movsd(xmm1, FieldOperand(right_, HeapNumber::kValueOffset));
+ if (mode_ == OVERWRITE_RIGHT) {
+ __ movq(dst_, right_);
+ } else if (mode_ == NO_OVERWRITE) {
+ Label alloc_failure;
+ __ AllocateHeapNumber(dst_, no_reg, &call_runtime);
+ }
+ __ jmp(&do_op);
+
+ __ bind(&right_smi);
+ __ SmiToInteger32(right_, right_);
+ __ cvtlsi2sd(xmm1, right_);
+ __ Integer32ToSmi(right_, right_);
+ if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) {
+ Label alloc_failure;
+ __ AllocateHeapNumber(dst_, no_reg, &call_runtime);
+ }
+
+ __ bind(&do_op);
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ __ movsd(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0);
+ __ jmp(&done);
+
+ __ bind(&call_runtime);
+ }
+ GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB);
+ stub.GenerateCall(masm_, left_, right_);
+ if (!dst_.is(rax)) __ movq(dst_, rax);
+ __ bind(&done);
+}
+
+
+static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
+ Token::Value op,
+ const Result& right,
+ const Result& left) {
+ // Set TypeInfo of result according to the operation performed.
+ // We rely on the fact that smis have a 32 bit payload on x64.
+ STATIC_ASSERT(kSmiValueSize == 32);
+ switch (op) {
+ case Token::COMMA:
+ return right.type_info();
+ case Token::OR:
+ case Token::AND:
+ // Result type can be either of the two input types.
+ return operands_type;
+ case Token::BIT_OR:
+ case Token::BIT_XOR:
+ case Token::BIT_AND:
+ // Result is always a smi.
+ return TypeInfo::Smi();
+ case Token::SAR:
+ case Token::SHL:
+ // Result is always a smi.
+ return TypeInfo::Smi();
+ case Token::SHR:
+ // Result of x >>> y is always a smi if masked y >= 1, otherwise a number.
+ return (right.is_constant() && right.handle()->IsSmi()
+ && (Smi::cast(*right.handle())->value() & 0x1F) >= 1)
+ ? TypeInfo::Smi()
+ : TypeInfo::Number();
+ case Token::ADD:
+ if (operands_type.IsNumber()) {
+ return TypeInfo::Number();
+ } else if (left.type_info().IsString() || right.type_info().IsString()) {
+ return TypeInfo::String();
+ } else {
+ return TypeInfo::Unknown();
+ }
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV:
+ case Token::MOD:
+ // Result is always a number.
+ return TypeInfo::Number();
+ default:
+ UNREACHABLE();
+ }
+ UNREACHABLE();
+ return TypeInfo::Unknown();
+}
+
+
+void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr,
+ OverwriteMode overwrite_mode) {
+ Comment cmnt(masm_, "[ BinaryOperation");
+ Token::Value op = expr->op();
+ Comment cmnt_token(masm_, Token::String(op));
+
+ if (op == Token::COMMA) {
+ // Simply discard left value.
+ frame_->Nip(1);
+ return;
+ }
+
+ Result right = frame_->Pop();
+ Result left = frame_->Pop();
+
+ if (op == Token::ADD) {
+ const bool left_is_string = left.type_info().IsString();
+ const bool right_is_string = right.type_info().IsString();
+ // Make sure constant strings have string type info.
+ ASSERT(!(left.is_constant() && left.handle()->IsString()) ||
+ left_is_string);
+ ASSERT(!(right.is_constant() && right.handle()->IsString()) ||
+ right_is_string);
+ if (left_is_string || right_is_string) {
+ frame_->Push(&left);
+ frame_->Push(&right);
+ Result answer;
+ if (left_is_string) {
+ if (right_is_string) {
+ StringAddStub stub(NO_STRING_CHECK_IN_STUB);
+ answer = frame_->CallStub(&stub, 2);
+ } else {
+ answer =
+ frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
+ }
+ } else if (right_is_string) {
+ answer =
+ frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
+ }
+ answer.set_type_info(TypeInfo::String());
+ frame_->Push(&answer);
+ return;
+ }
+ // Neither operand is known to be a string.
+ }
+
+ bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi();
+ bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi();
+ bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi();
+ bool right_is_non_smi_constant =
+ right.is_constant() && !right.handle()->IsSmi();
+
+ if (left_is_smi_constant && right_is_smi_constant) {
+ // Compute the constant result at compile time, and leave it on the frame.
+ int left_int = Smi::cast(*left.handle())->value();
+ int right_int = Smi::cast(*right.handle())->value();
+ if (FoldConstantSmis(op, left_int, right_int)) return;
+ }
+
+ // Get number type of left and right sub-expressions.
+ TypeInfo operands_type =
+ TypeInfo::Combine(left.type_info(), right.type_info());
+
+ TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left);
+
+ Result answer;
+ if (left_is_non_smi_constant || right_is_non_smi_constant) {
+ // Go straight to the slow case, with no smi code.
+ GenericBinaryOpStub stub(op,
+ overwrite_mode,
+ NO_SMI_CODE_IN_STUB,
+ operands_type);
+ answer = stub.GenerateCall(masm_, frame_, &left, &right);
+ } else if (right_is_smi_constant) {
+ answer = ConstantSmiBinaryOperation(expr, &left, right.handle(),
+ false, overwrite_mode);
+ } else if (left_is_smi_constant) {
+ answer = ConstantSmiBinaryOperation(expr, &right, left.handle(),
+ true, overwrite_mode);
} else {
- __ movq(rax, key_);
- __ movq(rdx, receiver_);
+ // Set the flags based on the operation, type and loop nesting level.
+ // Bit operations always assume they likely operate on Smis. Still only
+ // generate the inline Smi check code if this operation is part of a loop.
+ // For all other operations only inline the Smi check code for likely smis
+ // if the operation is part of a loop.
+ if (loop_nesting() > 0 &&
+ (Token::IsBitOp(op) ||
+ operands_type.IsInteger32() ||
+ expr->type()->IsLikelySmi())) {
+ answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode);
+ } else {
+ GenericBinaryOpStub stub(op,
+ overwrite_mode,
+ NO_GENERIC_BINARY_FLAGS,
+ operands_type);
+ answer = stub.GenerateCall(masm_, frame_, &left, &right);
+ }
}
- // Calculate the delta from the IC call instruction to the map check
- // movq instruction in the inlined version. This delta is stored in
- // a test(rax, delta) instruction after the call so that we can find
- // it in the IC initialization code and patch the movq instruction.
- // This means that we cannot allow test instructions after calls to
- // KeyedLoadIC stubs in other places.
- Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
- __ Call(ic, RelocInfo::CODE_TARGET);
- // The delta from the start of the map-compare instruction to the
- // test instruction. We use masm_-> directly here instead of the __
- // macro because the macro sometimes uses macro expansion to turn
- // into something that can't return a value. This is encountered
- // when doing generated code coverage tests.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
- // Here we use masm_-> instead of the __ macro because this is the
- // instruction that gets patched and coverage code gets in the way.
- // TODO(X64): Consider whether it's worth switching the test to a
- // 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't
- // be generated normally.
- masm_->testl(rax, Immediate(-delta_to_patch_site));
- __ IncrementCounter(&Counters::keyed_load_inline_miss, 1);
+ answer.set_type_info(result_type);
+ frame_->Push(&answer);
+}
+
+
+bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
+ Object* answer_object = Heap::undefined_value();
+ switch (op) {
+ case Token::ADD:
+ // Use intptr_t to detect overflow of 32-bit int.
+ if (Smi::IsValid(static_cast<intptr_t>(left) + right)) {
+ answer_object = Smi::FromInt(left + right);
+ }
+ break;
+ case Token::SUB:
+ // Use intptr_t to detect overflow of 32-bit int.
+ if (Smi::IsValid(static_cast<intptr_t>(left) - right)) {
+ answer_object = Smi::FromInt(left - right);
+ }
+ break;
+ case Token::MUL: {
+ double answer = static_cast<double>(left) * right;
+ if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
+ // If the product is zero and the non-zero factor is negative,
+ // the spec requires us to return floating point negative zero.
+ if (answer != 0 || (left + right) >= 0) {
+ answer_object = Smi::FromInt(static_cast<int>(answer));
+ }
+ }
+ }
+ break;
+ case Token::DIV:
+ case Token::MOD:
+ break;
+ case Token::BIT_OR:
+ answer_object = Smi::FromInt(left | right);
+ break;
+ case Token::BIT_AND:
+ answer_object = Smi::FromInt(left & right);
+ break;
+ case Token::BIT_XOR:
+ answer_object = Smi::FromInt(left ^ right);
+ break;
+
+ case Token::SHL: {
+ int shift_amount = right & 0x1F;
+ if (Smi::IsValid(left << shift_amount)) {
+ answer_object = Smi::FromInt(left << shift_amount);
+ }
+ break;
+ }
+ case Token::SHR: {
+ int shift_amount = right & 0x1F;
+ unsigned int unsigned_left = left;
+ unsigned_left >>= shift_amount;
+ if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
+ answer_object = Smi::FromInt(unsigned_left);
+ }
+ break;
+ }
+ case Token::SAR: {
+ int shift_amount = right & 0x1F;
+ unsigned int unsigned_left = left;
+ if (left < 0) {
+ // Perform arithmetic shift of a negative number by
+ // complementing number, logical shifting, complementing again.
+ unsigned_left = ~unsigned_left;
+ unsigned_left >>= shift_amount;
+ unsigned_left = ~unsigned_left;
+ } else {
+ unsigned_left >>= shift_amount;
+ }
+ ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
+ answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ if (answer_object == Heap::undefined_value()) {
+ return false;
+ }
+ frame_->Push(Handle<Object>(answer_object));
+ return true;
+}
+
+
+void CodeGenerator::JumpIfNotSmiUsingTypeInfo(Register reg,
+ TypeInfo type,
+ DeferredCode* deferred) {
+ if (!type.IsSmi()) {
+ __ JumpIfNotSmi(reg, deferred->entry_label());
+ }
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(reg);
+ }
+}
+
+
+void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
+ Register right,
+ TypeInfo left_info,
+ TypeInfo right_info,
+ DeferredCode* deferred) {
+ if (!left_info.IsSmi() && !right_info.IsSmi()) {
+ __ JumpIfNotBothSmi(left, right, deferred->entry_label());
+ } else if (!left_info.IsSmi()) {
+ __ JumpIfNotSmi(left, deferred->entry_label());
+ } else if (!right_info.IsSmi()) {
+ __ JumpIfNotSmi(right, deferred->entry_label());
+ }
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(left);
+ __ AbortIfNotSmi(right);
+ }
+}
+
+
+// Implements a binary operation using a deferred code object and some
+// inline code to operate on smis quickly.
+Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
+ Result* left,
+ Result* right,
+ OverwriteMode overwrite_mode) {
+ // Copy the type info because left and right may be overwritten.
+ TypeInfo left_type_info = left->type_info();
+ TypeInfo right_type_info = right->type_info();
+ Token::Value op = expr->op();
+ Result answer;
+ // Special handling of div and mod because they use fixed registers.
+ if (op == Token::DIV || op == Token::MOD) {
+ // We need rax as the quotient register, rdx as the remainder
+ // register, neither left nor right in rax or rdx, and left copied
+ // to rax.
+ Result quotient;
+ Result remainder;
+ bool left_is_in_rax = false;
+ // Step 1: get rax for quotient.
+ if ((left->is_register() && left->reg().is(rax)) ||
+ (right->is_register() && right->reg().is(rax))) {
+ // One or both is in rax. Use a fresh non-rdx register for
+ // them.
+ Result fresh = allocator_->Allocate();
+ ASSERT(fresh.is_valid());
+ if (fresh.reg().is(rdx)) {
+ remainder = fresh;
+ fresh = allocator_->Allocate();
+ ASSERT(fresh.is_valid());
+ }
+ if (left->is_register() && left->reg().is(rax)) {
+ quotient = *left;
+ *left = fresh;
+ left_is_in_rax = true;
+ }
+ if (right->is_register() && right->reg().is(rax)) {
+ quotient = *right;
+ *right = fresh;
+ }
+ __ movq(fresh.reg(), rax);
+ } else {
+ // Neither left nor right is in rax.
+ quotient = allocator_->Allocate(rax);
+ }
+ ASSERT(quotient.is_register() && quotient.reg().is(rax));
+ ASSERT(!(left->is_register() && left->reg().is(rax)));
+ ASSERT(!(right->is_register() && right->reg().is(rax)));
+
+ // Step 2: get rdx for remainder if necessary.
+ if (!remainder.is_valid()) {
+ if ((left->is_register() && left->reg().is(rdx)) ||
+ (right->is_register() && right->reg().is(rdx))) {
+ Result fresh = allocator_->Allocate();
+ ASSERT(fresh.is_valid());
+ if (left->is_register() && left->reg().is(rdx)) {
+ remainder = *left;
+ *left = fresh;
+ }
+ if (right->is_register() && right->reg().is(rdx)) {
+ remainder = *right;
+ *right = fresh;
+ }
+ __ movq(fresh.reg(), rdx);
+ } else {
+ // Neither left nor right is in rdx.
+ remainder = allocator_->Allocate(rdx);
+ }
+ }
+ ASSERT(remainder.is_register() && remainder.reg().is(rdx));
+ ASSERT(!(left->is_register() && left->reg().is(rdx)));
+ ASSERT(!(right->is_register() && right->reg().is(rdx)));
+
+ left->ToRegister();
+ right->ToRegister();
+ frame_->Spill(rax);
+ frame_->Spill(rdx);
+
+ // Check that left and right are smi tagged.
+ DeferredInlineBinaryOperation* deferred =
+ new DeferredInlineBinaryOperation(op,
+ (op == Token::DIV) ? rax : rdx,
+ left->reg(),
+ right->reg(),
+ overwrite_mode);
+ JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
+ left_type_info, right_type_info, deferred);
+
+ if (op == Token::DIV) {
+ __ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label());
+ deferred->BindExit();
+ left->Unuse();
+ right->Unuse();
+ answer = quotient;
+ } else {
+ ASSERT(op == Token::MOD);
+ __ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label());
+ deferred->BindExit();
+ left->Unuse();
+ right->Unuse();
+ answer = remainder;
+ }
+ ASSERT(answer.is_valid());
+ return answer;
+ }
+
+ // Special handling of shift operations because they use fixed
+ // registers.
+ if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
+ // Move left out of rcx if necessary.
+ if (left->is_register() && left->reg().is(rcx)) {
+ *left = allocator_->Allocate();
+ ASSERT(left->is_valid());
+ __ movq(left->reg(), rcx);
+ }
+ right->ToRegister(rcx);
+ left->ToRegister();
+ ASSERT(left->is_register() && !left->reg().is(rcx));
+ ASSERT(right->is_register() && right->reg().is(rcx));
+
+ // We will modify right, it must be spilled.
+ frame_->Spill(rcx);
+
+ // Use a fresh answer register to avoid spilling the left operand.
+ answer = allocator_->Allocate();
+ ASSERT(answer.is_valid());
+ // Check that both operands are smis using the answer register as a
+ // temporary.
+ DeferredInlineBinaryOperation* deferred =
+ new DeferredInlineBinaryOperation(op,
+ answer.reg(),
+ left->reg(),
+ rcx,
+ overwrite_mode);
+
+ Label do_op;
+ if (right_type_info.IsSmi()) {
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(right->reg());
+ }
+ __ movq(answer.reg(), left->reg());
+ // If left is not known to be a smi, check if it is.
+ // If left is not known to be a number, and it isn't a smi, check if
+ // it is a HeapNumber.
+ if (!left_type_info.IsSmi()) {
+ __ JumpIfSmi(answer.reg(), &do_op);
+ if (!left_type_info.IsNumber()) {
+ // Branch if not a heapnumber.
+ __ Cmp(FieldOperand(answer.reg(), HeapObject::kMapOffset),
+ Factory::heap_number_map());
+ deferred->Branch(not_equal);
+ }
+ // Load integer value into answer register using truncation.
+ __ cvttsd2si(answer.reg(),
+ FieldOperand(answer.reg(), HeapNumber::kValueOffset));
+ // Branch if we might have overflowed.
+ // (False negative for Smi::kMinValue)
+ __ cmpq(answer.reg(), Immediate(0x80000000));
+ deferred->Branch(equal);
+ // TODO(lrn): Inline shifts on int32 here instead of first smi-tagging.
+ __ Integer32ToSmi(answer.reg(), answer.reg());
+ } else {
+ // Fast case - both are actually smis.
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(left->reg());
+ }
+ }
+ } else {
+ JumpIfNotBothSmiUsingTypeInfo(left->reg(), rcx,
+ left_type_info, right_type_info, deferred);
+ }
+ __ bind(&do_op);
+
+ // Perform the operation.
+ switch (op) {
+ case Token::SAR:
+ __ SmiShiftArithmeticRight(answer.reg(), left->reg(), rcx);
+ break;
+ case Token::SHR: {
+ __ SmiShiftLogicalRight(answer.reg(),
+ left->reg(),
+ rcx,
+ deferred->entry_label());
+ break;
+ }
+ case Token::SHL: {
+ __ SmiShiftLeft(answer.reg(),
+ left->reg(),
+ rcx);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+ deferred->BindExit();
+ left->Unuse();
+ right->Unuse();
+ ASSERT(answer.is_valid());
+ return answer;
+ }
+
+ // Handle the other binary operations.
+ left->ToRegister();
+ right->ToRegister();
+ // A newly allocated register answer is used to hold the answer. The
+ // registers containing left and right are not modified so they don't
+ // need to be spilled in the fast case.
+ answer = allocator_->Allocate();
+ ASSERT(answer.is_valid());
+
+ // Perform the smi tag check.
+ DeferredInlineBinaryOperation* deferred =
+ new DeferredInlineBinaryOperation(op,
+ answer.reg(),
+ left->reg(),
+ right->reg(),
+ overwrite_mode);
+ JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
+ left_type_info, right_type_info, deferred);
+
+ switch (op) {
+ case Token::ADD:
+ __ SmiAdd(answer.reg(),
+ left->reg(),
+ right->reg(),
+ deferred->entry_label());
+ break;
+
+ case Token::SUB:
+ __ SmiSub(answer.reg(),
+ left->reg(),
+ right->reg(),
+ deferred->entry_label());
+ break;
+
+ case Token::MUL: {
+ __ SmiMul(answer.reg(),
+ left->reg(),
+ right->reg(),
+ deferred->entry_label());
+ break;
+ }
+
+ case Token::BIT_OR:
+ __ SmiOr(answer.reg(), left->reg(), right->reg());
+ break;
+
+ case Token::BIT_AND:
+ __ SmiAnd(answer.reg(), left->reg(), right->reg());
+ break;
+
+ case Token::BIT_XOR:
+ __ SmiXor(answer.reg(), left->reg(), right->reg());
+ break;
+
+ default:
+ UNREACHABLE();
+ break;
+ }
+ deferred->BindExit();
+ left->Unuse();
+ right->Unuse();
+ ASSERT(answer.is_valid());
+ return answer;
+}
+
+
+// Call the appropriate binary operation stub to compute src op value
+// and leave the result in dst.
+class DeferredInlineSmiOperation: public DeferredCode {
+ public:
+ DeferredInlineSmiOperation(Token::Value op,
+ Register dst,
+ Register src,
+ Smi* value,
+ OverwriteMode overwrite_mode)
+ : op_(op),
+ dst_(dst),
+ src_(src),
+ value_(value),
+ overwrite_mode_(overwrite_mode) {
+ set_comment("[ DeferredInlineSmiOperation");
+ }
+
+ virtual void Generate();
+
+ private:
+ Token::Value op_;
+ Register dst_;
+ Register src_;
+ Smi* value_;
+ OverwriteMode overwrite_mode_;
+};
+
+
+void DeferredInlineSmiOperation::Generate() {
+ // For mod we don't generate all the Smi code inline.
+ GenericBinaryOpStub stub(
+ op_,
+ overwrite_mode_,
+ (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB);
+ stub.GenerateCall(masm_, src_, value_);
if (!dst_.is(rax)) __ movq(dst_, rax);
}
-class DeferredReferenceSetKeyedValue: public DeferredCode {
+// Call the appropriate binary operation stub to compute value op src
+// and leave the result in dst.
+class DeferredInlineSmiOperationReversed: public DeferredCode {
public:
- DeferredReferenceSetKeyedValue(Register value,
- Register key,
- Register receiver)
- : value_(value), key_(key), receiver_(receiver) {
- set_comment("[ DeferredReferenceSetKeyedValue");
+ DeferredInlineSmiOperationReversed(Token::Value op,
+ Register dst,
+ Smi* value,
+ Register src,
+ OverwriteMode overwrite_mode)
+ : op_(op),
+ dst_(dst),
+ value_(value),
+ src_(src),
+ overwrite_mode_(overwrite_mode) {
+ set_comment("[ DeferredInlineSmiOperationReversed");
}
virtual void Generate();
- Label* patch_site() { return &patch_site_; }
+ private:
+ Token::Value op_;
+ Register dst_;
+ Smi* value_;
+ Register src_;
+ OverwriteMode overwrite_mode_;
+};
+
+void DeferredInlineSmiOperationReversed::Generate() {
+ GenericBinaryOpStub stub(
+ op_,
+ overwrite_mode_,
+ NO_SMI_CODE_IN_STUB);
+ stub.GenerateCall(masm_, value_, src_);
+ if (!dst_.is(rax)) __ movq(dst_, rax);
+}
+class DeferredInlineSmiAdd: public DeferredCode {
+ public:
+ DeferredInlineSmiAdd(Register dst,
+ Smi* value,
+ OverwriteMode overwrite_mode)
+ : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
+ set_comment("[ DeferredInlineSmiAdd");
+ }
+
+ virtual void Generate();
+
private:
- Register value_;
- Register key_;
- Register receiver_;
- Label patch_site_;
+ Register dst_;
+ Smi* value_;
+ OverwriteMode overwrite_mode_;
};
-void DeferredReferenceSetKeyedValue::Generate() {
- __ IncrementCounter(&Counters::keyed_store_inline_miss, 1);
- // Move value, receiver, and key to registers rax, rdx, and rcx, as
- // the IC stub expects.
- // Move value to rax, using xchg if the receiver or key is in rax.
- if (!value_.is(rax)) {
- if (!receiver_.is(rax) && !key_.is(rax)) {
- __ movq(rax, value_);
+void DeferredInlineSmiAdd::Generate() {
+ GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
+ igostub.GenerateCall(masm_, dst_, value_);
+ if (!dst_.is(rax)) __ movq(dst_, rax);
+}
+
+
+// The result of value + src is in dst. It either overflowed or was not
+// smi tagged. Undo the speculative addition and call the appropriate
+// specialized stub for add. The result is left in dst.
+class DeferredInlineSmiAddReversed: public DeferredCode {
+ public:
+ DeferredInlineSmiAddReversed(Register dst,
+ Smi* value,
+ OverwriteMode overwrite_mode)
+ : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
+ set_comment("[ DeferredInlineSmiAddReversed");
+ }
+
+ virtual void Generate();
+
+ private:
+ Register dst_;
+ Smi* value_;
+ OverwriteMode overwrite_mode_;
+};
+
+
+void DeferredInlineSmiAddReversed::Generate() {
+ GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
+ igostub.GenerateCall(masm_, value_, dst_);
+ if (!dst_.is(rax)) __ movq(dst_, rax);
+}
+
+
+class DeferredInlineSmiSub: public DeferredCode {
+ public:
+ DeferredInlineSmiSub(Register dst,
+ Smi* value,
+ OverwriteMode overwrite_mode)
+ : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) {
+ set_comment("[ DeferredInlineSmiSub");
+ }
+
+ virtual void Generate();
+
+ private:
+ Register dst_;
+ Smi* value_;
+ OverwriteMode overwrite_mode_;
+};
+
+
+
+void DeferredInlineSmiSub::Generate() {
+ GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB);
+ igostub.GenerateCall(masm_, dst_, value_);
+ if (!dst_.is(rax)) __ movq(dst_, rax);
+}
+
+
+Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
+ Result* operand,
+ Handle<Object> value,
+ bool reversed,
+ OverwriteMode overwrite_mode) {
+ // Generate inline code for a binary operation when one of the
+ // operands is a constant smi. Consumes the argument "operand".
+ if (IsUnsafeSmi(value)) {
+ Result unsafe_operand(value);
+ if (reversed) {
+ return LikelySmiBinaryOperation(expr, &unsafe_operand, operand,
+ overwrite_mode);
} else {
- __ xchg(rax, value_);
- // Update receiver_ and key_ if they are affected by the swap.
- if (receiver_.is(rax)) {
- receiver_ = value_;
- } else if (receiver_.is(value_)) {
- receiver_ = rax;
+ return LikelySmiBinaryOperation(expr, operand, &unsafe_operand,
+ overwrite_mode);
+ }
+ }
+
+ // Get the literal value.
+ Smi* smi_value = Smi::cast(*value);
+ int int_value = smi_value->value();
+
+ Token::Value op = expr->op();
+ Result answer;
+ switch (op) {
+ case Token::ADD: {
+ operand->ToRegister();
+ frame_->Spill(operand->reg());
+ DeferredCode* deferred = NULL;
+ if (reversed) {
+ deferred = new DeferredInlineSmiAddReversed(operand->reg(),
+ smi_value,
+ overwrite_mode);
+ } else {
+ deferred = new DeferredInlineSmiAdd(operand->reg(),
+ smi_value,
+ overwrite_mode);
}
- if (key_.is(rax)) {
- key_ = value_;
- } else if (key_.is(value_)) {
- key_ = rax;
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
+ deferred);
+ __ SmiAddConstant(operand->reg(),
+ operand->reg(),
+ smi_value,
+ deferred->entry_label());
+ deferred->BindExit();
+ answer = *operand;
+ break;
+ }
+
+ case Token::SUB: {
+ if (reversed) {
+ Result constant_operand(value);
+ answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
+ overwrite_mode);
+ } else {
+ operand->ToRegister();
+ frame_->Spill(operand->reg());
+ DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(),
+ smi_value,
+ overwrite_mode);
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
+ deferred);
+ // A smi currently fits in a 32-bit Immediate.
+ __ SmiSubConstant(operand->reg(),
+ operand->reg(),
+ smi_value,
+ deferred->entry_label());
+ deferred->BindExit();
+ answer = *operand;
}
+ break;
}
+
+ case Token::SAR:
+ if (reversed) {
+ Result constant_operand(value);
+ answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
+ overwrite_mode);
+ } else {
+ // Only the least significant 5 bits of the shift value are used.
+ // In the slow case, this masking is done inside the runtime call.
+ int shift_value = int_value & 0x1f;
+ operand->ToRegister();
+ frame_->Spill(operand->reg());
+ DeferredInlineSmiOperation* deferred =
+ new DeferredInlineSmiOperation(op,
+ operand->reg(),
+ operand->reg(),
+ smi_value,
+ overwrite_mode);
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
+ deferred);
+ __ SmiShiftArithmeticRightConstant(operand->reg(),
+ operand->reg(),
+ shift_value);
+ deferred->BindExit();
+ answer = *operand;
+ }
+ break;
+
+ case Token::SHR:
+ if (reversed) {
+ Result constant_operand(value);
+ answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
+ overwrite_mode);
+ } else {
+ // Only the least significant 5 bits of the shift value are used.
+ // In the slow case, this masking is done inside the runtime call.
+ int shift_value = int_value & 0x1f;
+ operand->ToRegister();
+ answer = allocator()->Allocate();
+ ASSERT(answer.is_valid());
+ DeferredInlineSmiOperation* deferred =
+ new DeferredInlineSmiOperation(op,
+ answer.reg(),
+ operand->reg(),
+ smi_value,
+ overwrite_mode);
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
+ deferred);
+ __ SmiShiftLogicalRightConstant(answer.reg(),
+ operand->reg(),
+ shift_value,
+ deferred->entry_label());
+ deferred->BindExit();
+ operand->Unuse();
+ }
+ break;
+
+ case Token::SHL:
+ if (reversed) {
+ operand->ToRegister();
+
+ // We need rcx to be available to hold operand, and to be spilled.
+ // SmiShiftLeft implicitly modifies rcx.
+ if (operand->reg().is(rcx)) {
+ frame_->Spill(operand->reg());
+ answer = allocator()->Allocate();
+ } else {
+ Result rcx_reg = allocator()->Allocate(rcx);
+ // answer must not be rcx.
+ answer = allocator()->Allocate();
+ // rcx_reg goes out of scope.
+ }
+
+ DeferredInlineSmiOperationReversed* deferred =
+ new DeferredInlineSmiOperationReversed(op,
+ answer.reg(),
+ smi_value,
+ operand->reg(),
+ overwrite_mode);
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
+ deferred);
+
+ __ Move(answer.reg(), smi_value);
+ __ SmiShiftLeft(answer.reg(), answer.reg(), operand->reg());
+ operand->Unuse();
+
+ deferred->BindExit();
+ } else {
+ // Only the least significant 5 bits of the shift value are used.
+ // In the slow case, this masking is done inside the runtime call.
+ int shift_value = int_value & 0x1f;
+ operand->ToRegister();
+ if (shift_value == 0) {
+ // Spill operand so it can be overwritten in the slow case.
+ frame_->Spill(operand->reg());
+ DeferredInlineSmiOperation* deferred =
+ new DeferredInlineSmiOperation(op,
+ operand->reg(),
+ operand->reg(),
+ smi_value,
+ overwrite_mode);
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
+ deferred);
+ deferred->BindExit();
+ answer = *operand;
+ } else {
+ // Use a fresh temporary for nonzero shift values.
+ answer = allocator()->Allocate();
+ ASSERT(answer.is_valid());
+ DeferredInlineSmiOperation* deferred =
+ new DeferredInlineSmiOperation(op,
+ answer.reg(),
+ operand->reg(),
+ smi_value,
+ overwrite_mode);
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
+ deferred);
+ __ SmiShiftLeftConstant(answer.reg(),
+ operand->reg(),
+ shift_value);
+ deferred->BindExit();
+ operand->Unuse();
+ }
+ }
+ break;
+
+ case Token::BIT_OR:
+ case Token::BIT_XOR:
+ case Token::BIT_AND: {
+ operand->ToRegister();
+ frame_->Spill(operand->reg());
+ if (reversed) {
+ // Bit operations with a constant smi are commutative.
+ // We can swap left and right operands with no problem.
+ // Swap left and right overwrite modes. 0->0, 1->2, 2->1.
+ overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3);
+ }
+ DeferredCode* deferred = new DeferredInlineSmiOperation(op,
+ operand->reg(),
+ operand->reg(),
+ smi_value,
+ overwrite_mode);
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
+ deferred);
+ if (op == Token::BIT_AND) {
+ __ SmiAndConstant(operand->reg(), operand->reg(), smi_value);
+ } else if (op == Token::BIT_XOR) {
+ if (int_value != 0) {
+ __ SmiXorConstant(operand->reg(), operand->reg(), smi_value);
+ }
+ } else {
+ ASSERT(op == Token::BIT_OR);
+ if (int_value != 0) {
+ __ SmiOrConstant(operand->reg(), operand->reg(), smi_value);
+ }
+ }
+ deferred->BindExit();
+ answer = *operand;
+ break;
+ }
+
+ // Generate inline code for mod of powers of 2 and negative powers of 2.
+ case Token::MOD:
+ if (!reversed &&
+ int_value != 0 &&
+ (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
+ operand->ToRegister();
+ frame_->Spill(operand->reg());
+ DeferredCode* deferred =
+ new DeferredInlineSmiOperation(op,
+ operand->reg(),
+ operand->reg(),
+ smi_value,
+ overwrite_mode);
+ // Check for negative or non-Smi left hand side.
+ __ JumpIfNotPositiveSmi(operand->reg(), deferred->entry_label());
+ if (int_value < 0) int_value = -int_value;
+ if (int_value == 1) {
+ __ Move(operand->reg(), Smi::FromInt(0));
+ } else {
+ __ SmiAndConstant(operand->reg(),
+ operand->reg(),
+ Smi::FromInt(int_value - 1));
+ }
+ deferred->BindExit();
+ answer = *operand;
+ break; // This break only applies if we generated code for MOD.
+ }
+ // Fall through if we did not find a power of 2 on the right hand side!
+ // The next case must be the default.
+
+ default: {
+ Result constant_operand(value);
+ if (reversed) {
+ answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
+ overwrite_mode);
+ } else {
+ answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
+ overwrite_mode);
+ }
+ break;
+ }
}
- // Value is now in rax. Its original location is remembered in value_,
- // and the value is restored to value_ before returning.
- // The variables receiver_ and key_ are not preserved.
- // Move receiver and key to rdx and rcx, swapping if necessary.
- if (receiver_.is(rdx)) {
- if (!key_.is(rcx)) {
- __ movq(rcx, key_);
- } // Else everything is already in the right place.
- } else if (receiver_.is(rcx)) {
- if (key_.is(rdx)) {
- __ xchg(rcx, rdx);
- } else if (key_.is(rcx)) {
- __ movq(rdx, receiver_);
+ ASSERT(answer.is_valid());
+ return answer;
+}
+
+static bool CouldBeNaN(const Result& result) {
+ if (result.type_info().IsSmi()) return false;
+ if (result.type_info().IsInteger32()) return false;
+ if (!result.is_constant()) return true;
+ if (!result.handle()->IsHeapNumber()) return false;
+ return isnan(HeapNumber::cast(*result.handle())->value());
+}
+
+
+// Convert from signed to unsigned comparison to match the way EFLAGS are set
+// by FPU and XMM compare instructions.
+static Condition DoubleCondition(Condition cc) {
+ switch (cc) {
+ case less: return below;
+ case equal: return equal;
+ case less_equal: return below_equal;
+ case greater: return above;
+ case greater_equal: return above_equal;
+ default: UNREACHABLE();
+ }
+ UNREACHABLE();
+ return equal;
+}
+
+
+void CodeGenerator::Comparison(AstNode* node,
+ Condition cc,
+ bool strict,
+ ControlDestination* dest) {
+ // Strict only makes sense for equality comparisons.
+ ASSERT(!strict || cc == equal);
+
+ Result left_side;
+ Result right_side;
+ // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
+ if (cc == greater || cc == less_equal) {
+ cc = ReverseCondition(cc);
+ left_side = frame_->Pop();
+ right_side = frame_->Pop();
+ } else {
+ right_side = frame_->Pop();
+ left_side = frame_->Pop();
+ }
+ ASSERT(cc == less || cc == equal || cc == greater_equal);
+
+ // If either side is a constant smi, optimize the comparison.
+ bool left_side_constant_smi = false;
+ bool left_side_constant_null = false;
+ bool left_side_constant_1_char_string = false;
+ if (left_side.is_constant()) {
+ left_side_constant_smi = left_side.handle()->IsSmi();
+ left_side_constant_null = left_side.handle()->IsNull();
+ left_side_constant_1_char_string =
+ (left_side.handle()->IsString() &&
+ String::cast(*left_side.handle())->length() == 1 &&
+ String::cast(*left_side.handle())->IsAsciiRepresentation());
+ }
+ bool right_side_constant_smi = false;
+ bool right_side_constant_null = false;
+ bool right_side_constant_1_char_string = false;
+ if (right_side.is_constant()) {
+ right_side_constant_smi = right_side.handle()->IsSmi();
+ right_side_constant_null = right_side.handle()->IsNull();
+ right_side_constant_1_char_string =
+ (right_side.handle()->IsString() &&
+ String::cast(*right_side.handle())->length() == 1 &&
+ String::cast(*right_side.handle())->IsAsciiRepresentation());
+ }
+
+ if (left_side_constant_smi || right_side_constant_smi) {
+ if (left_side_constant_smi && right_side_constant_smi) {
+ // Trivial case, comparing two constants.
+ int left_value = Smi::cast(*left_side.handle())->value();
+ int right_value = Smi::cast(*right_side.handle())->value();
+ switch (cc) {
+ case less:
+ dest->Goto(left_value < right_value);
+ break;
+ case equal:
+ dest->Goto(left_value == right_value);
+ break;
+ case greater_equal:
+ dest->Goto(left_value >= right_value);
+ break;
+ default:
+ UNREACHABLE();
+ }
} else {
- __ movq(rdx, receiver_);
- __ movq(rcx, key_);
+ // Only one side is a constant Smi.
+ // If left side is a constant Smi, reverse the operands.
+ // Since one side is a constant Smi, conversion order does not matter.
+ if (left_side_constant_smi) {
+ Result temp = left_side;
+ left_side = right_side;
+ right_side = temp;
+ cc = ReverseCondition(cc);
+ // This may re-introduce greater or less_equal as the value of cc.
+ // CompareStub and the inline code both support all values of cc.
+ }
+ // Implement comparison against a constant Smi, inlining the case
+ // where both sides are Smis.
+ left_side.ToRegister();
+ Register left_reg = left_side.reg();
+ Handle<Object> right_val = right_side.handle();
+
+ // Here we split control flow to the stub call and inlined cases
+ // before finally splitting it to the control destination. We use
+ // a jump target and branching to duplicate the virtual frame at
+ // the first split. We manually handle the off-frame references
+ // by reconstituting them on the non-fall-through path.
+ JumpTarget is_smi;
+
+ if (left_side.is_smi()) {
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(left_side.reg());
+ }
+ } else {
+ Condition left_is_smi = masm_->CheckSmi(left_side.reg());
+ is_smi.Branch(left_is_smi);
+
+ bool is_loop_condition = (node->AsExpression() != NULL) &&
+ node->AsExpression()->is_loop_condition();
+ if (!is_loop_condition && right_val->IsSmi()) {
+ // Right side is a constant smi and left side has been checked
+ // not to be a smi.
+ JumpTarget not_number;
+ __ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset),
+ Factory::heap_number_map());
+ not_number.Branch(not_equal, &left_side);
+ __ movsd(xmm1,
+ FieldOperand(left_reg, HeapNumber::kValueOffset));
+ int value = Smi::cast(*right_val)->value();
+ if (value == 0) {
+ __ xorpd(xmm0, xmm0);
+ } else {
+ Result temp = allocator()->Allocate();
+ __ movl(temp.reg(), Immediate(value));
+ __ cvtlsi2sd(xmm0, temp.reg());
+ temp.Unuse();
+ }
+ __ ucomisd(xmm1, xmm0);
+ // Jump to builtin for NaN.
+ not_number.Branch(parity_even, &left_side);
+ left_side.Unuse();
+ dest->true_target()->Branch(DoubleCondition(cc));
+ dest->false_target()->Jump();
+ not_number.Bind(&left_side);
+ }
+
+ // Setup and call the compare stub.
+ CompareStub stub(cc, strict, kCantBothBeNaN);
+ Result result = frame_->CallStub(&stub, &left_side, &right_side);
+ result.ToRegister();
+ __ testq(result.reg(), result.reg());
+ result.Unuse();
+ dest->true_target()->Branch(cc);
+ dest->false_target()->Jump();
+
+ is_smi.Bind();
+ }
+
+ left_side = Result(left_reg);
+ right_side = Result(right_val);
+ // Test smi equality and comparison by signed int comparison.
+ // Both sides are smis, so we can use an Immediate.
+ __ SmiCompare(left_side.reg(), Smi::cast(*right_side.handle()));
+ left_side.Unuse();
+ right_side.Unuse();
+ dest->Split(cc);
}
- } else if (key_.is(rcx)) {
- __ movq(rdx, receiver_);
+ } else if (cc == equal &&
+ (left_side_constant_null || right_side_constant_null)) {
+ // To make null checks efficient, we check if either the left side or
+ // the right side is the constant 'null'.
+ // If so, we optimize the code by inlining a null check instead of
+ // calling the (very) general runtime routine for checking equality.
+ Result operand = left_side_constant_null ? right_side : left_side;
+ right_side.Unuse();
+ left_side.Unuse();
+ operand.ToRegister();
+ __ CompareRoot(operand.reg(), Heap::kNullValueRootIndex);
+ if (strict) {
+ operand.Unuse();
+ dest->Split(equal);
+ } else {
+ // The 'null' value is only equal to 'undefined' if using non-strict
+ // comparisons.
+ dest->true_target()->Branch(equal);
+ __ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex);
+ dest->true_target()->Branch(equal);
+ Condition is_smi = masm_->CheckSmi(operand.reg());
+ dest->false_target()->Branch(is_smi);
+
+ // It can be an undetectable object.
+ // Use a scratch register in preference to spilling operand.reg().
+ Result temp = allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ movq(temp.reg(),
+ FieldOperand(operand.reg(), HeapObject::kMapOffset));
+ __ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ temp.Unuse();
+ operand.Unuse();
+ dest->Split(not_zero);
+ }
+ } else if (left_side_constant_1_char_string ||
+ right_side_constant_1_char_string) {
+ if (left_side_constant_1_char_string && right_side_constant_1_char_string) {
+ // Trivial case, comparing two constants.
+ int left_value = String::cast(*left_side.handle())->Get(0);
+ int right_value = String::cast(*right_side.handle())->Get(0);
+ switch (cc) {
+ case less:
+ dest->Goto(left_value < right_value);
+ break;
+ case equal:
+ dest->Goto(left_value == right_value);
+ break;
+ case greater_equal:
+ dest->Goto(left_value >= right_value);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ } else {
+ // Only one side is a constant 1 character string.
+ // If left side is a constant 1-character string, reverse the operands.
+ // Since one side is a constant string, conversion order does not matter.
+ if (left_side_constant_1_char_string) {
+ Result temp = left_side;
+ left_side = right_side;
+ right_side = temp;
+ cc = ReverseCondition(cc);
+ // This may reintroduce greater or less_equal as the value of cc.
+ // CompareStub and the inline code both support all values of cc.
+ }
+ // Implement comparison against a constant string, inlining the case
+ // where both sides are strings.
+ left_side.ToRegister();
+
+ // Here we split control flow to the stub call and inlined cases
+ // before finally splitting it to the control destination. We use
+ // a jump target and branching to duplicate the virtual frame at
+ // the first split. We manually handle the off-frame references
+ // by reconstituting them on the non-fall-through path.
+ JumpTarget is_not_string, is_string;
+ Register left_reg = left_side.reg();
+ Handle<Object> right_val = right_side.handle();
+ ASSERT(StringShape(String::cast(*right_val)).IsSymbol());
+ Condition is_smi = masm()->CheckSmi(left_reg);
+ is_not_string.Branch(is_smi, &left_side);
+ Result temp = allocator_->Allocate();
+ ASSERT(temp.is_valid());
+ __ movq(temp.reg(),
+ FieldOperand(left_reg, HeapObject::kMapOffset));
+ __ movzxbl(temp.reg(),
+ FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
+ // If we are testing for equality then make use of the symbol shortcut.
+ // Check if the left hand side has the same type as the right hand
+ // side (which is always a symbol).
+ if (cc == equal) {
+ Label not_a_symbol;
+ ASSERT(kSymbolTag != 0);
+ // Ensure that no non-strings have the symbol bit set.
+ ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
+ __ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
+ __ j(zero, &not_a_symbol);
+ // They are symbols, so do identity compare.
+ __ Cmp(left_reg, right_side.handle());
+ dest->true_target()->Branch(equal);
+ dest->false_target()->Branch(not_equal);
+ __ bind(&not_a_symbol);
+ }
+ // Call the compare stub if the left side is not a flat ascii string.
+ __ andb(temp.reg(),
+ Immediate(kIsNotStringMask |
+ kStringRepresentationMask |
+ kStringEncodingMask));
+ __ cmpb(temp.reg(),
+ Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
+ temp.Unuse();
+ is_string.Branch(equal, &left_side);
+
+ // Setup and call the compare stub.
+ is_not_string.Bind(&left_side);
+ CompareStub stub(cc, strict, kCantBothBeNaN);
+ Result result = frame_->CallStub(&stub, &left_side, &right_side);
+ result.ToRegister();
+ __ testq(result.reg(), result.reg());
+ result.Unuse();
+ dest->true_target()->Branch(cc);
+ dest->false_target()->Jump();
+
+ is_string.Bind(&left_side);
+ // left_side is a sequential ASCII string.
+ ASSERT(left_side.reg().is(left_reg));
+ right_side = Result(right_val);
+ Result temp2 = allocator_->Allocate();
+ ASSERT(temp2.is_valid());
+ // Test string equality and comparison.
+ if (cc == equal) {
+ Label comparison_done;
+ __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
+ Smi::FromInt(1));
+ __ j(not_equal, &comparison_done);
+ uint8_t char_value =
+ static_cast<uint8_t>(String::cast(*right_val)->Get(0));
+ __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
+ Immediate(char_value));
+ __ bind(&comparison_done);
+ } else {
+ __ movq(temp2.reg(),
+ FieldOperand(left_side.reg(), String::kLengthOffset));
+ __ SmiSubConstant(temp2.reg(), temp2.reg(), Smi::FromInt(1));
+ Label comparison;
+ // If the length is 0 then the subtraction gave -1 which compares less
+ // than any character.
+ __ j(negative, &comparison);
+ // Otherwise load the first character.
+ __ movzxbl(temp2.reg(),
+ FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize));
+ __ bind(&comparison);
+ // Compare the first character of the string with the
+ // constant 1-character string.
+ uint8_t char_value =
+ static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0));
+ __ cmpb(temp2.reg(), Immediate(char_value));
+ Label characters_were_different;
+ __ j(not_equal, &characters_were_different);
+ // If the first character is the same then the long string sorts after
+ // the short one.
+ __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
+ Smi::FromInt(1));
+ __ bind(&characters_were_different);
+ }
+ temp2.Unuse();
+ left_side.Unuse();
+ right_side.Unuse();
+ dest->Split(cc);
+ }
} else {
- __ movq(rcx, key_);
- __ movq(rdx, receiver_);
+ // Neither side is a constant Smi, constant 1-char string, or constant null.
+ // If either side is a non-smi constant, skip the smi check.
+ bool known_non_smi =
+ (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
+ (right_side.is_constant() && !right_side.handle()->IsSmi()) ||
+ left_side.type_info().IsDouble() ||
+ right_side.type_info().IsDouble();
+
+ NaNInformation nan_info =
+ (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ?
+ kBothCouldBeNaN :
+ kCantBothBeNaN;
+
+ // Inline number comparison handling any combination of smi's and heap
+ // numbers if:
+ // code is in a loop
+ // the compare operation is different from equal
+ // compare is not a for-loop comparison
+ // The reason for excluding equal is that it will most likely be done
+ // with smi's (not heap numbers) and the code to comparing smi's is inlined
+ // separately. The same reason applies for for-loop comparison which will
+ // also most likely be smi comparisons.
+ bool is_loop_condition = (node->AsExpression() != NULL)
+ && node->AsExpression()->is_loop_condition();
+ bool inline_number_compare =
+ loop_nesting() > 0 && cc != equal && !is_loop_condition;
+
+ left_side.ToRegister();
+ right_side.ToRegister();
+
+ if (known_non_smi) {
+ // Inlined equality check:
+ // If at least one of the objects is not NaN, then if the objects
+ // are identical, they are equal.
+ if (nan_info == kCantBothBeNaN && cc == equal) {
+ __ cmpq(left_side.reg(), right_side.reg());
+ dest->true_target()->Branch(equal);
+ }
+
+ // Inlined number comparison:
+ if (inline_number_compare) {
+ GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
+ }
+
+ CompareStub stub(cc, strict, nan_info, !inline_number_compare);
+ Result answer = frame_->CallStub(&stub, &left_side, &right_side);
+ __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flag.
+ answer.Unuse();
+ dest->Split(cc);
+ } else {
+ // Here we split control flow to the stub call and inlined cases
+ // before finally splitting it to the control destination. We use
+ // a jump target and branching to duplicate the virtual frame at
+ // the first split. We manually handle the off-frame references
+ // by reconstituting them on the non-fall-through path.
+ JumpTarget is_smi;
+ Register left_reg = left_side.reg();
+ Register right_reg = right_side.reg();
+
+ Condition both_smi = masm_->CheckBothSmi(left_reg, right_reg);
+ is_smi.Branch(both_smi);
+
+ // Inline the equality check if both operands can't be a NaN. If both
+ // objects are the same they are equal.
+ if (nan_info == kCantBothBeNaN && cc == equal) {
+ __ cmpq(left_side.reg(), right_side.reg());
+ dest->true_target()->Branch(equal);
+ }
+
+ // Inlined number comparison:
+ if (inline_number_compare) {
+ GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
+ }
+
+ CompareStub stub(cc, strict, nan_info, !inline_number_compare);
+ Result answer = frame_->CallStub(&stub, &left_side, &right_side);
+ __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flags.
+ answer.Unuse();
+ dest->true_target()->Branch(cc);
+ dest->false_target()->Jump();
+
+ is_smi.Bind();
+ left_side = Result(left_reg);
+ right_side = Result(right_reg);
+ __ SmiCompare(left_side.reg(), right_side.reg());
+ right_side.Unuse();
+ left_side.Unuse();
+ dest->Split(cc);
+ }
}
+}
- // Call the IC stub.
- Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
- __ Call(ic, RelocInfo::CODE_TARGET);
- // The delta from the start of the map-compare instructions (initial movq)
- // to the test instruction. We use masm_-> directly here instead of the
- // __ macro because the macro sometimes uses macro expansion to turn
- // into something that can't return a value. This is encountered
- // when doing generated code coverage tests.
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
- // Here we use masm_-> instead of the __ macro because this is the
- // instruction that gets patched and coverage code gets in the way.
- masm_->testl(rax, Immediate(-delta_to_patch_site));
- // Restore value (returned from store IC).
- if (!value_.is(rax)) __ movq(value_, rax);
+
+// Load a comparison operand into into a XMM register. Jump to not_numbers jump
+// target passing the left and right result if the operand is not a number.
+static void LoadComparisonOperand(MacroAssembler* masm_,
+ Result* operand,
+ XMMRegister xmm_reg,
+ Result* left_side,
+ Result* right_side,
+ JumpTarget* not_numbers) {
+ Label done;
+ if (operand->type_info().IsDouble()) {
+ // Operand is known to be a heap number, just load it.
+ __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
+ } else if (operand->type_info().IsSmi()) {
+ // Operand is known to be a smi. Convert it to double and keep the original
+ // smi.
+ __ SmiToInteger32(kScratchRegister, operand->reg());
+ __ cvtlsi2sd(xmm_reg, kScratchRegister);
+ } else {
+ // Operand type not known, check for smi or heap number.
+ Label smi;
+ __ JumpIfSmi(operand->reg(), &smi);
+ if (!operand->type_info().IsNumber()) {
+ __ LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
+ __ cmpq(FieldOperand(operand->reg(), HeapObject::kMapOffset),
+ kScratchRegister);
+ not_numbers->Branch(not_equal, left_side, right_side, taken);
+ }
+ __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
+ __ jmp(&done);
+
+ __ bind(&smi);
+ // Comvert smi to float and keep the original smi.
+ __ SmiToInteger32(kScratchRegister, operand->reg());
+ __ cvtlsi2sd(xmm_reg, kScratchRegister);
+ __ jmp(&done);
+ }
+ __ bind(&done);
}
+void CodeGenerator::GenerateInlineNumberComparison(Result* left_side,
+ Result* right_side,
+ Condition cc,
+ ControlDestination* dest) {
+ ASSERT(left_side->is_register());
+ ASSERT(right_side->is_register());
+
+ JumpTarget not_numbers;
+ // Load left and right operand into registers xmm0 and xmm1 and compare.
+ LoadComparisonOperand(masm_, left_side, xmm0, left_side, right_side,
+ &not_numbers);
+ LoadComparisonOperand(masm_, right_side, xmm1, left_side, right_side,
+ &not_numbers);
+ __ ucomisd(xmm0, xmm1);
+ // Bail out if a NaN is involved.
+ not_numbers.Branch(parity_even, left_side, right_side);
+
+ // Split to destination targets based on comparison.
+ left_side->Unuse();
+ right_side->Unuse();
+ dest->true_target()->Branch(DoubleCondition(cc));
+ dest->false_target()->Jump();
+
+ not_numbers.Bind(left_side, right_side);
+}
+
+
+// Call the function just below TOS on the stack with the given
+// arguments. The receiver is the TOS.
+void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
+ CallFunctionFlags flags,
+ int position) {
+ // Push the arguments ("left-to-right") on the stack.
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ Load(args->at(i));
+ frame_->SpillTop();
+ }
+
+ // Record the position for debugging purposes.
+ CodeForSourcePosition(position);
+
+ // Use the shared code stub to call the function.
+ InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
+ CallFunctionStub call_function(arg_count, in_loop, flags);
+ Result answer = frame_->CallStub(&call_function, arg_count + 1);
+ // Restore context and replace function on the stack with the
+ // result of the stub invocation.
+ frame_->RestoreContextRegister();
+ frame_->SetElementAt(0, &answer);
+}
+
+
void CodeGenerator::CallApplyLazy(Expression* applicand,
Expression* receiver,
VariableProxy* arguments,
@@ -1010,6 +2720,21 @@
}
+void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
+ // Call the runtime to declare the globals. The inevitable call
+ // will sync frame elements to memory anyway, so we do it eagerly to
+ // allow us to push the arguments directly into place.
+ frame_->SyncRange(0, frame_->element_count() - 1);
+
+ __ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT);
+ frame_->EmitPush(rsi); // The context is the first argument.
+ frame_->EmitPush(kScratchRegister);
+ frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0));
+ Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3);
+ // Return value is ignored.
+}
+
+
void CodeGenerator::VisitDeclaration(Declaration* node) {
Comment cmnt(masm_, "[ Declaration");
Variable* var = node->proxy()->var();
@@ -1230,6 +2955,44 @@
}
+void CodeGenerator::GenerateReturnSequence(Result* return_value) {
+ // The return value is a live (but not currently reference counted)
+ // reference to rax. This is safe because the current frame does not
+ // contain a reference to rax (it is prepared for the return by spilling
+ // all registers).
+ if (FLAG_trace) {
+ frame_->Push(return_value);
+ *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1);
+ }
+ return_value->ToRegister(rax);
+
+ // Add a label for checking the size of the code used for returning.
+#ifdef DEBUG
+ Label check_exit_codesize;
+ masm_->bind(&check_exit_codesize);
+#endif
+
+ // Leave the frame and return popping the arguments and the
+ // receiver.
+ frame_->Exit();
+ masm_->ret((scope()->num_parameters() + 1) * kPointerSize);
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ // Add padding that will be overwritten by a debugger breakpoint.
+ // frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k"
+ // with length 7 (3 + 1 + 3).
+ const int kPadding = Assembler::kJSReturnSequenceLength - 7;
+ for (int i = 0; i < kPadding; ++i) {
+ masm_->int3();
+ }
+ // Check that the size of the code used for returning matches what is
+ // expected by the debugger.
+ ASSERT_EQ(Assembler::kJSReturnSequenceLength,
+ masm_->SizeOfCodeGeneratedSince(&check_exit_codesize));
+#endif
+ DeleteFrame();
+}
+
+
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) {
ASSERT(!in_spilled_code());
Comment cmnt(masm_, "[ WithEnterStatement");
@@ -2531,6 +4294,349 @@
}
+void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
+ if (slot->type() == Slot::LOOKUP) {
+ ASSERT(slot->var()->is_dynamic());
+
+ JumpTarget slow;
+ JumpTarget done;
+ Result value;
+
+ // Generate fast case for loading from slots that correspond to
+ // local/global variables or arguments unless they are shadowed by
+ // eval-introduced bindings.
+ EmitDynamicLoadFromSlotFastCase(slot,
+ typeof_state,
+ &value,
+ &slow,
+ &done);
+
+ slow.Bind();
+ // A runtime call is inevitable. We eagerly sync frame elements
+ // to memory so that we can push the arguments directly into place
+ // on top of the frame.
+ frame_->SyncRange(0, frame_->element_count() - 1);
+ frame_->EmitPush(rsi);
+ __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
+ frame_->EmitPush(kScratchRegister);
+ if (typeof_state == INSIDE_TYPEOF) {
+ value =
+ frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
+ } else {
+ value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
+ }
+
+ done.Bind(&value);
+ frame_->Push(&value);
+
+ } else if (slot->var()->mode() == Variable::CONST) {
+ // Const slots may contain 'the hole' value (the constant hasn't been
+ // initialized yet) which needs to be converted into the 'undefined'
+ // value.
+ //
+ // We currently spill the virtual frame because constants use the
+ // potentially unsafe direct-frame access of SlotOperand.
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Load const");
+ JumpTarget exit;
+ __ movq(rcx, SlotOperand(slot, rcx));
+ __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
+ exit.Branch(not_equal);
+ __ LoadRoot(rcx, Heap::kUndefinedValueRootIndex);
+ exit.Bind();
+ frame_->EmitPush(rcx);
+
+ } else if (slot->type() == Slot::PARAMETER) {
+ frame_->PushParameterAt(slot->index());
+
+ } else if (slot->type() == Slot::LOCAL) {
+ frame_->PushLocalAt(slot->index());
+
+ } else {
+ // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
+ // here.
+ //
+ // The use of SlotOperand below is safe for an unspilled frame
+ // because it will always be a context slot.
+ ASSERT(slot->type() == Slot::CONTEXT);
+ Result temp = allocator_->Allocate();
+ ASSERT(temp.is_valid());
+ __ movq(temp.reg(), SlotOperand(slot, temp.reg()));
+ frame_->Push(&temp);
+ }
+}
+
+
+void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
+ TypeofState state) {
+ LoadFromSlot(slot, state);
+
+ // Bail out quickly if we're not using lazy arguments allocation.
+ if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
+
+ // ... or if the slot isn't a non-parameter arguments slot.
+ if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
+
+ // Pop the loaded value from the stack.
+ Result value = frame_->Pop();
+
+ // If the loaded value is a constant, we know if the arguments
+ // object has been lazily loaded yet.
+ if (value.is_constant()) {
+ if (value.handle()->IsTheHole()) {
+ Result arguments = StoreArgumentsObject(false);
+ frame_->Push(&arguments);
+ } else {
+ frame_->Push(&value);
+ }
+ return;
+ }
+
+ // The loaded value is in a register. If it is the sentinel that
+ // indicates that we haven't loaded the arguments object yet, we
+ // need to do it now.
+ JumpTarget exit;
+ __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
+ frame_->Push(&value);
+ exit.Branch(not_equal);
+ Result arguments = StoreArgumentsObject(false);
+ frame_->SetElementAt(0, &arguments);
+ exit.Bind();
+}
+
+
+Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
+ Slot* slot,
+ TypeofState typeof_state,
+ JumpTarget* slow) {
+ // Check that no extension objects have been created by calls to
+ // eval from the current scope to the global scope.
+ Register context = rsi;
+ Result tmp = allocator_->Allocate();
+ ASSERT(tmp.is_valid()); // All non-reserved registers were available.
+
+ Scope* s = scope();
+ while (s != NULL) {
+ if (s->num_heap_slots() > 0) {
+ if (s->calls_eval()) {
+ // Check that extension is NULL.
+ __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
+ Immediate(0));
+ slow->Branch(not_equal, not_taken);
+ }
+ // Load next context in chain.
+ __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
+ __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
+ context = tmp.reg();
+ }
+ // If no outer scope calls eval, we do not need to check more
+ // context extensions. If we have reached an eval scope, we check
+ // all extensions from this point.
+ if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
+ s = s->outer_scope();
+ }
+
+ if (s->is_eval_scope()) {
+ // Loop up the context chain. There is no frame effect so it is
+ // safe to use raw labels here.
+ Label next, fast;
+ if (!context.is(tmp.reg())) {
+ __ movq(tmp.reg(), context);
+ }
+ // Load map for comparison into register, outside loop.
+ __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex);
+ __ bind(&next);
+ // Terminate at global context.
+ __ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset));
+ __ j(equal, &fast);
+ // Check that extension is NULL.
+ __ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
+ slow->Branch(not_equal);
+ // Load next context in chain.
+ __ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
+ __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
+ __ jmp(&next);
+ __ bind(&fast);
+ }
+ tmp.Unuse();
+
+ // All extension objects were empty and it is safe to use a global
+ // load IC call.
+ LoadGlobal();
+ frame_->Push(slot->var()->name());
+ RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
+ ? RelocInfo::CODE_TARGET
+ : RelocInfo::CODE_TARGET_CONTEXT;
+ Result answer = frame_->CallLoadIC(mode);
+ // A test rax instruction following the call signals that the inobject
+ // property case was inlined. Ensure that there is not a test rax
+ // instruction here.
+ masm_->nop();
+ return answer;
+}
+
+
+void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot,
+ TypeofState typeof_state,
+ Result* result,
+ JumpTarget* slow,
+ JumpTarget* done) {
+ // Generate fast-case code for variables that might be shadowed by
+ // eval-introduced variables. Eval is used a lot without
+ // introducing variables. In those cases, we do not want to
+ // perform a runtime call for all variables in the scope
+ // containing the eval.
+ if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
+ *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow);
+ done->Jump(result);
+
+ } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
+ Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
+ Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
+ if (potential_slot != NULL) {
+ // Generate fast case for locals that rewrite to slots.
+ // Allocate a fresh register to use as a temp in
+ // ContextSlotOperandCheckExtensions and to hold the result
+ // value.
+ *result = allocator_->Allocate();
+ ASSERT(result->is_valid());
+ __ movq(result->reg(),
+ ContextSlotOperandCheckExtensions(potential_slot,
+ *result,
+ slow));
+ if (potential_slot->var()->mode() == Variable::CONST) {
+ __ CompareRoot(result->reg(), Heap::kTheHoleValueRootIndex);
+ done->Branch(not_equal, result);
+ __ LoadRoot(result->reg(), Heap::kUndefinedValueRootIndex);
+ }
+ done->Jump(result);
+ } else if (rewrite != NULL) {
+ // Generate fast case for argument loads.
+ Property* property = rewrite->AsProperty();
+ if (property != NULL) {
+ VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
+ Literal* key_literal = property->key()->AsLiteral();
+ if (obj_proxy != NULL &&
+ key_literal != NULL &&
+ obj_proxy->IsArguments() &&
+ key_literal->handle()->IsSmi()) {
+ // Load arguments object if there are no eval-introduced
+ // variables. Then load the argument from the arguments
+ // object using keyed load.
+ Result arguments = allocator()->Allocate();
+ ASSERT(arguments.is_valid());
+ __ movq(arguments.reg(),
+ ContextSlotOperandCheckExtensions(obj_proxy->var()->slot(),
+ arguments,
+ slow));
+ frame_->Push(&arguments);
+ frame_->Push(key_literal->handle());
+ *result = EmitKeyedLoad();
+ done->Jump(result);
+ }
+ }
+ }
+ }
+}
+
+
+void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
+ if (slot->type() == Slot::LOOKUP) {
+ ASSERT(slot->var()->is_dynamic());
+
+ // For now, just do a runtime call. Since the call is inevitable,
+ // we eagerly sync the virtual frame so we can directly push the
+ // arguments into place.
+ frame_->SyncRange(0, frame_->element_count() - 1);
+
+ frame_->EmitPush(rsi);
+ frame_->EmitPush(slot->var()->name());
+
+ Result value;
+ if (init_state == CONST_INIT) {
+ // Same as the case for a normal store, but ignores attribute
+ // (e.g. READ_ONLY) of context slot so that we can initialize const
+ // properties (introduced via eval("const foo = (some expr);")). Also,
+ // uses the current function context instead of the top context.
+ //
+ // Note that we must declare the foo upon entry of eval(), via a
+ // context slot declaration, but we cannot initialize it at the same
+ // time, because the const declaration may be at the end of the eval
+ // code (sigh...) and the const variable may have been used before
+ // (where its value is 'undefined'). Thus, we can only do the
+ // initialization when we actually encounter the expression and when
+ // the expression operands are defined and valid, and thus we need the
+ // split into 2 operations: declaration of the context slot followed
+ // by initialization.
+ value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
+ } else {
+ value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
+ }
+ // Storing a variable must keep the (new) value on the expression
+ // stack. This is necessary for compiling chained assignment
+ // expressions.
+ frame_->Push(&value);
+ } else {
+ ASSERT(!slot->var()->is_dynamic());
+
+ JumpTarget exit;
+ if (init_state == CONST_INIT) {
+ ASSERT(slot->var()->mode() == Variable::CONST);
+ // Only the first const initialization must be executed (the slot
+ // still contains 'the hole' value). When the assignment is executed,
+ // the code is identical to a normal store (see below).
+ //
+ // We spill the frame in the code below because the direct-frame
+ // access of SlotOperand is potentially unsafe with an unspilled
+ // frame.
+ VirtualFrame::SpilledScope spilled_scope;
+ Comment cmnt(masm_, "[ Init const");
+ __ movq(rcx, SlotOperand(slot, rcx));
+ __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
+ exit.Branch(not_equal);
+ }
+
+ // We must execute the store. Storing a variable must keep the (new)
+ // value on the stack. This is necessary for compiling assignment
+ // expressions.
+ //
+ // Note: We will reach here even with slot->var()->mode() ==
+ // Variable::CONST because of const declarations which will initialize
+ // consts to 'the hole' value and by doing so, end up calling this code.
+ if (slot->type() == Slot::PARAMETER) {
+ frame_->StoreToParameterAt(slot->index());
+ } else if (slot->type() == Slot::LOCAL) {
+ frame_->StoreToLocalAt(slot->index());
+ } else {
+ // The other slot types (LOOKUP and GLOBAL) cannot reach here.
+ //
+ // The use of SlotOperand below is safe for an unspilled frame
+ // because the slot is a context slot.
+ ASSERT(slot->type() == Slot::CONTEXT);
+ frame_->Dup();
+ Result value = frame_->Pop();
+ value.ToRegister();
+ Result start = allocator_->Allocate();
+ ASSERT(start.is_valid());
+ __ movq(SlotOperand(slot, start.reg()), value.reg());
+ // RecordWrite may destroy the value registers.
+ //
+ // TODO(204): Avoid actually spilling when the value is not
+ // needed (probably the common case).
+ frame_->Spill(value.reg());
+ int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
+ Result temp = allocator_->Allocate();
+ ASSERT(temp.is_valid());
+ __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
+ // The results start, value, and temp are unused by going out of
+ // scope.
+ }
+
+ exit.Bind();
+ }
+}
+
+
void CodeGenerator::VisitSlot(Slot* node) {
Comment cmnt(masm_, "[ Slot");
LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF);
@@ -2557,6 +4663,17 @@
}
+void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
+ UNIMPLEMENTED();
+ // TODO(X64): Implement security policy for loads of smis.
+}
+
+
+bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
+ return false;
+}
+
+
// Materialize the regexp literal 'node' in the literals array
// 'literals' of the function. Leave the regexp boilerplate in
// 'boilerplate'.
@@ -3245,908 +5362,51 @@
}
-void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
- if (CheckForInlineRuntimeCall(node)) {
- return;
- }
-
- ZoneList<Expression*>* args = node->arguments();
- Comment cmnt(masm_, "[ CallRuntime");
- Runtime::Function* function = node->function();
-
- if (function == NULL) {
- // Push the builtins object found in the current global object.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ movq(temp.reg(), GlobalObject());
- __ movq(temp.reg(),
- FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
- frame_->Push(&temp);
- }
-
- // Push the arguments ("left-to-right").
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- }
-
- if (function == NULL) {
- // Call the JS runtime function.
- frame_->Push(node->name());
- Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
- arg_count,
- loop_nesting_);
- frame_->RestoreContextRegister();
- frame_->Push(&answer);
- } else {
- // Call the C runtime function.
- Result answer = frame_->CallRuntime(function, arg_count);
- frame_->Push(&answer);
- }
-}
-
-
-void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
- Comment cmnt(masm_, "[ UnaryOperation");
-
- Token::Value op = node->op();
-
- if (op == Token::NOT) {
- // Swap the true and false targets but keep the same actual label
- // as the fall through.
- destination()->Invert();
- LoadCondition(node->expression(), destination(), true);
- // Swap the labels back.
- destination()->Invert();
-
- } else if (op == Token::DELETE) {
- Property* property = node->expression()->AsProperty();
- if (property != NULL) {
- Load(property->obj());
- Load(property->key());
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2);
- frame_->Push(&answer);
- return;
- }
-
- Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
- if (variable != NULL) {
- Slot* slot = variable->slot();
- if (variable->is_global()) {
- LoadGlobal();
- frame_->Push(variable->name());
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
- CALL_FUNCTION, 2);
- frame_->Push(&answer);
- return;
-
- } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
- // Call the runtime to look up the context holding the named
- // variable. Sync the virtual frame eagerly so we can push the
- // arguments directly into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
- frame_->EmitPush(rsi);
- frame_->EmitPush(variable->name());
- Result context = frame_->CallRuntime(Runtime::kLookupContext, 2);
- ASSERT(context.is_register());
- frame_->EmitPush(context.reg());
- context.Unuse();
- frame_->EmitPush(variable->name());
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
- CALL_FUNCTION, 2);
- frame_->Push(&answer);
- return;
- }
-
- // Default: Result of deleting non-global, not dynamically
- // introduced variables is false.
- frame_->Push(Factory::false_value());
-
- } else {
- // Default: Result of deleting expressions is true.
- Load(node->expression()); // may have side-effects
- frame_->SetElementAt(0, Factory::true_value());
- }
-
- } else if (op == Token::TYPEOF) {
- // Special case for loading the typeof expression; see comment on
- // LoadTypeofExpression().
- LoadTypeofExpression(node->expression());
- Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
- frame_->Push(&answer);
-
- } else if (op == Token::VOID) {
- Expression* expression = node->expression();
- if (expression && expression->AsLiteral() && (
- expression->AsLiteral()->IsTrue() ||
- expression->AsLiteral()->IsFalse() ||
- expression->AsLiteral()->handle()->IsNumber() ||
- expression->AsLiteral()->handle()->IsString() ||
- expression->AsLiteral()->handle()->IsJSRegExp() ||
- expression->AsLiteral()->IsNull())) {
- // Omit evaluating the value of the primitive literal.
- // It will be discarded anyway, and can have no side effect.
- frame_->Push(Factory::undefined_value());
- } else {
- Load(node->expression());
- frame_->SetElementAt(0, Factory::undefined_value());
- }
-
- } else {
- bool can_overwrite =
- (node->expression()->AsBinaryOperation() != NULL &&
- node->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
- UnaryOverwriteMode overwrite =
- can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
- bool no_negative_zero = node->expression()->no_negative_zero();
- Load(node->expression());
- switch (op) {
- case Token::NOT:
- case Token::DELETE:
- case Token::TYPEOF:
- UNREACHABLE(); // handled above
- break;
-
- case Token::SUB: {
- GenericUnaryOpStub stub(
- Token::SUB,
- overwrite,
- no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero);
- Result operand = frame_->Pop();
- Result answer = frame_->CallStub(&stub, &operand);
- answer.set_type_info(TypeInfo::Number());
- frame_->Push(&answer);
- break;
- }
-
- case Token::BIT_NOT: {
- // Smi check.
- JumpTarget smi_label;
- JumpTarget continue_label;
- Result operand = frame_->Pop();
- operand.ToRegister();
-
- Condition is_smi = masm_->CheckSmi(operand.reg());
- smi_label.Branch(is_smi, &operand);
-
- GenericUnaryOpStub stub(Token::BIT_NOT, overwrite);
- Result answer = frame_->CallStub(&stub, &operand);
- continue_label.Jump(&answer);
-
- smi_label.Bind(&answer);
- answer.ToRegister();
- frame_->Spill(answer.reg());
- __ SmiNot(answer.reg(), answer.reg());
- continue_label.Bind(&answer);
- answer.set_type_info(TypeInfo::Smi());
- frame_->Push(&answer);
- break;
- }
-
- case Token::ADD: {
- // Smi check.
- JumpTarget continue_label;
- Result operand = frame_->Pop();
- TypeInfo operand_info = operand.type_info();
- operand.ToRegister();
- Condition is_smi = masm_->CheckSmi(operand.reg());
- continue_label.Branch(is_smi, &operand);
- frame_->Push(&operand);
- Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
- CALL_FUNCTION, 1);
-
- continue_label.Bind(&answer);
- if (operand_info.IsSmi()) {
- answer.set_type_info(TypeInfo::Smi());
- } else if (operand_info.IsInteger32()) {
- answer.set_type_info(TypeInfo::Integer32());
- } else {
- answer.set_type_info(TypeInfo::Number());
- }
- frame_->Push(&answer);
- break;
- }
- default:
- UNREACHABLE();
- }
- }
-}
-
-
-// The value in dst was optimistically incremented or decremented.
-// The result overflowed or was not smi tagged. Call into the runtime
-// to convert the argument to a number, and call the specialized add
-// or subtract stub. The result is left in dst.
-class DeferredPrefixCountOperation: public DeferredCode {
- public:
- DeferredPrefixCountOperation(Register dst,
- bool is_increment,
- TypeInfo input_type)
- : dst_(dst), is_increment_(is_increment), input_type_(input_type) {
- set_comment("[ DeferredCountOperation");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- bool is_increment_;
- TypeInfo input_type_;
-};
-
-
-void DeferredPrefixCountOperation::Generate() {
- Register left;
- if (input_type_.IsNumber()) {
- left = dst_;
- } else {
- __ push(dst_);
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
- left = rax;
- }
-
- GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
- NO_OVERWRITE,
- NO_GENERIC_BINARY_FLAGS,
- TypeInfo::Number());
- stub.GenerateCall(masm_, left, Smi::FromInt(1));
-
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-
-// The value in dst was optimistically incremented or decremented.
-// The result overflowed or was not smi tagged. Call into the runtime
-// to convert the argument to a number. Update the original value in
-// old. Call the specialized add or subtract stub. The result is
-// left in dst.
-class DeferredPostfixCountOperation: public DeferredCode {
- public:
- DeferredPostfixCountOperation(Register dst,
- Register old,
- bool is_increment,
- TypeInfo input_type)
- : dst_(dst),
- old_(old),
- is_increment_(is_increment),
- input_type_(input_type) {
- set_comment("[ DeferredCountOperation");
- }
-
- virtual void Generate();
-
- private:
- Register dst_;
- Register old_;
- bool is_increment_;
- TypeInfo input_type_;
-};
-
-
-void DeferredPostfixCountOperation::Generate() {
- Register left;
- if (input_type_.IsNumber()) {
- __ push(dst_); // Save the input to use as the old value.
- left = dst_;
- } else {
- __ push(dst_);
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
- __ push(rax); // Save the result of ToNumber to use as the old value.
- left = rax;
- }
-
- GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
- NO_OVERWRITE,
- NO_GENERIC_BINARY_FLAGS,
- TypeInfo::Number());
- stub.GenerateCall(masm_, left, Smi::FromInt(1));
-
- if (!dst_.is(rax)) __ movq(dst_, rax);
- __ pop(old_);
-}
-
-
-void CodeGenerator::VisitCountOperation(CountOperation* node) {
- Comment cmnt(masm_, "[ CountOperation");
-
- bool is_postfix = node->is_postfix();
- bool is_increment = node->op() == Token::INC;
-
- Variable* var = node->expression()->AsVariableProxy()->AsVariable();
- bool is_const = (var != NULL && var->mode() == Variable::CONST);
-
- // Postfix operations need a stack slot under the reference to hold
- // the old value while the new value is being stored. This is so that
- // in the case that storing the new value requires a call, the old
- // value will be in the frame to be spilled.
- if (is_postfix) frame_->Push(Smi::FromInt(0));
-
- // A constant reference is not saved to, so the reference is not a
- // compound assignment reference.
- { Reference target(this, node->expression(), !is_const);
- if (target.is_illegal()) {
- // Spoof the virtual frame to have the expected height (one higher
- // than on entry).
- if (!is_postfix) frame_->Push(Smi::FromInt(0));
- return;
- }
- target.TakeValue();
-
- Result new_value = frame_->Pop();
- new_value.ToRegister();
-
- Result old_value; // Only allocated in the postfix case.
- if (is_postfix) {
- // Allocate a temporary to preserve the old value.
- old_value = allocator_->Allocate();
- ASSERT(old_value.is_valid());
- __ movq(old_value.reg(), new_value.reg());
-
- // The return value for postfix operations is ToNumber(input).
- // Keep more precise type info if the input is some kind of
- // number already. If the input is not a number we have to wait
- // for the deferred code to convert it.
- if (new_value.type_info().IsNumber()) {
- old_value.set_type_info(new_value.type_info());
- }
- }
- // Ensure the new value is writable.
- frame_->Spill(new_value.reg());
-
- DeferredCode* deferred = NULL;
- if (is_postfix) {
- deferred = new DeferredPostfixCountOperation(new_value.reg(),
- old_value.reg(),
- is_increment,
- new_value.type_info());
- } else {
- deferred = new DeferredPrefixCountOperation(new_value.reg(),
- is_increment,
- new_value.type_info());
- }
-
- if (new_value.is_smi()) {
- if (FLAG_debug_code) { __ AbortIfNotSmi(new_value.reg()); }
- } else {
- __ JumpIfNotSmi(new_value.reg(), deferred->entry_label());
- }
- if (is_increment) {
- __ SmiAddConstant(new_value.reg(),
- new_value.reg(),
- Smi::FromInt(1),
- deferred->entry_label());
- } else {
- __ SmiSubConstant(new_value.reg(),
- new_value.reg(),
- Smi::FromInt(1),
- deferred->entry_label());
- }
- deferred->BindExit();
-
- // Postfix count operations return their input converted to
- // number. The case when the input is already a number is covered
- // above in the allocation code for old_value.
- if (is_postfix && !new_value.type_info().IsNumber()) {
- old_value.set_type_info(TypeInfo::Number());
- }
-
- new_value.set_type_info(TypeInfo::Number());
-
- // Postfix: store the old value in the allocated slot under the
- // reference.
- if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
-
- frame_->Push(&new_value);
- // Non-constant: update the reference.
- if (!is_const) target.SetValue(NOT_CONST_INIT);
- }
-
- // Postfix: drop the new value and use the old.
- if (is_postfix) frame_->Drop();
-}
-
-
-void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) {
- // According to ECMA-262 section 11.11, page 58, the binary logical
- // operators must yield the result of one of the two expressions
- // before any ToBoolean() conversions. This means that the value
- // produced by a && or || operator is not necessarily a boolean.
-
- // NOTE: If the left hand side produces a materialized value (not
- // control flow), we force the right hand side to do the same. This
- // is necessary because we assume that if we get control flow on the
- // last path out of an expression we got it on all paths.
- if (node->op() == Token::AND) {
- JumpTarget is_true;
- ControlDestination dest(&is_true, destination()->false_target(), true);
- LoadCondition(node->left(), &dest, false);
-
- if (dest.false_was_fall_through()) {
- // The current false target was used as the fall-through. If
- // there are no dangling jumps to is_true then the left
- // subexpression was unconditionally false. Otherwise we have
- // paths where we do have to evaluate the right subexpression.
- if (is_true.is_linked()) {
- // We need to compile the right subexpression. If the jump to
- // the current false target was a forward jump then we have a
- // valid frame, we have just bound the false target, and we
- // have to jump around the code for the right subexpression.
- if (has_valid_frame()) {
- destination()->false_target()->Unuse();
- destination()->false_target()->Jump();
- }
- is_true.Bind();
- // The left subexpression compiled to control flow, so the
- // right one is free to do so as well.
- LoadCondition(node->right(), destination(), false);
- } else {
- // We have actually just jumped to or bound the current false
- // target but the current control destination is not marked as
- // used.
- destination()->Use(false);
- }
-
- } else if (dest.is_used()) {
- // The left subexpression compiled to control flow (and is_true
- // was just bound), so the right is free to do so as well.
- LoadCondition(node->right(), destination(), false);
-
- } else {
- // We have a materialized value on the frame, so we exit with
- // one on all paths. There are possibly also jumps to is_true
- // from nested subexpressions.
- JumpTarget pop_and_continue;
- JumpTarget exit;
-
- // Avoid popping the result if it converts to 'false' using the
- // standard ToBoolean() conversion as described in ECMA-262,
- // section 9.2, page 30.
- //
- // Duplicate the TOS value. The duplicate will be popped by
- // ToBoolean.
- frame_->Dup();
- ControlDestination dest(&pop_and_continue, &exit, true);
- ToBoolean(&dest);
-
- // Pop the result of evaluating the first part.
- frame_->Drop();
-
- // Compile right side expression.
- is_true.Bind();
- Load(node->right());
-
- // Exit (always with a materialized value).
- exit.Bind();
- }
-
- } else {
- ASSERT(node->op() == Token::OR);
- JumpTarget is_false;
- ControlDestination dest(destination()->true_target(), &is_false, false);
- LoadCondition(node->left(), &dest, false);
-
- if (dest.true_was_fall_through()) {
- // The current true target was used as the fall-through. If
- // there are no dangling jumps to is_false then the left
- // subexpression was unconditionally true. Otherwise we have
- // paths where we do have to evaluate the right subexpression.
- if (is_false.is_linked()) {
- // We need to compile the right subexpression. If the jump to
- // the current true target was a forward jump then we have a
- // valid frame, we have just bound the true target, and we
- // have to jump around the code for the right subexpression.
- if (has_valid_frame()) {
- destination()->true_target()->Unuse();
- destination()->true_target()->Jump();
- }
- is_false.Bind();
- // The left subexpression compiled to control flow, so the
- // right one is free to do so as well.
- LoadCondition(node->right(), destination(), false);
- } else {
- // We have just jumped to or bound the current true target but
- // the current control destination is not marked as used.
- destination()->Use(true);
- }
-
- } else if (dest.is_used()) {
- // The left subexpression compiled to control flow (and is_false
- // was just bound), so the right is free to do so as well.
- LoadCondition(node->right(), destination(), false);
-
- } else {
- // We have a materialized value on the frame, so we exit with
- // one on all paths. There are possibly also jumps to is_false
- // from nested subexpressions.
- JumpTarget pop_and_continue;
- JumpTarget exit;
-
- // Avoid popping the result if it converts to 'true' using the
- // standard ToBoolean() conversion as described in ECMA-262,
- // section 9.2, page 30.
- //
- // Duplicate the TOS value. The duplicate will be popped by
- // ToBoolean.
- frame_->Dup();
- ControlDestination dest(&exit, &pop_and_continue, false);
- ToBoolean(&dest);
-
- // Pop the result of evaluating the first part.
- frame_->Drop();
-
- // Compile right side expression.
- is_false.Bind();
- Load(node->right());
-
- // Exit (always with a materialized value).
- exit.Bind();
- }
- }
-}
-
-void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
- Comment cmnt(masm_, "[ BinaryOperation");
-
- if (node->op() == Token::AND || node->op() == Token::OR) {
- GenerateLogicalBooleanOperation(node);
- } else {
- // NOTE: The code below assumes that the slow cases (calls to runtime)
- // never return a constant/immutable object.
- OverwriteMode overwrite_mode = NO_OVERWRITE;
- if (node->left()->AsBinaryOperation() != NULL &&
- node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) {
- overwrite_mode = OVERWRITE_LEFT;
- } else if (node->right()->AsBinaryOperation() != NULL &&
- node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) {
- overwrite_mode = OVERWRITE_RIGHT;
- }
-
- if (node->left()->IsTrivial()) {
- Load(node->right());
- Result right = frame_->Pop();
- frame_->Push(node->left());
- frame_->Push(&right);
- } else {
- Load(node->left());
- Load(node->right());
- }
- GenericBinaryOperation(node, overwrite_mode);
- }
-}
-
-
-
-void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
- Comment cmnt(masm_, "[ CompareOperation");
-
- // Get the expressions from the node.
- Expression* left = node->left();
- Expression* right = node->right();
- Token::Value op = node->op();
- // To make typeof testing for natives implemented in JavaScript really
- // efficient, we generate special code for expressions of the form:
- // 'typeof <expression> == <string>'.
- UnaryOperation* operation = left->AsUnaryOperation();
- if ((op == Token::EQ || op == Token::EQ_STRICT) &&
- (operation != NULL && operation->op() == Token::TYPEOF) &&
- (right->AsLiteral() != NULL &&
- right->AsLiteral()->handle()->IsString())) {
- Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle()));
-
- // Load the operand and move it to a register.
- LoadTypeofExpression(operation->expression());
- Result answer = frame_->Pop();
- answer.ToRegister();
-
- if (check->Equals(Heap::number_symbol())) {
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->true_target()->Branch(is_smi);
- frame_->Spill(answer.reg());
- __ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex);
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::string_symbol())) {
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->false_target()->Branch(is_smi);
-
- // It can be an undetectable string object.
- __ movq(kScratchRegister,
- FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- destination()->false_target()->Branch(not_zero);
- __ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE);
- answer.Unuse();
- destination()->Split(below); // Unsigned byte comparison needed.
-
- } else if (check->Equals(Heap::boolean_symbol())) {
- __ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex);
- destination()->true_target()->Branch(equal);
- __ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex);
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::undefined_symbol())) {
- __ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex);
- destination()->true_target()->Branch(equal);
-
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->false_target()->Branch(is_smi);
-
- // It can be an undetectable object.
- __ movq(kScratchRegister,
- FieldOperand(answer.reg(), HeapObject::kMapOffset));
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- answer.Unuse();
- destination()->Split(not_zero);
-
- } else if (check->Equals(Heap::function_symbol())) {
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->false_target()->Branch(is_smi);
- frame_->Spill(answer.reg());
- __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
- destination()->true_target()->Branch(equal);
- // Regular expressions are callable so typeof == 'function'.
- __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
- answer.Unuse();
- destination()->Split(equal);
-
- } else if (check->Equals(Heap::object_symbol())) {
- Condition is_smi = masm_->CheckSmi(answer.reg());
- destination()->false_target()->Branch(is_smi);
- __ CompareRoot(answer.reg(), Heap::kNullValueRootIndex);
- destination()->true_target()->Branch(equal);
-
- // Regular expressions are typeof == 'function', not 'object'.
- __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister);
- destination()->false_target()->Branch(equal);
-
- // It can be an undetectable object.
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- destination()->false_target()->Branch(not_zero);
- __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE);
- destination()->false_target()->Branch(below);
- __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
- answer.Unuse();
- destination()->Split(below_equal);
- } else {
- // Uncommon case: typeof testing against a string literal that is
- // never returned from the typeof operator.
- answer.Unuse();
- destination()->Goto(false);
- }
- return;
- }
-
- Condition cc = no_condition;
- bool strict = false;
- switch (op) {
- case Token::EQ_STRICT:
- strict = true;
- // Fall through
- case Token::EQ:
- cc = equal;
- break;
- case Token::LT:
- cc = less;
- break;
- case Token::GT:
- cc = greater;
- break;
- case Token::LTE:
- cc = less_equal;
- break;
- case Token::GTE:
- cc = greater_equal;
- break;
- case Token::IN: {
- Load(left);
- Load(right);
- Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
- frame_->Push(&answer); // push the result
- return;
- }
- case Token::INSTANCEOF: {
- Load(left);
- Load(right);
- InstanceofStub stub;
- Result answer = frame_->CallStub(&stub, 2);
- answer.ToRegister();
- __ testq(answer.reg(), answer.reg());
- answer.Unuse();
- destination()->Split(zero);
- return;
- }
- default:
- UNREACHABLE();
- }
-
- if (left->IsTrivial()) {
- Load(right);
- Result right_result = frame_->Pop();
- frame_->Push(left);
- frame_->Push(&right_result);
- } else {
- Load(left);
- Load(right);
- }
-
- Comparison(node, cc, strict, destination());
-}
-
-
-void CodeGenerator::VisitThisFunction(ThisFunction* node) {
- frame_->PushFunction();
-}
-
-
-void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) {
+void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
-
- // ArgumentsAccessStub expects the key in rdx and the formal
- // parameter count in rax.
Load(args->at(0));
- Result key = frame_->Pop();
- // Explicitly create a constant result.
- Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
- // Call the shared stub to get to arguments[key].
- ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
- Result result = frame_->CallStub(&stub, &key, &count);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
Condition is_smi = masm_->CheckSmi(value.reg());
- destination()->false_target()->Branch(is_smi);
- // It is a heap object - get map.
- // Check if the object is a JS array or not.
- __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister);
value.Unuse();
- destination()->Split(equal);
+ destination()->Split(is_smi);
}
-void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
+void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
+ // Conditionally generate a log call.
+ // Args:
+ // 0 (literal string): The type of logging (corresponds to the flags).
+ // This is used to determine whether or not to generate the log call.
+ // 1 (string): Format string. Access the string at argument index 2
+ // with '%2s' (see Logger::LogRuntime for all the formats).
+ // 2 (array): Arguments to the format string.
+ ASSERT_EQ(args->length(), 3);
+#ifdef ENABLE_LOGGING_AND_PROFILING
+ if (ShouldGenerateLog(args->at(0))) {
+ Load(args->at(1));
+ Load(args->at(2));
+ frame_->CallRuntime(Runtime::kLog, 2);
+ }
+#endif
+ // Finally, we're expected to leave a value on the top of the stack.
+ frame_->Push(Factory::undefined_value());
+}
+
+
+void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
- Condition is_smi = masm_->CheckSmi(value.reg());
- destination()->false_target()->Branch(is_smi);
- // It is a heap object - get map.
- // Check if the object is a regexp.
- __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister);
+ Condition positive_smi = masm_->CheckPositiveSmi(value.reg());
value.Unuse();
- destination()->Split(equal);
+ destination()->Split(positive_smi);
}
-void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
- // This generates a fast version of:
- // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result obj = frame_->Pop();
- obj.ToRegister();
- Condition is_smi = masm_->CheckSmi(obj.reg());
- destination()->false_target()->Branch(is_smi);
-
- __ Move(kScratchRegister, Factory::null_value());
- __ cmpq(obj.reg(), kScratchRegister);
- destination()->true_target()->Branch(equal);
-
- __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
- // Undetectable objects behave like undefined when tested with typeof.
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- destination()->false_target()->Branch(not_zero);
- __ movzxbq(kScratchRegister,
- FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
- __ cmpq(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE));
- destination()->false_target()->Branch(below);
- __ cmpq(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE));
- obj.Unuse();
- destination()->Split(below_equal);
-}
-
-
-void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
- // This generates a fast version of:
- // (%_ClassOf(arg) === 'Function')
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result obj = frame_->Pop();
- obj.ToRegister();
- Condition is_smi = masm_->CheckSmi(obj.reg());
- destination()->false_target()->Branch(is_smi);
- __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
- obj.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- Load(args->at(0));
- Result obj = frame_->Pop();
- obj.ToRegister();
- Condition is_smi = masm_->CheckSmi(obj.reg());
- destination()->false_target()->Branch(is_smi);
- __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
- __ movzxbl(kScratchRegister,
- FieldOperand(kScratchRegister, Map::kBitFieldOffset));
- __ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable));
- obj.Unuse();
- destination()->Split(not_zero);
-}
-
-
-void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
-
- // Get the frame pointer for the calling frame.
- Result fp = allocator()->Allocate();
- __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
-
- // Skip the arguments adaptor frame if it exists.
- Label check_frame_marker;
- __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
- __ j(not_equal, &check_frame_marker);
- __ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
-
- // Check the marker in the calling frame.
- __ bind(&check_frame_marker);
- __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
- Smi::FromInt(StackFrame::CONSTRUCT));
- fp.Unuse();
- destination()->Split(equal);
-}
-
-
-void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 0);
-
- Result fp = allocator_->Allocate();
- Result result = allocator_->Allocate();
- ASSERT(fp.is_valid() && result.is_valid());
-
- Label exit;
-
- // Get the number of formal parameters.
- __ Move(result.reg(), Smi::FromInt(scope()->num_parameters()));
-
- // Check if the calling frame is an arguments adaptor frame.
- __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
- __ j(not_equal, &exit);
-
- // Arguments adaptor case: Read the arguments length from the
- // adaptor frame.
- __ movq(result.reg(),
- Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset));
-
- __ bind(&exit);
- result.set_type_info(TypeInfo::Smi());
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(result.reg());
- }
- frame_->Push(&result);
-}
-
-
class DeferredStringCharCodeAt : public DeferredCode {
public:
DeferredStringCharCodeAt(Register object,
@@ -4352,275 +5612,293 @@
}
-void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) {
+void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
Load(args->at(0));
Result value = frame_->Pop();
value.ToRegister();
ASSERT(value.is_valid());
- Condition positive_smi = masm_->CheckPositiveSmi(value.reg());
+ Condition is_smi = masm_->CheckSmi(value.reg());
+ destination()->false_target()->Branch(is_smi);
+ // It is a heap object - get map.
+ // Check if the object is a JS array or not.
+ __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister);
value.Unuse();
- destination()->Split(positive_smi);
+ destination()->Split(equal);
}
-// Generates the Math.pow method. Only handles special cases and
-// branches to the runtime system for everything else. Please note
-// that this function assumes that the callsite has executed ToNumber
-// on both arguments.
-void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
+void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
Load(args->at(0));
- Load(args->at(1));
+ Result value = frame_->Pop();
+ value.ToRegister();
+ ASSERT(value.is_valid());
+ Condition is_smi = masm_->CheckSmi(value.reg());
+ destination()->false_target()->Branch(is_smi);
+ // It is a heap object - get map.
+ // Check if the object is a regexp.
+ __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister);
+ value.Unuse();
+ destination()->Split(equal);
+}
- Label allocate_return;
- // Load the two operands while leaving the values on the frame.
- frame()->Dup();
- Result exponent = frame()->Pop();
- exponent.ToRegister();
- frame()->Spill(exponent.reg());
- frame()->PushElementAt(1);
- Result base = frame()->Pop();
- base.ToRegister();
- frame()->Spill(base.reg());
- Result answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- ASSERT(!exponent.reg().is(base.reg()));
- JumpTarget call_runtime;
+void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) {
+ // This generates a fast version of:
+ // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp')
+ ASSERT(args->length() == 1);
+ Load(args->at(0));
+ Result obj = frame_->Pop();
+ obj.ToRegister();
+ Condition is_smi = masm_->CheckSmi(obj.reg());
+ destination()->false_target()->Branch(is_smi);
- // Save 1 in xmm3 - we need this several times later on.
- __ movl(answer.reg(), Immediate(1));
- __ cvtlsi2sd(xmm3, answer.reg());
+ __ Move(kScratchRegister, Factory::null_value());
+ __ cmpq(obj.reg(), kScratchRegister);
+ destination()->true_target()->Branch(equal);
- Label exponent_nonsmi;
- Label base_nonsmi;
- // If the exponent is a heap number go to that specific case.
- __ JumpIfNotSmi(exponent.reg(), &exponent_nonsmi);
- __ JumpIfNotSmi(base.reg(), &base_nonsmi);
+ __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
+ // Undetectable objects behave like undefined when tested with typeof.
+ __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ destination()->false_target()->Branch(not_zero);
+ __ movzxbq(kScratchRegister,
+ FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
+ __ cmpq(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE));
+ destination()->false_target()->Branch(below);
+ __ cmpq(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE));
+ obj.Unuse();
+ destination()->Split(below_equal);
+}
- // Optimized version when y is an integer.
- Label powi;
- __ SmiToInteger32(base.reg(), base.reg());
- __ cvtlsi2sd(xmm0, base.reg());
- __ jmp(&powi);
- // exponent is smi and base is a heapnumber.
- __ bind(&base_nonsmi);
- __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
- Heap::kHeapNumberMapRootIndex);
- call_runtime.Branch(not_equal);
- __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
+void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) {
+ // This generates a fast version of:
+ // (%_ClassOf(arg) === 'Function')
+ ASSERT(args->length() == 1);
+ Load(args->at(0));
+ Result obj = frame_->Pop();
+ obj.ToRegister();
+ Condition is_smi = masm_->CheckSmi(obj.reg());
+ destination()->false_target()->Branch(is_smi);
+ __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
+ obj.Unuse();
+ destination()->Split(equal);
+}
- // Optimized version of pow if y is an integer.
- __ bind(&powi);
- __ SmiToInteger32(exponent.reg(), exponent.reg());
- // Save exponent in base as we need to check if exponent is negative later.
- // We know that base and exponent are in different registers.
- __ movl(base.reg(), exponent.reg());
+void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+ Load(args->at(0));
+ Result obj = frame_->Pop();
+ obj.ToRegister();
+ Condition is_smi = masm_->CheckSmi(obj.reg());
+ destination()->false_target()->Branch(is_smi);
+ __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset));
+ __ movzxbl(kScratchRegister,
+ FieldOperand(kScratchRegister, Map::kBitFieldOffset));
+ __ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable));
+ obj.Unuse();
+ destination()->Split(not_zero);
+}
- // Get absolute value of exponent.
- Label no_neg;
- __ cmpl(exponent.reg(), Immediate(0));
- __ j(greater_equal, &no_neg);
- __ negl(exponent.reg());
- __ bind(&no_neg);
- // Load xmm1 with 1.
- __ movsd(xmm1, xmm3);
- Label while_true;
- Label no_multiply;
+void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 0);
- __ bind(&while_true);
- __ shrl(exponent.reg(), Immediate(1));
- __ j(not_carry, &no_multiply);
- __ mulsd(xmm1, xmm0);
- __ bind(&no_multiply);
- __ testl(exponent.reg(), exponent.reg());
- __ mulsd(xmm0, xmm0);
- __ j(not_zero, &while_true);
+ // Get the frame pointer for the calling frame.
+ Result fp = allocator()->Allocate();
+ __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- // x has the original value of y - if y is negative return 1/result.
- __ testl(base.reg(), base.reg());
- __ j(positive, &allocate_return);
- // Special case if xmm1 has reached infinity.
- __ movl(answer.reg(), Immediate(0x7FB00000));
- __ movd(xmm0, answer.reg());
- __ cvtss2sd(xmm0, xmm0);
- __ ucomisd(xmm0, xmm1);
- call_runtime.Branch(equal);
- __ divsd(xmm3, xmm1);
- __ movsd(xmm1, xmm3);
- __ jmp(&allocate_return);
+ // Skip the arguments adaptor frame if it exists.
+ Label check_frame_marker;
+ __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
+ __ j(not_equal, &check_frame_marker);
+ __ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset));
- // exponent (or both) is a heapnumber - no matter what we should now work
- // on doubles.
- __ bind(&exponent_nonsmi);
- __ CompareRoot(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
- Heap::kHeapNumberMapRootIndex);
- call_runtime.Branch(not_equal);
- __ movsd(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
- // Test if exponent is nan.
- __ ucomisd(xmm1, xmm1);
- call_runtime.Branch(parity_even);
+ // Check the marker in the calling frame.
+ __ bind(&check_frame_marker);
+ __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset),
+ Smi::FromInt(StackFrame::CONSTRUCT));
+ fp.Unuse();
+ destination()->Split(equal);
+}
- Label base_not_smi;
- Label handle_special_cases;
- __ JumpIfNotSmi(base.reg(), &base_not_smi);
- __ SmiToInteger32(base.reg(), base.reg());
- __ cvtlsi2sd(xmm0, base.reg());
- __ jmp(&handle_special_cases);
- __ bind(&base_not_smi);
- __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
- Heap::kHeapNumberMapRootIndex);
- call_runtime.Branch(not_equal);
- __ movl(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
- __ andl(answer.reg(), Immediate(HeapNumber::kExponentMask));
- __ cmpl(answer.reg(), Immediate(HeapNumber::kExponentMask));
- // base is NaN or +/-Infinity
- call_runtime.Branch(greater_equal);
- __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
- // base is in xmm0 and exponent is in xmm1.
- __ bind(&handle_special_cases);
- Label not_minus_half;
- // Test for -0.5.
- // Load xmm2 with -0.5.
- __ movl(answer.reg(), Immediate(0xBF000000));
- __ movd(xmm2, answer.reg());
- __ cvtss2sd(xmm2, xmm2);
- // xmm2 now has -0.5.
- __ ucomisd(xmm2, xmm1);
- __ j(not_equal, &not_minus_half);
+void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 0);
- // Calculates reciprocal of square root.
- // Note that 1/sqrt(x) = sqrt(1/x))
- __ divsd(xmm3, xmm0);
- __ movsd(xmm1, xmm3);
- __ sqrtsd(xmm1, xmm1);
- __ jmp(&allocate_return);
+ Result fp = allocator_->Allocate();
+ Result result = allocator_->Allocate();
+ ASSERT(fp.is_valid() && result.is_valid());
- // Test for 0.5.
- __ bind(&not_minus_half);
- // Load xmm2 with 0.5.
- // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
- __ addsd(xmm2, xmm3);
- // xmm2 now has 0.5.
- __ ucomisd(xmm2, xmm1);
- call_runtime.Branch(not_equal);
+ Label exit;
- // Calculates square root.
- __ movsd(xmm1, xmm0);
- __ sqrtsd(xmm1, xmm1);
+ // Get the number of formal parameters.
+ __ Move(result.reg(), Smi::FromInt(scope()->num_parameters()));
- JumpTarget done;
- Label failure, success;
- __ bind(&allocate_return);
- // Make a copy of the frame to enable us to handle allocation
- // failure after the JumpTarget jump.
- VirtualFrame* clone = new VirtualFrame(frame());
- __ AllocateHeapNumber(answer.reg(), exponent.reg(), &failure);
- __ movsd(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
- // Remove the two original values from the frame - we only need those
- // in the case where we branch to runtime.
- frame()->Drop(2);
- exponent.Unuse();
- base.Unuse();
- done.Jump(&answer);
- // Use the copy of the original frame as our current frame.
- RegisterFile empty_regs;
- SetFrame(clone, &empty_regs);
- // If we experience an allocation failure we branch to runtime.
- __ bind(&failure);
- call_runtime.Bind();
- answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
+ // Check if the calling frame is an arguments adaptor frame.
+ __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset));
+ __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset),
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
+ __ j(not_equal, &exit);
- done.Bind(&answer);
- frame()->Push(&answer);
+ // Arguments adaptor case: Read the arguments length from the
+ // adaptor frame.
+ __ movq(result.reg(),
+ Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset));
+
+ __ bind(&exit);
+ result.set_type_info(TypeInfo::Smi());
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(result.reg());
+ }
+ frame_->Push(&result);
}
-// Generates the Math.sqrt method. Please note - this function assumes that
-// the callsite has executed ToNumber on the argument.
-void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
+void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
- Load(args->at(0));
+ JumpTarget leave, null, function, non_function_constructor;
+ Load(args->at(0)); // Load the object.
+ Result obj = frame_->Pop();
+ obj.ToRegister();
+ frame_->Spill(obj.reg());
- // Leave original value on the frame if we need to call runtime.
- frame()->Dup();
- Result result = frame()->Pop();
- result.ToRegister();
- frame()->Spill(result.reg());
- Label runtime;
- Label non_smi;
- Label load_done;
- JumpTarget end;
+ // If the object is a smi, we return null.
+ Condition is_smi = masm_->CheckSmi(obj.reg());
+ null.Branch(is_smi);
- __ JumpIfNotSmi(result.reg(), &non_smi);
- __ SmiToInteger32(result.reg(), result.reg());
- __ cvtlsi2sd(xmm0, result.reg());
- __ jmp(&load_done);
- __ bind(&non_smi);
- __ CompareRoot(FieldOperand(result.reg(), HeapObject::kMapOffset),
- Heap::kHeapNumberMapRootIndex);
- __ j(not_equal, &runtime);
- __ movsd(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
+ // Check that the object is a JS object but take special care of JS
+ // functions to make sure they have 'Function' as their class.
- __ bind(&load_done);
- __ sqrtsd(xmm0, xmm0);
- // A copy of the virtual frame to allow us to go to runtime after the
- // JumpTarget jump.
- Result scratch = allocator()->Allocate();
- VirtualFrame* clone = new VirtualFrame(frame());
- __ AllocateHeapNumber(result.reg(), scratch.reg(), &runtime);
+ __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
+ null.Branch(below);
- __ movsd(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
- frame()->Drop(1);
- scratch.Unuse();
- end.Jump(&result);
- // We only branch to runtime if we have an allocation error.
- // Use the copy of the original frame as our current frame.
- RegisterFile empty_regs;
- SetFrame(clone, &empty_regs);
- __ bind(&runtime);
- result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
+ // As long as JS_FUNCTION_TYPE is the last instance type and it is
+ // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
+ // LAST_JS_OBJECT_TYPE.
+ ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+ ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
+ __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
+ function.Branch(equal);
- end.Bind(&result);
- frame()->Push(&result);
+ // Check if the constructor in the map is a function.
+ __ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
+ __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
+ non_function_constructor.Branch(not_equal);
+
+ // The obj register now contains the constructor function. Grab the
+ // instance class name from there.
+ __ movq(obj.reg(),
+ FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
+ __ movq(obj.reg(),
+ FieldOperand(obj.reg(),
+ SharedFunctionInfo::kInstanceClassNameOffset));
+ frame_->Push(&obj);
+ leave.Jump();
+
+ // Functions have class 'Function'.
+ function.Bind();
+ frame_->Push(Factory::function_class_symbol());
+ leave.Jump();
+
+ // Objects with a non-function constructor have class 'Object'.
+ non_function_constructor.Bind();
+ frame_->Push(Factory::Object_symbol());
+ leave.Jump();
+
+ // Non-JS objects have class null.
+ null.Bind();
+ frame_->Push(Factory::null_value());
+
+ // All done.
+ leave.Bind();
}
-void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) {
+void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
- Load(args->at(0));
+ JumpTarget leave;
+ Load(args->at(0)); // Load the object.
+ frame_->Dup();
+ Result object = frame_->Pop();
+ object.ToRegister();
+ ASSERT(object.is_valid());
+ // if (object->IsSmi()) return object.
+ Condition is_smi = masm_->CheckSmi(object.reg());
+ leave.Branch(is_smi);
+ // It is a heap object - get map.
+ Result temp = allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ // if (!object->IsJSValue()) return object.
+ __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
+ leave.Branch(not_equal);
+ __ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
+ object.Unuse();
+ frame_->SetElementAt(0, &temp);
+ leave.Bind();
+}
+
+
+void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
+ JumpTarget leave;
+ Load(args->at(0)); // Load the object.
+ Load(args->at(1)); // Load the value.
Result value = frame_->Pop();
+ Result object = frame_->Pop();
value.ToRegister();
- ASSERT(value.is_valid());
- Condition is_smi = masm_->CheckSmi(value.reg());
- value.Unuse();
- destination()->Split(is_smi);
+ object.ToRegister();
+
+ // if (object->IsSmi()) return value.
+ Condition is_smi = masm_->CheckSmi(object.reg());
+ leave.Branch(is_smi, &value);
+
+ // It is a heap object - get its map.
+ Result scratch = allocator_->Allocate();
+ ASSERT(scratch.is_valid());
+ // if (!object->IsJSValue()) return value.
+ __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
+ leave.Branch(not_equal, &value);
+
+ // Store the value.
+ __ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
+ // Update the write barrier. Save the value as it will be
+ // overwritten by the write barrier code and is needed afterward.
+ Result duplicate_value = allocator_->Allocate();
+ ASSERT(duplicate_value.is_valid());
+ __ movq(duplicate_value.reg(), value.reg());
+ // The object register is also overwritten by the write barrier and
+ // possibly aliased in the frame.
+ frame_->Spill(object.reg());
+ __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
+ scratch.reg());
+ object.Unuse();
+ scratch.Unuse();
+ duplicate_value.Unuse();
+
+ // Leave.
+ leave.Bind(&value);
+ frame_->Push(&value);
}
-void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) {
- // Conditionally generate a log call.
- // Args:
- // 0 (literal string): The type of logging (corresponds to the flags).
- // This is used to determine whether or not to generate the log call.
- // 1 (string): Format string. Access the string at argument index 2
- // with '%2s' (see Logger::LogRuntime for all the formats).
- // 2 (array): Arguments to the format string.
- ASSERT_EQ(args->length(), 3);
-#ifdef ENABLE_LOGGING_AND_PROFILING
- if (ShouldGenerateLog(args->at(0))) {
- Load(args->at(1));
- Load(args->at(2));
- frame_->CallRuntime(Runtime::kLog, 2);
- }
-#endif
- // Finally, we're expected to leave a value on the top of the stack.
- frame_->Push(Factory::undefined_value());
+void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 1);
+
+ // ArgumentsAccessStub expects the key in rdx and the formal
+ // parameter count in rax.
+ Load(args->at(0));
+ Result key = frame_->Pop();
+ // Explicitly create a constant result.
+ Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters())));
+ // Call the shared stub to get to arguments[key].
+ ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
+ Result result = frame_->CallStub(&stub, &key, &count);
+ frame_->Push(&result);
}
@@ -4692,6 +5970,43 @@
}
+void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ Load(args->at(0));
+ Load(args->at(1));
+
+ StringAddStub stub(NO_STRING_ADD_FLAGS);
+ Result answer = frame_->CallStub(&stub, 2);
+ frame_->Push(&answer);
+}
+
+
+void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
+ ASSERT_EQ(3, args->length());
+
+ Load(args->at(0));
+ Load(args->at(1));
+ Load(args->at(2));
+
+ SubStringStub stub;
+ Result answer = frame_->CallStub(&stub, 3);
+ frame_->Push(&answer);
+}
+
+
+void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
+ ASSERT_EQ(2, args->length());
+
+ Load(args->at(0));
+ Load(args->at(1));
+
+ StringCompareStub stub;
+ Result answer = frame_->CallStub(&stub, 2);
+ frame_->Push(&answer);
+}
+
+
void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) {
ASSERT_EQ(args->length(), 4);
@@ -5133,1725 +6448,1006 @@
}
-void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
- ASSERT_EQ(args->length(), 1);
+// Generates the Math.pow method. Only handles special cases and
+// branches to the runtime system for everything else. Please note
+// that this function assumes that the callsite has executed ToNumber
+// on both arguments.
+void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) {
+ ASSERT(args->length() == 2);
Load(args->at(0));
- TranscendentalCacheStub stub(TranscendentalCache::SIN);
- Result result = frame_->CallStub(&stub, 1);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
- ASSERT_EQ(args->length(), 1);
- Load(args->at(0));
- TranscendentalCacheStub stub(TranscendentalCache::COS);
- Result result = frame_->CallStub(&stub, 1);
- frame_->Push(&result);
-}
-
-
-void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) {
- ASSERT_EQ(2, args->length());
-
- Load(args->at(0));
Load(args->at(1));
- StringAddStub stub(NO_STRING_ADD_FLAGS);
- Result answer = frame_->CallStub(&stub, 2);
- frame_->Push(&answer);
-}
+ Label allocate_return;
+ // Load the two operands while leaving the values on the frame.
+ frame()->Dup();
+ Result exponent = frame()->Pop();
+ exponent.ToRegister();
+ frame()->Spill(exponent.reg());
+ frame()->PushElementAt(1);
+ Result base = frame()->Pop();
+ base.ToRegister();
+ frame()->Spill(base.reg());
+ Result answer = allocator()->Allocate();
+ ASSERT(answer.is_valid());
+ ASSERT(!exponent.reg().is(base.reg()));
+ JumpTarget call_runtime;
-void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) {
- ASSERT_EQ(3, args->length());
+ // Save 1 in xmm3 - we need this several times later on.
+ __ movl(answer.reg(), Immediate(1));
+ __ cvtlsi2sd(xmm3, answer.reg());
- Load(args->at(0));
- Load(args->at(1));
- Load(args->at(2));
+ Label exponent_nonsmi;
+ Label base_nonsmi;
+ // If the exponent is a heap number go to that specific case.
+ __ JumpIfNotSmi(exponent.reg(), &exponent_nonsmi);
+ __ JumpIfNotSmi(base.reg(), &base_nonsmi);
- SubStringStub stub;
- Result answer = frame_->CallStub(&stub, 3);
- frame_->Push(&answer);
-}
+ // Optimized version when y is an integer.
+ Label powi;
+ __ SmiToInteger32(base.reg(), base.reg());
+ __ cvtlsi2sd(xmm0, base.reg());
+ __ jmp(&powi);
+ // exponent is smi and base is a heapnumber.
+ __ bind(&base_nonsmi);
+ __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
+ Heap::kHeapNumberMapRootIndex);
+ call_runtime.Branch(not_equal);
+ __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
-void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) {
- ASSERT_EQ(2, args->length());
+ // Optimized version of pow if y is an integer.
+ __ bind(&powi);
+ __ SmiToInteger32(exponent.reg(), exponent.reg());
- Load(args->at(0));
- Load(args->at(1));
+ // Save exponent in base as we need to check if exponent is negative later.
+ // We know that base and exponent are in different registers.
+ __ movl(base.reg(), exponent.reg());
- StringCompareStub stub;
- Result answer = frame_->CallStub(&stub, 2);
- frame_->Push(&answer);
-}
+ // Get absolute value of exponent.
+ Label no_neg;
+ __ cmpl(exponent.reg(), Immediate(0));
+ __ j(greater_equal, &no_neg);
+ __ negl(exponent.reg());
+ __ bind(&no_neg);
+ // Load xmm1 with 1.
+ __ movsd(xmm1, xmm3);
+ Label while_true;
+ Label no_multiply;
-void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 1);
- JumpTarget leave, null, function, non_function_constructor;
- Load(args->at(0)); // Load the object.
- Result obj = frame_->Pop();
- obj.ToRegister();
- frame_->Spill(obj.reg());
+ __ bind(&while_true);
+ __ shrl(exponent.reg(), Immediate(1));
+ __ j(not_carry, &no_multiply);
+ __ mulsd(xmm1, xmm0);
+ __ bind(&no_multiply);
+ __ testl(exponent.reg(), exponent.reg());
+ __ mulsd(xmm0, xmm0);
+ __ j(not_zero, &while_true);
- // If the object is a smi, we return null.
- Condition is_smi = masm_->CheckSmi(obj.reg());
- null.Branch(is_smi);
+ // x has the original value of y - if y is negative return 1/result.
+ __ testl(base.reg(), base.reg());
+ __ j(positive, &allocate_return);
+ // Special case if xmm1 has reached infinity.
+ __ movl(answer.reg(), Immediate(0x7FB00000));
+ __ movd(xmm0, answer.reg());
+ __ cvtss2sd(xmm0, xmm0);
+ __ ucomisd(xmm0, xmm1);
+ call_runtime.Branch(equal);
+ __ divsd(xmm3, xmm1);
+ __ movsd(xmm1, xmm3);
+ __ jmp(&allocate_return);
- // Check that the object is a JS object but take special care of JS
- // functions to make sure they have 'Function' as their class.
+ // exponent (or both) is a heapnumber - no matter what we should now work
+ // on doubles.
+ __ bind(&exponent_nonsmi);
+ __ CompareRoot(FieldOperand(exponent.reg(), HeapObject::kMapOffset),
+ Heap::kHeapNumberMapRootIndex);
+ call_runtime.Branch(not_equal);
+ __ movsd(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset));
+ // Test if exponent is nan.
+ __ ucomisd(xmm1, xmm1);
+ call_runtime.Branch(parity_even);
- __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg());
- null.Branch(below);
+ Label base_not_smi;
+ Label handle_special_cases;
+ __ JumpIfNotSmi(base.reg(), &base_not_smi);
+ __ SmiToInteger32(base.reg(), base.reg());
+ __ cvtlsi2sd(xmm0, base.reg());
+ __ jmp(&handle_special_cases);
+ __ bind(&base_not_smi);
+ __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset),
+ Heap::kHeapNumberMapRootIndex);
+ call_runtime.Branch(not_equal);
+ __ movl(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset));
+ __ andl(answer.reg(), Immediate(HeapNumber::kExponentMask));
+ __ cmpl(answer.reg(), Immediate(HeapNumber::kExponentMask));
+ // base is NaN or +/-Infinity
+ call_runtime.Branch(greater_equal);
+ __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset));
- // As long as JS_FUNCTION_TYPE is the last instance type and it is
- // right after LAST_JS_OBJECT_TYPE, we can avoid checking for
- // LAST_JS_OBJECT_TYPE.
- ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
- ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1);
- __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE);
- function.Branch(equal);
+ // base is in xmm0 and exponent is in xmm1.
+ __ bind(&handle_special_cases);
+ Label not_minus_half;
+ // Test for -0.5.
+ // Load xmm2 with -0.5.
+ __ movl(answer.reg(), Immediate(0xBF000000));
+ __ movd(xmm2, answer.reg());
+ __ cvtss2sd(xmm2, xmm2);
+ // xmm2 now has -0.5.
+ __ ucomisd(xmm2, xmm1);
+ __ j(not_equal, &not_minus_half);
- // Check if the constructor in the map is a function.
- __ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset));
- __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister);
- non_function_constructor.Branch(not_equal);
+ // Calculates reciprocal of square root.
+ // Note that 1/sqrt(x) = sqrt(1/x))
+ __ divsd(xmm3, xmm0);
+ __ movsd(xmm1, xmm3);
+ __ sqrtsd(xmm1, xmm1);
+ __ jmp(&allocate_return);
- // The obj register now contains the constructor function. Grab the
- // instance class name from there.
- __ movq(obj.reg(),
- FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset));
- __ movq(obj.reg(),
- FieldOperand(obj.reg(),
- SharedFunctionInfo::kInstanceClassNameOffset));
- frame_->Push(&obj);
- leave.Jump();
+ // Test for 0.5.
+ __ bind(&not_minus_half);
+ // Load xmm2 with 0.5.
+ // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
+ __ addsd(xmm2, xmm3);
+ // xmm2 now has 0.5.
+ __ ucomisd(xmm2, xmm1);
+ call_runtime.Branch(not_equal);
- // Functions have class 'Function'.
- function.Bind();
- frame_->Push(Factory::function_class_symbol());
- leave.Jump();
+ // Calculates square root.
+ __ movsd(xmm1, xmm0);
+ __ sqrtsd(xmm1, xmm1);
- // Objects with a non-function constructor have class 'Object'.
- non_function_constructor.Bind();
- frame_->Push(Factory::Object_symbol());
- leave.Jump();
+ JumpTarget done;
+ Label failure, success;
+ __ bind(&allocate_return);
+ // Make a copy of the frame to enable us to handle allocation
+ // failure after the JumpTarget jump.
+ VirtualFrame* clone = new VirtualFrame(frame());
+ __ AllocateHeapNumber(answer.reg(), exponent.reg(), &failure);
+ __ movsd(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1);
+ // Remove the two original values from the frame - we only need those
+ // in the case where we branch to runtime.
+ frame()->Drop(2);
+ exponent.Unuse();
+ base.Unuse();
+ done.Jump(&answer);
+ // Use the copy of the original frame as our current frame.
+ RegisterFile empty_regs;
+ SetFrame(clone, &empty_regs);
+ // If we experience an allocation failure we branch to runtime.
+ __ bind(&failure);
+ call_runtime.Bind();
+ answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2);
- // Non-JS objects have class null.
- null.Bind();
- frame_->Push(Factory::null_value());
-
- // All done.
- leave.Bind();
+ done.Bind(&answer);
+ frame()->Push(&answer);
}
-void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) {
- ASSERT(args->length() == 2);
- JumpTarget leave;
- Load(args->at(0)); // Load the object.
- Load(args->at(1)); // Load the value.
- Result value = frame_->Pop();
- Result object = frame_->Pop();
- value.ToRegister();
- object.ToRegister();
+void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) {
+ ASSERT_EQ(args->length(), 1);
+ Load(args->at(0));
+ TranscendentalCacheStub stub(TranscendentalCache::SIN);
+ Result result = frame_->CallStub(&stub, 1);
+ frame_->Push(&result);
+}
- // if (object->IsSmi()) return value.
- Condition is_smi = masm_->CheckSmi(object.reg());
- leave.Branch(is_smi, &value);
- // It is a heap object - get its map.
- Result scratch = allocator_->Allocate();
- ASSERT(scratch.is_valid());
- // if (!object->IsJSValue()) return value.
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg());
- leave.Branch(not_equal, &value);
-
- // Store the value.
- __ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg());
- // Update the write barrier. Save the value as it will be
- // overwritten by the write barrier code and is needed afterward.
- Result duplicate_value = allocator_->Allocate();
- ASSERT(duplicate_value.is_valid());
- __ movq(duplicate_value.reg(), value.reg());
- // The object register is also overwritten by the write barrier and
- // possibly aliased in the frame.
- frame_->Spill(object.reg());
- __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(),
- scratch.reg());
- object.Unuse();
- scratch.Unuse();
- duplicate_value.Unuse();
-
- // Leave.
- leave.Bind(&value);
- frame_->Push(&value);
+void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) {
+ ASSERT_EQ(args->length(), 1);
+ Load(args->at(0));
+ TranscendentalCacheStub stub(TranscendentalCache::COS);
+ Result result = frame_->CallStub(&stub, 1);
+ frame_->Push(&result);
}
-void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) {
+// Generates the Math.sqrt method. Please note - this function assumes that
+// the callsite has executed ToNumber on the argument.
+void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) {
ASSERT(args->length() == 1);
- JumpTarget leave;
- Load(args->at(0)); // Load the object.
- frame_->Dup();
- Result object = frame_->Pop();
- object.ToRegister();
- ASSERT(object.is_valid());
- // if (object->IsSmi()) return object.
- Condition is_smi = masm_->CheckSmi(object.reg());
- leave.Branch(is_smi);
- // It is a heap object - get map.
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- // if (!object->IsJSValue()) return object.
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg());
- leave.Branch(not_equal);
- __ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset));
- object.Unuse();
- frame_->SetElementAt(0, &temp);
- leave.Bind();
-}
+ Load(args->at(0));
+ // Leave original value on the frame if we need to call runtime.
+ frame()->Dup();
+ Result result = frame()->Pop();
+ result.ToRegister();
+ frame()->Spill(result.reg());
+ Label runtime;
+ Label non_smi;
+ Label load_done;
+ JumpTarget end;
-// -----------------------------------------------------------------------------
-// CodeGenerator implementation of Expressions
+ __ JumpIfNotSmi(result.reg(), &non_smi);
+ __ SmiToInteger32(result.reg(), result.reg());
+ __ cvtlsi2sd(xmm0, result.reg());
+ __ jmp(&load_done);
+ __ bind(&non_smi);
+ __ CompareRoot(FieldOperand(result.reg(), HeapObject::kMapOffset),
+ Heap::kHeapNumberMapRootIndex);
+ __ j(not_equal, &runtime);
+ __ movsd(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset));
-void CodeGenerator::LoadAndSpill(Expression* expression) {
- // TODO(x64): No architecture specific code. Move to shared location.
- ASSERT(in_spilled_code());
- set_in_spilled_code(false);
- Load(expression);
- frame_->SpillAll();
- set_in_spilled_code(true);
-}
+ __ bind(&load_done);
+ __ sqrtsd(xmm0, xmm0);
+ // A copy of the virtual frame to allow us to go to runtime after the
+ // JumpTarget jump.
+ Result scratch = allocator()->Allocate();
+ VirtualFrame* clone = new VirtualFrame(frame());
+ __ AllocateHeapNumber(result.reg(), scratch.reg(), &runtime);
+ __ movsd(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0);
+ frame()->Drop(1);
+ scratch.Unuse();
+ end.Jump(&result);
+ // We only branch to runtime if we have an allocation error.
+ // Use the copy of the original frame as our current frame.
+ RegisterFile empty_regs;
+ SetFrame(clone, &empty_regs);
+ __ bind(&runtime);
+ result = frame()->CallRuntime(Runtime::kMath_sqrt, 1);
-void CodeGenerator::Load(Expression* expr) {
-#ifdef DEBUG
- int original_height = frame_->height();
-#endif
- ASSERT(!in_spilled_code());
- JumpTarget true_target;
- JumpTarget false_target;
- ControlDestination dest(&true_target, &false_target, true);
- LoadCondition(expr, &dest, false);
+ end.Bind(&result);
+ frame()->Push(&result);
+}
- if (dest.false_was_fall_through()) {
- // The false target was just bound.
- JumpTarget loaded;
- frame_->Push(Factory::false_value());
- // There may be dangling jumps to the true target.
- if (true_target.is_linked()) {
- loaded.Jump();
- true_target.Bind();
- frame_->Push(Factory::true_value());
- loaded.Bind();
- }
- } else if (dest.is_used()) {
- // There is true, and possibly false, control flow (with true as
- // the fall through).
- JumpTarget loaded;
- frame_->Push(Factory::true_value());
- if (false_target.is_linked()) {
- loaded.Jump();
- false_target.Bind();
- frame_->Push(Factory::false_value());
- loaded.Bind();
- }
-
- } else {
- // We have a valid value on top of the frame, but we still may
- // have dangling jumps to the true and false targets from nested
- // subexpressions (eg, the left subexpressions of the
- // short-circuited boolean operators).
- ASSERT(has_valid_frame());
- if (true_target.is_linked() || false_target.is_linked()) {
- JumpTarget loaded;
- loaded.Jump(); // Don't lose the current TOS.
- if (true_target.is_linked()) {
- true_target.Bind();
- frame_->Push(Factory::true_value());
- if (false_target.is_linked()) {
- loaded.Jump();
- }
- }
- if (false_target.is_linked()) {
- false_target.Bind();
- frame_->Push(Factory::false_value());
- }
- loaded.Bind();
- }
+void CodeGenerator::VisitCallRuntime(CallRuntime* node) {
+ if (CheckForInlineRuntimeCall(node)) {
+ return;
}
- ASSERT(has_valid_frame());
- ASSERT(frame_->height() == original_height + 1);
-}
+ ZoneList<Expression*>* args = node->arguments();
+ Comment cmnt(masm_, "[ CallRuntime");
+ Runtime::Function* function = node->function();
-
-// Emit code to load the value of an expression to the top of the
-// frame. If the expression is boolean-valued it may be compiled (or
-// partially compiled) into control flow to the control destination.
-// If force_control is true, control flow is forced.
-void CodeGenerator::LoadCondition(Expression* x,
- ControlDestination* dest,
- bool force_control) {
- ASSERT(!in_spilled_code());
- int original_height = frame_->height();
-
- { CodeGenState new_state(this, dest);
- Visit(x);
-
- // If we hit a stack overflow, we may not have actually visited
- // the expression. In that case, we ensure that we have a
- // valid-looking frame state because we will continue to generate
- // code as we unwind the C++ stack.
- //
- // It's possible to have both a stack overflow and a valid frame
- // state (eg, a subexpression overflowed, visiting it returned
- // with a dummied frame state, and visiting this expression
- // returned with a normal-looking state).
- if (HasStackOverflow() &&
- !dest->is_used() &&
- frame_->height() == original_height) {
- dest->Goto(true);
- }
+ if (function == NULL) {
+ // Push the builtins object found in the current global object.
+ Result temp = allocator()->Allocate();
+ ASSERT(temp.is_valid());
+ __ movq(temp.reg(), GlobalObject());
+ __ movq(temp.reg(),
+ FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset));
+ frame_->Push(&temp);
}
- if (force_control && !dest->is_used()) {
- // Convert the TOS value into flow to the control destination.
- // TODO(X64): Make control flow to control destinations work.
- ToBoolean(dest);
+ // Push the arguments ("left-to-right").
+ int arg_count = args->length();
+ for (int i = 0; i < arg_count; i++) {
+ Load(args->at(i));
}
- ASSERT(!(force_control && !dest->is_used()));
- ASSERT(dest->is_used() || frame_->height() == original_height + 1);
-}
-
-
-// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and
-// convert it to a boolean in the condition code register or jump to
-// 'false_target'/'true_target' as appropriate.
-void CodeGenerator::ToBoolean(ControlDestination* dest) {
- Comment cmnt(masm_, "[ ToBoolean");
-
- // The value to convert should be popped from the frame.
- Result value = frame_->Pop();
- value.ToRegister();
-
- if (value.is_number()) {
- // Fast case if TypeInfo indicates only numbers.
- if (FLAG_debug_code) {
- __ AbortIfNotNumber(value.reg());
- }
- // Smi => false iff zero.
- __ SmiCompare(value.reg(), Smi::FromInt(0));
- if (value.is_smi()) {
- value.Unuse();
- dest->Split(not_zero);
- } else {
- dest->false_target()->Branch(equal);
- Condition is_smi = masm_->CheckSmi(value.reg());
- dest->true_target()->Branch(is_smi);
- __ xorpd(xmm0, xmm0);
- __ ucomisd(xmm0, FieldOperand(value.reg(), HeapNumber::kValueOffset));
- value.Unuse();
- dest->Split(not_zero);
- }
+ if (function == NULL) {
+ // Call the JS runtime function.
+ frame_->Push(node->name());
+ Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET,
+ arg_count,
+ loop_nesting_);
+ frame_->RestoreContextRegister();
+ frame_->Push(&answer);
} else {
- // Fast case checks.
- // 'false' => false.
- __ CompareRoot(value.reg(), Heap::kFalseValueRootIndex);
- dest->false_target()->Branch(equal);
-
- // 'true' => true.
- __ CompareRoot(value.reg(), Heap::kTrueValueRootIndex);
- dest->true_target()->Branch(equal);
-
- // 'undefined' => false.
- __ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex);
- dest->false_target()->Branch(equal);
-
- // Smi => false iff zero.
- __ SmiCompare(value.reg(), Smi::FromInt(0));
- dest->false_target()->Branch(equal);
- Condition is_smi = masm_->CheckSmi(value.reg());
- dest->true_target()->Branch(is_smi);
-
- // Call the stub for all other cases.
- frame_->Push(&value); // Undo the Pop() from above.
- ToBooleanStub stub;
- Result temp = frame_->CallStub(&stub, 1);
- // Convert the result to a condition code.
- __ testq(temp.reg(), temp.reg());
- temp.Unuse();
- dest->Split(not_equal);
+ // Call the C runtime function.
+ Result answer = frame_->CallRuntime(function, arg_count);
+ frame_->Push(&answer);
}
}
-void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) {
- UNIMPLEMENTED();
- // TODO(X64): Implement security policy for loads of smis.
-}
+void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) {
+ Comment cmnt(masm_, "[ UnaryOperation");
+ Token::Value op = node->op();
-bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) {
- return false;
-}
+ if (op == Token::NOT) {
+ // Swap the true and false targets but keep the same actual label
+ // as the fall through.
+ destination()->Invert();
+ LoadCondition(node->expression(), destination(), true);
+ // Swap the labels back.
+ destination()->Invert();
-//------------------------------------------------------------------------------
-// CodeGenerator implementation of variables, lookups, and stores.
+ } else if (op == Token::DELETE) {
+ Property* property = node->expression()->AsProperty();
+ if (property != NULL) {
+ Load(property->obj());
+ Load(property->key());
+ Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2);
+ frame_->Push(&answer);
+ return;
+ }
-Reference::Reference(CodeGenerator* cgen,
- Expression* expression,
- bool persist_after_get)
- : cgen_(cgen),
- expression_(expression),
- type_(ILLEGAL),
- persist_after_get_(persist_after_get) {
- cgen->LoadReference(this);
-}
+ Variable* variable = node->expression()->AsVariableProxy()->AsVariable();
+ if (variable != NULL) {
+ Slot* slot = variable->slot();
+ if (variable->is_global()) {
+ LoadGlobal();
+ frame_->Push(variable->name());
+ Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
+ CALL_FUNCTION, 2);
+ frame_->Push(&answer);
+ return;
+ } else if (slot != NULL && slot->type() == Slot::LOOKUP) {
+ // Call the runtime to look up the context holding the named
+ // variable. Sync the virtual frame eagerly so we can push the
+ // arguments directly into place.
+ frame_->SyncRange(0, frame_->element_count() - 1);
+ frame_->EmitPush(rsi);
+ frame_->EmitPush(variable->name());
+ Result context = frame_->CallRuntime(Runtime::kLookupContext, 2);
+ ASSERT(context.is_register());
+ frame_->EmitPush(context.reg());
+ context.Unuse();
+ frame_->EmitPush(variable->name());
+ Result answer = frame_->InvokeBuiltin(Builtins::DELETE,
+ CALL_FUNCTION, 2);
+ frame_->Push(&answer);
+ return;
+ }
-Reference::~Reference() {
- ASSERT(is_unloaded() || is_illegal());
-}
+ // Default: Result of deleting non-global, not dynamically
+ // introduced variables is false.
+ frame_->Push(Factory::false_value());
+ } else {
+ // Default: Result of deleting expressions is true.
+ Load(node->expression()); // may have side-effects
+ frame_->SetElementAt(0, Factory::true_value());
+ }
-void CodeGenerator::LoadReference(Reference* ref) {
- // References are loaded from both spilled and unspilled code. Set the
- // state to unspilled to allow that (and explicitly spill after
- // construction at the construction sites).
- bool was_in_spilled_code = in_spilled_code_;
- in_spilled_code_ = false;
+ } else if (op == Token::TYPEOF) {
+ // Special case for loading the typeof expression; see comment on
+ // LoadTypeofExpression().
+ LoadTypeofExpression(node->expression());
+ Result answer = frame_->CallRuntime(Runtime::kTypeof, 1);
+ frame_->Push(&answer);
- Comment cmnt(masm_, "[ LoadReference");
- Expression* e = ref->expression();
- Property* property = e->AsProperty();
- Variable* var = e->AsVariableProxy()->AsVariable();
-
- if (property != NULL) {
- // The expression is either a property or a variable proxy that rewrites
- // to a property.
- Load(property->obj());
- if (property->key()->IsPropertyName()) {
- ref->set_type(Reference::NAMED);
+ } else if (op == Token::VOID) {
+ Expression* expression = node->expression();
+ if (expression && expression->AsLiteral() && (
+ expression->AsLiteral()->IsTrue() ||
+ expression->AsLiteral()->IsFalse() ||
+ expression->AsLiteral()->handle()->IsNumber() ||
+ expression->AsLiteral()->handle()->IsString() ||
+ expression->AsLiteral()->handle()->IsJSRegExp() ||
+ expression->AsLiteral()->IsNull())) {
+ // Omit evaluating the value of the primitive literal.
+ // It will be discarded anyway, and can have no side effect.
+ frame_->Push(Factory::undefined_value());
} else {
- Load(property->key());
- ref->set_type(Reference::KEYED);
+ Load(node->expression());
+ frame_->SetElementAt(0, Factory::undefined_value());
}
- } else if (var != NULL) {
- // The expression is a variable proxy that does not rewrite to a
- // property. Global variables are treated as named property references.
- if (var->is_global()) {
- // If rax is free, the register allocator prefers it. Thus the code
- // generator will load the global object into rax, which is where
- // LoadIC wants it. Most uses of Reference call LoadIC directly
- // after the reference is created.
- frame_->Spill(rax);
- LoadGlobal();
- ref->set_type(Reference::NAMED);
- } else {
- ASSERT(var->slot() != NULL);
- ref->set_type(Reference::SLOT);
- }
+
} else {
- // Anything else is a runtime error.
- Load(e);
- frame_->CallRuntime(Runtime::kThrowReferenceError, 1);
- }
+ bool can_overwrite =
+ (node->expression()->AsBinaryOperation() != NULL &&
+ node->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
+ UnaryOverwriteMode overwrite =
+ can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
+ bool no_negative_zero = node->expression()->no_negative_zero();
+ Load(node->expression());
+ switch (op) {
+ case Token::NOT:
+ case Token::DELETE:
+ case Token::TYPEOF:
+ UNREACHABLE(); // handled above
+ break;
- in_spilled_code_ = was_in_spilled_code;
-}
+ case Token::SUB: {
+ GenericUnaryOpStub stub(
+ Token::SUB,
+ overwrite,
+ no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero);
+ Result operand = frame_->Pop();
+ Result answer = frame_->CallStub(&stub, &operand);
+ answer.set_type_info(TypeInfo::Number());
+ frame_->Push(&answer);
+ break;
+ }
+ case Token::BIT_NOT: {
+ // Smi check.
+ JumpTarget smi_label;
+ JumpTarget continue_label;
+ Result operand = frame_->Pop();
+ operand.ToRegister();
-void CodeGenerator::UnloadReference(Reference* ref) {
- // Pop a reference from the stack while preserving TOS.
- Comment cmnt(masm_, "[ UnloadReference");
- frame_->Nip(ref->size());
- ref->set_unloaded();
-}
+ Condition is_smi = masm_->CheckSmi(operand.reg());
+ smi_label.Branch(is_smi, &operand);
+ GenericUnaryOpStub stub(Token::BIT_NOT, overwrite);
+ Result answer = frame_->CallStub(&stub, &operand);
+ continue_label.Jump(&answer);
-Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) {
- // Currently, this assertion will fail if we try to assign to
- // a constant variable that is constant because it is read-only
- // (such as the variable referring to a named function expression).
- // We need to implement assignments to read-only variables.
- // Ideally, we should do this during AST generation (by converting
- // such assignments into expression statements); however, in general
- // we may not be able to make the decision until past AST generation,
- // that is when the entire program is known.
- ASSERT(slot != NULL);
- int index = slot->index();
- switch (slot->type()) {
- case Slot::PARAMETER:
- return frame_->ParameterAt(index);
+ smi_label.Bind(&answer);
+ answer.ToRegister();
+ frame_->Spill(answer.reg());
+ __ SmiNot(answer.reg(), answer.reg());
+ continue_label.Bind(&answer);
+ answer.set_type_info(TypeInfo::Smi());
+ frame_->Push(&answer);
+ break;
+ }
- case Slot::LOCAL:
- return frame_->LocalAt(index);
+ case Token::ADD: {
+ // Smi check.
+ JumpTarget continue_label;
+ Result operand = frame_->Pop();
+ TypeInfo operand_info = operand.type_info();
+ operand.ToRegister();
+ Condition is_smi = masm_->CheckSmi(operand.reg());
+ continue_label.Branch(is_smi, &operand);
+ frame_->Push(&operand);
+ Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER,
+ CALL_FUNCTION, 1);
- case Slot::CONTEXT: {
- // Follow the context chain if necessary.
- ASSERT(!tmp.is(rsi)); // do not overwrite context register
- Register context = rsi;
- int chain_length = scope()->ContextChainLength(slot->var()->scope());
- for (int i = 0; i < chain_length; i++) {
- // Load the closure.
- // (All contexts, even 'with' contexts, have a closure,
- // and it is the same for all contexts inside a function.
- // There is no need to go to the function context first.)
- __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX));
- // Load the function context (which is the incoming, outer context).
- __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset));
- context = tmp;
+ continue_label.Bind(&answer);
+ if (operand_info.IsSmi()) {
+ answer.set_type_info(TypeInfo::Smi());
+ } else if (operand_info.IsInteger32()) {
+ answer.set_type_info(TypeInfo::Integer32());
+ } else {
+ answer.set_type_info(TypeInfo::Number());
+ }
+ frame_->Push(&answer);
+ break;
}
- // We may have a 'with' context now. Get the function context.
- // (In fact this mov may never be the needed, since the scope analysis
- // may not permit a direct context access in this case and thus we are
- // always at a function context. However it is safe to dereference be-
- // cause the function context of a function context is itself. Before
- // deleting this mov we should try to create a counter-example first,
- // though...)
- __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX));
- return ContextOperand(tmp, index);
+ default:
+ UNREACHABLE();
}
-
- default:
- UNREACHABLE();
- return Operand(rsp, 0);
}
}
-Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot,
- Result tmp,
- JumpTarget* slow) {
- ASSERT(slot->type() == Slot::CONTEXT);
- ASSERT(tmp.is_register());
- Register context = rsi;
-
- for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) {
- if (s->num_heap_slots() > 0) {
- if (s->calls_eval()) {
- // Check that extension is NULL.
- __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
- Immediate(0));
- slow->Branch(not_equal, not_taken);
- }
- __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
- __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- context = tmp.reg();
- }
+// The value in dst was optimistically incremented or decremented.
+// The result overflowed or was not smi tagged. Call into the runtime
+// to convert the argument to a number, and call the specialized add
+// or subtract stub. The result is left in dst.
+class DeferredPrefixCountOperation: public DeferredCode {
+ public:
+ DeferredPrefixCountOperation(Register dst,
+ bool is_increment,
+ TypeInfo input_type)
+ : dst_(dst), is_increment_(is_increment), input_type_(input_type) {
+ set_comment("[ DeferredCountOperation");
}
- // Check that last extension is NULL.
- __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0));
- slow->Branch(not_equal, not_taken);
- __ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX));
- return ContextOperand(tmp.reg(), slot->index());
-}
+ virtual void Generate();
-void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) {
- if (slot->type() == Slot::LOOKUP) {
- ASSERT(slot->var()->is_dynamic());
+ private:
+ Register dst_;
+ bool is_increment_;
+ TypeInfo input_type_;
+};
- JumpTarget slow;
- JumpTarget done;
- Result value;
- // Generate fast case for loading from slots that correspond to
- // local/global variables or arguments unless they are shadowed by
- // eval-introduced bindings.
- EmitDynamicLoadFromSlotFastCase(slot,
- typeof_state,
- &value,
- &slow,
- &done);
+void DeferredPrefixCountOperation::Generate() {
+ Register left;
+ if (input_type_.IsNumber()) {
+ left = dst_;
+ } else {
+ __ push(dst_);
+ __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
+ left = rax;
+ }
- slow.Bind();
- // A runtime call is inevitable. We eagerly sync frame elements
- // to memory so that we can push the arguments directly into place
- // on top of the frame.
- frame_->SyncRange(0, frame_->element_count() - 1);
- frame_->EmitPush(rsi);
- __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT);
- frame_->EmitPush(kScratchRegister);
- if (typeof_state == INSIDE_TYPEOF) {
- value =
- frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
- } else {
- value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2);
- }
+ GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
+ NO_OVERWRITE,
+ NO_GENERIC_BINARY_FLAGS,
+ TypeInfo::Number());
+ stub.GenerateCall(masm_, left, Smi::FromInt(1));
- done.Bind(&value);
- frame_->Push(&value);
+ if (!dst_.is(rax)) __ movq(dst_, rax);
+}
- } else if (slot->var()->mode() == Variable::CONST) {
- // Const slots may contain 'the hole' value (the constant hasn't been
- // initialized yet) which needs to be converted into the 'undefined'
- // value.
- //
- // We currently spill the virtual frame because constants use the
- // potentially unsafe direct-frame access of SlotOperand.
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ Load const");
- JumpTarget exit;
- __ movq(rcx, SlotOperand(slot, rcx));
- __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
- exit.Branch(not_equal);
- __ LoadRoot(rcx, Heap::kUndefinedValueRootIndex);
- exit.Bind();
- frame_->EmitPush(rcx);
- } else if (slot->type() == Slot::PARAMETER) {
- frame_->PushParameterAt(slot->index());
-
- } else if (slot->type() == Slot::LOCAL) {
- frame_->PushLocalAt(slot->index());
-
- } else {
- // The other remaining slot types (LOOKUP and GLOBAL) cannot reach
- // here.
- //
- // The use of SlotOperand below is safe for an unspilled frame
- // because it will always be a context slot.
- ASSERT(slot->type() == Slot::CONTEXT);
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ movq(temp.reg(), SlotOperand(slot, temp.reg()));
- frame_->Push(&temp);
+// The value in dst was optimistically incremented or decremented.
+// The result overflowed or was not smi tagged. Call into the runtime
+// to convert the argument to a number. Update the original value in
+// old. Call the specialized add or subtract stub. The result is
+// left in dst.
+class DeferredPostfixCountOperation: public DeferredCode {
+ public:
+ DeferredPostfixCountOperation(Register dst,
+ Register old,
+ bool is_increment,
+ TypeInfo input_type)
+ : dst_(dst),
+ old_(old),
+ is_increment_(is_increment),
+ input_type_(input_type) {
+ set_comment("[ DeferredCountOperation");
}
-}
+ virtual void Generate();
-void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot,
- TypeofState state) {
- LoadFromSlot(slot, state);
+ private:
+ Register dst_;
+ Register old_;
+ bool is_increment_;
+ TypeInfo input_type_;
+};
- // Bail out quickly if we're not using lazy arguments allocation.
- if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return;
- // ... or if the slot isn't a non-parameter arguments slot.
- if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return;
-
- // Pop the loaded value from the stack.
- Result value = frame_->Pop();
-
- // If the loaded value is a constant, we know if the arguments
- // object has been lazily loaded yet.
- if (value.is_constant()) {
- if (value.handle()->IsTheHole()) {
- Result arguments = StoreArgumentsObject(false);
- frame_->Push(&arguments);
- } else {
- frame_->Push(&value);
- }
- return;
+void DeferredPostfixCountOperation::Generate() {
+ Register left;
+ if (input_type_.IsNumber()) {
+ __ push(dst_); // Save the input to use as the old value.
+ left = dst_;
+ } else {
+ __ push(dst_);
+ __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION);
+ __ push(rax); // Save the result of ToNumber to use as the old value.
+ left = rax;
}
- // The loaded value is in a register. If it is the sentinel that
- // indicates that we haven't loaded the arguments object yet, we
- // need to do it now.
- JumpTarget exit;
- __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex);
- frame_->Push(&value);
- exit.Branch(not_equal);
- Result arguments = StoreArgumentsObject(false);
- frame_->SetElementAt(0, &arguments);
- exit.Bind();
+ GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB,
+ NO_OVERWRITE,
+ NO_GENERIC_BINARY_FLAGS,
+ TypeInfo::Number());
+ stub.GenerateCall(masm_, left, Smi::FromInt(1));
+
+ if (!dst_.is(rax)) __ movq(dst_, rax);
+ __ pop(old_);
}
-void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) {
- if (slot->type() == Slot::LOOKUP) {
- ASSERT(slot->var()->is_dynamic());
+void CodeGenerator::VisitCountOperation(CountOperation* node) {
+ Comment cmnt(masm_, "[ CountOperation");
- // For now, just do a runtime call. Since the call is inevitable,
- // we eagerly sync the virtual frame so we can directly push the
- // arguments into place.
- frame_->SyncRange(0, frame_->element_count() - 1);
+ bool is_postfix = node->is_postfix();
+ bool is_increment = node->op() == Token::INC;
- frame_->EmitPush(rsi);
- frame_->EmitPush(slot->var()->name());
+ Variable* var = node->expression()->AsVariableProxy()->AsVariable();
+ bool is_const = (var != NULL && var->mode() == Variable::CONST);
- Result value;
- if (init_state == CONST_INIT) {
- // Same as the case for a normal store, but ignores attribute
- // (e.g. READ_ONLY) of context slot so that we can initialize const
- // properties (introduced via eval("const foo = (some expr);")). Also,
- // uses the current function context instead of the top context.
- //
- // Note that we must declare the foo upon entry of eval(), via a
- // context slot declaration, but we cannot initialize it at the same
- // time, because the const declaration may be at the end of the eval
- // code (sigh...) and the const variable may have been used before
- // (where its value is 'undefined'). Thus, we can only do the
- // initialization when we actually encounter the expression and when
- // the expression operands are defined and valid, and thus we need the
- // split into 2 operations: declaration of the context slot followed
- // by initialization.
- value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3);
- } else {
- value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3);
- }
- // Storing a variable must keep the (new) value on the expression
- // stack. This is necessary for compiling chained assignment
- // expressions.
- frame_->Push(&value);
- } else {
- ASSERT(!slot->var()->is_dynamic());
+ // Postfix operations need a stack slot under the reference to hold
+ // the old value while the new value is being stored. This is so that
+ // in the case that storing the new value requires a call, the old
+ // value will be in the frame to be spilled.
+ if (is_postfix) frame_->Push(Smi::FromInt(0));
- JumpTarget exit;
- if (init_state == CONST_INIT) {
- ASSERT(slot->var()->mode() == Variable::CONST);
- // Only the first const initialization must be executed (the slot
- // still contains 'the hole' value). When the assignment is executed,
- // the code is identical to a normal store (see below).
- //
- // We spill the frame in the code below because the direct-frame
- // access of SlotOperand is potentially unsafe with an unspilled
- // frame.
- VirtualFrame::SpilledScope spilled_scope;
- Comment cmnt(masm_, "[ Init const");
- __ movq(rcx, SlotOperand(slot, rcx));
- __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex);
- exit.Branch(not_equal);
+ // A constant reference is not saved to, so the reference is not a
+ // compound assignment reference.
+ { Reference target(this, node->expression(), !is_const);
+ if (target.is_illegal()) {
+ // Spoof the virtual frame to have the expected height (one higher
+ // than on entry).
+ if (!is_postfix) frame_->Push(Smi::FromInt(0));
+ return;
}
+ target.TakeValue();
- // We must execute the store. Storing a variable must keep the (new)
- // value on the stack. This is necessary for compiling assignment
- // expressions.
- //
- // Note: We will reach here even with slot->var()->mode() ==
- // Variable::CONST because of const declarations which will initialize
- // consts to 'the hole' value and by doing so, end up calling this code.
- if (slot->type() == Slot::PARAMETER) {
- frame_->StoreToParameterAt(slot->index());
- } else if (slot->type() == Slot::LOCAL) {
- frame_->StoreToLocalAt(slot->index());
- } else {
- // The other slot types (LOOKUP and GLOBAL) cannot reach here.
- //
- // The use of SlotOperand below is safe for an unspilled frame
- // because the slot is a context slot.
- ASSERT(slot->type() == Slot::CONTEXT);
- frame_->Dup();
- Result value = frame_->Pop();
- value.ToRegister();
- Result start = allocator_->Allocate();
- ASSERT(start.is_valid());
- __ movq(SlotOperand(slot, start.reg()), value.reg());
- // RecordWrite may destroy the value registers.
- //
- // TODO(204): Avoid actually spilling when the value is not
- // needed (probably the common case).
- frame_->Spill(value.reg());
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize;
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ RecordWrite(start.reg(), offset, value.reg(), temp.reg());
- // The results start, value, and temp are unused by going out of
- // scope.
- }
+ Result new_value = frame_->Pop();
+ new_value.ToRegister();
- exit.Bind();
- }
-}
+ Result old_value; // Only allocated in the postfix case.
+ if (is_postfix) {
+ // Allocate a temporary to preserve the old value.
+ old_value = allocator_->Allocate();
+ ASSERT(old_value.is_valid());
+ __ movq(old_value.reg(), new_value.reg());
-
-Result CodeGenerator::LoadFromGlobalSlotCheckExtensions(
- Slot* slot,
- TypeofState typeof_state,
- JumpTarget* slow) {
- // Check that no extension objects have been created by calls to
- // eval from the current scope to the global scope.
- Register context = rsi;
- Result tmp = allocator_->Allocate();
- ASSERT(tmp.is_valid()); // All non-reserved registers were available.
-
- Scope* s = scope();
- while (s != NULL) {
- if (s->num_heap_slots() > 0) {
- if (s->calls_eval()) {
- // Check that extension is NULL.
- __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX),
- Immediate(0));
- slow->Branch(not_equal, not_taken);
+ // The return value for postfix operations is ToNumber(input).
+ // Keep more precise type info if the input is some kind of
+ // number already. If the input is not a number we have to wait
+ // for the deferred code to convert it.
+ if (new_value.type_info().IsNumber()) {
+ old_value.set_type_info(new_value.type_info());
}
- // Load next context in chain.
- __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX));
- __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- context = tmp.reg();
}
- // If no outer scope calls eval, we do not need to check more
- // context extensions. If we have reached an eval scope, we check
- // all extensions from this point.
- if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break;
- s = s->outer_scope();
- }
+ // Ensure the new value is writable.
+ frame_->Spill(new_value.reg());
- if (s->is_eval_scope()) {
- // Loop up the context chain. There is no frame effect so it is
- // safe to use raw labels here.
- Label next, fast;
- if (!context.is(tmp.reg())) {
- __ movq(tmp.reg(), context);
+ DeferredCode* deferred = NULL;
+ if (is_postfix) {
+ deferred = new DeferredPostfixCountOperation(new_value.reg(),
+ old_value.reg(),
+ is_increment,
+ new_value.type_info());
+ } else {
+ deferred = new DeferredPrefixCountOperation(new_value.reg(),
+ is_increment,
+ new_value.type_info());
}
- // Load map for comparison into register, outside loop.
- __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex);
- __ bind(&next);
- // Terminate at global context.
- __ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset));
- __ j(equal, &fast);
- // Check that extension is NULL.
- __ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0));
- slow->Branch(not_equal);
- // Load next context in chain.
- __ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX));
- __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset));
- __ jmp(&next);
- __ bind(&fast);
- }
- tmp.Unuse();
- // All extension objects were empty and it is safe to use a global
- // load IC call.
- LoadGlobal();
- frame_->Push(slot->var()->name());
- RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
- ? RelocInfo::CODE_TARGET
- : RelocInfo::CODE_TARGET_CONTEXT;
- Result answer = frame_->CallLoadIC(mode);
- // A test rax instruction following the call signals that the inobject
- // property case was inlined. Ensure that there is not a test rax
- // instruction here.
- masm_->nop();
- return answer;
-}
-
-
-void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot,
- TypeofState typeof_state,
- Result* result,
- JumpTarget* slow,
- JumpTarget* done) {
- // Generate fast-case code for variables that might be shadowed by
- // eval-introduced variables. Eval is used a lot without
- // introducing variables. In those cases, we do not want to
- // perform a runtime call for all variables in the scope
- // containing the eval.
- if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) {
- *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow);
- done->Jump(result);
-
- } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) {
- Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot();
- Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite();
- if (potential_slot != NULL) {
- // Generate fast case for locals that rewrite to slots.
- // Allocate a fresh register to use as a temp in
- // ContextSlotOperandCheckExtensions and to hold the result
- // value.
- *result = allocator_->Allocate();
- ASSERT(result->is_valid());
- __ movq(result->reg(),
- ContextSlotOperandCheckExtensions(potential_slot,
- *result,
- slow));
- if (potential_slot->var()->mode() == Variable::CONST) {
- __ CompareRoot(result->reg(), Heap::kTheHoleValueRootIndex);
- done->Branch(not_equal, result);
- __ LoadRoot(result->reg(), Heap::kUndefinedValueRootIndex);
- }
- done->Jump(result);
- } else if (rewrite != NULL) {
- // Generate fast case for argument loads.
- Property* property = rewrite->AsProperty();
- if (property != NULL) {
- VariableProxy* obj_proxy = property->obj()->AsVariableProxy();
- Literal* key_literal = property->key()->AsLiteral();
- if (obj_proxy != NULL &&
- key_literal != NULL &&
- obj_proxy->IsArguments() &&
- key_literal->handle()->IsSmi()) {
- // Load arguments object if there are no eval-introduced
- // variables. Then load the argument from the arguments
- // object using keyed load.
- Result arguments = allocator()->Allocate();
- ASSERT(arguments.is_valid());
- __ movq(arguments.reg(),
- ContextSlotOperandCheckExtensions(obj_proxy->var()->slot(),
- arguments,
- slow));
- frame_->Push(&arguments);
- frame_->Push(key_literal->handle());
- *result = EmitKeyedLoad();
- done->Jump(result);
- }
- }
+ if (new_value.is_smi()) {
+ if (FLAG_debug_code) { __ AbortIfNotSmi(new_value.reg()); }
+ } else {
+ __ JumpIfNotSmi(new_value.reg(), deferred->entry_label());
}
- }
-}
-
-
-void CodeGenerator::LoadGlobal() {
- if (in_spilled_code()) {
- frame_->EmitPush(GlobalObject());
- } else {
- Result temp = allocator_->Allocate();
- __ movq(temp.reg(), GlobalObject());
- frame_->Push(&temp);
- }
-}
-
-
-void CodeGenerator::LoadGlobalReceiver() {
- Result temp = allocator_->Allocate();
- Register reg = temp.reg();
- __ movq(reg, GlobalObject());
- __ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset));
- frame_->Push(&temp);
-}
-
-
-ArgumentsAllocationMode CodeGenerator::ArgumentsMode() {
- if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION;
- ASSERT(scope()->arguments_shadow() != NULL);
- // We don't want to do lazy arguments allocation for functions that
- // have heap-allocated contexts, because it interfers with the
- // uninitialized const tracking in the context objects.
- return (scope()->num_heap_slots() > 0)
- ? EAGER_ARGUMENTS_ALLOCATION
- : LAZY_ARGUMENTS_ALLOCATION;
-}
-
-
-Result CodeGenerator::StoreArgumentsObject(bool initial) {
- ArgumentsAllocationMode mode = ArgumentsMode();
- ASSERT(mode != NO_ARGUMENTS_ALLOCATION);
-
- Comment cmnt(masm_, "[ store arguments object");
- if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) {
- // When using lazy arguments allocation, we store the hole value
- // as a sentinel indicating that the arguments object hasn't been
- // allocated yet.
- frame_->Push(Factory::the_hole_value());
- } else {
- ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT);
- frame_->PushFunction();
- frame_->PushReceiverSlotAddress();
- frame_->Push(Smi::FromInt(scope()->num_parameters()));
- Result result = frame_->CallStub(&stub, 3);
- frame_->Push(&result);
- }
-
-
- Variable* arguments = scope()->arguments()->var();
- Variable* shadow = scope()->arguments_shadow()->var();
- ASSERT(arguments != NULL && arguments->slot() != NULL);
- ASSERT(shadow != NULL && shadow->slot() != NULL);
- JumpTarget done;
- bool skip_arguments = false;
- if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) {
- // We have to skip storing into the arguments slot if it has
- // already been written to. This can happen if the a function
- // has a local variable named 'arguments'.
- LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF);
- Result probe = frame_->Pop();
- if (probe.is_constant()) {
- // We have to skip updating the arguments object if it has been
- // assigned a proper value.
- skip_arguments = !probe.handle()->IsTheHole();
+ if (is_increment) {
+ __ SmiAddConstant(new_value.reg(),
+ new_value.reg(),
+ Smi::FromInt(1),
+ deferred->entry_label());
} else {
- __ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex);
- probe.Unuse();
- done.Branch(not_equal);
+ __ SmiSubConstant(new_value.reg(),
+ new_value.reg(),
+ Smi::FromInt(1),
+ deferred->entry_label());
}
- }
- if (!skip_arguments) {
- StoreToSlot(arguments->slot(), NOT_CONST_INIT);
- if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind();
- }
- StoreToSlot(shadow->slot(), NOT_CONST_INIT);
- return frame_->Pop();
-}
+ deferred->BindExit();
+ // Postfix count operations return their input converted to
+ // number. The case when the input is already a number is covered
+ // above in the allocation code for old_value.
+ if (is_postfix && !new_value.type_info().IsNumber()) {
+ old_value.set_type_info(TypeInfo::Number());
+ }
-void CodeGenerator::LoadTypeofExpression(Expression* expr) {
- // Special handling of identifiers as subexpressions of typeof.
- Variable* variable = expr->AsVariableProxy()->AsVariable();
- if (variable != NULL && !variable->is_this() && variable->is_global()) {
- // For a global variable we build the property reference
- // <global>.<variable> and perform a (regular non-contextual) property
- // load to make sure we do not get reference errors.
- Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX);
- Literal key(variable->name());
- Property property(&global, &key, RelocInfo::kNoPosition);
- Reference ref(this, &property);
- ref.GetValue();
- } else if (variable != NULL && variable->slot() != NULL) {
- // For a variable that rewrites to a slot, we signal it is the immediate
- // subexpression of a typeof.
- LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF);
- } else {
- // Anything else can be handled normally.
- Load(expr);
- }
-}
+ new_value.set_type_info(TypeInfo::Number());
+ // Postfix: store the old value in the allocated slot under the
+ // reference.
+ if (is_postfix) frame_->SetElementAt(target.size(), &old_value);
-static bool CouldBeNaN(const Result& result) {
- if (result.type_info().IsSmi()) return false;
- if (result.type_info().IsInteger32()) return false;
- if (!result.is_constant()) return true;
- if (!result.handle()->IsHeapNumber()) return false;
- return isnan(HeapNumber::cast(*result.handle())->value());
-}
-
-
-// Convert from signed to unsigned comparison to match the way EFLAGS are set
-// by FPU and XMM compare instructions.
-static Condition DoubleCondition(Condition cc) {
- switch (cc) {
- case less: return below;
- case equal: return equal;
- case less_equal: return below_equal;
- case greater: return above;
- case greater_equal: return above_equal;
- default: UNREACHABLE();
+ frame_->Push(&new_value);
+ // Non-constant: update the reference.
+ if (!is_const) target.SetValue(NOT_CONST_INIT);
}
- UNREACHABLE();
- return equal;
+
+ // Postfix: drop the new value and use the old.
+ if (is_postfix) frame_->Drop();
}
-void CodeGenerator::Comparison(AstNode* node,
- Condition cc,
- bool strict,
- ControlDestination* dest) {
- // Strict only makes sense for equality comparisons.
- ASSERT(!strict || cc == equal);
+void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) {
+ // According to ECMA-262 section 11.11, page 58, the binary logical
+ // operators must yield the result of one of the two expressions
+ // before any ToBoolean() conversions. This means that the value
+ // produced by a && or || operator is not necessarily a boolean.
- Result left_side;
- Result right_side;
- // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order.
- if (cc == greater || cc == less_equal) {
- cc = ReverseCondition(cc);
- left_side = frame_->Pop();
- right_side = frame_->Pop();
- } else {
- right_side = frame_->Pop();
- left_side = frame_->Pop();
- }
- ASSERT(cc == less || cc == equal || cc == greater_equal);
+ // NOTE: If the left hand side produces a materialized value (not
+ // control flow), we force the right hand side to do the same. This
+ // is necessary because we assume that if we get control flow on the
+ // last path out of an expression we got it on all paths.
+ if (node->op() == Token::AND) {
+ JumpTarget is_true;
+ ControlDestination dest(&is_true, destination()->false_target(), true);
+ LoadCondition(node->left(), &dest, false);
- // If either side is a constant smi, optimize the comparison.
- bool left_side_constant_smi = false;
- bool left_side_constant_null = false;
- bool left_side_constant_1_char_string = false;
- if (left_side.is_constant()) {
- left_side_constant_smi = left_side.handle()->IsSmi();
- left_side_constant_null = left_side.handle()->IsNull();
- left_side_constant_1_char_string =
- (left_side.handle()->IsString() &&
- String::cast(*left_side.handle())->length() == 1 &&
- String::cast(*left_side.handle())->IsAsciiRepresentation());
- }
- bool right_side_constant_smi = false;
- bool right_side_constant_null = false;
- bool right_side_constant_1_char_string = false;
- if (right_side.is_constant()) {
- right_side_constant_smi = right_side.handle()->IsSmi();
- right_side_constant_null = right_side.handle()->IsNull();
- right_side_constant_1_char_string =
- (right_side.handle()->IsString() &&
- String::cast(*right_side.handle())->length() == 1 &&
- String::cast(*right_side.handle())->IsAsciiRepresentation());
- }
-
- if (left_side_constant_smi || right_side_constant_smi) {
- if (left_side_constant_smi && right_side_constant_smi) {
- // Trivial case, comparing two constants.
- int left_value = Smi::cast(*left_side.handle())->value();
- int right_value = Smi::cast(*right_side.handle())->value();
- switch (cc) {
- case less:
- dest->Goto(left_value < right_value);
- break;
- case equal:
- dest->Goto(left_value == right_value);
- break;
- case greater_equal:
- dest->Goto(left_value >= right_value);
- break;
- default:
- UNREACHABLE();
- }
- } else {
- // Only one side is a constant Smi.
- // If left side is a constant Smi, reverse the operands.
- // Since one side is a constant Smi, conversion order does not matter.
- if (left_side_constant_smi) {
- Result temp = left_side;
- left_side = right_side;
- right_side = temp;
- cc = ReverseCondition(cc);
- // This may re-introduce greater or less_equal as the value of cc.
- // CompareStub and the inline code both support all values of cc.
- }
- // Implement comparison against a constant Smi, inlining the case
- // where both sides are Smis.
- left_side.ToRegister();
- Register left_reg = left_side.reg();
- Handle<Object> right_val = right_side.handle();
-
- // Here we split control flow to the stub call and inlined cases
- // before finally splitting it to the control destination. We use
- // a jump target and branching to duplicate the virtual frame at
- // the first split. We manually handle the off-frame references
- // by reconstituting them on the non-fall-through path.
- JumpTarget is_smi;
-
- if (left_side.is_smi()) {
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(left_side.reg());
+ if (dest.false_was_fall_through()) {
+ // The current false target was used as the fall-through. If
+ // there are no dangling jumps to is_true then the left
+ // subexpression was unconditionally false. Otherwise we have
+ // paths where we do have to evaluate the right subexpression.
+ if (is_true.is_linked()) {
+ // We need to compile the right subexpression. If the jump to
+ // the current false target was a forward jump then we have a
+ // valid frame, we have just bound the false target, and we
+ // have to jump around the code for the right subexpression.
+ if (has_valid_frame()) {
+ destination()->false_target()->Unuse();
+ destination()->false_target()->Jump();
}
+ is_true.Bind();
+ // The left subexpression compiled to control flow, so the
+ // right one is free to do so as well.
+ LoadCondition(node->right(), destination(), false);
} else {
- Condition left_is_smi = masm_->CheckSmi(left_side.reg());
- is_smi.Branch(left_is_smi);
-
- bool is_loop_condition = (node->AsExpression() != NULL) &&
- node->AsExpression()->is_loop_condition();
- if (!is_loop_condition && right_val->IsSmi()) {
- // Right side is a constant smi and left side has been checked
- // not to be a smi.
- JumpTarget not_number;
- __ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset),
- Factory::heap_number_map());
- not_number.Branch(not_equal, &left_side);
- __ movsd(xmm1,
- FieldOperand(left_reg, HeapNumber::kValueOffset));
- int value = Smi::cast(*right_val)->value();
- if (value == 0) {
- __ xorpd(xmm0, xmm0);
- } else {
- Result temp = allocator()->Allocate();
- __ movl(temp.reg(), Immediate(value));
- __ cvtlsi2sd(xmm0, temp.reg());
- temp.Unuse();
- }
- __ ucomisd(xmm1, xmm0);
- // Jump to builtin for NaN.
- not_number.Branch(parity_even, &left_side);
- left_side.Unuse();
- dest->true_target()->Branch(DoubleCondition(cc));
- dest->false_target()->Jump();
- not_number.Bind(&left_side);
- }
-
- // Setup and call the compare stub.
- CompareStub stub(cc, strict, kCantBothBeNaN);
- Result result = frame_->CallStub(&stub, &left_side, &right_side);
- result.ToRegister();
- __ testq(result.reg(), result.reg());
- result.Unuse();
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
-
- is_smi.Bind();
+ // We have actually just jumped to or bound the current false
+ // target but the current control destination is not marked as
+ // used.
+ destination()->Use(false);
}
- left_side = Result(left_reg);
- right_side = Result(right_val);
- // Test smi equality and comparison by signed int comparison.
- // Both sides are smis, so we can use an Immediate.
- __ SmiCompare(left_side.reg(), Smi::cast(*right_side.handle()));
- left_side.Unuse();
- right_side.Unuse();
- dest->Split(cc);
- }
- } else if (cc == equal &&
- (left_side_constant_null || right_side_constant_null)) {
- // To make null checks efficient, we check if either the left side or
- // the right side is the constant 'null'.
- // If so, we optimize the code by inlining a null check instead of
- // calling the (very) general runtime routine for checking equality.
- Result operand = left_side_constant_null ? right_side : left_side;
- right_side.Unuse();
- left_side.Unuse();
- operand.ToRegister();
- __ CompareRoot(operand.reg(), Heap::kNullValueRootIndex);
- if (strict) {
- operand.Unuse();
- dest->Split(equal);
- } else {
- // The 'null' value is only equal to 'undefined' if using non-strict
- // comparisons.
- dest->true_target()->Branch(equal);
- __ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex);
- dest->true_target()->Branch(equal);
- Condition is_smi = masm_->CheckSmi(operand.reg());
- dest->false_target()->Branch(is_smi);
+ } else if (dest.is_used()) {
+ // The left subexpression compiled to control flow (and is_true
+ // was just bound), so the right is free to do so as well.
+ LoadCondition(node->right(), destination(), false);
- // It can be an undetectable object.
- // Use a scratch register in preference to spilling operand.reg().
- Result temp = allocator()->Allocate();
- ASSERT(temp.is_valid());
- __ movq(temp.reg(),
- FieldOperand(operand.reg(), HeapObject::kMapOffset));
- __ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset),
- Immediate(1 << Map::kIsUndetectable));
- temp.Unuse();
- operand.Unuse();
- dest->Split(not_zero);
- }
- } else if (left_side_constant_1_char_string ||
- right_side_constant_1_char_string) {
- if (left_side_constant_1_char_string && right_side_constant_1_char_string) {
- // Trivial case, comparing two constants.
- int left_value = String::cast(*left_side.handle())->Get(0);
- int right_value = String::cast(*right_side.handle())->Get(0);
- switch (cc) {
- case less:
- dest->Goto(left_value < right_value);
- break;
- case equal:
- dest->Goto(left_value == right_value);
- break;
- case greater_equal:
- dest->Goto(left_value >= right_value);
- break;
- default:
- UNREACHABLE();
- }
} else {
- // Only one side is a constant 1 character string.
- // If left side is a constant 1-character string, reverse the operands.
- // Since one side is a constant string, conversion order does not matter.
- if (left_side_constant_1_char_string) {
- Result temp = left_side;
- left_side = right_side;
- right_side = temp;
- cc = ReverseCondition(cc);
- // This may reintroduce greater or less_equal as the value of cc.
- // CompareStub and the inline code both support all values of cc.
- }
- // Implement comparison against a constant string, inlining the case
- // where both sides are strings.
- left_side.ToRegister();
+ // We have a materialized value on the frame, so we exit with
+ // one on all paths. There are possibly also jumps to is_true
+ // from nested subexpressions.
+ JumpTarget pop_and_continue;
+ JumpTarget exit;
- // Here we split control flow to the stub call and inlined cases
- // before finally splitting it to the control destination. We use
- // a jump target and branching to duplicate the virtual frame at
- // the first split. We manually handle the off-frame references
- // by reconstituting them on the non-fall-through path.
- JumpTarget is_not_string, is_string;
- Register left_reg = left_side.reg();
- Handle<Object> right_val = right_side.handle();
- ASSERT(StringShape(String::cast(*right_val)).IsSymbol());
- Condition is_smi = masm()->CheckSmi(left_reg);
- is_not_string.Branch(is_smi, &left_side);
- Result temp = allocator_->Allocate();
- ASSERT(temp.is_valid());
- __ movq(temp.reg(),
- FieldOperand(left_reg, HeapObject::kMapOffset));
- __ movzxbl(temp.reg(),
- FieldOperand(temp.reg(), Map::kInstanceTypeOffset));
- // If we are testing for equality then make use of the symbol shortcut.
- // Check if the left hand side has the same type as the right hand
- // side (which is always a symbol).
- if (cc == equal) {
- Label not_a_symbol;
- ASSERT(kSymbolTag != 0);
- // Ensure that no non-strings have the symbol bit set.
- ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE);
- __ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit.
- __ j(zero, &not_a_symbol);
- // They are symbols, so do identity compare.
- __ Cmp(left_reg, right_side.handle());
- dest->true_target()->Branch(equal);
- dest->false_target()->Branch(not_equal);
- __ bind(&not_a_symbol);
- }
- // Call the compare stub if the left side is not a flat ascii string.
- __ andb(temp.reg(),
- Immediate(kIsNotStringMask |
- kStringRepresentationMask |
- kStringEncodingMask));
- __ cmpb(temp.reg(),
- Immediate(kStringTag | kSeqStringTag | kAsciiStringTag));
- temp.Unuse();
- is_string.Branch(equal, &left_side);
+ // Avoid popping the result if it converts to 'false' using the
+ // standard ToBoolean() conversion as described in ECMA-262,
+ // section 9.2, page 30.
+ //
+ // Duplicate the TOS value. The duplicate will be popped by
+ // ToBoolean.
+ frame_->Dup();
+ ControlDestination dest(&pop_and_continue, &exit, true);
+ ToBoolean(&dest);
- // Setup and call the compare stub.
- is_not_string.Bind(&left_side);
- CompareStub stub(cc, strict, kCantBothBeNaN);
- Result result = frame_->CallStub(&stub, &left_side, &right_side);
- result.ToRegister();
- __ testq(result.reg(), result.reg());
- result.Unuse();
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
+ // Pop the result of evaluating the first part.
+ frame_->Drop();
- is_string.Bind(&left_side);
- // left_side is a sequential ASCII string.
- ASSERT(left_side.reg().is(left_reg));
- right_side = Result(right_val);
- Result temp2 = allocator_->Allocate();
- ASSERT(temp2.is_valid());
- // Test string equality and comparison.
- if (cc == equal) {
- Label comparison_done;
- __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
- Smi::FromInt(1));
- __ j(not_equal, &comparison_done);
- uint8_t char_value =
- static_cast<uint8_t>(String::cast(*right_val)->Get(0));
- __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize),
- Immediate(char_value));
- __ bind(&comparison_done);
- } else {
- __ movq(temp2.reg(),
- FieldOperand(left_side.reg(), String::kLengthOffset));
- __ SmiSubConstant(temp2.reg(), temp2.reg(), Smi::FromInt(1));
- Label comparison;
- // If the length is 0 then the subtraction gave -1 which compares less
- // than any character.
- __ j(negative, &comparison);
- // Otherwise load the first character.
- __ movzxbl(temp2.reg(),
- FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize));
- __ bind(&comparison);
- // Compare the first character of the string with the
- // constant 1-character string.
- uint8_t char_value =
- static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0));
- __ cmpb(temp2.reg(), Immediate(char_value));
- Label characters_were_different;
- __ j(not_equal, &characters_were_different);
- // If the first character is the same then the long string sorts after
- // the short one.
- __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset),
- Smi::FromInt(1));
- __ bind(&characters_were_different);
- }
- temp2.Unuse();
- left_side.Unuse();
- right_side.Unuse();
- dest->Split(cc);
+ // Compile right side expression.
+ is_true.Bind();
+ Load(node->right());
+
+ // Exit (always with a materialized value).
+ exit.Bind();
}
+
} else {
- // Neither side is a constant Smi, constant 1-char string, or constant null.
- // If either side is a non-smi constant, skip the smi check.
- bool known_non_smi =
- (left_side.is_constant() && !left_side.handle()->IsSmi()) ||
- (right_side.is_constant() && !right_side.handle()->IsSmi()) ||
- left_side.type_info().IsDouble() ||
- right_side.type_info().IsDouble();
+ ASSERT(node->op() == Token::OR);
+ JumpTarget is_false;
+ ControlDestination dest(destination()->true_target(), &is_false, false);
+ LoadCondition(node->left(), &dest, false);
- NaNInformation nan_info =
- (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ?
- kBothCouldBeNaN :
- kCantBothBeNaN;
-
- // Inline number comparison handling any combination of smi's and heap
- // numbers if:
- // code is in a loop
- // the compare operation is different from equal
- // compare is not a for-loop comparison
- // The reason for excluding equal is that it will most likely be done
- // with smi's (not heap numbers) and the code to comparing smi's is inlined
- // separately. The same reason applies for for-loop comparison which will
- // also most likely be smi comparisons.
- bool is_loop_condition = (node->AsExpression() != NULL)
- && node->AsExpression()->is_loop_condition();
- bool inline_number_compare =
- loop_nesting() > 0 && cc != equal && !is_loop_condition;
-
- left_side.ToRegister();
- right_side.ToRegister();
-
- if (known_non_smi) {
- // Inlined equality check:
- // If at least one of the objects is not NaN, then if the objects
- // are identical, they are equal.
- if (nan_info == kCantBothBeNaN && cc == equal) {
- __ cmpq(left_side.reg(), right_side.reg());
- dest->true_target()->Branch(equal);
+ if (dest.true_was_fall_through()) {
+ // The current true target was used as the fall-through. If
+ // there are no dangling jumps to is_false then the left
+ // subexpression was unconditionally true. Otherwise we have
+ // paths where we do have to evaluate the right subexpression.
+ if (is_false.is_linked()) {
+ // We need to compile the right subexpression. If the jump to
+ // the current true target was a forward jump then we have a
+ // valid frame, we have just bound the true target, and we
+ // have to jump around the code for the right subexpression.
+ if (has_valid_frame()) {
+ destination()->true_target()->Unuse();
+ destination()->true_target()->Jump();
+ }
+ is_false.Bind();
+ // The left subexpression compiled to control flow, so the
+ // right one is free to do so as well.
+ LoadCondition(node->right(), destination(), false);
+ } else {
+ // We have just jumped to or bound the current true target but
+ // the current control destination is not marked as used.
+ destination()->Use(true);
}
- // Inlined number comparison:
- if (inline_number_compare) {
- GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
- }
+ } else if (dest.is_used()) {
+ // The left subexpression compiled to control flow (and is_false
+ // was just bound), so the right is free to do so as well.
+ LoadCondition(node->right(), destination(), false);
- CompareStub stub(cc, strict, nan_info, !inline_number_compare);
- Result answer = frame_->CallStub(&stub, &left_side, &right_side);
- __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flag.
- answer.Unuse();
- dest->Split(cc);
} else {
- // Here we split control flow to the stub call and inlined cases
- // before finally splitting it to the control destination. We use
- // a jump target and branching to duplicate the virtual frame at
- // the first split. We manually handle the off-frame references
- // by reconstituting them on the non-fall-through path.
- JumpTarget is_smi;
- Register left_reg = left_side.reg();
- Register right_reg = right_side.reg();
+ // We have a materialized value on the frame, so we exit with
+ // one on all paths. There are possibly also jumps to is_false
+ // from nested subexpressions.
+ JumpTarget pop_and_continue;
+ JumpTarget exit;
- Condition both_smi = masm_->CheckBothSmi(left_reg, right_reg);
- is_smi.Branch(both_smi);
+ // Avoid popping the result if it converts to 'true' using the
+ // standard ToBoolean() conversion as described in ECMA-262,
+ // section 9.2, page 30.
+ //
+ // Duplicate the TOS value. The duplicate will be popped by
+ // ToBoolean.
+ frame_->Dup();
+ ControlDestination dest(&exit, &pop_and_continue, false);
+ ToBoolean(&dest);
- // Inline the equality check if both operands can't be a NaN. If both
- // objects are the same they are equal.
- if (nan_info == kCantBothBeNaN && cc == equal) {
- __ cmpq(left_side.reg(), right_side.reg());
- dest->true_target()->Branch(equal);
- }
+ // Pop the result of evaluating the first part.
+ frame_->Drop();
- // Inlined number comparison:
- if (inline_number_compare) {
- GenerateInlineNumberComparison(&left_side, &right_side, cc, dest);
- }
+ // Compile right side expression.
+ is_false.Bind();
+ Load(node->right());
- CompareStub stub(cc, strict, nan_info, !inline_number_compare);
- Result answer = frame_->CallStub(&stub, &left_side, &right_side);
- __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flags.
- answer.Unuse();
- dest->true_target()->Branch(cc);
- dest->false_target()->Jump();
-
- is_smi.Bind();
- left_side = Result(left_reg);
- right_side = Result(right_reg);
- __ SmiCompare(left_side.reg(), right_side.reg());
- right_side.Unuse();
- left_side.Unuse();
- dest->Split(cc);
+ // Exit (always with a materialized value).
+ exit.Bind();
}
}
}
+void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) {
+ Comment cmnt(masm_, "[ BinaryOperation");
-// Load a comparison operand into into a XMM register. Jump to not_numbers jump
-// target passing the left and right result if the operand is not a number.
-static void LoadComparisonOperand(MacroAssembler* masm_,
- Result* operand,
- XMMRegister xmm_reg,
- Result* left_side,
- Result* right_side,
- JumpTarget* not_numbers) {
- Label done;
- if (operand->type_info().IsDouble()) {
- // Operand is known to be a heap number, just load it.
- __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
- } else if (operand->type_info().IsSmi()) {
- // Operand is known to be a smi. Convert it to double and keep the original
- // smi.
- __ SmiToInteger32(kScratchRegister, operand->reg());
- __ cvtlsi2sd(xmm_reg, kScratchRegister);
+ if (node->op() == Token::AND || node->op() == Token::OR) {
+ GenerateLogicalBooleanOperation(node);
} else {
- // Operand type not known, check for smi or heap number.
- Label smi;
- __ JumpIfSmi(operand->reg(), &smi);
- if (!operand->type_info().IsNumber()) {
- __ LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex);
- __ cmpq(FieldOperand(operand->reg(), HeapObject::kMapOffset),
- kScratchRegister);
- not_numbers->Branch(not_equal, left_side, right_side, taken);
+ // NOTE: The code below assumes that the slow cases (calls to runtime)
+ // never return a constant/immutable object.
+ OverwriteMode overwrite_mode = NO_OVERWRITE;
+ if (node->left()->AsBinaryOperation() != NULL &&
+ node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) {
+ overwrite_mode = OVERWRITE_LEFT;
+ } else if (node->right()->AsBinaryOperation() != NULL &&
+ node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) {
+ overwrite_mode = OVERWRITE_RIGHT;
}
- __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset));
- __ jmp(&done);
- __ bind(&smi);
- // Comvert smi to float and keep the original smi.
- __ SmiToInteger32(kScratchRegister, operand->reg());
- __ cvtlsi2sd(xmm_reg, kScratchRegister);
- __ jmp(&done);
+ if (node->left()->IsTrivial()) {
+ Load(node->right());
+ Result right = frame_->Pop();
+ frame_->Push(node->left());
+ frame_->Push(&right);
+ } else {
+ Load(node->left());
+ Load(node->right());
+ }
+ GenericBinaryOperation(node, overwrite_mode);
}
- __ bind(&done);
}
-void CodeGenerator::GenerateInlineNumberComparison(Result* left_side,
- Result* right_side,
- Condition cc,
- ControlDestination* dest) {
- ASSERT(left_side->is_register());
- ASSERT(right_side->is_register());
-
- JumpTarget not_numbers;
- // Load left and right operand into registers xmm0 and xmm1 and compare.
- LoadComparisonOperand(masm_, left_side, xmm0, left_side, right_side,
- &not_numbers);
- LoadComparisonOperand(masm_, right_side, xmm1, left_side, right_side,
- &not_numbers);
- __ ucomisd(xmm0, xmm1);
- // Bail out if a NaN is involved.
- not_numbers.Branch(parity_even, left_side, right_side);
-
- // Split to destination targets based on comparison.
- left_side->Unuse();
- right_side->Unuse();
- dest->true_target()->Branch(DoubleCondition(cc));
- dest->false_target()->Jump();
-
- not_numbers.Bind(left_side, right_side);
+void CodeGenerator::VisitThisFunction(ThisFunction* node) {
+ frame_->PushFunction();
}
-class DeferredInlineBinaryOperation: public DeferredCode {
- public:
- DeferredInlineBinaryOperation(Token::Value op,
- Register dst,
- Register left,
- Register right,
- OverwriteMode mode)
- : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) {
- set_comment("[ DeferredInlineBinaryOperation");
- }
+void CodeGenerator::VisitCompareOperation(CompareOperation* node) {
+ Comment cmnt(masm_, "[ CompareOperation");
- virtual void Generate();
+ // Get the expressions from the node.
+ Expression* left = node->left();
+ Expression* right = node->right();
+ Token::Value op = node->op();
+ // To make typeof testing for natives implemented in JavaScript really
+ // efficient, we generate special code for expressions of the form:
+ // 'typeof <expression> == <string>'.
+ UnaryOperation* operation = left->AsUnaryOperation();
+ if ((op == Token::EQ || op == Token::EQ_STRICT) &&
+ (operation != NULL && operation->op() == Token::TYPEOF) &&
+ (right->AsLiteral() != NULL &&
+ right->AsLiteral()->handle()->IsString())) {
+ Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle()));
- private:
- Token::Value op_;
- Register dst_;
- Register left_;
- Register right_;
- OverwriteMode mode_;
-};
+ // Load the operand and move it to a register.
+ LoadTypeofExpression(operation->expression());
+ Result answer = frame_->Pop();
+ answer.ToRegister();
+ if (check->Equals(Heap::number_symbol())) {
+ Condition is_smi = masm_->CheckSmi(answer.reg());
+ destination()->true_target()->Branch(is_smi);
+ frame_->Spill(answer.reg());
+ __ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset));
+ __ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex);
+ answer.Unuse();
+ destination()->Split(equal);
-void DeferredInlineBinaryOperation::Generate() {
- Label done;
- if ((op_ == Token::ADD)
- || (op_ == Token::SUB)
- || (op_ == Token::MUL)
- || (op_ == Token::DIV)) {
- Label call_runtime;
- Label left_smi, right_smi, load_right, do_op;
- __ JumpIfSmi(left_, &left_smi);
- __ CompareRoot(FieldOperand(left_, HeapObject::kMapOffset),
- Heap::kHeapNumberMapRootIndex);
- __ j(not_equal, &call_runtime);
- __ movsd(xmm0, FieldOperand(left_, HeapNumber::kValueOffset));
- if (mode_ == OVERWRITE_LEFT) {
- __ movq(dst_, left_);
- }
- __ jmp(&load_right);
+ } else if (check->Equals(Heap::string_symbol())) {
+ Condition is_smi = masm_->CheckSmi(answer.reg());
+ destination()->false_target()->Branch(is_smi);
- __ bind(&left_smi);
- __ SmiToInteger32(left_, left_);
- __ cvtlsi2sd(xmm0, left_);
- __ Integer32ToSmi(left_, left_);
- if (mode_ == OVERWRITE_LEFT) {
- Label alloc_failure;
- __ AllocateHeapNumber(dst_, no_reg, &call_runtime);
- }
+ // It can be an undetectable string object.
+ __ movq(kScratchRegister,
+ FieldOperand(answer.reg(), HeapObject::kMapOffset));
+ __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ destination()->false_target()->Branch(not_zero);
+ __ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE);
+ answer.Unuse();
+ destination()->Split(below); // Unsigned byte comparison needed.
- __ bind(&load_right);
- __ JumpIfSmi(right_, &right_smi);
- __ CompareRoot(FieldOperand(right_, HeapObject::kMapOffset),
- Heap::kHeapNumberMapRootIndex);
- __ j(not_equal, &call_runtime);
- __ movsd(xmm1, FieldOperand(right_, HeapNumber::kValueOffset));
- if (mode_ == OVERWRITE_RIGHT) {
- __ movq(dst_, right_);
- } else if (mode_ == NO_OVERWRITE) {
- Label alloc_failure;
- __ AllocateHeapNumber(dst_, no_reg, &call_runtime);
- }
- __ jmp(&do_op);
+ } else if (check->Equals(Heap::boolean_symbol())) {
+ __ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex);
+ destination()->true_target()->Branch(equal);
+ __ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex);
+ answer.Unuse();
+ destination()->Split(equal);
- __ bind(&right_smi);
- __ SmiToInteger32(right_, right_);
- __ cvtlsi2sd(xmm1, right_);
- __ Integer32ToSmi(right_, right_);
- if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) {
- Label alloc_failure;
- __ AllocateHeapNumber(dst_, no_reg, &call_runtime);
- }
+ } else if (check->Equals(Heap::undefined_symbol())) {
+ __ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex);
+ destination()->true_target()->Branch(equal);
- __ bind(&do_op);
- switch (op_) {
- case Token::ADD: __ addsd(xmm0, xmm1); break;
- case Token::SUB: __ subsd(xmm0, xmm1); break;
- case Token::MUL: __ mulsd(xmm0, xmm1); break;
- case Token::DIV: __ divsd(xmm0, xmm1); break;
- default: UNREACHABLE();
- }
- __ movsd(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0);
- __ jmp(&done);
+ Condition is_smi = masm_->CheckSmi(answer.reg());
+ destination()->false_target()->Branch(is_smi);
- __ bind(&call_runtime);
- }
- GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB);
- stub.GenerateCall(masm_, left_, right_);
- if (!dst_.is(rax)) __ movq(dst_, rax);
- __ bind(&done);
-}
+ // It can be an undetectable object.
+ __ movq(kScratchRegister,
+ FieldOperand(answer.reg(), HeapObject::kMapOffset));
+ __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ answer.Unuse();
+ destination()->Split(not_zero);
+ } else if (check->Equals(Heap::function_symbol())) {
+ Condition is_smi = masm_->CheckSmi(answer.reg());
+ destination()->false_target()->Branch(is_smi);
+ frame_->Spill(answer.reg());
+ __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg());
+ destination()->true_target()->Branch(equal);
+ // Regular expressions are callable so typeof == 'function'.
+ __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE);
+ answer.Unuse();
+ destination()->Split(equal);
-static TypeInfo CalculateTypeInfo(TypeInfo operands_type,
- Token::Value op,
- const Result& right,
- const Result& left) {
- // Set TypeInfo of result according to the operation performed.
- // We rely on the fact that smis have a 32 bit payload on x64.
- STATIC_ASSERT(kSmiValueSize == 32);
- switch (op) {
- case Token::COMMA:
- return right.type_info();
- case Token::OR:
- case Token::AND:
- // Result type can be either of the two input types.
- return operands_type;
- case Token::BIT_OR:
- case Token::BIT_XOR:
- case Token::BIT_AND:
- // Result is always a smi.
- return TypeInfo::Smi();
- case Token::SAR:
- case Token::SHL:
- // Result is always a smi.
- return TypeInfo::Smi();
- case Token::SHR:
- // Result of x >>> y is always a smi if masked y >= 1, otherwise a number.
- return (right.is_constant() && right.handle()->IsSmi()
- && (Smi::cast(*right.handle())->value() & 0x1F) >= 1)
- ? TypeInfo::Smi()
- : TypeInfo::Number();
- case Token::ADD:
- if (operands_type.IsNumber()) {
- return TypeInfo::Number();
- } else if (left.type_info().IsString() || right.type_info().IsString()) {
- return TypeInfo::String();
- } else {
- return TypeInfo::Unknown();
- }
- case Token::SUB:
- case Token::MUL:
- case Token::DIV:
- case Token::MOD:
- // Result is always a number.
- return TypeInfo::Number();
- default:
- UNREACHABLE();
- }
- UNREACHABLE();
- return TypeInfo::Unknown();
-}
+ } else if (check->Equals(Heap::object_symbol())) {
+ Condition is_smi = masm_->CheckSmi(answer.reg());
+ destination()->false_target()->Branch(is_smi);
+ __ CompareRoot(answer.reg(), Heap::kNullValueRootIndex);
+ destination()->true_target()->Branch(equal);
+ // Regular expressions are typeof == 'function', not 'object'.
+ __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister);
+ destination()->false_target()->Branch(equal);
-void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr,
- OverwriteMode overwrite_mode) {
- Comment cmnt(masm_, "[ BinaryOperation");
- Token::Value op = expr->op();
- Comment cmnt_token(masm_, Token::String(op));
-
- if (op == Token::COMMA) {
- // Simply discard left value.
- frame_->Nip(1);
+ // It can be an undetectable object.
+ __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
+ Immediate(1 << Map::kIsUndetectable));
+ destination()->false_target()->Branch(not_zero);
+ __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE);
+ destination()->false_target()->Branch(below);
+ __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
+ answer.Unuse();
+ destination()->Split(below_equal);
+ } else {
+ // Uncommon case: typeof testing against a string literal that is
+ // never returned from the typeof operator.
+ answer.Unuse();
+ destination()->Goto(false);
+ }
return;
}
- Result right = frame_->Pop();
- Result left = frame_->Pop();
-
- if (op == Token::ADD) {
- const bool left_is_string = left.type_info().IsString();
- const bool right_is_string = right.type_info().IsString();
- // Make sure constant strings have string type info.
- ASSERT(!(left.is_constant() && left.handle()->IsString()) ||
- left_is_string);
- ASSERT(!(right.is_constant() && right.handle()->IsString()) ||
- right_is_string);
- if (left_is_string || right_is_string) {
- frame_->Push(&left);
- frame_->Push(&right);
- Result answer;
- if (left_is_string) {
- if (right_is_string) {
- StringAddStub stub(NO_STRING_CHECK_IN_STUB);
- answer = frame_->CallStub(&stub, 2);
- } else {
- answer =
- frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2);
- }
- } else if (right_is_string) {
- answer =
- frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2);
- }
- answer.set_type_info(TypeInfo::String());
- frame_->Push(&answer);
+ Condition cc = no_condition;
+ bool strict = false;
+ switch (op) {
+ case Token::EQ_STRICT:
+ strict = true;
+ // Fall through
+ case Token::EQ:
+ cc = equal;
+ break;
+ case Token::LT:
+ cc = less;
+ break;
+ case Token::GT:
+ cc = greater;
+ break;
+ case Token::LTE:
+ cc = less_equal;
+ break;
+ case Token::GTE:
+ cc = greater_equal;
+ break;
+ case Token::IN: {
+ Load(left);
+ Load(right);
+ Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2);
+ frame_->Push(&answer); // push the result
return;
}
- // Neither operand is known to be a string.
+ case Token::INSTANCEOF: {
+ Load(left);
+ Load(right);
+ InstanceofStub stub;
+ Result answer = frame_->CallStub(&stub, 2);
+ answer.ToRegister();
+ __ testq(answer.reg(), answer.reg());
+ answer.Unuse();
+ destination()->Split(zero);
+ return;
+ }
+ default:
+ UNREACHABLE();
}
- bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi();
- bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi();
- bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi();
- bool right_is_non_smi_constant =
- right.is_constant() && !right.handle()->IsSmi();
-
- if (left_is_smi_constant && right_is_smi_constant) {
- // Compute the constant result at compile time, and leave it on the frame.
- int left_int = Smi::cast(*left.handle())->value();
- int right_int = Smi::cast(*right.handle())->value();
- if (FoldConstantSmis(op, left_int, right_int)) return;
+ if (left->IsTrivial()) {
+ Load(right);
+ Result right_result = frame_->Pop();
+ frame_->Push(left);
+ frame_->Push(&right_result);
+ } else {
+ Load(left);
+ Load(right);
}
- // Get number type of left and right sub-expressions.
- TypeInfo operands_type =
- TypeInfo::Combine(left.type_info(), right.type_info());
+ Comparison(node, cc, strict, destination());
+}
- TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left);
- Result answer;
- if (left_is_non_smi_constant || right_is_non_smi_constant) {
- // Go straight to the slow case, with no smi code.
- GenericBinaryOpStub stub(op,
- overwrite_mode,
- NO_SMI_CODE_IN_STUB,
- operands_type);
- answer = stub.GenerateCall(masm_, frame_, &left, &right);
- } else if (right_is_smi_constant) {
- answer = ConstantSmiBinaryOperation(expr, &left, right.handle(),
- false, overwrite_mode);
- } else if (left_is_smi_constant) {
- answer = ConstantSmiBinaryOperation(expr, &right, left.handle(),
- true, overwrite_mode);
- } else {
- // Set the flags based on the operation, type and loop nesting level.
- // Bit operations always assume they likely operate on Smis. Still only
- // generate the inline Smi check code if this operation is part of a loop.
- // For all other operations only inline the Smi check code for likely smis
- // if the operation is part of a loop.
- if (loop_nesting() > 0 &&
- (Token::IsBitOp(op) ||
- operands_type.IsInteger32() ||
- expr->type()->IsLikelySmi())) {
- answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode);
- } else {
- GenericBinaryOpStub stub(op,
- overwrite_mode,
- NO_GENERIC_BINARY_FLAGS,
- operands_type);
- answer = stub.GenerateCall(masm_, frame_, &left, &right);
- }
- }
-
- answer.set_type_info(result_type);
- frame_->Push(&answer);
+#ifdef DEBUG
+bool CodeGenerator::HasValidEntryRegisters() {
+ return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0))
+ && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0))
+ && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0))
+ && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0))
+ && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0))
+ && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0))
+ && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0))
+ && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0))
+ && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0))
+ && (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0));
}
+#endif
+
// Emit a LoadIC call to get the value from receiver and leave it in
// dst. The receiver register is restored after the call.
class DeferredReferenceGetNamedValue: public DeferredCode {
@@ -6898,623 +7494,155 @@
}
-void DeferredInlineSmiAdd::Generate() {
- GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
- igostub.GenerateCall(masm_, dst_, value_);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
+class DeferredReferenceGetKeyedValue: public DeferredCode {
+ public:
+ explicit DeferredReferenceGetKeyedValue(Register dst,
+ Register receiver,
+ Register key)
+ : dst_(dst), receiver_(receiver), key_(key) {
+ set_comment("[ DeferredReferenceGetKeyedValue");
+ }
+ virtual void Generate();
-void DeferredInlineSmiAddReversed::Generate() {
- GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB);
- igostub.GenerateCall(masm_, value_, dst_);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
+ Label* patch_site() { return &patch_site_; }
+ private:
+ Label patch_site_;
+ Register dst_;
+ Register receiver_;
+ Register key_;
+};
-void DeferredInlineSmiSub::Generate() {
- GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB);
- igostub.GenerateCall(masm_, dst_, value_);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-void DeferredInlineSmiOperation::Generate() {
- // For mod we don't generate all the Smi code inline.
- GenericBinaryOpStub stub(
- op_,
- overwrite_mode_,
- (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB);
- stub.GenerateCall(masm_, src_, value_);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-
-void DeferredInlineSmiOperationReversed::Generate() {
- GenericBinaryOpStub stub(
- op_,
- overwrite_mode_,
- NO_SMI_CODE_IN_STUB);
- stub.GenerateCall(masm_, value_, src_);
- if (!dst_.is(rax)) __ movq(dst_, rax);
-}
-
-
-Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr,
- Result* operand,
- Handle<Object> value,
- bool reversed,
- OverwriteMode overwrite_mode) {
- // Generate inline code for a binary operation when one of the
- // operands is a constant smi. Consumes the argument "operand".
- if (IsUnsafeSmi(value)) {
- Result unsafe_operand(value);
- if (reversed) {
- return LikelySmiBinaryOperation(expr, &unsafe_operand, operand,
- overwrite_mode);
+void DeferredReferenceGetKeyedValue::Generate() {
+ if (receiver_.is(rdx)) {
+ if (!key_.is(rax)) {
+ __ movq(rax, key_);
+ } // else do nothing.
+ } else if (receiver_.is(rax)) {
+ if (key_.is(rdx)) {
+ __ xchg(rax, rdx);
+ } else if (key_.is(rax)) {
+ __ movq(rdx, receiver_);
} else {
- return LikelySmiBinaryOperation(expr, operand, &unsafe_operand,
- overwrite_mode);
+ __ movq(rdx, receiver_);
+ __ movq(rax, key_);
}
+ } else if (key_.is(rax)) {
+ __ movq(rdx, receiver_);
+ } else {
+ __ movq(rax, key_);
+ __ movq(rdx, receiver_);
}
+ // Calculate the delta from the IC call instruction to the map check
+ // movq instruction in the inlined version. This delta is stored in
+ // a test(rax, delta) instruction after the call so that we can find
+ // it in the IC initialization code and patch the movq instruction.
+ // This means that we cannot allow test instructions after calls to
+ // KeyedLoadIC stubs in other places.
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
+ __ Call(ic, RelocInfo::CODE_TARGET);
+ // The delta from the start of the map-compare instruction to the
+ // test instruction. We use masm_-> directly here instead of the __
+ // macro because the macro sometimes uses macro expansion to turn
+ // into something that can't return a value. This is encountered
+ // when doing generated code coverage tests.
+ int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
+ // Here we use masm_-> instead of the __ macro because this is the
+ // instruction that gets patched and coverage code gets in the way.
+ // TODO(X64): Consider whether it's worth switching the test to a
+ // 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't
+ // be generated normally.
+ masm_->testl(rax, Immediate(-delta_to_patch_site));
+ __ IncrementCounter(&Counters::keyed_load_inline_miss, 1);
- // Get the literal value.
- Smi* smi_value = Smi::cast(*value);
- int int_value = smi_value->value();
-
- Token::Value op = expr->op();
- Result answer;
- switch (op) {
- case Token::ADD: {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- DeferredCode* deferred = NULL;
- if (reversed) {
- deferred = new DeferredInlineSmiAddReversed(operand->reg(),
- smi_value,
- overwrite_mode);
- } else {
- deferred = new DeferredInlineSmiAdd(operand->reg(),
- smi_value,
- overwrite_mode);
- }
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
- deferred);
- __ SmiAddConstant(operand->reg(),
- operand->reg(),
- smi_value,
- deferred->entry_label());
- deferred->BindExit();
- answer = *operand;
- break;
- }
-
- case Token::SUB: {
- if (reversed) {
- Result constant_operand(value);
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
- overwrite_mode);
- } else {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(),
- smi_value,
- overwrite_mode);
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
- deferred);
- // A smi currently fits in a 32-bit Immediate.
- __ SmiSubConstant(operand->reg(),
- operand->reg(),
- smi_value,
- deferred->entry_label());
- deferred->BindExit();
- answer = *operand;
- }
- break;
- }
-
- case Token::SAR:
- if (reversed) {
- Result constant_operand(value);
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- operand->ToRegister();
- frame_->Spill(operand->reg());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
- deferred);
- __ SmiShiftArithmeticRightConstant(operand->reg(),
- operand->reg(),
- shift_value);
- deferred->BindExit();
- answer = *operand;
- }
- break;
-
- case Token::SHR:
- if (reversed) {
- Result constant_operand(value);
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
- overwrite_mode);
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- operand->ToRegister();
- answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- answer.reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
- deferred);
- __ SmiShiftLogicalRightConstant(answer.reg(),
- operand->reg(),
- shift_value,
- deferred->entry_label());
- deferred->BindExit();
- operand->Unuse();
- }
- break;
-
- case Token::SHL:
- if (reversed) {
- operand->ToRegister();
-
- // We need rcx to be available to hold operand, and to be spilled.
- // SmiShiftLeft implicitly modifies rcx.
- if (operand->reg().is(rcx)) {
- frame_->Spill(operand->reg());
- answer = allocator()->Allocate();
- } else {
- Result rcx_reg = allocator()->Allocate(rcx);
- // answer must not be rcx.
- answer = allocator()->Allocate();
- // rcx_reg goes out of scope.
- }
-
- DeferredInlineSmiOperationReversed* deferred =
- new DeferredInlineSmiOperationReversed(op,
- answer.reg(),
- smi_value,
- operand->reg(),
- overwrite_mode);
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
- deferred);
-
- __ Move(answer.reg(), smi_value);
- __ SmiShiftLeft(answer.reg(), answer.reg(), operand->reg());
- operand->Unuse();
-
- deferred->BindExit();
- } else {
- // Only the least significant 5 bits of the shift value are used.
- // In the slow case, this masking is done inside the runtime call.
- int shift_value = int_value & 0x1f;
- operand->ToRegister();
- if (shift_value == 0) {
- // Spill operand so it can be overwritten in the slow case.
- frame_->Spill(operand->reg());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
- deferred);
- deferred->BindExit();
- answer = *operand;
- } else {
- // Use a fresh temporary for nonzero shift values.
- answer = allocator()->Allocate();
- ASSERT(answer.is_valid());
- DeferredInlineSmiOperation* deferred =
- new DeferredInlineSmiOperation(op,
- answer.reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
- deferred);
- __ SmiShiftLeftConstant(answer.reg(),
- operand->reg(),
- shift_value);
- deferred->BindExit();
- operand->Unuse();
- }
- }
- break;
-
- case Token::BIT_OR:
- case Token::BIT_XOR:
- case Token::BIT_AND: {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- if (reversed) {
- // Bit operations with a constant smi are commutative.
- // We can swap left and right operands with no problem.
- // Swap left and right overwrite modes. 0->0, 1->2, 2->1.
- overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3);
- }
- DeferredCode* deferred = new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(),
- deferred);
- if (op == Token::BIT_AND) {
- __ SmiAndConstant(operand->reg(), operand->reg(), smi_value);
- } else if (op == Token::BIT_XOR) {
- if (int_value != 0) {
- __ SmiXorConstant(operand->reg(), operand->reg(), smi_value);
- }
- } else {
- ASSERT(op == Token::BIT_OR);
- if (int_value != 0) {
- __ SmiOrConstant(operand->reg(), operand->reg(), smi_value);
- }
- }
- deferred->BindExit();
- answer = *operand;
- break;
- }
-
- // Generate inline code for mod of powers of 2 and negative powers of 2.
- case Token::MOD:
- if (!reversed &&
- int_value != 0 &&
- (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) {
- operand->ToRegister();
- frame_->Spill(operand->reg());
- DeferredCode* deferred =
- new DeferredInlineSmiOperation(op,
- operand->reg(),
- operand->reg(),
- smi_value,
- overwrite_mode);
- // Check for negative or non-Smi left hand side.
- __ JumpIfNotPositiveSmi(operand->reg(), deferred->entry_label());
- if (int_value < 0) int_value = -int_value;
- if (int_value == 1) {
- __ Move(operand->reg(), Smi::FromInt(0));
- } else {
- __ SmiAndConstant(operand->reg(),
- operand->reg(),
- Smi::FromInt(int_value - 1));
- }
- deferred->BindExit();
- answer = *operand;
- break; // This break only applies if we generated code for MOD.
- }
- // Fall through if we did not find a power of 2 on the right hand side!
- // The next case must be the default.
-
- default: {
- Result constant_operand(value);
- if (reversed) {
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand,
- overwrite_mode);
- } else {
- answer = LikelySmiBinaryOperation(expr, operand, &constant_operand,
- overwrite_mode);
- }
- break;
- }
- }
- ASSERT(answer.is_valid());
- return answer;
+ if (!dst_.is(rax)) __ movq(dst_, rax);
}
-void CodeGenerator::JumpIfNotSmiUsingTypeInfo(Register reg,
- TypeInfo type,
- DeferredCode* deferred) {
- if (!type.IsSmi()) {
- __ JumpIfNotSmi(reg, deferred->entry_label());
+class DeferredReferenceSetKeyedValue: public DeferredCode {
+ public:
+ DeferredReferenceSetKeyedValue(Register value,
+ Register key,
+ Register receiver)
+ : value_(value), key_(key), receiver_(receiver) {
+ set_comment("[ DeferredReferenceSetKeyedValue");
}
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(reg);
- }
-}
+ virtual void Generate();
-void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left,
- Register right,
- TypeInfo left_info,
- TypeInfo right_info,
- DeferredCode* deferred) {
- if (!left_info.IsSmi() && !right_info.IsSmi()) {
- __ JumpIfNotBothSmi(left, right, deferred->entry_label());
- } else if (!left_info.IsSmi()) {
- __ JumpIfNotSmi(left, deferred->entry_label());
- } else if (!right_info.IsSmi()) {
- __ JumpIfNotSmi(right, deferred->entry_label());
- }
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(left);
- __ AbortIfNotSmi(right);
- }
-}
+ Label* patch_site() { return &patch_site_; }
+ private:
+ Register value_;
+ Register key_;
+ Register receiver_;
+ Label patch_site_;
+};
-// Implements a binary operation using a deferred code object and some
-// inline code to operate on smis quickly.
-Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr,
- Result* left,
- Result* right,
- OverwriteMode overwrite_mode) {
- // Copy the type info because left and right may be overwritten.
- TypeInfo left_type_info = left->type_info();
- TypeInfo right_type_info = right->type_info();
- Token::Value op = expr->op();
- Result answer;
- // Special handling of div and mod because they use fixed registers.
- if (op == Token::DIV || op == Token::MOD) {
- // We need rax as the quotient register, rdx as the remainder
- // register, neither left nor right in rax or rdx, and left copied
- // to rax.
- Result quotient;
- Result remainder;
- bool left_is_in_rax = false;
- // Step 1: get rax for quotient.
- if ((left->is_register() && left->reg().is(rax)) ||
- (right->is_register() && right->reg().is(rax))) {
- // One or both is in rax. Use a fresh non-rdx register for
- // them.
- Result fresh = allocator_->Allocate();
- ASSERT(fresh.is_valid());
- if (fresh.reg().is(rdx)) {
- remainder = fresh;
- fresh = allocator_->Allocate();
- ASSERT(fresh.is_valid());
- }
- if (left->is_register() && left->reg().is(rax)) {
- quotient = *left;
- *left = fresh;
- left_is_in_rax = true;
- }
- if (right->is_register() && right->reg().is(rax)) {
- quotient = *right;
- *right = fresh;
- }
- __ movq(fresh.reg(), rax);
- } else {
- // Neither left nor right is in rax.
- quotient = allocator_->Allocate(rax);
- }
- ASSERT(quotient.is_register() && quotient.reg().is(rax));
- ASSERT(!(left->is_register() && left->reg().is(rax)));
- ASSERT(!(right->is_register() && right->reg().is(rax)));
- // Step 2: get rdx for remainder if necessary.
- if (!remainder.is_valid()) {
- if ((left->is_register() && left->reg().is(rdx)) ||
- (right->is_register() && right->reg().is(rdx))) {
- Result fresh = allocator_->Allocate();
- ASSERT(fresh.is_valid());
- if (left->is_register() && left->reg().is(rdx)) {
- remainder = *left;
- *left = fresh;
- }
- if (right->is_register() && right->reg().is(rdx)) {
- remainder = *right;
- *right = fresh;
- }
- __ movq(fresh.reg(), rdx);
- } else {
- // Neither left nor right is in rdx.
- remainder = allocator_->Allocate(rdx);
- }
- }
- ASSERT(remainder.is_register() && remainder.reg().is(rdx));
- ASSERT(!(left->is_register() && left->reg().is(rdx)));
- ASSERT(!(right->is_register() && right->reg().is(rdx)));
-
- left->ToRegister();
- right->ToRegister();
- frame_->Spill(rax);
- frame_->Spill(rdx);
-
- // Check that left and right are smi tagged.
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(op,
- (op == Token::DIV) ? rax : rdx,
- left->reg(),
- right->reg(),
- overwrite_mode);
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
- left_type_info, right_type_info, deferred);
-
- if (op == Token::DIV) {
- __ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label());
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- answer = quotient;
+void DeferredReferenceSetKeyedValue::Generate() {
+ __ IncrementCounter(&Counters::keyed_store_inline_miss, 1);
+ // Move value, receiver, and key to registers rax, rdx, and rcx, as
+ // the IC stub expects.
+ // Move value to rax, using xchg if the receiver or key is in rax.
+ if (!value_.is(rax)) {
+ if (!receiver_.is(rax) && !key_.is(rax)) {
+ __ movq(rax, value_);
} else {
- ASSERT(op == Token::MOD);
- __ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label());
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- answer = remainder;
- }
- ASSERT(answer.is_valid());
- return answer;
- }
-
- // Special handling of shift operations because they use fixed
- // registers.
- if (op == Token::SHL || op == Token::SHR || op == Token::SAR) {
- // Move left out of rcx if necessary.
- if (left->is_register() && left->reg().is(rcx)) {
- *left = allocator_->Allocate();
- ASSERT(left->is_valid());
- __ movq(left->reg(), rcx);
- }
- right->ToRegister(rcx);
- left->ToRegister();
- ASSERT(left->is_register() && !left->reg().is(rcx));
- ASSERT(right->is_register() && right->reg().is(rcx));
-
- // We will modify right, it must be spilled.
- frame_->Spill(rcx);
-
- // Use a fresh answer register to avoid spilling the left operand.
- answer = allocator_->Allocate();
- ASSERT(answer.is_valid());
- // Check that both operands are smis using the answer register as a
- // temporary.
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(op,
- answer.reg(),
- left->reg(),
- rcx,
- overwrite_mode);
-
- Label do_op;
- if (right_type_info.IsSmi()) {
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(right->reg());
+ __ xchg(rax, value_);
+ // Update receiver_ and key_ if they are affected by the swap.
+ if (receiver_.is(rax)) {
+ receiver_ = value_;
+ } else if (receiver_.is(value_)) {
+ receiver_ = rax;
}
- __ movq(answer.reg(), left->reg());
- // If left is not known to be a smi, check if it is.
- // If left is not known to be a number, and it isn't a smi, check if
- // it is a HeapNumber.
- if (!left_type_info.IsSmi()) {
- __ JumpIfSmi(answer.reg(), &do_op);
- if (!left_type_info.IsNumber()) {
- // Branch if not a heapnumber.
- __ Cmp(FieldOperand(answer.reg(), HeapObject::kMapOffset),
- Factory::heap_number_map());
- deferred->Branch(not_equal);
- }
- // Load integer value into answer register using truncation.
- __ cvttsd2si(answer.reg(),
- FieldOperand(answer.reg(), HeapNumber::kValueOffset));
- // Branch if we might have overflowed.
- // (False negative for Smi::kMinValue)
- __ cmpq(answer.reg(), Immediate(0x80000000));
- deferred->Branch(equal);
- // TODO(lrn): Inline shifts on int32 here instead of first smi-tagging.
- __ Integer32ToSmi(answer.reg(), answer.reg());
- } else {
- // Fast case - both are actually smis.
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(left->reg());
- }
+ if (key_.is(rax)) {
+ key_ = value_;
+ } else if (key_.is(value_)) {
+ key_ = rax;
}
- } else {
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), rcx,
- left_type_info, right_type_info, deferred);
}
- __ bind(&do_op);
-
- // Perform the operation.
- switch (op) {
- case Token::SAR:
- __ SmiShiftArithmeticRight(answer.reg(), left->reg(), rcx);
- break;
- case Token::SHR: {
- __ SmiShiftLogicalRight(answer.reg(),
- left->reg(),
- rcx,
- deferred->entry_label());
- break;
- }
- case Token::SHL: {
- __ SmiShiftLeft(answer.reg(),
- left->reg(),
- rcx);
- break;
- }
- default:
- UNREACHABLE();
- }
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- ASSERT(answer.is_valid());
- return answer;
}
-
- // Handle the other binary operations.
- left->ToRegister();
- right->ToRegister();
- // A newly allocated register answer is used to hold the answer. The
- // registers containing left and right are not modified so they don't
- // need to be spilled in the fast case.
- answer = allocator_->Allocate();
- ASSERT(answer.is_valid());
-
- // Perform the smi tag check.
- DeferredInlineBinaryOperation* deferred =
- new DeferredInlineBinaryOperation(op,
- answer.reg(),
- left->reg(),
- right->reg(),
- overwrite_mode);
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(),
- left_type_info, right_type_info, deferred);
-
- switch (op) {
- case Token::ADD:
- __ SmiAdd(answer.reg(),
- left->reg(),
- right->reg(),
- deferred->entry_label());
- break;
-
- case Token::SUB:
- __ SmiSub(answer.reg(),
- left->reg(),
- right->reg(),
- deferred->entry_label());
- break;
-
- case Token::MUL: {
- __ SmiMul(answer.reg(),
- left->reg(),
- right->reg(),
- deferred->entry_label());
- break;
+ // Value is now in rax. Its original location is remembered in value_,
+ // and the value is restored to value_ before returning.
+ // The variables receiver_ and key_ are not preserved.
+ // Move receiver and key to rdx and rcx, swapping if necessary.
+ if (receiver_.is(rdx)) {
+ if (!key_.is(rcx)) {
+ __ movq(rcx, key_);
+ } // Else everything is already in the right place.
+ } else if (receiver_.is(rcx)) {
+ if (key_.is(rdx)) {
+ __ xchg(rcx, rdx);
+ } else if (key_.is(rcx)) {
+ __ movq(rdx, receiver_);
+ } else {
+ __ movq(rdx, receiver_);
+ __ movq(rcx, key_);
}
-
- case Token::BIT_OR:
- __ SmiOr(answer.reg(), left->reg(), right->reg());
- break;
-
- case Token::BIT_AND:
- __ SmiAnd(answer.reg(), left->reg(), right->reg());
- break;
-
- case Token::BIT_XOR:
- __ SmiXor(answer.reg(), left->reg(), right->reg());
- break;
-
- default:
- UNREACHABLE();
- break;
+ } else if (key_.is(rcx)) {
+ __ movq(rdx, receiver_);
+ } else {
+ __ movq(rcx, key_);
+ __ movq(rdx, receiver_);
}
- deferred->BindExit();
- left->Unuse();
- right->Unuse();
- ASSERT(answer.is_valid());
- return answer;
+
+ // Call the IC stub.
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
+ __ Call(ic, RelocInfo::CODE_TARGET);
+ // The delta from the start of the map-compare instructions (initial movq)
+ // to the test instruction. We use masm_-> directly here instead of the
+ // __ macro because the macro sometimes uses macro expansion to turn
+ // into something that can't return a value. This is encountered
+ // when doing generated code coverage tests.
+ int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site());
+ // Here we use masm_-> instead of the __ macro because this is the
+ // instruction that gets patched and coverage code gets in the way.
+ masm_->testl(rax, Immediate(-delta_to_patch_site));
+ // Restore value (returned from store IC).
+ if (!value_.is(rax)) __ movq(value_, rax);
}
@@ -8140,91 +8268,702 @@
}
-bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) {
- Object* answer_object = Heap::undefined_value();
- switch (op) {
- case Token::ADD:
- // Use intptr_t to detect overflow of 32-bit int.
- if (Smi::IsValid(static_cast<intptr_t>(left) + right)) {
- answer_object = Smi::FromInt(left + right);
+void GenericBinaryOpStub::GenerateCall(
+ MacroAssembler* masm,
+ Register left,
+ Register right) {
+ if (!ArgsInRegistersSupported()) {
+ // Pass arguments on the stack.
+ __ push(left);
+ __ push(right);
+ } else {
+ // The calling convention with registers is left in rdx and right in rax.
+ Register left_arg = rdx;
+ Register right_arg = rax;
+ if (!(left.is(left_arg) && right.is(right_arg))) {
+ if (left.is(right_arg) && right.is(left_arg)) {
+ if (IsOperationCommutative()) {
+ SetArgsReversed();
+ } else {
+ __ xchg(left, right);
+ }
+ } else if (left.is(left_arg)) {
+ __ movq(right_arg, right);
+ } else if (right.is(right_arg)) {
+ __ movq(left_arg, left);
+ } else if (left.is(right_arg)) {
+ if (IsOperationCommutative()) {
+ __ movq(left_arg, right);
+ SetArgsReversed();
+ } else {
+ // Order of moves important to avoid destroying left argument.
+ __ movq(left_arg, left);
+ __ movq(right_arg, right);
+ }
+ } else if (right.is(left_arg)) {
+ if (IsOperationCommutative()) {
+ __ movq(right_arg, left);
+ SetArgsReversed();
+ } else {
+ // Order of moves important to avoid destroying right argument.
+ __ movq(right_arg, right);
+ __ movq(left_arg, left);
+ }
+ } else {
+ // Order of moves is not important.
+ __ movq(left_arg, left);
+ __ movq(right_arg, right);
}
+ }
+
+ // Update flags to indicate that arguments are in registers.
+ SetArgsInRegisters();
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
+ }
+
+ // Call the stub.
+ __ CallStub(this);
+}
+
+
+void GenericBinaryOpStub::GenerateCall(
+ MacroAssembler* masm,
+ Register left,
+ Smi* right) {
+ if (!ArgsInRegistersSupported()) {
+ // Pass arguments on the stack.
+ __ push(left);
+ __ Push(right);
+ } else {
+ // The calling convention with registers is left in rdx and right in rax.
+ Register left_arg = rdx;
+ Register right_arg = rax;
+ if (left.is(left_arg)) {
+ __ Move(right_arg, right);
+ } else if (left.is(right_arg) && IsOperationCommutative()) {
+ __ Move(left_arg, right);
+ SetArgsReversed();
+ } else {
+ // For non-commutative operations, left and right_arg might be
+ // the same register. Therefore, the order of the moves is
+ // important here in order to not overwrite left before moving
+ // it to left_arg.
+ __ movq(left_arg, left);
+ __ Move(right_arg, right);
+ }
+
+ // Update flags to indicate that arguments are in registers.
+ SetArgsInRegisters();
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
+ }
+
+ // Call the stub.
+ __ CallStub(this);
+}
+
+
+void GenericBinaryOpStub::GenerateCall(
+ MacroAssembler* masm,
+ Smi* left,
+ Register right) {
+ if (!ArgsInRegistersSupported()) {
+ // Pass arguments on the stack.
+ __ Push(left);
+ __ push(right);
+ } else {
+ // The calling convention with registers is left in rdx and right in rax.
+ Register left_arg = rdx;
+ Register right_arg = rax;
+ if (right.is(right_arg)) {
+ __ Move(left_arg, left);
+ } else if (right.is(left_arg) && IsOperationCommutative()) {
+ __ Move(right_arg, left);
+ SetArgsReversed();
+ } else {
+ // For non-commutative operations, right and left_arg might be
+ // the same register. Therefore, the order of the moves is
+ // important here in order to not overwrite right before moving
+ // it to right_arg.
+ __ movq(right_arg, right);
+ __ Move(left_arg, left);
+ }
+ // Update flags to indicate that arguments are in registers.
+ SetArgsInRegisters();
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
+ }
+
+ // Call the stub.
+ __ CallStub(this);
+}
+
+
+Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm,
+ VirtualFrame* frame,
+ Result* left,
+ Result* right) {
+ if (ArgsInRegistersSupported()) {
+ SetArgsInRegisters();
+ return frame->CallStub(this, left, right);
+ } else {
+ frame->Push(left);
+ frame->Push(right);
+ return frame->CallStub(this, 2);
+ }
+}
+
+
+void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
+ // 1. Move arguments into rdx, rax except for DIV and MOD, which need the
+ // dividend in rax and rdx free for the division. Use rax, rbx for those.
+ Comment load_comment(masm, "-- Load arguments");
+ Register left = rdx;
+ Register right = rax;
+ if (op_ == Token::DIV || op_ == Token::MOD) {
+ left = rax;
+ right = rbx;
+ if (HasArgsInRegisters()) {
+ __ movq(rbx, rax);
+ __ movq(rax, rdx);
+ }
+ }
+ if (!HasArgsInRegisters()) {
+ __ movq(right, Operand(rsp, 1 * kPointerSize));
+ __ movq(left, Operand(rsp, 2 * kPointerSize));
+ }
+
+ Label not_smis;
+ // 2. Smi check both operands.
+ if (static_operands_type_.IsSmi()) {
+ // Skip smi check if we know that both arguments are smis.
+ if (FLAG_debug_code) {
+ __ AbortIfNotSmi(left);
+ __ AbortIfNotSmi(right);
+ }
+ if (op_ == Token::BIT_OR) {
+ // Handle OR here, since we do extra smi-checking in the or code below.
+ __ SmiOr(right, right, left);
+ GenerateReturn(masm);
+ return;
+ }
+ } else {
+ if (op_ != Token::BIT_OR) {
+ // Skip the check for OR as it is better combined with the
+ // actual operation.
+ Comment smi_check_comment(masm, "-- Smi check arguments");
+ __ JumpIfNotBothSmi(left, right, &not_smis);
+ }
+ }
+
+ // 3. Operands are both smis (except for OR), perform the operation leaving
+ // the result in rax and check the result if necessary.
+ Comment perform_smi(masm, "-- Perform smi operation");
+ Label use_fp_on_smis;
+ switch (op_) {
+ case Token::ADD: {
+ ASSERT(right.is(rax));
+ __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
break;
- case Token::SUB:
- // Use intptr_t to detect overflow of 32-bit int.
- if (Smi::IsValid(static_cast<intptr_t>(left) - right)) {
- answer_object = Smi::FromInt(left - right);
- }
+ }
+
+ case Token::SUB: {
+ __ SmiSub(left, left, right, &use_fp_on_smis);
+ __ movq(rax, left);
break;
- case Token::MUL: {
- double answer = static_cast<double>(left) * right;
- if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) {
- // If the product is zero and the non-zero factor is negative,
- // the spec requires us to return floating point negative zero.
- if (answer != 0 || (left + right) >= 0) {
- answer_object = Smi::FromInt(static_cast<int>(answer));
- }
- }
- }
+ }
+
+ case Token::MUL:
+ ASSERT(right.is(rax));
+ __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
break;
+
case Token::DIV:
+ ASSERT(left.is(rax));
+ __ SmiDiv(left, left, right, &use_fp_on_smis);
+ break;
+
case Token::MOD:
+ ASSERT(left.is(rax));
+ __ SmiMod(left, left, right, slow);
break;
+
case Token::BIT_OR:
- answer_object = Smi::FromInt(left | right);
+ ASSERT(right.is(rax));
+ __ movq(rcx, right); // Save the right operand.
+ __ SmiOr(right, right, left); // BIT_OR is commutative.
+ __ testb(right, Immediate(kSmiTagMask));
+ __ j(not_zero, &not_smis);
break;
+
case Token::BIT_AND:
- answer_object = Smi::FromInt(left & right);
+ ASSERT(right.is(rax));
+ __ SmiAnd(right, right, left); // BIT_AND is commutative.
break;
+
case Token::BIT_XOR:
- answer_object = Smi::FromInt(left ^ right);
+ ASSERT(right.is(rax));
+ __ SmiXor(right, right, left); // BIT_XOR is commutative.
break;
- case Token::SHL: {
- int shift_amount = right & 0x1F;
- if (Smi::IsValid(left << shift_amount)) {
- answer_object = Smi::FromInt(left << shift_amount);
+ case Token::SHL:
+ case Token::SHR:
+ case Token::SAR:
+ switch (op_) {
+ case Token::SAR:
+ __ SmiShiftArithmeticRight(left, left, right);
+ break;
+ case Token::SHR:
+ __ SmiShiftLogicalRight(left, left, right, slow);
+ break;
+ case Token::SHL:
+ __ SmiShiftLeft(left, left, right);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ __ movq(rax, left);
+ break;
+
+ default:
+ UNREACHABLE();
+ break;
+ }
+
+ // 4. Emit return of result in rax.
+ GenerateReturn(masm);
+
+ // 5. For some operations emit inline code to perform floating point
+ // operations on known smis (e.g., if the result of the operation
+ // overflowed the smi range).
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ ASSERT(use_fp_on_smis.is_linked());
+ __ bind(&use_fp_on_smis);
+ if (op_ == Token::DIV) {
+ __ movq(rdx, rax);
+ __ movq(rax, rbx);
+ }
+ // left is rdx, right is rax.
+ __ AllocateHeapNumber(rbx, rcx, slow);
+ FloatingPointHelper::LoadSSE2SmiOperands(masm);
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
+ __ movq(rax, rbx);
+ GenerateReturn(masm);
+ }
+ default:
+ break;
+ }
+
+ // 6. Non-smi operands, fall out to the non-smi code with the operands in
+ // rdx and rax.
+ Comment done_comment(masm, "-- Enter non-smi code");
+ __ bind(&not_smis);
+
+ switch (op_) {
+ case Token::DIV:
+ case Token::MOD:
+ // Operands are in rax, rbx at this point.
+ __ movq(rdx, rax);
+ __ movq(rax, rbx);
+ break;
+
+ case Token::BIT_OR:
+ // Right operand is saved in rcx and rax was destroyed by the smi
+ // operation.
+ __ movq(rax, rcx);
+ break;
+
+ default:
+ break;
+ }
+}
+
+
+void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
+ Label call_runtime;
+
+ if (ShouldGenerateSmiCode()) {
+ GenerateSmiCode(masm, &call_runtime);
+ } else if (op_ != Token::MOD) {
+ if (!HasArgsInRegisters()) {
+ GenerateLoadArguments(masm);
+ }
+ }
+ // Floating point case.
+ if (ShouldGenerateFPCode()) {
+ switch (op_) {
+ case Token::ADD:
+ case Token::SUB:
+ case Token::MUL:
+ case Token::DIV: {
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
+ HasSmiCodeInStub()) {
+ // Execution reaches this point when the first non-smi argument occurs
+ // (and only if smi code is generated). This is the right moment to
+ // patch to HEAP_NUMBERS state. The transition is attempted only for
+ // the four basic operations. The stub stays in the DEFAULT state
+ // forever for all other operations (also if smi code is skipped).
+ GenerateTypeTransition(masm);
+ break;
}
+
+ Label not_floats;
+ // rax: y
+ // rdx: x
+ if (static_operands_type_.IsNumber()) {
+ if (FLAG_debug_code) {
+ // Assert at runtime that inputs are only numbers.
+ __ AbortIfNotNumber(rdx);
+ __ AbortIfNotNumber(rax);
+ }
+ FloatingPointHelper::LoadSSE2NumberOperands(masm);
+ } else {
+ FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime);
+ }
+
+ switch (op_) {
+ case Token::ADD: __ addsd(xmm0, xmm1); break;
+ case Token::SUB: __ subsd(xmm0, xmm1); break;
+ case Token::MUL: __ mulsd(xmm0, xmm1); break;
+ case Token::DIV: __ divsd(xmm0, xmm1); break;
+ default: UNREACHABLE();
+ }
+ // Allocate a heap number, if needed.
+ Label skip_allocation;
+ OverwriteMode mode = mode_;
+ if (HasArgsReversed()) {
+ if (mode == OVERWRITE_RIGHT) {
+ mode = OVERWRITE_LEFT;
+ } else if (mode == OVERWRITE_LEFT) {
+ mode = OVERWRITE_RIGHT;
+ }
+ }
+ switch (mode) {
+ case OVERWRITE_LEFT:
+ __ JumpIfNotSmi(rdx, &skip_allocation);
+ __ AllocateHeapNumber(rbx, rcx, &call_runtime);
+ __ movq(rdx, rbx);
+ __ bind(&skip_allocation);
+ __ movq(rax, rdx);
+ break;
+ case OVERWRITE_RIGHT:
+ // If the argument in rax is already an object, we skip the
+ // allocation of a heap number.
+ __ JumpIfNotSmi(rax, &skip_allocation);
+ // Fall through!
+ case NO_OVERWRITE:
+ // Allocate a heap number for the result. Keep rax and rdx intact
+ // for the possible runtime call.
+ __ AllocateHeapNumber(rbx, rcx, &call_runtime);
+ __ movq(rax, rbx);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+ __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
+ GenerateReturn(masm);
+ __ bind(&not_floats);
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
+ !HasSmiCodeInStub()) {
+ // Execution reaches this point when the first non-number argument
+ // occurs (and only if smi code is skipped from the stub, otherwise
+ // the patching has already been done earlier in this case branch).
+ // A perfect moment to try patching to STRINGS for ADD operation.
+ if (op_ == Token::ADD) {
+ GenerateTypeTransition(masm);
+ }
+ }
break;
}
- case Token::SHR: {
- int shift_amount = right & 0x1F;
- unsigned int unsigned_left = left;
- unsigned_left >>= shift_amount;
- if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) {
- answer_object = Smi::FromInt(unsigned_left);
- }
+ case Token::MOD: {
+ // For MOD we go directly to runtime in the non-smi case.
break;
}
- case Token::SAR: {
- int shift_amount = right & 0x1F;
- unsigned int unsigned_left = left;
- if (left < 0) {
- // Perform arithmetic shift of a negative number by
- // complementing number, logical shifting, complementing again.
- unsigned_left = ~unsigned_left;
- unsigned_left >>= shift_amount;
- unsigned_left = ~unsigned_left;
+ case Token::BIT_OR:
+ case Token::BIT_AND:
+ case Token::BIT_XOR:
+ case Token::SAR:
+ case Token::SHL:
+ case Token::SHR: {
+ Label skip_allocation, non_smi_shr_result;
+ Register heap_number_map = r9;
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ if (static_operands_type_.IsNumber()) {
+ if (FLAG_debug_code) {
+ // Assert at runtime that inputs are only numbers.
+ __ AbortIfNotNumber(rdx);
+ __ AbortIfNotNumber(rax);
+ }
+ FloatingPointHelper::LoadNumbersAsIntegers(masm);
} else {
- unsigned_left >>= shift_amount;
+ FloatingPointHelper::LoadAsIntegers(masm,
+ &call_runtime,
+ heap_number_map);
}
- ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left)));
- answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left));
+ switch (op_) {
+ case Token::BIT_OR: __ orl(rax, rcx); break;
+ case Token::BIT_AND: __ andl(rax, rcx); break;
+ case Token::BIT_XOR: __ xorl(rax, rcx); break;
+ case Token::SAR: __ sarl_cl(rax); break;
+ case Token::SHL: __ shll_cl(rax); break;
+ case Token::SHR: {
+ __ shrl_cl(rax);
+ // Check if result is negative. This can only happen for a shift
+ // by zero.
+ __ testl(rax, rax);
+ __ j(negative, &non_smi_shr_result);
+ break;
+ }
+ default: UNREACHABLE();
+ }
+
+ STATIC_ASSERT(kSmiValueSize == 32);
+ // Tag smi result and return.
+ __ Integer32ToSmi(rax, rax);
+ GenerateReturn(masm);
+
+ // All bit-ops except SHR return a signed int32 that can be
+ // returned immediately as a smi.
+ // We might need to allocate a HeapNumber if we shift a negative
+ // number right by zero (i.e., convert to UInt32).
+ if (op_ == Token::SHR) {
+ ASSERT(non_smi_shr_result.is_linked());
+ __ bind(&non_smi_shr_result);
+ // Allocate a heap number if needed.
+ __ movl(rbx, rax); // rbx holds result value (uint32 value as int64).
+ switch (mode_) {
+ case OVERWRITE_LEFT:
+ case OVERWRITE_RIGHT:
+ // If the operand was an object, we skip the
+ // allocation of a heap number.
+ __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
+ 1 * kPointerSize : 2 * kPointerSize));
+ __ JumpIfNotSmi(rax, &skip_allocation);
+ // Fall through!
+ case NO_OVERWRITE:
+ // Allocate heap number in new space.
+ // Not using AllocateHeapNumber macro in order to reuse
+ // already loaded heap_number_map.
+ __ AllocateInNewSpace(HeapNumber::kSize,
+ rax,
+ rcx,
+ no_reg,
+ &call_runtime,
+ TAG_OBJECT);
+ // Set the map.
+ if (FLAG_debug_code) {
+ __ AbortIfNotRootValue(heap_number_map,
+ Heap::kHeapNumberMapRootIndex,
+ "HeapNumberMap register clobbered.");
+ }
+ __ movq(FieldOperand(rax, HeapObject::kMapOffset),
+ heap_number_map);
+ __ bind(&skip_allocation);
+ break;
+ default: UNREACHABLE();
+ }
+ // Store the result in the HeapNumber and return.
+ __ cvtqsi2sd(xmm0, rbx);
+ __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
+ GenerateReturn(masm);
+ }
+
break;
}
+ default: UNREACHABLE(); break;
+ }
+ }
+
+ // If all else fails, use the runtime system to get the correct
+ // result. If arguments was passed in registers now place them on the
+ // stack in the correct order below the return address.
+ __ bind(&call_runtime);
+
+ if (HasArgsInRegisters()) {
+ GenerateRegisterArgsPush(masm);
+ }
+
+ switch (op_) {
+ case Token::ADD: {
+ // Registers containing left and right operands respectively.
+ Register lhs, rhs;
+
+ if (HasArgsReversed()) {
+ lhs = rax;
+ rhs = rdx;
+ } else {
+ lhs = rdx;
+ rhs = rax;
+ }
+
+ // Test for string arguments before calling runtime.
+ Label not_strings, both_strings, not_string1, string1, string1_smi2;
+
+ // If this stub has already generated FP-specific code then the arguments
+ // are already in rdx and rax.
+ if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
+ GenerateLoadArguments(masm);
+ }
+
+ Condition is_smi;
+ is_smi = masm->CheckSmi(lhs);
+ __ j(is_smi, &not_string1);
+ __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8);
+ __ j(above_equal, &not_string1);
+
+ // First argument is a a string, test second.
+ is_smi = masm->CheckSmi(rhs);
+ __ j(is_smi, &string1_smi2);
+ __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9);
+ __ j(above_equal, &string1);
+
+ // First and second argument are strings.
+ StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
+ __ TailCallStub(&string_add_stub);
+
+ __ bind(&string1_smi2);
+ // First argument is a string, second is a smi. Try to lookup the number
+ // string for the smi in the number string cache.
+ NumberToStringStub::GenerateLookupNumberStringCache(
+ masm, rhs, rbx, rcx, r8, true, &string1);
+
+ // Replace second argument on stack and tailcall string add stub to make
+ // the result.
+ __ movq(Operand(rsp, 1 * kPointerSize), rbx);
+ __ TailCallStub(&string_add_stub);
+
+ // Only first argument is a string.
+ __ bind(&string1);
+ __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);
+
+ // First argument was not a string, test second.
+ __ bind(&not_string1);
+ is_smi = masm->CheckSmi(rhs);
+ __ j(is_smi, &not_strings);
+ __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs);
+ __ j(above_equal, &not_strings);
+
+ // Only second argument is a string.
+ __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);
+
+ __ bind(&not_strings);
+ // Neither argument is a string.
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
+ break;
+ }
+ case Token::SUB:
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
+ break;
+ case Token::MUL:
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
+ break;
+ case Token::DIV:
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
+ break;
+ case Token::MOD:
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
+ break;
+ case Token::BIT_OR:
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
+ break;
+ case Token::BIT_AND:
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
+ break;
+ case Token::BIT_XOR:
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
+ break;
+ case Token::SAR:
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
+ break;
+ case Token::SHL:
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
+ break;
+ case Token::SHR:
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
+ break;
default:
UNREACHABLE();
- break;
}
- if (answer_object == Heap::undefined_value()) {
- return false;
+}
+
+
+void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
+ ASSERT(!HasArgsInRegisters());
+ __ movq(rax, Operand(rsp, 1 * kPointerSize));
+ __ movq(rdx, Operand(rsp, 2 * kPointerSize));
+}
+
+
+void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
+ // If arguments are not passed in registers remove them from the stack before
+ // returning.
+ if (!HasArgsInRegisters()) {
+ __ ret(2 * kPointerSize); // Remove both operands
+ } else {
+ __ ret(0);
}
- frame_->Push(Handle<Object>(answer_object));
- return true;
}
-// End of CodeGenerator implementation.
+void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
+ ASSERT(HasArgsInRegisters());
+ __ pop(rcx);
+ if (HasArgsReversed()) {
+ __ push(rax);
+ __ push(rdx);
+ } else {
+ __ push(rdx);
+ __ push(rax);
+ }
+ __ push(rcx);
+}
+
+void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
+ Label get_result;
+
+ // Ensure the operands are on the stack.
+ if (HasArgsInRegisters()) {
+ GenerateRegisterArgsPush(masm);
+ }
+
+ // Left and right arguments are already on stack.
+ __ pop(rcx); // Save the return address.
+
+ // Push this stub's key.
+ __ Push(Smi::FromInt(MinorKey()));
+
+ // Although the operation and the type info are encoded into the key,
+ // the encoding is opaque, so push them too.
+ __ Push(Smi::FromInt(op_));
+
+ __ Push(Smi::FromInt(runtime_operands_type_));
+
+ __ push(rcx); // The return address.
+
+ // Perform patching to an appropriate fast case and return the result.
+ __ TailCallExternalReference(
+ ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
+ 5,
+ 1);
+}
+
+
+Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
+ GenericBinaryOpStub stub(key, type_info);
+ return stub.GetCode();
+}
+
+
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// Input on stack:
// rsp[8]: argument (should be number).
@@ -8501,6 +9240,148 @@
}
+// Input: rdx, rax are the left and right objects of a bit op.
+// Output: rax, rcx are left and right integers for a bit op.
+void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
+ // Check float operands.
+ Label done;
+ Label rax_is_smi;
+ Label rax_is_object;
+ Label rdx_is_object;
+
+ __ JumpIfNotSmi(rdx, &rdx_is_object);
+ __ SmiToInteger32(rdx, rdx);
+ __ JumpIfSmi(rax, &rax_is_smi);
+
+ __ bind(&rax_is_object);
+ IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx.
+ __ jmp(&done);
+
+ __ bind(&rdx_is_object);
+ IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx.
+ __ JumpIfNotSmi(rax, &rax_is_object);
+ __ bind(&rax_is_smi);
+ __ SmiToInteger32(rcx, rax);
+
+ __ bind(&done);
+ __ movl(rax, rdx);
+}
+
+
+// Input: rdx, rax are the left and right objects of a bit op.
+// Output: rax, rcx are left and right integers for a bit op.
+void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
+ Label* conversion_failure,
+ Register heap_number_map) {
+ // Check float operands.
+ Label arg1_is_object, check_undefined_arg1;
+ Label arg2_is_object, check_undefined_arg2;
+ Label load_arg2, done;
+
+ __ JumpIfNotSmi(rdx, &arg1_is_object);
+ __ SmiToInteger32(rdx, rdx);
+ __ jmp(&load_arg2);
+
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
+ __ bind(&check_undefined_arg1);
+ __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
+ __ j(not_equal, conversion_failure);
+ __ movl(rdx, Immediate(0));
+ __ jmp(&load_arg2);
+
+ __ bind(&arg1_is_object);
+ __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
+ __ j(not_equal, &check_undefined_arg1);
+ // Get the untagged integer version of the edx heap number in rcx.
+ IntegerConvert(masm, rdx, rdx);
+
+ // Here rdx has the untagged integer, rax has a Smi or a heap number.
+ __ bind(&load_arg2);
+ // Test if arg2 is a Smi.
+ __ JumpIfNotSmi(rax, &arg2_is_object);
+ __ SmiToInteger32(rax, rax);
+ __ movl(rcx, rax);
+ __ jmp(&done);
+
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
+ __ bind(&check_undefined_arg2);
+ __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
+ __ j(not_equal, conversion_failure);
+ __ movl(rcx, Immediate(0));
+ __ jmp(&done);
+
+ __ bind(&arg2_is_object);
+ __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
+ __ j(not_equal, &check_undefined_arg2);
+ // Get the untagged integer version of the eax heap number in ecx.
+ IntegerConvert(masm, rcx, rax);
+ __ bind(&done);
+ __ movl(rax, rdx);
+}
+
+
+void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
+ __ SmiToInteger32(kScratchRegister, rdx);
+ __ cvtlsi2sd(xmm0, kScratchRegister);
+ __ SmiToInteger32(kScratchRegister, rax);
+ __ cvtlsi2sd(xmm1, kScratchRegister);
+}
+
+
+void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
+ Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
+ // Load operand in rdx into xmm0.
+ __ JumpIfSmi(rdx, &load_smi_rdx);
+ __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
+ // Load operand in rax into xmm1.
+ __ JumpIfSmi(rax, &load_smi_rax);
+ __ bind(&load_nonsmi_rax);
+ __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
+ __ jmp(&done);
+
+ __ bind(&load_smi_rdx);
+ __ SmiToInteger32(kScratchRegister, rdx);
+ __ cvtlsi2sd(xmm0, kScratchRegister);
+ __ JumpIfNotSmi(rax, &load_nonsmi_rax);
+
+ __ bind(&load_smi_rax);
+ __ SmiToInteger32(kScratchRegister, rax);
+ __ cvtlsi2sd(xmm1, kScratchRegister);
+
+ __ bind(&done);
+}
+
+
+void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
+ Label* not_numbers) {
+ Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
+ // Load operand in rdx into xmm0, or branch to not_numbers.
+ __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
+ __ JumpIfSmi(rdx, &load_smi_rdx);
+ __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
+ __ j(not_equal, not_numbers); // Argument in rdx is not a number.
+ __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
+ // Load operand in rax into xmm1, or branch to not_numbers.
+ __ JumpIfSmi(rax, &load_smi_rax);
+
+ __ bind(&load_nonsmi_rax);
+ __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
+ __ j(not_equal, not_numbers);
+ __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
+ __ jmp(&done);
+
+ __ bind(&load_smi_rdx);
+ __ SmiToInteger32(kScratchRegister, rdx);
+ __ cvtlsi2sd(xmm0, kScratchRegister);
+ __ JumpIfNotSmi(rax, &load_nonsmi_rax);
+
+ __ bind(&load_smi_rax);
+ __ SmiToInteger32(kScratchRegister, rax);
+ __ cvtlsi2sd(xmm1, kScratchRegister);
+ __ bind(&done);
+}
+
+
void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
Label slow, done;
@@ -8585,6 +9466,172 @@
}
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
+ // The key is in rdx and the parameter count is in rax.
+
+ // The displacement is used for skipping the frame pointer on the
+ // stack. It is the offset of the last parameter (if any) relative
+ // to the frame pointer.
+ static const int kDisplacement = 1 * kPointerSize;
+
+ // Check that the key is a smi.
+ Label slow;
+ __ JumpIfNotSmi(rdx, &slow);
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor;
+ __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
+ __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
+ __ j(equal, &adaptor);
+
+ // Check index against formal parameters count limit passed in
+ // through register rax. Use unsigned comparison to get negative
+ // check for free.
+ __ cmpq(rdx, rax);
+ __ j(above_equal, &slow);
+
+ // Read the argument from the stack and return it.
+ SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
+ __ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
+ index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
+ __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
+ __ Ret();
+
+ // Arguments adaptor case: Check index against actual arguments
+ // limit found in the arguments adaptor frame. Use unsigned
+ // comparison to get negative check for free.
+ __ bind(&adaptor);
+ __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ cmpq(rdx, rcx);
+ __ j(above_equal, &slow);
+
+ // Read the argument from the stack and return it.
+ index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
+ __ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
+ index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
+ __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
+ __ Ret();
+
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments
+ // by calling the runtime system.
+ __ bind(&slow);
+ __ pop(rbx); // Return address.
+ __ push(rdx);
+ __ push(rbx);
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
+}
+
+
+void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
+ // rsp[0] : return address
+ // rsp[8] : number of parameters
+ // rsp[16] : receiver displacement
+ // rsp[24] : function
+
+ // The displacement is used for skipping the return address and the
+ // frame pointer on the stack. It is the offset of the last
+ // parameter (if any) relative to the frame pointer.
+ static const int kDisplacement = 2 * kPointerSize;
+
+ // Check if the calling frame is an arguments adaptor frame.
+ Label adaptor_frame, try_allocate, runtime;
+ __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
+ __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
+ __ j(equal, &adaptor_frame);
+
+ // Get the length from the frame.
+ __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
+ __ jmp(&try_allocate);
+
+ // Patch the arguments.length and the parameters pointer.
+ __ bind(&adaptor_frame);
+ __ SmiToInteger32(rcx,
+ Operand(rdx,
+ ArgumentsAdaptorFrameConstants::kLengthOffset));
+ // Space on stack must already hold a smi.
+ __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx);
+ // Do not clobber the length index for the indexing operation since
+ // it is used compute the size for allocation later.
+ __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement));
+ __ movq(Operand(rsp, 2 * kPointerSize), rdx);
+
+ // Try the new space allocation. Start out with computing the size of
+ // the arguments object and the elements array.
+ Label add_arguments_object;
+ __ bind(&try_allocate);
+ __ testl(rcx, rcx);
+ __ j(zero, &add_arguments_object);
+ __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
+ __ bind(&add_arguments_object);
+ __ addl(rcx, Immediate(Heap::kArgumentsObjectSize));
+
+ // Do the allocation of both objects in one go.
+ __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
+
+ // Get the arguments boilerplate from the current (global) context.
+ int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
+ __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
+ __ movq(rdi, Operand(rdi, offset));
+
+ // Copy the JS object part.
+ STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
+ __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize));
+ __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize));
+ __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize));
+ __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister);
+ __ movq(FieldOperand(rax, 1 * kPointerSize), rdx);
+ __ movq(FieldOperand(rax, 2 * kPointerSize), rbx);
+
+ // Setup the callee in-object property.
+ ASSERT(Heap::arguments_callee_index == 0);
+ __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize));
+ __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister);
+
+ // Get the length (smi tagged) and set that as an in-object property too.
+ ASSERT(Heap::arguments_length_index == 1);
+ __ movq(rcx, Operand(rsp, 1 * kPointerSize));
+ __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx);
+
+ // If there are no actual arguments, we're done.
+ Label done;
+ __ SmiTest(rcx);
+ __ j(zero, &done);
+
+ // Get the parameters pointer from the stack and untag the length.
+ __ movq(rdx, Operand(rsp, 2 * kPointerSize));
+
+ // Setup the elements pointer in the allocated arguments object and
+ // initialize the header in the elements fixed array.
+ __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
+ __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
+ __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
+ __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
+ __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
+ __ SmiToInteger32(rcx, rcx); // Untag length for the loop below.
+
+ // Copy the fixed array slots.
+ Label loop;
+ __ bind(&loop);
+ __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
+ __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister);
+ __ addq(rdi, Immediate(kPointerSize));
+ __ subq(rdx, Immediate(kPointerSize));
+ __ decl(rcx);
+ __ j(not_zero, &loop);
+
+ // Return and remove the on-stack parameters.
+ __ bind(&done);
+ __ ret(3 * kPointerSize);
+
+ // Do the runtime call to allocate the arguments object.
+ __ bind(&runtime);
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
+}
+
+
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
@@ -8932,18 +9979,6 @@
}
-void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
- Register hash,
- Register mask) {
- __ and_(hash, mask);
- // Each entry in string cache consists of two pointer sized fields,
- // but times_twice_pointer_size (multiplication by 16) scale factor
- // is not supported by addrmode on x64 platform.
- // So we have to premultiply entry index before lookup.
- __ shl(hash, Immediate(kPointerSizeLog2 + 1));
-}
-
-
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
@@ -9023,6 +10058,18 @@
}
+void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
+ Register hash,
+ Register mask) {
+ __ and_(hash, mask);
+ // Each entry in string cache consists of two pointer sized fields,
+ // but times_twice_pointer_size (multiplication by 16) scale factor
+ // is not supported by addrmode on x64 platform.
+ // So we have to premultiply entry index before lookup.
+ __ shl(hash, Immediate(kPointerSizeLog2 + 1));
+}
+
+
void NumberToStringStub::Generate(MacroAssembler* masm) {
Label runtime;
@@ -9038,12 +10085,6 @@
}
-void RecordWriteStub::Generate(MacroAssembler* masm) {
- masm->RecordWriteHelper(object_, addr_, scratch_);
- masm->ret(0);
-}
-
-
static int NegativeComparisonResult(Condition cc) {
ASSERT(cc != equal);
ASSERT((cc == less) || (cc == less_equal)
@@ -9319,283 +10360,76 @@
}
-// Call the function just below TOS on the stack with the given
-// arguments. The receiver is the TOS.
-void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args,
- CallFunctionFlags flags,
- int position) {
- // Push the arguments ("left-to-right") on the stack.
- int arg_count = args->length();
- for (int i = 0; i < arg_count; i++) {
- Load(args->at(i));
- frame_->SpillTop();
- }
+void StackCheckStub::Generate(MacroAssembler* masm) {
+ // Because builtins always remove the receiver from the stack, we
+ // have to fake one to avoid underflowing the stack. The receiver
+ // must be inserted below the return address on the stack so we
+ // temporarily store that in a register.
+ __ pop(rax);
+ __ Push(Smi::FromInt(0));
+ __ push(rax);
- // Record the position for debugging purposes.
- CodeForSourcePosition(position);
-
- // Use the shared code stub to call the function.
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP;
- CallFunctionStub call_function(arg_count, in_loop, flags);
- Result answer = frame_->CallStub(&call_function, arg_count + 1);
- // Restore context and replace function on the stack with the
- // result of the stub invocation.
- frame_->RestoreContextRegister();
- frame_->SetElementAt(0, &answer);
+ // Do tail-call to runtime routine.
+ __ TailCallRuntime(Runtime::kStackGuard, 1, 1);
}
-void InstanceofStub::Generate(MacroAssembler* masm) {
- // Implements "value instanceof function" operator.
- // Expected input state:
- // rsp[0] : return address
- // rsp[1] : function pointer
- // rsp[2] : value
- // Returns a bitwise zero to indicate that the value
- // is and instance of the function and anything else to
- // indicate that the value is not an instance.
-
- // Get the object - go slow case if it's a smi.
+void CallFunctionStub::Generate(MacroAssembler* masm) {
Label slow;
- __ movq(rax, Operand(rsp, 2 * kPointerSize));
- __ JumpIfSmi(rax, &slow);
- // Check that the left hand is a JS object. Leave its map in rax.
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
- __ j(below, &slow);
- __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
- __ j(above, &slow);
+ // If the receiver might be a value (string, number or boolean) check for this
+ // and box it if it is.
+ if (ReceiverMightBeValue()) {
+ // Get the receiver from the stack.
+ // +1 ~ return address
+ Label receiver_is_value, receiver_is_js_object;
+ __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
- // Get the prototype of the function.
- __ movq(rdx, Operand(rsp, 1 * kPointerSize));
- // rdx is function, rax is map.
+ // Check if receiver is a smi (which is a number value).
+ __ JumpIfSmi(rax, &receiver_is_value);
- // Look up the function and the map in the instanceof cache.
- Label miss;
- __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
- __ j(not_equal, &miss);
- __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
- __ j(not_equal, &miss);
- __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
- __ ret(2 * kPointerSize);
+ // Check if the receiver is a valid JS object.
+ __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi);
+ __ j(above_equal, &receiver_is_js_object);
- __ bind(&miss);
- __ TryGetFunctionPrototype(rdx, rbx, &slow);
+ // Call the runtime to box the value.
+ __ bind(&receiver_is_value);
+ __ EnterInternalFrame();
+ __ push(rax);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+ __ LeaveInternalFrame();
+ __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax);
- // Check that the function prototype is a JS object.
- __ JumpIfSmi(rbx, &slow);
- __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
- __ j(below, &slow);
- __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
- __ j(above, &slow);
+ __ bind(&receiver_is_js_object);
+ }
- // Register mapping:
- // rax is object map.
- // rdx is function.
- // rbx is function prototype.
- __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
- __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
+ // Get the function to call from the stack.
+ // +2 ~ receiver, return address
+ __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
- __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
+ // Check that the function really is a JavaScript function.
+ __ JumpIfSmi(rdi, &slow);
+ // Goto slow case if we do not have a function.
+ __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
+ __ j(not_equal, &slow);
- // Loop through the prototype chain looking for the function prototype.
- Label loop, is_instance, is_not_instance;
- __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
- __ bind(&loop);
- __ cmpq(rcx, rbx);
- __ j(equal, &is_instance);
- __ cmpq(rcx, kScratchRegister);
- // The code at is_not_instance assumes that kScratchRegister contains a
- // non-zero GCable value (the null object in this case).
- __ j(equal, &is_not_instance);
- __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
- __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
- __ jmp(&loop);
+ // Fast-case: Just invoke the function.
+ ParameterCount actual(argc_);
+ __ InvokeFunction(rdi, actual, JUMP_FUNCTION);
- __ bind(&is_instance);
- __ xorl(rax, rax);
- // Store bitwise zero in the cache. This is a Smi in GC terms.
- ASSERT_EQ(0, kSmiTag);
- __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
- __ ret(2 * kPointerSize);
-
- __ bind(&is_not_instance);
- // We have to store a non-zero value in the cache.
- __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
- __ ret(2 * kPointerSize);
-
- // Slow-case: Go through the JavaScript implementation.
+ // Slow-case: Non-function called.
__ bind(&slow);
- __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
+ // of the original receiver from the call site).
+ __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
+ __ Set(rax, argc_);
+ __ Set(rbx, 0);
+ __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
+ Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
+ __ Jump(adaptor, RelocInfo::CODE_TARGET);
}
-void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
- // rsp[0] : return address
- // rsp[8] : number of parameters
- // rsp[16] : receiver displacement
- // rsp[24] : function
-
- // The displacement is used for skipping the return address and the
- // frame pointer on the stack. It is the offset of the last
- // parameter (if any) relative to the frame pointer.
- static const int kDisplacement = 2 * kPointerSize;
-
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor_frame, try_allocate, runtime;
- __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
- __ j(equal, &adaptor_frame);
-
- // Get the length from the frame.
- __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
- __ jmp(&try_allocate);
-
- // Patch the arguments.length and the parameters pointer.
- __ bind(&adaptor_frame);
- __ SmiToInteger32(rcx,
- Operand(rdx,
- ArgumentsAdaptorFrameConstants::kLengthOffset));
- // Space on stack must already hold a smi.
- __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx);
- // Do not clobber the length index for the indexing operation since
- // it is used compute the size for allocation later.
- __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement));
- __ movq(Operand(rsp, 2 * kPointerSize), rdx);
-
- // Try the new space allocation. Start out with computing the size of
- // the arguments object and the elements array.
- Label add_arguments_object;
- __ bind(&try_allocate);
- __ testl(rcx, rcx);
- __ j(zero, &add_arguments_object);
- __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
- __ bind(&add_arguments_object);
- __ addl(rcx, Immediate(Heap::kArgumentsObjectSize));
-
- // Do the allocation of both objects in one go.
- __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
-
- // Get the arguments boilerplate from the current (global) context.
- int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
- __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
- __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
- __ movq(rdi, Operand(rdi, offset));
-
- // Copy the JS object part.
- STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
- __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize));
- __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize));
- __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize));
- __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister);
- __ movq(FieldOperand(rax, 1 * kPointerSize), rdx);
- __ movq(FieldOperand(rax, 2 * kPointerSize), rbx);
-
- // Setup the callee in-object property.
- ASSERT(Heap::arguments_callee_index == 0);
- __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize));
- __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister);
-
- // Get the length (smi tagged) and set that as an in-object property too.
- ASSERT(Heap::arguments_length_index == 1);
- __ movq(rcx, Operand(rsp, 1 * kPointerSize));
- __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx);
-
- // If there are no actual arguments, we're done.
- Label done;
- __ SmiTest(rcx);
- __ j(zero, &done);
-
- // Get the parameters pointer from the stack and untag the length.
- __ movq(rdx, Operand(rsp, 2 * kPointerSize));
-
- // Setup the elements pointer in the allocated arguments object and
- // initialize the header in the elements fixed array.
- __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
- __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
- __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
- __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
- __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
- __ SmiToInteger32(rcx, rcx); // Untag length for the loop below.
-
- // Copy the fixed array slots.
- Label loop;
- __ bind(&loop);
- __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
- __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister);
- __ addq(rdi, Immediate(kPointerSize));
- __ subq(rdx, Immediate(kPointerSize));
- __ decl(rcx);
- __ j(not_zero, &loop);
-
- // Return and remove the on-stack parameters.
- __ bind(&done);
- __ ret(3 * kPointerSize);
-
- // Do the runtime call to allocate the arguments object.
- __ bind(&runtime);
- __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
-}
-
-
-void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
- // The key is in rdx and the parameter count is in rax.
-
- // The displacement is used for skipping the frame pointer on the
- // stack. It is the offset of the last parameter (if any) relative
- // to the frame pointer.
- static const int kDisplacement = 1 * kPointerSize;
-
- // Check that the key is a smi.
- Label slow;
- __ JumpIfNotSmi(rdx, &slow);
-
- // Check if the calling frame is an arguments adaptor frame.
- Label adaptor;
- __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
- __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
- __ j(equal, &adaptor);
-
- // Check index against formal parameters count limit passed in
- // through register rax. Use unsigned comparison to get negative
- // check for free.
- __ cmpq(rdx, rax);
- __ j(above_equal, &slow);
-
- // Read the argument from the stack and return it.
- SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
- __ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
- __ Ret();
-
- // Arguments adaptor case: Check index against actual arguments
- // limit found in the arguments adaptor frame. Use unsigned
- // comparison to get negative check for free.
- __ bind(&adaptor);
- __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ cmpq(rdx, rcx);
- __ j(above_equal, &slow);
-
- // Read the argument from the stack and return it.
- index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
- __ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
- __ Ret();
-
- // Slow-case: Handle non-smi or out-of-bounds access to arguments
- // by calling the runtime system.
- __ bind(&slow);
- __ pop(rbx); // Return address.
- __ push(rdx);
- __ push(rbx);
- __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
-}
-
-
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// Check that stack should contain next handler, frame pointer, state and
// return address in that order.
@@ -9625,6 +10459,11 @@
}
+void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
+ UNREACHABLE();
+}
+
+
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
@@ -9815,62 +10654,6 @@
}
-void CallFunctionStub::Generate(MacroAssembler* masm) {
- Label slow;
-
- // If the receiver might be a value (string, number or boolean) check for this
- // and box it if it is.
- if (ReceiverMightBeValue()) {
- // Get the receiver from the stack.
- // +1 ~ return address
- Label receiver_is_value, receiver_is_js_object;
- __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
-
- // Check if receiver is a smi (which is a number value).
- __ JumpIfSmi(rax, &receiver_is_value);
-
- // Check if the receiver is a valid JS object.
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi);
- __ j(above_equal, &receiver_is_js_object);
-
- // Call the runtime to box the value.
- __ bind(&receiver_is_value);
- __ EnterInternalFrame();
- __ push(rax);
- __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
- __ LeaveInternalFrame();
- __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax);
-
- __ bind(&receiver_is_js_object);
- }
-
- // Get the function to call from the stack.
- // +2 ~ receiver, return address
- __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
-
- // Check that the function really is a JavaScript function.
- __ JumpIfSmi(rdi, &slow);
- // Goto slow case if we do not have a function.
- __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
- __ j(not_equal, &slow);
-
- // Fast-case: Just invoke the function.
- ParameterCount actual(argc_);
- __ InvokeFunction(rdi, actual, JUMP_FUNCTION);
-
- // Slow-case: Non-function called.
- __ bind(&slow);
- // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
- // of the original receiver from the call site).
- __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
- __ Set(rax, argc_);
- __ Set(rbx, 0);
- __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
- Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
- __ Jump(adaptor, RelocInfo::CODE_TARGET);
-}
-
-
void CEntryStub::Generate(MacroAssembler* masm) {
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
@@ -9939,11 +10722,6 @@
}
-void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
- UNREACHABLE();
-}
-
-
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Label invoke, exit;
#ifdef ENABLE_LOGGING_AND_PROFILING
@@ -10075,890 +10853,91 @@
}
-// -----------------------------------------------------------------------------
-// Implementation of stubs.
+void InstanceofStub::Generate(MacroAssembler* masm) {
+ // Implements "value instanceof function" operator.
+ // Expected input state:
+ // rsp[0] : return address
+ // rsp[1] : function pointer
+ // rsp[2] : value
+ // Returns a bitwise zero to indicate that the value
+ // is and instance of the function and anything else to
+ // indicate that the value is not an instance.
-// Stub classes have public member named masm, not masm_.
+ // Get the object - go slow case if it's a smi.
+ Label slow;
+ __ movq(rax, Operand(rsp, 2 * kPointerSize));
+ __ JumpIfSmi(rax, &slow);
-void StackCheckStub::Generate(MacroAssembler* masm) {
- // Because builtins always remove the receiver from the stack, we
- // have to fake one to avoid underflowing the stack. The receiver
- // must be inserted below the return address on the stack so we
- // temporarily store that in a register.
- __ pop(rax);
- __ Push(Smi::FromInt(0));
- __ push(rax);
+ // Check that the left hand is a JS object. Leave its map in rax.
+ __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
+ __ j(below, &slow);
+ __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
+ __ j(above, &slow);
- // Do tail-call to runtime routine.
- __ TailCallRuntime(Runtime::kStackGuard, 1, 1);
-}
+ // Get the prototype of the function.
+ __ movq(rdx, Operand(rsp, 1 * kPointerSize));
+ // rdx is function, rax is map.
+ // Look up the function and the map in the instanceof cache.
+ Label miss;
+ __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
+ __ j(not_equal, &miss);
+ __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
+ __ j(not_equal, &miss);
+ __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
+ __ ret(2 * kPointerSize);
-void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
- __ SmiToInteger32(kScratchRegister, rdx);
- __ cvtlsi2sd(xmm0, kScratchRegister);
- __ SmiToInteger32(kScratchRegister, rax);
- __ cvtlsi2sd(xmm1, kScratchRegister);
-}
+ __ bind(&miss);
+ __ TryGetFunctionPrototype(rdx, rbx, &slow);
+ // Check that the function prototype is a JS object.
+ __ JumpIfSmi(rbx, &slow);
+ __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
+ __ j(below, &slow);
+ __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
+ __ j(above, &slow);
-void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
- Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
- // Load operand in rdx into xmm0.
- __ JumpIfSmi(rdx, &load_smi_rdx);
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
- // Load operand in rax into xmm1.
- __ JumpIfSmi(rax, &load_smi_rax);
- __ bind(&load_nonsmi_rax);
- __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
- __ jmp(&done);
+ // Register mapping:
+ // rax is object map.
+ // rdx is function.
+ // rbx is function prototype.
+ __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
+ __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
- __ bind(&load_smi_rdx);
- __ SmiToInteger32(kScratchRegister, rdx);
- __ cvtlsi2sd(xmm0, kScratchRegister);
- __ JumpIfNotSmi(rax, &load_nonsmi_rax);
+ __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
- __ bind(&load_smi_rax);
- __ SmiToInteger32(kScratchRegister, rax);
- __ cvtlsi2sd(xmm1, kScratchRegister);
+ // Loop through the prototype chain looking for the function prototype.
+ Label loop, is_instance, is_not_instance;
+ __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
+ __ bind(&loop);
+ __ cmpq(rcx, rbx);
+ __ j(equal, &is_instance);
+ __ cmpq(rcx, kScratchRegister);
+ // The code at is_not_instance assumes that kScratchRegister contains a
+ // non-zero GCable value (the null object in this case).
+ __ j(equal, &is_not_instance);
+ __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
+ __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
+ __ jmp(&loop);
- __ bind(&done);
-}
+ __ bind(&is_instance);
+ __ xorl(rax, rax);
+ // Store bitwise zero in the cache. This is a Smi in GC terms.
+ ASSERT_EQ(0, kSmiTag);
+ __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
+ __ ret(2 * kPointerSize);
+ __ bind(&is_not_instance);
+ // We have to store a non-zero value in the cache.
+ __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
+ __ ret(2 * kPointerSize);
-void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
- Label* not_numbers) {
- Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
- // Load operand in rdx into xmm0, or branch to not_numbers.
- __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
- __ JumpIfSmi(rdx, &load_smi_rdx);
- __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
- __ j(not_equal, not_numbers); // Argument in rdx is not a number.
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
- // Load operand in rax into xmm1, or branch to not_numbers.
- __ JumpIfSmi(rax, &load_smi_rax);
-
- __ bind(&load_nonsmi_rax);
- __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
- __ j(not_equal, not_numbers);
- __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
- __ jmp(&done);
-
- __ bind(&load_smi_rdx);
- __ SmiToInteger32(kScratchRegister, rdx);
- __ cvtlsi2sd(xmm0, kScratchRegister);
- __ JumpIfNotSmi(rax, &load_nonsmi_rax);
-
- __ bind(&load_smi_rax);
- __ SmiToInteger32(kScratchRegister, rax);
- __ cvtlsi2sd(xmm1, kScratchRegister);
- __ bind(&done);
+ // Slow-case: Go through the JavaScript implementation.
+ __ bind(&slow);
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
}
-// Input: rdx, rax are the left and right objects of a bit op.
-// Output: rax, rcx are left and right integers for a bit op.
-void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
- Label* conversion_failure,
- Register heap_number_map) {
- // Check float operands.
- Label arg1_is_object, check_undefined_arg1;
- Label arg2_is_object, check_undefined_arg2;
- Label load_arg2, done;
-
- __ JumpIfNotSmi(rdx, &arg1_is_object);
- __ SmiToInteger32(rdx, rdx);
- __ jmp(&load_arg2);
-
- // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
- __ bind(&check_undefined_arg1);
- __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
- __ j(not_equal, conversion_failure);
- __ movl(rdx, Immediate(0));
- __ jmp(&load_arg2);
-
- __ bind(&arg1_is_object);
- __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
- __ j(not_equal, &check_undefined_arg1);
- // Get the untagged integer version of the edx heap number in rcx.
- IntegerConvert(masm, rdx, rdx);
-
- // Here rdx has the untagged integer, rax has a Smi or a heap number.
- __ bind(&load_arg2);
- // Test if arg2 is a Smi.
- __ JumpIfNotSmi(rax, &arg2_is_object);
- __ SmiToInteger32(rax, rax);
- __ movl(rcx, rax);
- __ jmp(&done);
-
- // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
- __ bind(&check_undefined_arg2);
- __ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
- __ j(not_equal, conversion_failure);
- __ movl(rcx, Immediate(0));
- __ jmp(&done);
-
- __ bind(&arg2_is_object);
- __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
- __ j(not_equal, &check_undefined_arg2);
- // Get the untagged integer version of the eax heap number in ecx.
- IntegerConvert(masm, rcx, rax);
- __ bind(&done);
- __ movl(rax, rdx);
-}
-
-
-// Input: rdx, rax are the left and right objects of a bit op.
-// Output: rax, rcx are left and right integers for a bit op.
-void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
- // Check float operands.
- Label done;
- Label rax_is_smi;
- Label rax_is_object;
- Label rdx_is_object;
-
- __ JumpIfNotSmi(rdx, &rdx_is_object);
- __ SmiToInteger32(rdx, rdx);
- __ JumpIfSmi(rax, &rax_is_smi);
-
- __ bind(&rax_is_object);
- IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx.
- __ jmp(&done);
-
- __ bind(&rdx_is_object);
- IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx.
- __ JumpIfNotSmi(rax, &rax_is_object);
- __ bind(&rax_is_smi);
- __ SmiToInteger32(rcx, rax);
-
- __ bind(&done);
- __ movl(rax, rdx);
-}
-
-
-const char* GenericBinaryOpStub::GetName() {
- if (name_ != NULL) return name_;
- const int len = 100;
- name_ = Bootstrapper::AllocateAutoDeletedArray(len);
- if (name_ == NULL) return "OOM";
- const char* op_name = Token::Name(op_);
- const char* overwrite_name;
- switch (mode_) {
- case NO_OVERWRITE: overwrite_name = "Alloc"; break;
- case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
- case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
- default: overwrite_name = "UnknownOverwrite"; break;
- }
-
- OS::SNPrintF(Vector<char>(name_, len),
- "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
- op_name,
- overwrite_name,
- (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
- args_in_registers_ ? "RegArgs" : "StackArgs",
- args_reversed_ ? "_R" : "",
- static_operands_type_.ToString(),
- BinaryOpIC::GetName(runtime_operands_type_));
- return name_;
-}
-
-
-void GenericBinaryOpStub::GenerateCall(
- MacroAssembler* masm,
- Register left,
- Register right) {
- if (!ArgsInRegistersSupported()) {
- // Pass arguments on the stack.
- __ push(left);
- __ push(right);
- } else {
- // The calling convention with registers is left in rdx and right in rax.
- Register left_arg = rdx;
- Register right_arg = rax;
- if (!(left.is(left_arg) && right.is(right_arg))) {
- if (left.is(right_arg) && right.is(left_arg)) {
- if (IsOperationCommutative()) {
- SetArgsReversed();
- } else {
- __ xchg(left, right);
- }
- } else if (left.is(left_arg)) {
- __ movq(right_arg, right);
- } else if (right.is(right_arg)) {
- __ movq(left_arg, left);
- } else if (left.is(right_arg)) {
- if (IsOperationCommutative()) {
- __ movq(left_arg, right);
- SetArgsReversed();
- } else {
- // Order of moves important to avoid destroying left argument.
- __ movq(left_arg, left);
- __ movq(right_arg, right);
- }
- } else if (right.is(left_arg)) {
- if (IsOperationCommutative()) {
- __ movq(right_arg, left);
- SetArgsReversed();
- } else {
- // Order of moves important to avoid destroying right argument.
- __ movq(right_arg, right);
- __ movq(left_arg, left);
- }
- } else {
- // Order of moves is not important.
- __ movq(left_arg, left);
- __ movq(right_arg, right);
- }
- }
-
- // Update flags to indicate that arguments are in registers.
- SetArgsInRegisters();
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
- }
-
- // Call the stub.
- __ CallStub(this);
-}
-
-
-void GenericBinaryOpStub::GenerateCall(
- MacroAssembler* masm,
- Register left,
- Smi* right) {
- if (!ArgsInRegistersSupported()) {
- // Pass arguments on the stack.
- __ push(left);
- __ Push(right);
- } else {
- // The calling convention with registers is left in rdx and right in rax.
- Register left_arg = rdx;
- Register right_arg = rax;
- if (left.is(left_arg)) {
- __ Move(right_arg, right);
- } else if (left.is(right_arg) && IsOperationCommutative()) {
- __ Move(left_arg, right);
- SetArgsReversed();
- } else {
- // For non-commutative operations, left and right_arg might be
- // the same register. Therefore, the order of the moves is
- // important here in order to not overwrite left before moving
- // it to left_arg.
- __ movq(left_arg, left);
- __ Move(right_arg, right);
- }
-
- // Update flags to indicate that arguments are in registers.
- SetArgsInRegisters();
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
- }
-
- // Call the stub.
- __ CallStub(this);
-}
-
-
-void GenericBinaryOpStub::GenerateCall(
- MacroAssembler* masm,
- Smi* left,
- Register right) {
- if (!ArgsInRegistersSupported()) {
- // Pass arguments on the stack.
- __ Push(left);
- __ push(right);
- } else {
- // The calling convention with registers is left in rdx and right in rax.
- Register left_arg = rdx;
- Register right_arg = rax;
- if (right.is(right_arg)) {
- __ Move(left_arg, left);
- } else if (right.is(left_arg) && IsOperationCommutative()) {
- __ Move(right_arg, left);
- SetArgsReversed();
- } else {
- // For non-commutative operations, right and left_arg might be
- // the same register. Therefore, the order of the moves is
- // important here in order to not overwrite right before moving
- // it to right_arg.
- __ movq(right_arg, right);
- __ Move(left_arg, left);
- }
- // Update flags to indicate that arguments are in registers.
- SetArgsInRegisters();
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
- }
-
- // Call the stub.
- __ CallStub(this);
-}
-
-
-Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm,
- VirtualFrame* frame,
- Result* left,
- Result* right) {
- if (ArgsInRegistersSupported()) {
- SetArgsInRegisters();
- return frame->CallStub(this, left, right);
- } else {
- frame->Push(left);
- frame->Push(right);
- return frame->CallStub(this, 2);
- }
-}
-
-
-void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
- // 1. Move arguments into rdx, rax except for DIV and MOD, which need the
- // dividend in rax and rdx free for the division. Use rax, rbx for those.
- Comment load_comment(masm, "-- Load arguments");
- Register left = rdx;
- Register right = rax;
- if (op_ == Token::DIV || op_ == Token::MOD) {
- left = rax;
- right = rbx;
- if (HasArgsInRegisters()) {
- __ movq(rbx, rax);
- __ movq(rax, rdx);
- }
- }
- if (!HasArgsInRegisters()) {
- __ movq(right, Operand(rsp, 1 * kPointerSize));
- __ movq(left, Operand(rsp, 2 * kPointerSize));
- }
-
- Label not_smis;
- // 2. Smi check both operands.
- if (static_operands_type_.IsSmi()) {
- // Skip smi check if we know that both arguments are smis.
- if (FLAG_debug_code) {
- __ AbortIfNotSmi(left);
- __ AbortIfNotSmi(right);
- }
- if (op_ == Token::BIT_OR) {
- // Handle OR here, since we do extra smi-checking in the or code below.
- __ SmiOr(right, right, left);
- GenerateReturn(masm);
- return;
- }
- } else {
- if (op_ != Token::BIT_OR) {
- // Skip the check for OR as it is better combined with the
- // actual operation.
- Comment smi_check_comment(masm, "-- Smi check arguments");
- __ JumpIfNotBothSmi(left, right, &not_smis);
- }
- }
-
- // 3. Operands are both smis (except for OR), perform the operation leaving
- // the result in rax and check the result if necessary.
- Comment perform_smi(masm, "-- Perform smi operation");
- Label use_fp_on_smis;
- switch (op_) {
- case Token::ADD: {
- ASSERT(right.is(rax));
- __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
- break;
- }
-
- case Token::SUB: {
- __ SmiSub(left, left, right, &use_fp_on_smis);
- __ movq(rax, left);
- break;
- }
-
- case Token::MUL:
- ASSERT(right.is(rax));
- __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
- break;
-
- case Token::DIV:
- ASSERT(left.is(rax));
- __ SmiDiv(left, left, right, &use_fp_on_smis);
- break;
-
- case Token::MOD:
- ASSERT(left.is(rax));
- __ SmiMod(left, left, right, slow);
- break;
-
- case Token::BIT_OR:
- ASSERT(right.is(rax));
- __ movq(rcx, right); // Save the right operand.
- __ SmiOr(right, right, left); // BIT_OR is commutative.
- __ testb(right, Immediate(kSmiTagMask));
- __ j(not_zero, &not_smis);
- break;
-
- case Token::BIT_AND:
- ASSERT(right.is(rax));
- __ SmiAnd(right, right, left); // BIT_AND is commutative.
- break;
-
- case Token::BIT_XOR:
- ASSERT(right.is(rax));
- __ SmiXor(right, right, left); // BIT_XOR is commutative.
- break;
-
- case Token::SHL:
- case Token::SHR:
- case Token::SAR:
- switch (op_) {
- case Token::SAR:
- __ SmiShiftArithmeticRight(left, left, right);
- break;
- case Token::SHR:
- __ SmiShiftLogicalRight(left, left, right, slow);
- break;
- case Token::SHL:
- __ SmiShiftLeft(left, left, right);
- break;
- default:
- UNREACHABLE();
- }
- __ movq(rax, left);
- break;
-
- default:
- UNREACHABLE();
- break;
- }
-
- // 4. Emit return of result in rax.
- GenerateReturn(masm);
-
- // 5. For some operations emit inline code to perform floating point
- // operations on known smis (e.g., if the result of the operation
- // overflowed the smi range).
- switch (op_) {
- case Token::ADD:
- case Token::SUB:
- case Token::MUL:
- case Token::DIV: {
- ASSERT(use_fp_on_smis.is_linked());
- __ bind(&use_fp_on_smis);
- if (op_ == Token::DIV) {
- __ movq(rdx, rax);
- __ movq(rax, rbx);
- }
- // left is rdx, right is rax.
- __ AllocateHeapNumber(rbx, rcx, slow);
- FloatingPointHelper::LoadSSE2SmiOperands(masm);
- switch (op_) {
- case Token::ADD: __ addsd(xmm0, xmm1); break;
- case Token::SUB: __ subsd(xmm0, xmm1); break;
- case Token::MUL: __ mulsd(xmm0, xmm1); break;
- case Token::DIV: __ divsd(xmm0, xmm1); break;
- default: UNREACHABLE();
- }
- __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
- __ movq(rax, rbx);
- GenerateReturn(masm);
- }
- default:
- break;
- }
-
- // 6. Non-smi operands, fall out to the non-smi code with the operands in
- // rdx and rax.
- Comment done_comment(masm, "-- Enter non-smi code");
- __ bind(&not_smis);
-
- switch (op_) {
- case Token::DIV:
- case Token::MOD:
- // Operands are in rax, rbx at this point.
- __ movq(rdx, rax);
- __ movq(rax, rbx);
- break;
-
- case Token::BIT_OR:
- // Right operand is saved in rcx and rax was destroyed by the smi
- // operation.
- __ movq(rax, rcx);
- break;
-
- default:
- break;
- }
-}
-
-
-void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
- Label call_runtime;
-
- if (ShouldGenerateSmiCode()) {
- GenerateSmiCode(masm, &call_runtime);
- } else if (op_ != Token::MOD) {
- if (!HasArgsInRegisters()) {
- GenerateLoadArguments(masm);
- }
- }
- // Floating point case.
- if (ShouldGenerateFPCode()) {
- switch (op_) {
- case Token::ADD:
- case Token::SUB:
- case Token::MUL:
- case Token::DIV: {
- if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
- HasSmiCodeInStub()) {
- // Execution reaches this point when the first non-smi argument occurs
- // (and only if smi code is generated). This is the right moment to
- // patch to HEAP_NUMBERS state. The transition is attempted only for
- // the four basic operations. The stub stays in the DEFAULT state
- // forever for all other operations (also if smi code is skipped).
- GenerateTypeTransition(masm);
- break;
- }
-
- Label not_floats;
- // rax: y
- // rdx: x
- if (static_operands_type_.IsNumber()) {
- if (FLAG_debug_code) {
- // Assert at runtime that inputs are only numbers.
- __ AbortIfNotNumber(rdx);
- __ AbortIfNotNumber(rax);
- }
- FloatingPointHelper::LoadSSE2NumberOperands(masm);
- } else {
- FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime);
- }
-
- switch (op_) {
- case Token::ADD: __ addsd(xmm0, xmm1); break;
- case Token::SUB: __ subsd(xmm0, xmm1); break;
- case Token::MUL: __ mulsd(xmm0, xmm1); break;
- case Token::DIV: __ divsd(xmm0, xmm1); break;
- default: UNREACHABLE();
- }
- // Allocate a heap number, if needed.
- Label skip_allocation;
- OverwriteMode mode = mode_;
- if (HasArgsReversed()) {
- if (mode == OVERWRITE_RIGHT) {
- mode = OVERWRITE_LEFT;
- } else if (mode == OVERWRITE_LEFT) {
- mode = OVERWRITE_RIGHT;
- }
- }
- switch (mode) {
- case OVERWRITE_LEFT:
- __ JumpIfNotSmi(rdx, &skip_allocation);
- __ AllocateHeapNumber(rbx, rcx, &call_runtime);
- __ movq(rdx, rbx);
- __ bind(&skip_allocation);
- __ movq(rax, rdx);
- break;
- case OVERWRITE_RIGHT:
- // If the argument in rax is already an object, we skip the
- // allocation of a heap number.
- __ JumpIfNotSmi(rax, &skip_allocation);
- // Fall through!
- case NO_OVERWRITE:
- // Allocate a heap number for the result. Keep rax and rdx intact
- // for the possible runtime call.
- __ AllocateHeapNumber(rbx, rcx, &call_runtime);
- __ movq(rax, rbx);
- __ bind(&skip_allocation);
- break;
- default: UNREACHABLE();
- }
- __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
- GenerateReturn(masm);
- __ bind(&not_floats);
- if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
- !HasSmiCodeInStub()) {
- // Execution reaches this point when the first non-number argument
- // occurs (and only if smi code is skipped from the stub, otherwise
- // the patching has already been done earlier in this case branch).
- // A perfect moment to try patching to STRINGS for ADD operation.
- if (op_ == Token::ADD) {
- GenerateTypeTransition(masm);
- }
- }
- break;
- }
- case Token::MOD: {
- // For MOD we go directly to runtime in the non-smi case.
- break;
- }
- case Token::BIT_OR:
- case Token::BIT_AND:
- case Token::BIT_XOR:
- case Token::SAR:
- case Token::SHL:
- case Token::SHR: {
- Label skip_allocation, non_smi_shr_result;
- Register heap_number_map = r9;
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
- if (static_operands_type_.IsNumber()) {
- if (FLAG_debug_code) {
- // Assert at runtime that inputs are only numbers.
- __ AbortIfNotNumber(rdx);
- __ AbortIfNotNumber(rax);
- }
- FloatingPointHelper::LoadNumbersAsIntegers(masm);
- } else {
- FloatingPointHelper::LoadAsIntegers(masm,
- &call_runtime,
- heap_number_map);
- }
- switch (op_) {
- case Token::BIT_OR: __ orl(rax, rcx); break;
- case Token::BIT_AND: __ andl(rax, rcx); break;
- case Token::BIT_XOR: __ xorl(rax, rcx); break;
- case Token::SAR: __ sarl_cl(rax); break;
- case Token::SHL: __ shll_cl(rax); break;
- case Token::SHR: {
- __ shrl_cl(rax);
- // Check if result is negative. This can only happen for a shift
- // by zero.
- __ testl(rax, rax);
- __ j(negative, &non_smi_shr_result);
- break;
- }
- default: UNREACHABLE();
- }
-
- STATIC_ASSERT(kSmiValueSize == 32);
- // Tag smi result and return.
- __ Integer32ToSmi(rax, rax);
- GenerateReturn(masm);
-
- // All bit-ops except SHR return a signed int32 that can be
- // returned immediately as a smi.
- // We might need to allocate a HeapNumber if we shift a negative
- // number right by zero (i.e., convert to UInt32).
- if (op_ == Token::SHR) {
- ASSERT(non_smi_shr_result.is_linked());
- __ bind(&non_smi_shr_result);
- // Allocate a heap number if needed.
- __ movl(rbx, rax); // rbx holds result value (uint32 value as int64).
- switch (mode_) {
- case OVERWRITE_LEFT:
- case OVERWRITE_RIGHT:
- // If the operand was an object, we skip the
- // allocation of a heap number.
- __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
- 1 * kPointerSize : 2 * kPointerSize));
- __ JumpIfNotSmi(rax, &skip_allocation);
- // Fall through!
- case NO_OVERWRITE:
- // Allocate heap number in new space.
- // Not using AllocateHeapNumber macro in order to reuse
- // already loaded heap_number_map.
- __ AllocateInNewSpace(HeapNumber::kSize,
- rax,
- rcx,
- no_reg,
- &call_runtime,
- TAG_OBJECT);
- // Set the map.
- if (FLAG_debug_code) {
- __ AbortIfNotRootValue(heap_number_map,
- Heap::kHeapNumberMapRootIndex,
- "HeapNumberMap register clobbered.");
- }
- __ movq(FieldOperand(rax, HeapObject::kMapOffset),
- heap_number_map);
- __ bind(&skip_allocation);
- break;
- default: UNREACHABLE();
- }
- // Store the result in the HeapNumber and return.
- __ cvtqsi2sd(xmm0, rbx);
- __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
- GenerateReturn(masm);
- }
-
- break;
- }
- default: UNREACHABLE(); break;
- }
- }
-
- // If all else fails, use the runtime system to get the correct
- // result. If arguments was passed in registers now place them on the
- // stack in the correct order below the return address.
- __ bind(&call_runtime);
-
- if (HasArgsInRegisters()) {
- GenerateRegisterArgsPush(masm);
- }
-
- switch (op_) {
- case Token::ADD: {
- // Registers containing left and right operands respectively.
- Register lhs, rhs;
-
- if (HasArgsReversed()) {
- lhs = rax;
- rhs = rdx;
- } else {
- lhs = rdx;
- rhs = rax;
- }
-
- // Test for string arguments before calling runtime.
- Label not_strings, both_strings, not_string1, string1, string1_smi2;
-
- // If this stub has already generated FP-specific code then the arguments
- // are already in rdx and rax.
- if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
- GenerateLoadArguments(masm);
- }
-
- Condition is_smi;
- is_smi = masm->CheckSmi(lhs);
- __ j(is_smi, &not_string1);
- __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8);
- __ j(above_equal, &not_string1);
-
- // First argument is a a string, test second.
- is_smi = masm->CheckSmi(rhs);
- __ j(is_smi, &string1_smi2);
- __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9);
- __ j(above_equal, &string1);
-
- // First and second argument are strings.
- StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
- __ TailCallStub(&string_add_stub);
-
- __ bind(&string1_smi2);
- // First argument is a string, second is a smi. Try to lookup the number
- // string for the smi in the number string cache.
- NumberToStringStub::GenerateLookupNumberStringCache(
- masm, rhs, rbx, rcx, r8, true, &string1);
-
- // Replace second argument on stack and tailcall string add stub to make
- // the result.
- __ movq(Operand(rsp, 1 * kPointerSize), rbx);
- __ TailCallStub(&string_add_stub);
-
- // Only first argument is a string.
- __ bind(&string1);
- __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);
-
- // First argument was not a string, test second.
- __ bind(&not_string1);
- is_smi = masm->CheckSmi(rhs);
- __ j(is_smi, &not_strings);
- __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs);
- __ j(above_equal, &not_strings);
-
- // Only second argument is a string.
- __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);
-
- __ bind(&not_strings);
- // Neither argument is a string.
- __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
- break;
- }
- case Token::SUB:
- __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
- break;
- case Token::MUL:
- __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
- break;
- case Token::DIV:
- __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
- break;
- case Token::MOD:
- __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
- break;
- case Token::BIT_OR:
- __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
- break;
- case Token::BIT_AND:
- __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
- break;
- case Token::BIT_XOR:
- __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
- break;
- case Token::SAR:
- __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
- break;
- case Token::SHL:
- __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
- break;
- case Token::SHR:
- __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
- break;
- default:
- UNREACHABLE();
- }
-}
-
-
-void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
- ASSERT(!HasArgsInRegisters());
- __ movq(rax, Operand(rsp, 1 * kPointerSize));
- __ movq(rdx, Operand(rsp, 2 * kPointerSize));
-}
-
-
-void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
- // If arguments are not passed in registers remove them from the stack before
- // returning.
- if (!HasArgsInRegisters()) {
- __ ret(2 * kPointerSize); // Remove both operands
- } else {
- __ ret(0);
- }
-}
-
-
-void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
- ASSERT(HasArgsInRegisters());
- __ pop(rcx);
- if (HasArgsReversed()) {
- __ push(rax);
- __ push(rdx);
- } else {
- __ push(rdx);
- __ push(rax);
- }
- __ push(rcx);
-}
-
-
-void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
- Label get_result;
-
- // Ensure the operands are on the stack.
- if (HasArgsInRegisters()) {
- GenerateRegisterArgsPush(masm);
- }
-
- // Left and right arguments are already on stack.
- __ pop(rcx); // Save the return address.
-
- // Push this stub's key.
- __ Push(Smi::FromInt(MinorKey()));
-
- // Although the operation and the type info are encoded into the key,
- // the encoding is opaque, so push them too.
- __ Push(Smi::FromInt(op_));
-
- __ Push(Smi::FromInt(runtime_operands_type_));
-
- __ push(rcx); // The return address.
-
- // Perform patching to an appropriate fast case and return the result.
- __ TailCallExternalReference(
- ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
- 5,
- 1);
-}
-
-
-Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
- GenericBinaryOpStub stub(key, type_info);
- return stub.GetCode();
-}
-
-
int CompareStub::MinorKey() {
// Encode the three parameters in a unique 16 bit value. To avoid duplicate
// stubs the never NaN NaN condition is only taken into account if the
@@ -12064,6 +12043,11 @@
#undef __
+void RecordWriteStub::Generate(MacroAssembler* masm) {
+ masm->RecordWriteHelper(object_, addr_, scratch_);
+ masm->ret(0);
+}
+
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64
« no previous file with comments | « no previous file | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698