Index: src/x64/codegen-x64.cc |
=================================================================== |
--- src/x64/codegen-x64.cc (revision 5039) |
+++ src/x64/codegen-x64.cc (working copy) |
@@ -139,149 +139,6 @@ |
} |
-// ------------------------------------------------------------------------- |
-// Deferred code objects |
-// |
-// These subclasses of DeferredCode add pieces of code to the end of generated |
-// code. They are branched to from the generated code, and |
-// keep some slower code out of the main body of the generated code. |
-// Many of them call a code stub or a runtime function. |
- |
-class DeferredInlineSmiAdd: public DeferredCode { |
- public: |
- DeferredInlineSmiAdd(Register dst, |
- Smi* value, |
- OverwriteMode overwrite_mode) |
- : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { |
- set_comment("[ DeferredInlineSmiAdd"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- Smi* value_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-// The result of value + src is in dst. It either overflowed or was not |
-// smi tagged. Undo the speculative addition and call the appropriate |
-// specialized stub for add. The result is left in dst. |
-class DeferredInlineSmiAddReversed: public DeferredCode { |
- public: |
- DeferredInlineSmiAddReversed(Register dst, |
- Smi* value, |
- OverwriteMode overwrite_mode) |
- : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { |
- set_comment("[ DeferredInlineSmiAddReversed"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- Smi* value_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-class DeferredInlineSmiSub: public DeferredCode { |
- public: |
- DeferredInlineSmiSub(Register dst, |
- Smi* value, |
- OverwriteMode overwrite_mode) |
- : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { |
- set_comment("[ DeferredInlineSmiSub"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- Smi* value_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-// Call the appropriate binary operation stub to compute src op value |
-// and leave the result in dst. |
-class DeferredInlineSmiOperation: public DeferredCode { |
- public: |
- DeferredInlineSmiOperation(Token::Value op, |
- Register dst, |
- Register src, |
- Smi* value, |
- OverwriteMode overwrite_mode) |
- : op_(op), |
- dst_(dst), |
- src_(src), |
- value_(value), |
- overwrite_mode_(overwrite_mode) { |
- set_comment("[ DeferredInlineSmiOperation"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Token::Value op_; |
- Register dst_; |
- Register src_; |
- Smi* value_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-// Call the appropriate binary operation stub to compute value op src |
-// and leave the result in dst. |
-class DeferredInlineSmiOperationReversed: public DeferredCode { |
- public: |
- DeferredInlineSmiOperationReversed(Token::Value op, |
- Register dst, |
- Smi* value, |
- Register src, |
- OverwriteMode overwrite_mode) |
- : op_(op), |
- dst_(dst), |
- value_(value), |
- src_(src), |
- overwrite_mode_(overwrite_mode) { |
- set_comment("[ DeferredInlineSmiOperationReversed"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Token::Value op_; |
- Register dst_; |
- Smi* value_; |
- Register src_; |
- OverwriteMode overwrite_mode_; |
-}; |
- |
- |
-class FloatingPointHelper : public AllStatic { |
- public: |
- // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. |
- // If the operands are not both numbers, jump to not_numbers. |
- // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. |
- // NumberOperands assumes both are smis or heap numbers. |
- static void LoadSSE2SmiOperands(MacroAssembler* masm); |
- static void LoadSSE2NumberOperands(MacroAssembler* masm); |
- static void LoadSSE2UnknownOperands(MacroAssembler* masm, |
- Label* not_numbers); |
- |
- // Takes the operands in rdx and rax and loads them as integers in rax |
- // and rcx. |
- static void LoadAsIntegers(MacroAssembler* masm, |
- Label* operand_conversion_failure, |
- Register heap_number_map); |
- // As above, but we know the operands to be numbers. In that case, |
- // conversion can't fail. |
- static void LoadNumbersAsIntegers(MacroAssembler* masm); |
-}; |
- |
- |
// ----------------------------------------------------------------------------- |
// CodeGenerator implementation. |
@@ -298,21 +155,6 @@ |
} |
-void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
- // Call the runtime to declare the globals. The inevitable call |
- // will sync frame elements to memory anyway, so we do it eagerly to |
- // allow us to push the arguments directly into place. |
- frame_->SyncRange(0, frame_->element_count() - 1); |
- |
- __ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT); |
- frame_->EmitPush(rsi); // The context is the first argument. |
- frame_->EmitPush(kScratchRegister); |
- frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0)); |
- Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3); |
- // Return value is ignored. |
-} |
- |
- |
void CodeGenerator::Generate(CompilationInfo* info) { |
// Record the position for debugging purposes. |
CodeForFunctionPosition(info->function()); |
@@ -543,212 +385,2080 @@ |
allocator_ = NULL; |
} |
-void CodeGenerator::GenerateReturnSequence(Result* return_value) { |
- // The return value is a live (but not currently reference counted) |
- // reference to rax. This is safe because the current frame does not |
- // contain a reference to rax (it is prepared for the return by spilling |
- // all registers). |
- if (FLAG_trace) { |
- frame_->Push(return_value); |
- *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); |
+ |
+Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { |
+ // Currently, this assertion will fail if we try to assign to |
+ // a constant variable that is constant because it is read-only |
+ // (such as the variable referring to a named function expression). |
+ // We need to implement assignments to read-only variables. |
+ // Ideally, we should do this during AST generation (by converting |
+ // such assignments into expression statements); however, in general |
+ // we may not be able to make the decision until past AST generation, |
+ // that is when the entire program is known. |
+ ASSERT(slot != NULL); |
+ int index = slot->index(); |
+ switch (slot->type()) { |
+ case Slot::PARAMETER: |
+ return frame_->ParameterAt(index); |
+ |
+ case Slot::LOCAL: |
+ return frame_->LocalAt(index); |
+ |
+ case Slot::CONTEXT: { |
+ // Follow the context chain if necessary. |
+ ASSERT(!tmp.is(rsi)); // do not overwrite context register |
+ Register context = rsi; |
+ int chain_length = scope()->ContextChainLength(slot->var()->scope()); |
+ for (int i = 0; i < chain_length; i++) { |
+ // Load the closure. |
+ // (All contexts, even 'with' contexts, have a closure, |
+ // and it is the same for all contexts inside a function. |
+ // There is no need to go to the function context first.) |
+ __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
+ // Load the function context (which is the incoming, outer context). |
+ __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); |
+ context = tmp; |
+ } |
+ // We may have a 'with' context now. Get the function context. |
+ // (In fact this mov may never be the needed, since the scope analysis |
+ // may not permit a direct context access in this case and thus we are |
+ // always at a function context. However it is safe to dereference be- |
+ // cause the function context of a function context is itself. Before |
+ // deleting this mov we should try to create a counter-example first, |
+ // though...) |
+ __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
+ return ContextOperand(tmp, index); |
+ } |
+ |
+ default: |
+ UNREACHABLE(); |
+ return Operand(rsp, 0); |
} |
- return_value->ToRegister(rax); |
+} |
- // Add a label for checking the size of the code used for returning. |
+ |
+Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, |
+ Result tmp, |
+ JumpTarget* slow) { |
+ ASSERT(slot->type() == Slot::CONTEXT); |
+ ASSERT(tmp.is_register()); |
+ Register context = rsi; |
+ |
+ for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { |
+ if (s->num_heap_slots() > 0) { |
+ if (s->calls_eval()) { |
+ // Check that extension is NULL. |
+ __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), |
+ Immediate(0)); |
+ slow->Branch(not_equal, not_taken); |
+ } |
+ __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); |
+ __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
+ context = tmp.reg(); |
+ } |
+ } |
+ // Check that last extension is NULL. |
+ __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); |
+ slow->Branch(not_equal, not_taken); |
+ __ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); |
+ return ContextOperand(tmp.reg(), slot->index()); |
+} |
+ |
+ |
+// Emit code to load the value of an expression to the top of the |
+// frame. If the expression is boolean-valued it may be compiled (or |
+// partially compiled) into control flow to the control destination. |
+// If force_control is true, control flow is forced. |
+void CodeGenerator::LoadCondition(Expression* x, |
+ ControlDestination* dest, |
+ bool force_control) { |
+ ASSERT(!in_spilled_code()); |
+ int original_height = frame_->height(); |
+ |
+ { CodeGenState new_state(this, dest); |
+ Visit(x); |
+ |
+ // If we hit a stack overflow, we may not have actually visited |
+ // the expression. In that case, we ensure that we have a |
+ // valid-looking frame state because we will continue to generate |
+ // code as we unwind the C++ stack. |
+ // |
+ // It's possible to have both a stack overflow and a valid frame |
+ // state (eg, a subexpression overflowed, visiting it returned |
+ // with a dummied frame state, and visiting this expression |
+ // returned with a normal-looking state). |
+ if (HasStackOverflow() && |
+ !dest->is_used() && |
+ frame_->height() == original_height) { |
+ dest->Goto(true); |
+ } |
+ } |
+ |
+ if (force_control && !dest->is_used()) { |
+ // Convert the TOS value into flow to the control destination. |
+ // TODO(X64): Make control flow to control destinations work. |
+ ToBoolean(dest); |
+ } |
+ |
+ ASSERT(!(force_control && !dest->is_used())); |
+ ASSERT(dest->is_used() || frame_->height() == original_height + 1); |
+} |
+ |
+ |
+void CodeGenerator::LoadAndSpill(Expression* expression) { |
+ // TODO(x64): No architecture specific code. Move to shared location. |
+ ASSERT(in_spilled_code()); |
+ set_in_spilled_code(false); |
+ Load(expression); |
+ frame_->SpillAll(); |
+ set_in_spilled_code(true); |
+} |
+ |
+ |
+void CodeGenerator::Load(Expression* expr) { |
#ifdef DEBUG |
- Label check_exit_codesize; |
- masm_->bind(&check_exit_codesize); |
+ int original_height = frame_->height(); |
#endif |
+ ASSERT(!in_spilled_code()); |
+ JumpTarget true_target; |
+ JumpTarget false_target; |
+ ControlDestination dest(&true_target, &false_target, true); |
+ LoadCondition(expr, &dest, false); |
- // Leave the frame and return popping the arguments and the |
- // receiver. |
- frame_->Exit(); |
- masm_->ret((scope()->num_parameters() + 1) * kPointerSize); |
-#ifdef ENABLE_DEBUGGER_SUPPORT |
- // Add padding that will be overwritten by a debugger breakpoint. |
- // frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k" |
- // with length 7 (3 + 1 + 3). |
- const int kPadding = Assembler::kJSReturnSequenceLength - 7; |
- for (int i = 0; i < kPadding; ++i) { |
- masm_->int3(); |
+ if (dest.false_was_fall_through()) { |
+ // The false target was just bound. |
+ JumpTarget loaded; |
+ frame_->Push(Factory::false_value()); |
+ // There may be dangling jumps to the true target. |
+ if (true_target.is_linked()) { |
+ loaded.Jump(); |
+ true_target.Bind(); |
+ frame_->Push(Factory::true_value()); |
+ loaded.Bind(); |
+ } |
+ |
+ } else if (dest.is_used()) { |
+ // There is true, and possibly false, control flow (with true as |
+ // the fall through). |
+ JumpTarget loaded; |
+ frame_->Push(Factory::true_value()); |
+ if (false_target.is_linked()) { |
+ loaded.Jump(); |
+ false_target.Bind(); |
+ frame_->Push(Factory::false_value()); |
+ loaded.Bind(); |
+ } |
+ |
+ } else { |
+ // We have a valid value on top of the frame, but we still may |
+ // have dangling jumps to the true and false targets from nested |
+ // subexpressions (eg, the left subexpressions of the |
+ // short-circuited boolean operators). |
+ ASSERT(has_valid_frame()); |
+ if (true_target.is_linked() || false_target.is_linked()) { |
+ JumpTarget loaded; |
+ loaded.Jump(); // Don't lose the current TOS. |
+ if (true_target.is_linked()) { |
+ true_target.Bind(); |
+ frame_->Push(Factory::true_value()); |
+ if (false_target.is_linked()) { |
+ loaded.Jump(); |
+ } |
+ } |
+ if (false_target.is_linked()) { |
+ false_target.Bind(); |
+ frame_->Push(Factory::false_value()); |
+ } |
+ loaded.Bind(); |
+ } |
} |
- // Check that the size of the code used for returning matches what is |
- // expected by the debugger. |
- ASSERT_EQ(Assembler::kJSReturnSequenceLength, |
- masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); |
-#endif |
- DeleteFrame(); |
+ |
+ ASSERT(has_valid_frame()); |
+ ASSERT(frame_->height() == original_height + 1); |
} |
-#ifdef DEBUG |
-bool CodeGenerator::HasValidEntryRegisters() { |
- return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0)) |
- && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0)) |
- && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0)) |
- && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0)) |
- && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0)) |
- && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0)) |
- && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0)) |
- && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0)) |
- && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0)) |
- && (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0)); |
+void CodeGenerator::LoadGlobal() { |
+ if (in_spilled_code()) { |
+ frame_->EmitPush(GlobalObject()); |
+ } else { |
+ Result temp = allocator_->Allocate(); |
+ __ movq(temp.reg(), GlobalObject()); |
+ frame_->Push(&temp); |
+ } |
} |
-#endif |
-class DeferredReferenceGetKeyedValue: public DeferredCode { |
+void CodeGenerator::LoadGlobalReceiver() { |
+ Result temp = allocator_->Allocate(); |
+ Register reg = temp.reg(); |
+ __ movq(reg, GlobalObject()); |
+ __ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); |
+ frame_->Push(&temp); |
+} |
+ |
+ |
+void CodeGenerator::LoadTypeofExpression(Expression* expr) { |
+ // Special handling of identifiers as subexpressions of typeof. |
+ Variable* variable = expr->AsVariableProxy()->AsVariable(); |
+ if (variable != NULL && !variable->is_this() && variable->is_global()) { |
+ // For a global variable we build the property reference |
+ // <global>.<variable> and perform a (regular non-contextual) property |
+ // load to make sure we do not get reference errors. |
+ Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); |
+ Literal key(variable->name()); |
+ Property property(&global, &key, RelocInfo::kNoPosition); |
+ Reference ref(this, &property); |
+ ref.GetValue(); |
+ } else if (variable != NULL && variable->slot() != NULL) { |
+ // For a variable that rewrites to a slot, we signal it is the immediate |
+ // subexpression of a typeof. |
+ LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF); |
+ } else { |
+ // Anything else can be handled normally. |
+ Load(expr); |
+ } |
+} |
+ |
+ |
+ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { |
+ if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; |
+ ASSERT(scope()->arguments_shadow() != NULL); |
+ // We don't want to do lazy arguments allocation for functions that |
+ // have heap-allocated contexts, because it interfers with the |
+ // uninitialized const tracking in the context objects. |
+ return (scope()->num_heap_slots() > 0) |
+ ? EAGER_ARGUMENTS_ALLOCATION |
+ : LAZY_ARGUMENTS_ALLOCATION; |
+} |
+ |
+ |
+Result CodeGenerator::StoreArgumentsObject(bool initial) { |
+ ArgumentsAllocationMode mode = ArgumentsMode(); |
+ ASSERT(mode != NO_ARGUMENTS_ALLOCATION); |
+ |
+ Comment cmnt(masm_, "[ store arguments object"); |
+ if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { |
+ // When using lazy arguments allocation, we store the hole value |
+ // as a sentinel indicating that the arguments object hasn't been |
+ // allocated yet. |
+ frame_->Push(Factory::the_hole_value()); |
+ } else { |
+ ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); |
+ frame_->PushFunction(); |
+ frame_->PushReceiverSlotAddress(); |
+ frame_->Push(Smi::FromInt(scope()->num_parameters())); |
+ Result result = frame_->CallStub(&stub, 3); |
+ frame_->Push(&result); |
+ } |
+ |
+ |
+ Variable* arguments = scope()->arguments()->var(); |
+ Variable* shadow = scope()->arguments_shadow()->var(); |
+ ASSERT(arguments != NULL && arguments->slot() != NULL); |
+ ASSERT(shadow != NULL && shadow->slot() != NULL); |
+ JumpTarget done; |
+ bool skip_arguments = false; |
+ if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { |
+ // We have to skip storing into the arguments slot if it has |
+ // already been written to. This can happen if the a function |
+ // has a local variable named 'arguments'. |
+ LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); |
+ Result probe = frame_->Pop(); |
+ if (probe.is_constant()) { |
+ // We have to skip updating the arguments object if it has been |
+ // assigned a proper value. |
+ skip_arguments = !probe.handle()->IsTheHole(); |
+ } else { |
+ __ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex); |
+ probe.Unuse(); |
+ done.Branch(not_equal); |
+ } |
+ } |
+ if (!skip_arguments) { |
+ StoreToSlot(arguments->slot(), NOT_CONST_INIT); |
+ if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); |
+ } |
+ StoreToSlot(shadow->slot(), NOT_CONST_INIT); |
+ return frame_->Pop(); |
+} |
+ |
+//------------------------------------------------------------------------------ |
+// CodeGenerator implementation of variables, lookups, and stores. |
+ |
+//------------------------------------------------------------------------------ |
+// CodeGenerator implementation of variables, lookups, and stores. |
+ |
+Reference::Reference(CodeGenerator* cgen, |
+ Expression* expression, |
+ bool persist_after_get) |
+ : cgen_(cgen), |
+ expression_(expression), |
+ type_(ILLEGAL), |
+ persist_after_get_(persist_after_get) { |
+ cgen->LoadReference(this); |
+} |
+ |
+ |
+Reference::~Reference() { |
+ ASSERT(is_unloaded() || is_illegal()); |
+} |
+ |
+ |
+void CodeGenerator::LoadReference(Reference* ref) { |
+ // References are loaded from both spilled and unspilled code. Set the |
+ // state to unspilled to allow that (and explicitly spill after |
+ // construction at the construction sites). |
+ bool was_in_spilled_code = in_spilled_code_; |
+ in_spilled_code_ = false; |
+ |
+ Comment cmnt(masm_, "[ LoadReference"); |
+ Expression* e = ref->expression(); |
+ Property* property = e->AsProperty(); |
+ Variable* var = e->AsVariableProxy()->AsVariable(); |
+ |
+ if (property != NULL) { |
+ // The expression is either a property or a variable proxy that rewrites |
+ // to a property. |
+ Load(property->obj()); |
+ if (property->key()->IsPropertyName()) { |
+ ref->set_type(Reference::NAMED); |
+ } else { |
+ Load(property->key()); |
+ ref->set_type(Reference::KEYED); |
+ } |
+ } else if (var != NULL) { |
+ // The expression is a variable proxy that does not rewrite to a |
+ // property. Global variables are treated as named property references. |
+ if (var->is_global()) { |
+ // If rax is free, the register allocator prefers it. Thus the code |
+ // generator will load the global object into rax, which is where |
+ // LoadIC wants it. Most uses of Reference call LoadIC directly |
+ // after the reference is created. |
+ frame_->Spill(rax); |
+ LoadGlobal(); |
+ ref->set_type(Reference::NAMED); |
+ } else { |
+ ASSERT(var->slot() != NULL); |
+ ref->set_type(Reference::SLOT); |
+ } |
+ } else { |
+ // Anything else is a runtime error. |
+ Load(e); |
+ frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
+ } |
+ |
+ in_spilled_code_ = was_in_spilled_code; |
+} |
+ |
+ |
+void CodeGenerator::UnloadReference(Reference* ref) { |
+ // Pop a reference from the stack while preserving TOS. |
+ Comment cmnt(masm_, "[ UnloadReference"); |
+ frame_->Nip(ref->size()); |
+ ref->set_unloaded(); |
+} |
+ |
+ |
+// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and |
+// convert it to a boolean in the condition code register or jump to |
+// 'false_target'/'true_target' as appropriate. |
+void CodeGenerator::ToBoolean(ControlDestination* dest) { |
+ Comment cmnt(masm_, "[ ToBoolean"); |
+ |
+ // The value to convert should be popped from the frame. |
+ Result value = frame_->Pop(); |
+ value.ToRegister(); |
+ |
+ if (value.is_number()) { |
+ // Fast case if TypeInfo indicates only numbers. |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotNumber(value.reg()); |
+ } |
+ // Smi => false iff zero. |
+ __ SmiCompare(value.reg(), Smi::FromInt(0)); |
+ if (value.is_smi()) { |
+ value.Unuse(); |
+ dest->Split(not_zero); |
+ } else { |
+ dest->false_target()->Branch(equal); |
+ Condition is_smi = masm_->CheckSmi(value.reg()); |
+ dest->true_target()->Branch(is_smi); |
+ __ xorpd(xmm0, xmm0); |
+ __ ucomisd(xmm0, FieldOperand(value.reg(), HeapNumber::kValueOffset)); |
+ value.Unuse(); |
+ dest->Split(not_zero); |
+ } |
+ } else { |
+ // Fast case checks. |
+ // 'false' => false. |
+ __ CompareRoot(value.reg(), Heap::kFalseValueRootIndex); |
+ dest->false_target()->Branch(equal); |
+ |
+ // 'true' => true. |
+ __ CompareRoot(value.reg(), Heap::kTrueValueRootIndex); |
+ dest->true_target()->Branch(equal); |
+ |
+ // 'undefined' => false. |
+ __ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex); |
+ dest->false_target()->Branch(equal); |
+ |
+ // Smi => false iff zero. |
+ __ SmiCompare(value.reg(), Smi::FromInt(0)); |
+ dest->false_target()->Branch(equal); |
+ Condition is_smi = masm_->CheckSmi(value.reg()); |
+ dest->true_target()->Branch(is_smi); |
+ |
+ // Call the stub for all other cases. |
+ frame_->Push(&value); // Undo the Pop() from above. |
+ ToBooleanStub stub; |
+ Result temp = frame_->CallStub(&stub, 1); |
+ // Convert the result to a condition code. |
+ __ testq(temp.reg(), temp.reg()); |
+ temp.Unuse(); |
+ dest->Split(not_equal); |
+ } |
+} |
+ |
+ |
+class FloatingPointHelper : public AllStatic { |
public: |
- explicit DeferredReferenceGetKeyedValue(Register dst, |
- Register receiver, |
- Register key) |
- : dst_(dst), receiver_(receiver), key_(key) { |
- set_comment("[ DeferredReferenceGetKeyedValue"); |
+ // Load the operands from rdx and rax into xmm0 and xmm1, as doubles. |
+ // If the operands are not both numbers, jump to not_numbers. |
+ // Leaves rdx and rax unchanged. SmiOperands assumes both are smis. |
+ // NumberOperands assumes both are smis or heap numbers. |
+ static void LoadSSE2SmiOperands(MacroAssembler* masm); |
+ static void LoadSSE2NumberOperands(MacroAssembler* masm); |
+ static void LoadSSE2UnknownOperands(MacroAssembler* masm, |
+ Label* not_numbers); |
+ |
+ // Takes the operands in rdx and rax and loads them as integers in rax |
+ // and rcx. |
+ static void LoadAsIntegers(MacroAssembler* masm, |
+ Label* operand_conversion_failure, |
+ Register heap_number_map); |
+ // As above, but we know the operands to be numbers. In that case, |
+ // conversion can't fail. |
+ static void LoadNumbersAsIntegers(MacroAssembler* masm); |
+}; |
+ |
+ |
+const char* GenericBinaryOpStub::GetName() { |
+ if (name_ != NULL) return name_; |
+ const int len = 100; |
+ name_ = Bootstrapper::AllocateAutoDeletedArray(len); |
+ if (name_ == NULL) return "OOM"; |
+ const char* op_name = Token::Name(op_); |
+ const char* overwrite_name; |
+ switch (mode_) { |
+ case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
+ case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
+ case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
+ default: overwrite_name = "UnknownOverwrite"; break; |
} |
- virtual void Generate(); |
+ OS::SNPrintF(Vector<char>(name_, len), |
+ "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", |
+ op_name, |
+ overwrite_name, |
+ (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", |
+ args_in_registers_ ? "RegArgs" : "StackArgs", |
+ args_reversed_ ? "_R" : "", |
+ static_operands_type_.ToString(), |
+ BinaryOpIC::GetName(runtime_operands_type_)); |
+ return name_; |
+} |
- Label* patch_site() { return &patch_site_; } |
+// Call the specialized stub for a binary operation. |
+class DeferredInlineBinaryOperation: public DeferredCode { |
+ public: |
+ DeferredInlineBinaryOperation(Token::Value op, |
+ Register dst, |
+ Register left, |
+ Register right, |
+ OverwriteMode mode) |
+ : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) { |
+ set_comment("[ DeferredInlineBinaryOperation"); |
+ } |
+ |
+ virtual void Generate(); |
+ |
private: |
- Label patch_site_; |
+ Token::Value op_; |
Register dst_; |
- Register receiver_; |
- Register key_; |
+ Register left_; |
+ Register right_; |
+ OverwriteMode mode_; |
}; |
-void DeferredReferenceGetKeyedValue::Generate() { |
- if (receiver_.is(rdx)) { |
- if (!key_.is(rax)) { |
- __ movq(rax, key_); |
- } // else do nothing. |
- } else if (receiver_.is(rax)) { |
- if (key_.is(rdx)) { |
- __ xchg(rax, rdx); |
- } else if (key_.is(rax)) { |
- __ movq(rdx, receiver_); |
- } else { |
- __ movq(rdx, receiver_); |
- __ movq(rax, key_); |
+void DeferredInlineBinaryOperation::Generate() { |
+ Label done; |
+ if ((op_ == Token::ADD) |
+ || (op_ == Token::SUB) |
+ || (op_ == Token::MUL) |
+ || (op_ == Token::DIV)) { |
+ Label call_runtime; |
+ Label left_smi, right_smi, load_right, do_op; |
+ __ JumpIfSmi(left_, &left_smi); |
+ __ CompareRoot(FieldOperand(left_, HeapObject::kMapOffset), |
+ Heap::kHeapNumberMapRootIndex); |
+ __ j(not_equal, &call_runtime); |
+ __ movsd(xmm0, FieldOperand(left_, HeapNumber::kValueOffset)); |
+ if (mode_ == OVERWRITE_LEFT) { |
+ __ movq(dst_, left_); |
} |
- } else if (key_.is(rax)) { |
- __ movq(rdx, receiver_); |
+ __ jmp(&load_right); |
+ |
+ __ bind(&left_smi); |
+ __ SmiToInteger32(left_, left_); |
+ __ cvtlsi2sd(xmm0, left_); |
+ __ Integer32ToSmi(left_, left_); |
+ if (mode_ == OVERWRITE_LEFT) { |
+ Label alloc_failure; |
+ __ AllocateHeapNumber(dst_, no_reg, &call_runtime); |
+ } |
+ |
+ __ bind(&load_right); |
+ __ JumpIfSmi(right_, &right_smi); |
+ __ CompareRoot(FieldOperand(right_, HeapObject::kMapOffset), |
+ Heap::kHeapNumberMapRootIndex); |
+ __ j(not_equal, &call_runtime); |
+ __ movsd(xmm1, FieldOperand(right_, HeapNumber::kValueOffset)); |
+ if (mode_ == OVERWRITE_RIGHT) { |
+ __ movq(dst_, right_); |
+ } else if (mode_ == NO_OVERWRITE) { |
+ Label alloc_failure; |
+ __ AllocateHeapNumber(dst_, no_reg, &call_runtime); |
+ } |
+ __ jmp(&do_op); |
+ |
+ __ bind(&right_smi); |
+ __ SmiToInteger32(right_, right_); |
+ __ cvtlsi2sd(xmm1, right_); |
+ __ Integer32ToSmi(right_, right_); |
+ if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) { |
+ Label alloc_failure; |
+ __ AllocateHeapNumber(dst_, no_reg, &call_runtime); |
+ } |
+ |
+ __ bind(&do_op); |
+ switch (op_) { |
+ case Token::ADD: __ addsd(xmm0, xmm1); break; |
+ case Token::SUB: __ subsd(xmm0, xmm1); break; |
+ case Token::MUL: __ mulsd(xmm0, xmm1); break; |
+ case Token::DIV: __ divsd(xmm0, xmm1); break; |
+ default: UNREACHABLE(); |
+ } |
+ __ movsd(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0); |
+ __ jmp(&done); |
+ |
+ __ bind(&call_runtime); |
+ } |
+ GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB); |
+ stub.GenerateCall(masm_, left_, right_); |
+ if (!dst_.is(rax)) __ movq(dst_, rax); |
+ __ bind(&done); |
+} |
+ |
+ |
+static TypeInfo CalculateTypeInfo(TypeInfo operands_type, |
+ Token::Value op, |
+ const Result& right, |
+ const Result& left) { |
+ // Set TypeInfo of result according to the operation performed. |
+ // We rely on the fact that smis have a 32 bit payload on x64. |
+ STATIC_ASSERT(kSmiValueSize == 32); |
+ switch (op) { |
+ case Token::COMMA: |
+ return right.type_info(); |
+ case Token::OR: |
+ case Token::AND: |
+ // Result type can be either of the two input types. |
+ return operands_type; |
+ case Token::BIT_OR: |
+ case Token::BIT_XOR: |
+ case Token::BIT_AND: |
+ // Result is always a smi. |
+ return TypeInfo::Smi(); |
+ case Token::SAR: |
+ case Token::SHL: |
+ // Result is always a smi. |
+ return TypeInfo::Smi(); |
+ case Token::SHR: |
+ // Result of x >>> y is always a smi if masked y >= 1, otherwise a number. |
+ return (right.is_constant() && right.handle()->IsSmi() |
+ && (Smi::cast(*right.handle())->value() & 0x1F) >= 1) |
+ ? TypeInfo::Smi() |
+ : TypeInfo::Number(); |
+ case Token::ADD: |
+ if (operands_type.IsNumber()) { |
+ return TypeInfo::Number(); |
+ } else if (left.type_info().IsString() || right.type_info().IsString()) { |
+ return TypeInfo::String(); |
+ } else { |
+ return TypeInfo::Unknown(); |
+ } |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: |
+ case Token::MOD: |
+ // Result is always a number. |
+ return TypeInfo::Number(); |
+ default: |
+ UNREACHABLE(); |
+ } |
+ UNREACHABLE(); |
+ return TypeInfo::Unknown(); |
+} |
+ |
+ |
+void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr, |
+ OverwriteMode overwrite_mode) { |
+ Comment cmnt(masm_, "[ BinaryOperation"); |
+ Token::Value op = expr->op(); |
+ Comment cmnt_token(masm_, Token::String(op)); |
+ |
+ if (op == Token::COMMA) { |
+ // Simply discard left value. |
+ frame_->Nip(1); |
+ return; |
+ } |
+ |
+ Result right = frame_->Pop(); |
+ Result left = frame_->Pop(); |
+ |
+ if (op == Token::ADD) { |
+ const bool left_is_string = left.type_info().IsString(); |
+ const bool right_is_string = right.type_info().IsString(); |
+ // Make sure constant strings have string type info. |
+ ASSERT(!(left.is_constant() && left.handle()->IsString()) || |
+ left_is_string); |
+ ASSERT(!(right.is_constant() && right.handle()->IsString()) || |
+ right_is_string); |
+ if (left_is_string || right_is_string) { |
+ frame_->Push(&left); |
+ frame_->Push(&right); |
+ Result answer; |
+ if (left_is_string) { |
+ if (right_is_string) { |
+ StringAddStub stub(NO_STRING_CHECK_IN_STUB); |
+ answer = frame_->CallStub(&stub, 2); |
+ } else { |
+ answer = |
+ frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2); |
+ } |
+ } else if (right_is_string) { |
+ answer = |
+ frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2); |
+ } |
+ answer.set_type_info(TypeInfo::String()); |
+ frame_->Push(&answer); |
+ return; |
+ } |
+ // Neither operand is known to be a string. |
+ } |
+ |
+ bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi(); |
+ bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi(); |
+ bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi(); |
+ bool right_is_non_smi_constant = |
+ right.is_constant() && !right.handle()->IsSmi(); |
+ |
+ if (left_is_smi_constant && right_is_smi_constant) { |
+ // Compute the constant result at compile time, and leave it on the frame. |
+ int left_int = Smi::cast(*left.handle())->value(); |
+ int right_int = Smi::cast(*right.handle())->value(); |
+ if (FoldConstantSmis(op, left_int, right_int)) return; |
+ } |
+ |
+ // Get number type of left and right sub-expressions. |
+ TypeInfo operands_type = |
+ TypeInfo::Combine(left.type_info(), right.type_info()); |
+ |
+ TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left); |
+ |
+ Result answer; |
+ if (left_is_non_smi_constant || right_is_non_smi_constant) { |
+ // Go straight to the slow case, with no smi code. |
+ GenericBinaryOpStub stub(op, |
+ overwrite_mode, |
+ NO_SMI_CODE_IN_STUB, |
+ operands_type); |
+ answer = stub.GenerateCall(masm_, frame_, &left, &right); |
+ } else if (right_is_smi_constant) { |
+ answer = ConstantSmiBinaryOperation(expr, &left, right.handle(), |
+ false, overwrite_mode); |
+ } else if (left_is_smi_constant) { |
+ answer = ConstantSmiBinaryOperation(expr, &right, left.handle(), |
+ true, overwrite_mode); |
} else { |
- __ movq(rax, key_); |
- __ movq(rdx, receiver_); |
+ // Set the flags based on the operation, type and loop nesting level. |
+ // Bit operations always assume they likely operate on Smis. Still only |
+ // generate the inline Smi check code if this operation is part of a loop. |
+ // For all other operations only inline the Smi check code for likely smis |
+ // if the operation is part of a loop. |
+ if (loop_nesting() > 0 && |
+ (Token::IsBitOp(op) || |
+ operands_type.IsInteger32() || |
+ expr->type()->IsLikelySmi())) { |
+ answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode); |
+ } else { |
+ GenericBinaryOpStub stub(op, |
+ overwrite_mode, |
+ NO_GENERIC_BINARY_FLAGS, |
+ operands_type); |
+ answer = stub.GenerateCall(masm_, frame_, &left, &right); |
+ } |
} |
- // Calculate the delta from the IC call instruction to the map check |
- // movq instruction in the inlined version. This delta is stored in |
- // a test(rax, delta) instruction after the call so that we can find |
- // it in the IC initialization code and patch the movq instruction. |
- // This means that we cannot allow test instructions after calls to |
- // KeyedLoadIC stubs in other places. |
- Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); |
- __ Call(ic, RelocInfo::CODE_TARGET); |
- // The delta from the start of the map-compare instruction to the |
- // test instruction. We use masm_-> directly here instead of the __ |
- // macro because the macro sometimes uses macro expansion to turn |
- // into something that can't return a value. This is encountered |
- // when doing generated code coverage tests. |
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
- // Here we use masm_-> instead of the __ macro because this is the |
- // instruction that gets patched and coverage code gets in the way. |
- // TODO(X64): Consider whether it's worth switching the test to a |
- // 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't |
- // be generated normally. |
- masm_->testl(rax, Immediate(-delta_to_patch_site)); |
- __ IncrementCounter(&Counters::keyed_load_inline_miss, 1); |
+ answer.set_type_info(result_type); |
+ frame_->Push(&answer); |
+} |
+ |
+ |
+bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { |
+ Object* answer_object = Heap::undefined_value(); |
+ switch (op) { |
+ case Token::ADD: |
+ // Use intptr_t to detect overflow of 32-bit int. |
+ if (Smi::IsValid(static_cast<intptr_t>(left) + right)) { |
+ answer_object = Smi::FromInt(left + right); |
+ } |
+ break; |
+ case Token::SUB: |
+ // Use intptr_t to detect overflow of 32-bit int. |
+ if (Smi::IsValid(static_cast<intptr_t>(left) - right)) { |
+ answer_object = Smi::FromInt(left - right); |
+ } |
+ break; |
+ case Token::MUL: { |
+ double answer = static_cast<double>(left) * right; |
+ if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { |
+ // If the product is zero and the non-zero factor is negative, |
+ // the spec requires us to return floating point negative zero. |
+ if (answer != 0 || (left + right) >= 0) { |
+ answer_object = Smi::FromInt(static_cast<int>(answer)); |
+ } |
+ } |
+ } |
+ break; |
+ case Token::DIV: |
+ case Token::MOD: |
+ break; |
+ case Token::BIT_OR: |
+ answer_object = Smi::FromInt(left | right); |
+ break; |
+ case Token::BIT_AND: |
+ answer_object = Smi::FromInt(left & right); |
+ break; |
+ case Token::BIT_XOR: |
+ answer_object = Smi::FromInt(left ^ right); |
+ break; |
+ |
+ case Token::SHL: { |
+ int shift_amount = right & 0x1F; |
+ if (Smi::IsValid(left << shift_amount)) { |
+ answer_object = Smi::FromInt(left << shift_amount); |
+ } |
+ break; |
+ } |
+ case Token::SHR: { |
+ int shift_amount = right & 0x1F; |
+ unsigned int unsigned_left = left; |
+ unsigned_left >>= shift_amount; |
+ if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) { |
+ answer_object = Smi::FromInt(unsigned_left); |
+ } |
+ break; |
+ } |
+ case Token::SAR: { |
+ int shift_amount = right & 0x1F; |
+ unsigned int unsigned_left = left; |
+ if (left < 0) { |
+ // Perform arithmetic shift of a negative number by |
+ // complementing number, logical shifting, complementing again. |
+ unsigned_left = ~unsigned_left; |
+ unsigned_left >>= shift_amount; |
+ unsigned_left = ~unsigned_left; |
+ } else { |
+ unsigned_left >>= shift_amount; |
+ } |
+ ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left))); |
+ answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left)); |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ if (answer_object == Heap::undefined_value()) { |
+ return false; |
+ } |
+ frame_->Push(Handle<Object>(answer_object)); |
+ return true; |
+} |
+ |
+ |
+void CodeGenerator::JumpIfNotSmiUsingTypeInfo(Register reg, |
+ TypeInfo type, |
+ DeferredCode* deferred) { |
+ if (!type.IsSmi()) { |
+ __ JumpIfNotSmi(reg, deferred->entry_label()); |
+ } |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(reg); |
+ } |
+} |
+ |
+ |
+void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left, |
+ Register right, |
+ TypeInfo left_info, |
+ TypeInfo right_info, |
+ DeferredCode* deferred) { |
+ if (!left_info.IsSmi() && !right_info.IsSmi()) { |
+ __ JumpIfNotBothSmi(left, right, deferred->entry_label()); |
+ } else if (!left_info.IsSmi()) { |
+ __ JumpIfNotSmi(left, deferred->entry_label()); |
+ } else if (!right_info.IsSmi()) { |
+ __ JumpIfNotSmi(right, deferred->entry_label()); |
+ } |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(left); |
+ __ AbortIfNotSmi(right); |
+ } |
+} |
+ |
+ |
+// Implements a binary operation using a deferred code object and some |
+// inline code to operate on smis quickly. |
+Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr, |
+ Result* left, |
+ Result* right, |
+ OverwriteMode overwrite_mode) { |
+ // Copy the type info because left and right may be overwritten. |
+ TypeInfo left_type_info = left->type_info(); |
+ TypeInfo right_type_info = right->type_info(); |
+ Token::Value op = expr->op(); |
+ Result answer; |
+ // Special handling of div and mod because they use fixed registers. |
+ if (op == Token::DIV || op == Token::MOD) { |
+ // We need rax as the quotient register, rdx as the remainder |
+ // register, neither left nor right in rax or rdx, and left copied |
+ // to rax. |
+ Result quotient; |
+ Result remainder; |
+ bool left_is_in_rax = false; |
+ // Step 1: get rax for quotient. |
+ if ((left->is_register() && left->reg().is(rax)) || |
+ (right->is_register() && right->reg().is(rax))) { |
+ // One or both is in rax. Use a fresh non-rdx register for |
+ // them. |
+ Result fresh = allocator_->Allocate(); |
+ ASSERT(fresh.is_valid()); |
+ if (fresh.reg().is(rdx)) { |
+ remainder = fresh; |
+ fresh = allocator_->Allocate(); |
+ ASSERT(fresh.is_valid()); |
+ } |
+ if (left->is_register() && left->reg().is(rax)) { |
+ quotient = *left; |
+ *left = fresh; |
+ left_is_in_rax = true; |
+ } |
+ if (right->is_register() && right->reg().is(rax)) { |
+ quotient = *right; |
+ *right = fresh; |
+ } |
+ __ movq(fresh.reg(), rax); |
+ } else { |
+ // Neither left nor right is in rax. |
+ quotient = allocator_->Allocate(rax); |
+ } |
+ ASSERT(quotient.is_register() && quotient.reg().is(rax)); |
+ ASSERT(!(left->is_register() && left->reg().is(rax))); |
+ ASSERT(!(right->is_register() && right->reg().is(rax))); |
+ |
+ // Step 2: get rdx for remainder if necessary. |
+ if (!remainder.is_valid()) { |
+ if ((left->is_register() && left->reg().is(rdx)) || |
+ (right->is_register() && right->reg().is(rdx))) { |
+ Result fresh = allocator_->Allocate(); |
+ ASSERT(fresh.is_valid()); |
+ if (left->is_register() && left->reg().is(rdx)) { |
+ remainder = *left; |
+ *left = fresh; |
+ } |
+ if (right->is_register() && right->reg().is(rdx)) { |
+ remainder = *right; |
+ *right = fresh; |
+ } |
+ __ movq(fresh.reg(), rdx); |
+ } else { |
+ // Neither left nor right is in rdx. |
+ remainder = allocator_->Allocate(rdx); |
+ } |
+ } |
+ ASSERT(remainder.is_register() && remainder.reg().is(rdx)); |
+ ASSERT(!(left->is_register() && left->reg().is(rdx))); |
+ ASSERT(!(right->is_register() && right->reg().is(rdx))); |
+ |
+ left->ToRegister(); |
+ right->ToRegister(); |
+ frame_->Spill(rax); |
+ frame_->Spill(rdx); |
+ |
+ // Check that left and right are smi tagged. |
+ DeferredInlineBinaryOperation* deferred = |
+ new DeferredInlineBinaryOperation(op, |
+ (op == Token::DIV) ? rax : rdx, |
+ left->reg(), |
+ right->reg(), |
+ overwrite_mode); |
+ JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), |
+ left_type_info, right_type_info, deferred); |
+ |
+ if (op == Token::DIV) { |
+ __ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label()); |
+ deferred->BindExit(); |
+ left->Unuse(); |
+ right->Unuse(); |
+ answer = quotient; |
+ } else { |
+ ASSERT(op == Token::MOD); |
+ __ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label()); |
+ deferred->BindExit(); |
+ left->Unuse(); |
+ right->Unuse(); |
+ answer = remainder; |
+ } |
+ ASSERT(answer.is_valid()); |
+ return answer; |
+ } |
+ |
+ // Special handling of shift operations because they use fixed |
+ // registers. |
+ if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { |
+ // Move left out of rcx if necessary. |
+ if (left->is_register() && left->reg().is(rcx)) { |
+ *left = allocator_->Allocate(); |
+ ASSERT(left->is_valid()); |
+ __ movq(left->reg(), rcx); |
+ } |
+ right->ToRegister(rcx); |
+ left->ToRegister(); |
+ ASSERT(left->is_register() && !left->reg().is(rcx)); |
+ ASSERT(right->is_register() && right->reg().is(rcx)); |
+ |
+ // We will modify right, it must be spilled. |
+ frame_->Spill(rcx); |
+ |
+ // Use a fresh answer register to avoid spilling the left operand. |
+ answer = allocator_->Allocate(); |
+ ASSERT(answer.is_valid()); |
+ // Check that both operands are smis using the answer register as a |
+ // temporary. |
+ DeferredInlineBinaryOperation* deferred = |
+ new DeferredInlineBinaryOperation(op, |
+ answer.reg(), |
+ left->reg(), |
+ rcx, |
+ overwrite_mode); |
+ |
+ Label do_op; |
+ if (right_type_info.IsSmi()) { |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(right->reg()); |
+ } |
+ __ movq(answer.reg(), left->reg()); |
+ // If left is not known to be a smi, check if it is. |
+ // If left is not known to be a number, and it isn't a smi, check if |
+ // it is a HeapNumber. |
+ if (!left_type_info.IsSmi()) { |
+ __ JumpIfSmi(answer.reg(), &do_op); |
+ if (!left_type_info.IsNumber()) { |
+ // Branch if not a heapnumber. |
+ __ Cmp(FieldOperand(answer.reg(), HeapObject::kMapOffset), |
+ Factory::heap_number_map()); |
+ deferred->Branch(not_equal); |
+ } |
+ // Load integer value into answer register using truncation. |
+ __ cvttsd2si(answer.reg(), |
+ FieldOperand(answer.reg(), HeapNumber::kValueOffset)); |
+ // Branch if we might have overflowed. |
+ // (False negative for Smi::kMinValue) |
+ __ cmpq(answer.reg(), Immediate(0x80000000)); |
+ deferred->Branch(equal); |
+ // TODO(lrn): Inline shifts on int32 here instead of first smi-tagging. |
+ __ Integer32ToSmi(answer.reg(), answer.reg()); |
+ } else { |
+ // Fast case - both are actually smis. |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(left->reg()); |
+ } |
+ } |
+ } else { |
+ JumpIfNotBothSmiUsingTypeInfo(left->reg(), rcx, |
+ left_type_info, right_type_info, deferred); |
+ } |
+ __ bind(&do_op); |
+ |
+ // Perform the operation. |
+ switch (op) { |
+ case Token::SAR: |
+ __ SmiShiftArithmeticRight(answer.reg(), left->reg(), rcx); |
+ break; |
+ case Token::SHR: { |
+ __ SmiShiftLogicalRight(answer.reg(), |
+ left->reg(), |
+ rcx, |
+ deferred->entry_label()); |
+ break; |
+ } |
+ case Token::SHL: { |
+ __ SmiShiftLeft(answer.reg(), |
+ left->reg(), |
+ rcx); |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ } |
+ deferred->BindExit(); |
+ left->Unuse(); |
+ right->Unuse(); |
+ ASSERT(answer.is_valid()); |
+ return answer; |
+ } |
+ |
+ // Handle the other binary operations. |
+ left->ToRegister(); |
+ right->ToRegister(); |
+ // A newly allocated register answer is used to hold the answer. The |
+ // registers containing left and right are not modified so they don't |
+ // need to be spilled in the fast case. |
+ answer = allocator_->Allocate(); |
+ ASSERT(answer.is_valid()); |
+ |
+ // Perform the smi tag check. |
+ DeferredInlineBinaryOperation* deferred = |
+ new DeferredInlineBinaryOperation(op, |
+ answer.reg(), |
+ left->reg(), |
+ right->reg(), |
+ overwrite_mode); |
+ JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), |
+ left_type_info, right_type_info, deferred); |
+ |
+ switch (op) { |
+ case Token::ADD: |
+ __ SmiAdd(answer.reg(), |
+ left->reg(), |
+ right->reg(), |
+ deferred->entry_label()); |
+ break; |
+ |
+ case Token::SUB: |
+ __ SmiSub(answer.reg(), |
+ left->reg(), |
+ right->reg(), |
+ deferred->entry_label()); |
+ break; |
+ |
+ case Token::MUL: { |
+ __ SmiMul(answer.reg(), |
+ left->reg(), |
+ right->reg(), |
+ deferred->entry_label()); |
+ break; |
+ } |
+ |
+ case Token::BIT_OR: |
+ __ SmiOr(answer.reg(), left->reg(), right->reg()); |
+ break; |
+ |
+ case Token::BIT_AND: |
+ __ SmiAnd(answer.reg(), left->reg(), right->reg()); |
+ break; |
+ |
+ case Token::BIT_XOR: |
+ __ SmiXor(answer.reg(), left->reg(), right->reg()); |
+ break; |
+ |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ deferred->BindExit(); |
+ left->Unuse(); |
+ right->Unuse(); |
+ ASSERT(answer.is_valid()); |
+ return answer; |
+} |
+ |
+ |
+// Call the appropriate binary operation stub to compute src op value |
+// and leave the result in dst. |
+class DeferredInlineSmiOperation: public DeferredCode { |
+ public: |
+ DeferredInlineSmiOperation(Token::Value op, |
+ Register dst, |
+ Register src, |
+ Smi* value, |
+ OverwriteMode overwrite_mode) |
+ : op_(op), |
+ dst_(dst), |
+ src_(src), |
+ value_(value), |
+ overwrite_mode_(overwrite_mode) { |
+ set_comment("[ DeferredInlineSmiOperation"); |
+ } |
+ |
+ virtual void Generate(); |
+ |
+ private: |
+ Token::Value op_; |
+ Register dst_; |
+ Register src_; |
+ Smi* value_; |
+ OverwriteMode overwrite_mode_; |
+}; |
+ |
+ |
+void DeferredInlineSmiOperation::Generate() { |
+ // For mod we don't generate all the Smi code inline. |
+ GenericBinaryOpStub stub( |
+ op_, |
+ overwrite_mode_, |
+ (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB); |
+ stub.GenerateCall(masm_, src_, value_); |
if (!dst_.is(rax)) __ movq(dst_, rax); |
} |
-class DeferredReferenceSetKeyedValue: public DeferredCode { |
+// Call the appropriate binary operation stub to compute value op src |
+// and leave the result in dst. |
+class DeferredInlineSmiOperationReversed: public DeferredCode { |
public: |
- DeferredReferenceSetKeyedValue(Register value, |
- Register key, |
- Register receiver) |
- : value_(value), key_(key), receiver_(receiver) { |
- set_comment("[ DeferredReferenceSetKeyedValue"); |
+ DeferredInlineSmiOperationReversed(Token::Value op, |
+ Register dst, |
+ Smi* value, |
+ Register src, |
+ OverwriteMode overwrite_mode) |
+ : op_(op), |
+ dst_(dst), |
+ value_(value), |
+ src_(src), |
+ overwrite_mode_(overwrite_mode) { |
+ set_comment("[ DeferredInlineSmiOperationReversed"); |
} |
virtual void Generate(); |
- Label* patch_site() { return &patch_site_; } |
+ private: |
+ Token::Value op_; |
+ Register dst_; |
+ Smi* value_; |
+ Register src_; |
+ OverwriteMode overwrite_mode_; |
+}; |
+ |
+void DeferredInlineSmiOperationReversed::Generate() { |
+ GenericBinaryOpStub stub( |
+ op_, |
+ overwrite_mode_, |
+ NO_SMI_CODE_IN_STUB); |
+ stub.GenerateCall(masm_, value_, src_); |
+ if (!dst_.is(rax)) __ movq(dst_, rax); |
+} |
+class DeferredInlineSmiAdd: public DeferredCode { |
+ public: |
+ DeferredInlineSmiAdd(Register dst, |
+ Smi* value, |
+ OverwriteMode overwrite_mode) |
+ : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { |
+ set_comment("[ DeferredInlineSmiAdd"); |
+ } |
+ |
+ virtual void Generate(); |
+ |
private: |
- Register value_; |
- Register key_; |
- Register receiver_; |
- Label patch_site_; |
+ Register dst_; |
+ Smi* value_; |
+ OverwriteMode overwrite_mode_; |
}; |
-void DeferredReferenceSetKeyedValue::Generate() { |
- __ IncrementCounter(&Counters::keyed_store_inline_miss, 1); |
- // Move value, receiver, and key to registers rax, rdx, and rcx, as |
- // the IC stub expects. |
- // Move value to rax, using xchg if the receiver or key is in rax. |
- if (!value_.is(rax)) { |
- if (!receiver_.is(rax) && !key_.is(rax)) { |
- __ movq(rax, value_); |
+void DeferredInlineSmiAdd::Generate() { |
+ GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
+ igostub.GenerateCall(masm_, dst_, value_); |
+ if (!dst_.is(rax)) __ movq(dst_, rax); |
+} |
+ |
+ |
+// The result of value + src is in dst. It either overflowed or was not |
+// smi tagged. Undo the speculative addition and call the appropriate |
+// specialized stub for add. The result is left in dst. |
+class DeferredInlineSmiAddReversed: public DeferredCode { |
+ public: |
+ DeferredInlineSmiAddReversed(Register dst, |
+ Smi* value, |
+ OverwriteMode overwrite_mode) |
+ : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { |
+ set_comment("[ DeferredInlineSmiAddReversed"); |
+ } |
+ |
+ virtual void Generate(); |
+ |
+ private: |
+ Register dst_; |
+ Smi* value_; |
+ OverwriteMode overwrite_mode_; |
+}; |
+ |
+ |
+void DeferredInlineSmiAddReversed::Generate() { |
+ GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
+ igostub.GenerateCall(masm_, value_, dst_); |
+ if (!dst_.is(rax)) __ movq(dst_, rax); |
+} |
+ |
+ |
+class DeferredInlineSmiSub: public DeferredCode { |
+ public: |
+ DeferredInlineSmiSub(Register dst, |
+ Smi* value, |
+ OverwriteMode overwrite_mode) |
+ : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { |
+ set_comment("[ DeferredInlineSmiSub"); |
+ } |
+ |
+ virtual void Generate(); |
+ |
+ private: |
+ Register dst_; |
+ Smi* value_; |
+ OverwriteMode overwrite_mode_; |
+}; |
+ |
+ |
+ |
+void DeferredInlineSmiSub::Generate() { |
+ GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
+ igostub.GenerateCall(masm_, dst_, value_); |
+ if (!dst_.is(rax)) __ movq(dst_, rax); |
+} |
+ |
+ |
+Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr, |
+ Result* operand, |
+ Handle<Object> value, |
+ bool reversed, |
+ OverwriteMode overwrite_mode) { |
+ // Generate inline code for a binary operation when one of the |
+ // operands is a constant smi. Consumes the argument "operand". |
+ if (IsUnsafeSmi(value)) { |
+ Result unsafe_operand(value); |
+ if (reversed) { |
+ return LikelySmiBinaryOperation(expr, &unsafe_operand, operand, |
+ overwrite_mode); |
} else { |
- __ xchg(rax, value_); |
- // Update receiver_ and key_ if they are affected by the swap. |
- if (receiver_.is(rax)) { |
- receiver_ = value_; |
- } else if (receiver_.is(value_)) { |
- receiver_ = rax; |
+ return LikelySmiBinaryOperation(expr, operand, &unsafe_operand, |
+ overwrite_mode); |
+ } |
+ } |
+ |
+ // Get the literal value. |
+ Smi* smi_value = Smi::cast(*value); |
+ int int_value = smi_value->value(); |
+ |
+ Token::Value op = expr->op(); |
+ Result answer; |
+ switch (op) { |
+ case Token::ADD: { |
+ operand->ToRegister(); |
+ frame_->Spill(operand->reg()); |
+ DeferredCode* deferred = NULL; |
+ if (reversed) { |
+ deferred = new DeferredInlineSmiAddReversed(operand->reg(), |
+ smi_value, |
+ overwrite_mode); |
+ } else { |
+ deferred = new DeferredInlineSmiAdd(operand->reg(), |
+ smi_value, |
+ overwrite_mode); |
} |
- if (key_.is(rax)) { |
- key_ = value_; |
- } else if (key_.is(value_)) { |
- key_ = rax; |
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
+ deferred); |
+ __ SmiAddConstant(operand->reg(), |
+ operand->reg(), |
+ smi_value, |
+ deferred->entry_label()); |
+ deferred->BindExit(); |
+ answer = *operand; |
+ break; |
+ } |
+ |
+ case Token::SUB: { |
+ if (reversed) { |
+ Result constant_operand(value); |
+ answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
+ overwrite_mode); |
+ } else { |
+ operand->ToRegister(); |
+ frame_->Spill(operand->reg()); |
+ DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(), |
+ smi_value, |
+ overwrite_mode); |
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
+ deferred); |
+ // A smi currently fits in a 32-bit Immediate. |
+ __ SmiSubConstant(operand->reg(), |
+ operand->reg(), |
+ smi_value, |
+ deferred->entry_label()); |
+ deferred->BindExit(); |
+ answer = *operand; |
} |
+ break; |
} |
+ |
+ case Token::SAR: |
+ if (reversed) { |
+ Result constant_operand(value); |
+ answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
+ overwrite_mode); |
+ } else { |
+ // Only the least significant 5 bits of the shift value are used. |
+ // In the slow case, this masking is done inside the runtime call. |
+ int shift_value = int_value & 0x1f; |
+ operand->ToRegister(); |
+ frame_->Spill(operand->reg()); |
+ DeferredInlineSmiOperation* deferred = |
+ new DeferredInlineSmiOperation(op, |
+ operand->reg(), |
+ operand->reg(), |
+ smi_value, |
+ overwrite_mode); |
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
+ deferred); |
+ __ SmiShiftArithmeticRightConstant(operand->reg(), |
+ operand->reg(), |
+ shift_value); |
+ deferred->BindExit(); |
+ answer = *operand; |
+ } |
+ break; |
+ |
+ case Token::SHR: |
+ if (reversed) { |
+ Result constant_operand(value); |
+ answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
+ overwrite_mode); |
+ } else { |
+ // Only the least significant 5 bits of the shift value are used. |
+ // In the slow case, this masking is done inside the runtime call. |
+ int shift_value = int_value & 0x1f; |
+ operand->ToRegister(); |
+ answer = allocator()->Allocate(); |
+ ASSERT(answer.is_valid()); |
+ DeferredInlineSmiOperation* deferred = |
+ new DeferredInlineSmiOperation(op, |
+ answer.reg(), |
+ operand->reg(), |
+ smi_value, |
+ overwrite_mode); |
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
+ deferred); |
+ __ SmiShiftLogicalRightConstant(answer.reg(), |
+ operand->reg(), |
+ shift_value, |
+ deferred->entry_label()); |
+ deferred->BindExit(); |
+ operand->Unuse(); |
+ } |
+ break; |
+ |
+ case Token::SHL: |
+ if (reversed) { |
+ operand->ToRegister(); |
+ |
+ // We need rcx to be available to hold operand, and to be spilled. |
+ // SmiShiftLeft implicitly modifies rcx. |
+ if (operand->reg().is(rcx)) { |
+ frame_->Spill(operand->reg()); |
+ answer = allocator()->Allocate(); |
+ } else { |
+ Result rcx_reg = allocator()->Allocate(rcx); |
+ // answer must not be rcx. |
+ answer = allocator()->Allocate(); |
+ // rcx_reg goes out of scope. |
+ } |
+ |
+ DeferredInlineSmiOperationReversed* deferred = |
+ new DeferredInlineSmiOperationReversed(op, |
+ answer.reg(), |
+ smi_value, |
+ operand->reg(), |
+ overwrite_mode); |
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
+ deferred); |
+ |
+ __ Move(answer.reg(), smi_value); |
+ __ SmiShiftLeft(answer.reg(), answer.reg(), operand->reg()); |
+ operand->Unuse(); |
+ |
+ deferred->BindExit(); |
+ } else { |
+ // Only the least significant 5 bits of the shift value are used. |
+ // In the slow case, this masking is done inside the runtime call. |
+ int shift_value = int_value & 0x1f; |
+ operand->ToRegister(); |
+ if (shift_value == 0) { |
+ // Spill operand so it can be overwritten in the slow case. |
+ frame_->Spill(operand->reg()); |
+ DeferredInlineSmiOperation* deferred = |
+ new DeferredInlineSmiOperation(op, |
+ operand->reg(), |
+ operand->reg(), |
+ smi_value, |
+ overwrite_mode); |
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
+ deferred); |
+ deferred->BindExit(); |
+ answer = *operand; |
+ } else { |
+ // Use a fresh temporary for nonzero shift values. |
+ answer = allocator()->Allocate(); |
+ ASSERT(answer.is_valid()); |
+ DeferredInlineSmiOperation* deferred = |
+ new DeferredInlineSmiOperation(op, |
+ answer.reg(), |
+ operand->reg(), |
+ smi_value, |
+ overwrite_mode); |
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
+ deferred); |
+ __ SmiShiftLeftConstant(answer.reg(), |
+ operand->reg(), |
+ shift_value); |
+ deferred->BindExit(); |
+ operand->Unuse(); |
+ } |
+ } |
+ break; |
+ |
+ case Token::BIT_OR: |
+ case Token::BIT_XOR: |
+ case Token::BIT_AND: { |
+ operand->ToRegister(); |
+ frame_->Spill(operand->reg()); |
+ if (reversed) { |
+ // Bit operations with a constant smi are commutative. |
+ // We can swap left and right operands with no problem. |
+ // Swap left and right overwrite modes. 0->0, 1->2, 2->1. |
+ overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3); |
+ } |
+ DeferredCode* deferred = new DeferredInlineSmiOperation(op, |
+ operand->reg(), |
+ operand->reg(), |
+ smi_value, |
+ overwrite_mode); |
+ JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
+ deferred); |
+ if (op == Token::BIT_AND) { |
+ __ SmiAndConstant(operand->reg(), operand->reg(), smi_value); |
+ } else if (op == Token::BIT_XOR) { |
+ if (int_value != 0) { |
+ __ SmiXorConstant(operand->reg(), operand->reg(), smi_value); |
+ } |
+ } else { |
+ ASSERT(op == Token::BIT_OR); |
+ if (int_value != 0) { |
+ __ SmiOrConstant(operand->reg(), operand->reg(), smi_value); |
+ } |
+ } |
+ deferred->BindExit(); |
+ answer = *operand; |
+ break; |
+ } |
+ |
+ // Generate inline code for mod of powers of 2 and negative powers of 2. |
+ case Token::MOD: |
+ if (!reversed && |
+ int_value != 0 && |
+ (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { |
+ operand->ToRegister(); |
+ frame_->Spill(operand->reg()); |
+ DeferredCode* deferred = |
+ new DeferredInlineSmiOperation(op, |
+ operand->reg(), |
+ operand->reg(), |
+ smi_value, |
+ overwrite_mode); |
+ // Check for negative or non-Smi left hand side. |
+ __ JumpIfNotPositiveSmi(operand->reg(), deferred->entry_label()); |
+ if (int_value < 0) int_value = -int_value; |
+ if (int_value == 1) { |
+ __ Move(operand->reg(), Smi::FromInt(0)); |
+ } else { |
+ __ SmiAndConstant(operand->reg(), |
+ operand->reg(), |
+ Smi::FromInt(int_value - 1)); |
+ } |
+ deferred->BindExit(); |
+ answer = *operand; |
+ break; // This break only applies if we generated code for MOD. |
+ } |
+ // Fall through if we did not find a power of 2 on the right hand side! |
+ // The next case must be the default. |
+ |
+ default: { |
+ Result constant_operand(value); |
+ if (reversed) { |
+ answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
+ overwrite_mode); |
+ } else { |
+ answer = LikelySmiBinaryOperation(expr, operand, &constant_operand, |
+ overwrite_mode); |
+ } |
+ break; |
+ } |
} |
- // Value is now in rax. Its original location is remembered in value_, |
- // and the value is restored to value_ before returning. |
- // The variables receiver_ and key_ are not preserved. |
- // Move receiver and key to rdx and rcx, swapping if necessary. |
- if (receiver_.is(rdx)) { |
- if (!key_.is(rcx)) { |
- __ movq(rcx, key_); |
- } // Else everything is already in the right place. |
- } else if (receiver_.is(rcx)) { |
- if (key_.is(rdx)) { |
- __ xchg(rcx, rdx); |
- } else if (key_.is(rcx)) { |
- __ movq(rdx, receiver_); |
+ ASSERT(answer.is_valid()); |
+ return answer; |
+} |
+ |
+static bool CouldBeNaN(const Result& result) { |
+ if (result.type_info().IsSmi()) return false; |
+ if (result.type_info().IsInteger32()) return false; |
+ if (!result.is_constant()) return true; |
+ if (!result.handle()->IsHeapNumber()) return false; |
+ return isnan(HeapNumber::cast(*result.handle())->value()); |
+} |
+ |
+ |
+// Convert from signed to unsigned comparison to match the way EFLAGS are set |
+// by FPU and XMM compare instructions. |
+static Condition DoubleCondition(Condition cc) { |
+ switch (cc) { |
+ case less: return below; |
+ case equal: return equal; |
+ case less_equal: return below_equal; |
+ case greater: return above; |
+ case greater_equal: return above_equal; |
+ default: UNREACHABLE(); |
+ } |
+ UNREACHABLE(); |
+ return equal; |
+} |
+ |
+ |
+void CodeGenerator::Comparison(AstNode* node, |
+ Condition cc, |
+ bool strict, |
+ ControlDestination* dest) { |
+ // Strict only makes sense for equality comparisons. |
+ ASSERT(!strict || cc == equal); |
+ |
+ Result left_side; |
+ Result right_side; |
+ // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. |
+ if (cc == greater || cc == less_equal) { |
+ cc = ReverseCondition(cc); |
+ left_side = frame_->Pop(); |
+ right_side = frame_->Pop(); |
+ } else { |
+ right_side = frame_->Pop(); |
+ left_side = frame_->Pop(); |
+ } |
+ ASSERT(cc == less || cc == equal || cc == greater_equal); |
+ |
+ // If either side is a constant smi, optimize the comparison. |
+ bool left_side_constant_smi = false; |
+ bool left_side_constant_null = false; |
+ bool left_side_constant_1_char_string = false; |
+ if (left_side.is_constant()) { |
+ left_side_constant_smi = left_side.handle()->IsSmi(); |
+ left_side_constant_null = left_side.handle()->IsNull(); |
+ left_side_constant_1_char_string = |
+ (left_side.handle()->IsString() && |
+ String::cast(*left_side.handle())->length() == 1 && |
+ String::cast(*left_side.handle())->IsAsciiRepresentation()); |
+ } |
+ bool right_side_constant_smi = false; |
+ bool right_side_constant_null = false; |
+ bool right_side_constant_1_char_string = false; |
+ if (right_side.is_constant()) { |
+ right_side_constant_smi = right_side.handle()->IsSmi(); |
+ right_side_constant_null = right_side.handle()->IsNull(); |
+ right_side_constant_1_char_string = |
+ (right_side.handle()->IsString() && |
+ String::cast(*right_side.handle())->length() == 1 && |
+ String::cast(*right_side.handle())->IsAsciiRepresentation()); |
+ } |
+ |
+ if (left_side_constant_smi || right_side_constant_smi) { |
+ if (left_side_constant_smi && right_side_constant_smi) { |
+ // Trivial case, comparing two constants. |
+ int left_value = Smi::cast(*left_side.handle())->value(); |
+ int right_value = Smi::cast(*right_side.handle())->value(); |
+ switch (cc) { |
+ case less: |
+ dest->Goto(left_value < right_value); |
+ break; |
+ case equal: |
+ dest->Goto(left_value == right_value); |
+ break; |
+ case greater_equal: |
+ dest->Goto(left_value >= right_value); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
} else { |
- __ movq(rdx, receiver_); |
- __ movq(rcx, key_); |
+ // Only one side is a constant Smi. |
+ // If left side is a constant Smi, reverse the operands. |
+ // Since one side is a constant Smi, conversion order does not matter. |
+ if (left_side_constant_smi) { |
+ Result temp = left_side; |
+ left_side = right_side; |
+ right_side = temp; |
+ cc = ReverseCondition(cc); |
+ // This may re-introduce greater or less_equal as the value of cc. |
+ // CompareStub and the inline code both support all values of cc. |
+ } |
+ // Implement comparison against a constant Smi, inlining the case |
+ // where both sides are Smis. |
+ left_side.ToRegister(); |
+ Register left_reg = left_side.reg(); |
+ Handle<Object> right_val = right_side.handle(); |
+ |
+ // Here we split control flow to the stub call and inlined cases |
+ // before finally splitting it to the control destination. We use |
+ // a jump target and branching to duplicate the virtual frame at |
+ // the first split. We manually handle the off-frame references |
+ // by reconstituting them on the non-fall-through path. |
+ JumpTarget is_smi; |
+ |
+ if (left_side.is_smi()) { |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(left_side.reg()); |
+ } |
+ } else { |
+ Condition left_is_smi = masm_->CheckSmi(left_side.reg()); |
+ is_smi.Branch(left_is_smi); |
+ |
+ bool is_loop_condition = (node->AsExpression() != NULL) && |
+ node->AsExpression()->is_loop_condition(); |
+ if (!is_loop_condition && right_val->IsSmi()) { |
+ // Right side is a constant smi and left side has been checked |
+ // not to be a smi. |
+ JumpTarget not_number; |
+ __ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset), |
+ Factory::heap_number_map()); |
+ not_number.Branch(not_equal, &left_side); |
+ __ movsd(xmm1, |
+ FieldOperand(left_reg, HeapNumber::kValueOffset)); |
+ int value = Smi::cast(*right_val)->value(); |
+ if (value == 0) { |
+ __ xorpd(xmm0, xmm0); |
+ } else { |
+ Result temp = allocator()->Allocate(); |
+ __ movl(temp.reg(), Immediate(value)); |
+ __ cvtlsi2sd(xmm0, temp.reg()); |
+ temp.Unuse(); |
+ } |
+ __ ucomisd(xmm1, xmm0); |
+ // Jump to builtin for NaN. |
+ not_number.Branch(parity_even, &left_side); |
+ left_side.Unuse(); |
+ dest->true_target()->Branch(DoubleCondition(cc)); |
+ dest->false_target()->Jump(); |
+ not_number.Bind(&left_side); |
+ } |
+ |
+ // Setup and call the compare stub. |
+ CompareStub stub(cc, strict, kCantBothBeNaN); |
+ Result result = frame_->CallStub(&stub, &left_side, &right_side); |
+ result.ToRegister(); |
+ __ testq(result.reg(), result.reg()); |
+ result.Unuse(); |
+ dest->true_target()->Branch(cc); |
+ dest->false_target()->Jump(); |
+ |
+ is_smi.Bind(); |
+ } |
+ |
+ left_side = Result(left_reg); |
+ right_side = Result(right_val); |
+ // Test smi equality and comparison by signed int comparison. |
+ // Both sides are smis, so we can use an Immediate. |
+ __ SmiCompare(left_side.reg(), Smi::cast(*right_side.handle())); |
+ left_side.Unuse(); |
+ right_side.Unuse(); |
+ dest->Split(cc); |
} |
- } else if (key_.is(rcx)) { |
- __ movq(rdx, receiver_); |
+ } else if (cc == equal && |
+ (left_side_constant_null || right_side_constant_null)) { |
+ // To make null checks efficient, we check if either the left side or |
+ // the right side is the constant 'null'. |
+ // If so, we optimize the code by inlining a null check instead of |
+ // calling the (very) general runtime routine for checking equality. |
+ Result operand = left_side_constant_null ? right_side : left_side; |
+ right_side.Unuse(); |
+ left_side.Unuse(); |
+ operand.ToRegister(); |
+ __ CompareRoot(operand.reg(), Heap::kNullValueRootIndex); |
+ if (strict) { |
+ operand.Unuse(); |
+ dest->Split(equal); |
+ } else { |
+ // The 'null' value is only equal to 'undefined' if using non-strict |
+ // comparisons. |
+ dest->true_target()->Branch(equal); |
+ __ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex); |
+ dest->true_target()->Branch(equal); |
+ Condition is_smi = masm_->CheckSmi(operand.reg()); |
+ dest->false_target()->Branch(is_smi); |
+ |
+ // It can be an undetectable object. |
+ // Use a scratch register in preference to spilling operand.reg(). |
+ Result temp = allocator()->Allocate(); |
+ ASSERT(temp.is_valid()); |
+ __ movq(temp.reg(), |
+ FieldOperand(operand.reg(), HeapObject::kMapOffset)); |
+ __ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset), |
+ Immediate(1 << Map::kIsUndetectable)); |
+ temp.Unuse(); |
+ operand.Unuse(); |
+ dest->Split(not_zero); |
+ } |
+ } else if (left_side_constant_1_char_string || |
+ right_side_constant_1_char_string) { |
+ if (left_side_constant_1_char_string && right_side_constant_1_char_string) { |
+ // Trivial case, comparing two constants. |
+ int left_value = String::cast(*left_side.handle())->Get(0); |
+ int right_value = String::cast(*right_side.handle())->Get(0); |
+ switch (cc) { |
+ case less: |
+ dest->Goto(left_value < right_value); |
+ break; |
+ case equal: |
+ dest->Goto(left_value == right_value); |
+ break; |
+ case greater_equal: |
+ dest->Goto(left_value >= right_value); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ } else { |
+ // Only one side is a constant 1 character string. |
+ // If left side is a constant 1-character string, reverse the operands. |
+ // Since one side is a constant string, conversion order does not matter. |
+ if (left_side_constant_1_char_string) { |
+ Result temp = left_side; |
+ left_side = right_side; |
+ right_side = temp; |
+ cc = ReverseCondition(cc); |
+ // This may reintroduce greater or less_equal as the value of cc. |
+ // CompareStub and the inline code both support all values of cc. |
+ } |
+ // Implement comparison against a constant string, inlining the case |
+ // where both sides are strings. |
+ left_side.ToRegister(); |
+ |
+ // Here we split control flow to the stub call and inlined cases |
+ // before finally splitting it to the control destination. We use |
+ // a jump target and branching to duplicate the virtual frame at |
+ // the first split. We manually handle the off-frame references |
+ // by reconstituting them on the non-fall-through path. |
+ JumpTarget is_not_string, is_string; |
+ Register left_reg = left_side.reg(); |
+ Handle<Object> right_val = right_side.handle(); |
+ ASSERT(StringShape(String::cast(*right_val)).IsSymbol()); |
+ Condition is_smi = masm()->CheckSmi(left_reg); |
+ is_not_string.Branch(is_smi, &left_side); |
+ Result temp = allocator_->Allocate(); |
+ ASSERT(temp.is_valid()); |
+ __ movq(temp.reg(), |
+ FieldOperand(left_reg, HeapObject::kMapOffset)); |
+ __ movzxbl(temp.reg(), |
+ FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); |
+ // If we are testing for equality then make use of the symbol shortcut. |
+ // Check if the left hand side has the same type as the right hand |
+ // side (which is always a symbol). |
+ if (cc == equal) { |
+ Label not_a_symbol; |
+ ASSERT(kSymbolTag != 0); |
+ // Ensure that no non-strings have the symbol bit set. |
+ ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); |
+ __ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. |
+ __ j(zero, ¬_a_symbol); |
+ // They are symbols, so do identity compare. |
+ __ Cmp(left_reg, right_side.handle()); |
+ dest->true_target()->Branch(equal); |
+ dest->false_target()->Branch(not_equal); |
+ __ bind(¬_a_symbol); |
+ } |
+ // Call the compare stub if the left side is not a flat ascii string. |
+ __ andb(temp.reg(), |
+ Immediate(kIsNotStringMask | |
+ kStringRepresentationMask | |
+ kStringEncodingMask)); |
+ __ cmpb(temp.reg(), |
+ Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); |
+ temp.Unuse(); |
+ is_string.Branch(equal, &left_side); |
+ |
+ // Setup and call the compare stub. |
+ is_not_string.Bind(&left_side); |
+ CompareStub stub(cc, strict, kCantBothBeNaN); |
+ Result result = frame_->CallStub(&stub, &left_side, &right_side); |
+ result.ToRegister(); |
+ __ testq(result.reg(), result.reg()); |
+ result.Unuse(); |
+ dest->true_target()->Branch(cc); |
+ dest->false_target()->Jump(); |
+ |
+ is_string.Bind(&left_side); |
+ // left_side is a sequential ASCII string. |
+ ASSERT(left_side.reg().is(left_reg)); |
+ right_side = Result(right_val); |
+ Result temp2 = allocator_->Allocate(); |
+ ASSERT(temp2.is_valid()); |
+ // Test string equality and comparison. |
+ if (cc == equal) { |
+ Label comparison_done; |
+ __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset), |
+ Smi::FromInt(1)); |
+ __ j(not_equal, &comparison_done); |
+ uint8_t char_value = |
+ static_cast<uint8_t>(String::cast(*right_val)->Get(0)); |
+ __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), |
+ Immediate(char_value)); |
+ __ bind(&comparison_done); |
+ } else { |
+ __ movq(temp2.reg(), |
+ FieldOperand(left_side.reg(), String::kLengthOffset)); |
+ __ SmiSubConstant(temp2.reg(), temp2.reg(), Smi::FromInt(1)); |
+ Label comparison; |
+ // If the length is 0 then the subtraction gave -1 which compares less |
+ // than any character. |
+ __ j(negative, &comparison); |
+ // Otherwise load the first character. |
+ __ movzxbl(temp2.reg(), |
+ FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize)); |
+ __ bind(&comparison); |
+ // Compare the first character of the string with the |
+ // constant 1-character string. |
+ uint8_t char_value = |
+ static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0)); |
+ __ cmpb(temp2.reg(), Immediate(char_value)); |
+ Label characters_were_different; |
+ __ j(not_equal, &characters_were_different); |
+ // If the first character is the same then the long string sorts after |
+ // the short one. |
+ __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset), |
+ Smi::FromInt(1)); |
+ __ bind(&characters_were_different); |
+ } |
+ temp2.Unuse(); |
+ left_side.Unuse(); |
+ right_side.Unuse(); |
+ dest->Split(cc); |
+ } |
} else { |
- __ movq(rcx, key_); |
- __ movq(rdx, receiver_); |
+ // Neither side is a constant Smi, constant 1-char string, or constant null. |
+ // If either side is a non-smi constant, skip the smi check. |
+ bool known_non_smi = |
+ (left_side.is_constant() && !left_side.handle()->IsSmi()) || |
+ (right_side.is_constant() && !right_side.handle()->IsSmi()) || |
+ left_side.type_info().IsDouble() || |
+ right_side.type_info().IsDouble(); |
+ |
+ NaNInformation nan_info = |
+ (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ? |
+ kBothCouldBeNaN : |
+ kCantBothBeNaN; |
+ |
+ // Inline number comparison handling any combination of smi's and heap |
+ // numbers if: |
+ // code is in a loop |
+ // the compare operation is different from equal |
+ // compare is not a for-loop comparison |
+ // The reason for excluding equal is that it will most likely be done |
+ // with smi's (not heap numbers) and the code to comparing smi's is inlined |
+ // separately. The same reason applies for for-loop comparison which will |
+ // also most likely be smi comparisons. |
+ bool is_loop_condition = (node->AsExpression() != NULL) |
+ && node->AsExpression()->is_loop_condition(); |
+ bool inline_number_compare = |
+ loop_nesting() > 0 && cc != equal && !is_loop_condition; |
+ |
+ left_side.ToRegister(); |
+ right_side.ToRegister(); |
+ |
+ if (known_non_smi) { |
+ // Inlined equality check: |
+ // If at least one of the objects is not NaN, then if the objects |
+ // are identical, they are equal. |
+ if (nan_info == kCantBothBeNaN && cc == equal) { |
+ __ cmpq(left_side.reg(), right_side.reg()); |
+ dest->true_target()->Branch(equal); |
+ } |
+ |
+ // Inlined number comparison: |
+ if (inline_number_compare) { |
+ GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); |
+ } |
+ |
+ CompareStub stub(cc, strict, nan_info, !inline_number_compare); |
+ Result answer = frame_->CallStub(&stub, &left_side, &right_side); |
+ __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flag. |
+ answer.Unuse(); |
+ dest->Split(cc); |
+ } else { |
+ // Here we split control flow to the stub call and inlined cases |
+ // before finally splitting it to the control destination. We use |
+ // a jump target and branching to duplicate the virtual frame at |
+ // the first split. We manually handle the off-frame references |
+ // by reconstituting them on the non-fall-through path. |
+ JumpTarget is_smi; |
+ Register left_reg = left_side.reg(); |
+ Register right_reg = right_side.reg(); |
+ |
+ Condition both_smi = masm_->CheckBothSmi(left_reg, right_reg); |
+ is_smi.Branch(both_smi); |
+ |
+ // Inline the equality check if both operands can't be a NaN. If both |
+ // objects are the same they are equal. |
+ if (nan_info == kCantBothBeNaN && cc == equal) { |
+ __ cmpq(left_side.reg(), right_side.reg()); |
+ dest->true_target()->Branch(equal); |
+ } |
+ |
+ // Inlined number comparison: |
+ if (inline_number_compare) { |
+ GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); |
+ } |
+ |
+ CompareStub stub(cc, strict, nan_info, !inline_number_compare); |
+ Result answer = frame_->CallStub(&stub, &left_side, &right_side); |
+ __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flags. |
+ answer.Unuse(); |
+ dest->true_target()->Branch(cc); |
+ dest->false_target()->Jump(); |
+ |
+ is_smi.Bind(); |
+ left_side = Result(left_reg); |
+ right_side = Result(right_reg); |
+ __ SmiCompare(left_side.reg(), right_side.reg()); |
+ right_side.Unuse(); |
+ left_side.Unuse(); |
+ dest->Split(cc); |
+ } |
} |
+} |
- // Call the IC stub. |
- Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); |
- __ Call(ic, RelocInfo::CODE_TARGET); |
- // The delta from the start of the map-compare instructions (initial movq) |
- // to the test instruction. We use masm_-> directly here instead of the |
- // __ macro because the macro sometimes uses macro expansion to turn |
- // into something that can't return a value. This is encountered |
- // when doing generated code coverage tests. |
- int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
- // Here we use masm_-> instead of the __ macro because this is the |
- // instruction that gets patched and coverage code gets in the way. |
- masm_->testl(rax, Immediate(-delta_to_patch_site)); |
- // Restore value (returned from store IC). |
- if (!value_.is(rax)) __ movq(value_, rax); |
+ |
+// Load a comparison operand into into a XMM register. Jump to not_numbers jump |
+// target passing the left and right result if the operand is not a number. |
+static void LoadComparisonOperand(MacroAssembler* masm_, |
+ Result* operand, |
+ XMMRegister xmm_reg, |
+ Result* left_side, |
+ Result* right_side, |
+ JumpTarget* not_numbers) { |
+ Label done; |
+ if (operand->type_info().IsDouble()) { |
+ // Operand is known to be a heap number, just load it. |
+ __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); |
+ } else if (operand->type_info().IsSmi()) { |
+ // Operand is known to be a smi. Convert it to double and keep the original |
+ // smi. |
+ __ SmiToInteger32(kScratchRegister, operand->reg()); |
+ __ cvtlsi2sd(xmm_reg, kScratchRegister); |
+ } else { |
+ // Operand type not known, check for smi or heap number. |
+ Label smi; |
+ __ JumpIfSmi(operand->reg(), &smi); |
+ if (!operand->type_info().IsNumber()) { |
+ __ LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex); |
+ __ cmpq(FieldOperand(operand->reg(), HeapObject::kMapOffset), |
+ kScratchRegister); |
+ not_numbers->Branch(not_equal, left_side, right_side, taken); |
+ } |
+ __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); |
+ __ jmp(&done); |
+ |
+ __ bind(&smi); |
+ // Comvert smi to float and keep the original smi. |
+ __ SmiToInteger32(kScratchRegister, operand->reg()); |
+ __ cvtlsi2sd(xmm_reg, kScratchRegister); |
+ __ jmp(&done); |
+ } |
+ __ bind(&done); |
} |
+void CodeGenerator::GenerateInlineNumberComparison(Result* left_side, |
+ Result* right_side, |
+ Condition cc, |
+ ControlDestination* dest) { |
+ ASSERT(left_side->is_register()); |
+ ASSERT(right_side->is_register()); |
+ |
+ JumpTarget not_numbers; |
+ // Load left and right operand into registers xmm0 and xmm1 and compare. |
+ LoadComparisonOperand(masm_, left_side, xmm0, left_side, right_side, |
+ ¬_numbers); |
+ LoadComparisonOperand(masm_, right_side, xmm1, left_side, right_side, |
+ ¬_numbers); |
+ __ ucomisd(xmm0, xmm1); |
+ // Bail out if a NaN is involved. |
+ not_numbers.Branch(parity_even, left_side, right_side); |
+ |
+ // Split to destination targets based on comparison. |
+ left_side->Unuse(); |
+ right_side->Unuse(); |
+ dest->true_target()->Branch(DoubleCondition(cc)); |
+ dest->false_target()->Jump(); |
+ |
+ not_numbers.Bind(left_side, right_side); |
+} |
+ |
+ |
+// Call the function just below TOS on the stack with the given |
+// arguments. The receiver is the TOS. |
+void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, |
+ CallFunctionFlags flags, |
+ int position) { |
+ // Push the arguments ("left-to-right") on the stack. |
+ int arg_count = args->length(); |
+ for (int i = 0; i < arg_count; i++) { |
+ Load(args->at(i)); |
+ frame_->SpillTop(); |
+ } |
+ |
+ // Record the position for debugging purposes. |
+ CodeForSourcePosition(position); |
+ |
+ // Use the shared code stub to call the function. |
+ InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
+ CallFunctionStub call_function(arg_count, in_loop, flags); |
+ Result answer = frame_->CallStub(&call_function, arg_count + 1); |
+ // Restore context and replace function on the stack with the |
+ // result of the stub invocation. |
+ frame_->RestoreContextRegister(); |
+ frame_->SetElementAt(0, &answer); |
+} |
+ |
+ |
void CodeGenerator::CallApplyLazy(Expression* applicand, |
Expression* receiver, |
VariableProxy* arguments, |
@@ -1010,6 +2720,21 @@ |
} |
+void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { |
+ // Call the runtime to declare the globals. The inevitable call |
+ // will sync frame elements to memory anyway, so we do it eagerly to |
+ // allow us to push the arguments directly into place. |
+ frame_->SyncRange(0, frame_->element_count() - 1); |
+ |
+ __ movq(kScratchRegister, pairs, RelocInfo::EMBEDDED_OBJECT); |
+ frame_->EmitPush(rsi); // The context is the first argument. |
+ frame_->EmitPush(kScratchRegister); |
+ frame_->EmitPush(Smi::FromInt(is_eval() ? 1 : 0)); |
+ Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3); |
+ // Return value is ignored. |
+} |
+ |
+ |
void CodeGenerator::VisitDeclaration(Declaration* node) { |
Comment cmnt(masm_, "[ Declaration"); |
Variable* var = node->proxy()->var(); |
@@ -1230,6 +2955,44 @@ |
} |
+void CodeGenerator::GenerateReturnSequence(Result* return_value) { |
+ // The return value is a live (but not currently reference counted) |
+ // reference to rax. This is safe because the current frame does not |
+ // contain a reference to rax (it is prepared for the return by spilling |
+ // all registers). |
+ if (FLAG_trace) { |
+ frame_->Push(return_value); |
+ *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); |
+ } |
+ return_value->ToRegister(rax); |
+ |
+ // Add a label for checking the size of the code used for returning. |
+#ifdef DEBUG |
+ Label check_exit_codesize; |
+ masm_->bind(&check_exit_codesize); |
+#endif |
+ |
+ // Leave the frame and return popping the arguments and the |
+ // receiver. |
+ frame_->Exit(); |
+ masm_->ret((scope()->num_parameters() + 1) * kPointerSize); |
+#ifdef ENABLE_DEBUGGER_SUPPORT |
+ // Add padding that will be overwritten by a debugger breakpoint. |
+ // frame_->Exit() generates "movq rsp, rbp; pop rbp; ret k" |
+ // with length 7 (3 + 1 + 3). |
+ const int kPadding = Assembler::kJSReturnSequenceLength - 7; |
+ for (int i = 0; i < kPadding; ++i) { |
+ masm_->int3(); |
+ } |
+ // Check that the size of the code used for returning matches what is |
+ // expected by the debugger. |
+ ASSERT_EQ(Assembler::kJSReturnSequenceLength, |
+ masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); |
+#endif |
+ DeleteFrame(); |
+} |
+ |
+ |
void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { |
ASSERT(!in_spilled_code()); |
Comment cmnt(masm_, "[ WithEnterStatement"); |
@@ -2531,6 +4294,349 @@ |
} |
+void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { |
+ if (slot->type() == Slot::LOOKUP) { |
+ ASSERT(slot->var()->is_dynamic()); |
+ |
+ JumpTarget slow; |
+ JumpTarget done; |
+ Result value; |
+ |
+ // Generate fast case for loading from slots that correspond to |
+ // local/global variables or arguments unless they are shadowed by |
+ // eval-introduced bindings. |
+ EmitDynamicLoadFromSlotFastCase(slot, |
+ typeof_state, |
+ &value, |
+ &slow, |
+ &done); |
+ |
+ slow.Bind(); |
+ // A runtime call is inevitable. We eagerly sync frame elements |
+ // to memory so that we can push the arguments directly into place |
+ // on top of the frame. |
+ frame_->SyncRange(0, frame_->element_count() - 1); |
+ frame_->EmitPush(rsi); |
+ __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT); |
+ frame_->EmitPush(kScratchRegister); |
+ if (typeof_state == INSIDE_TYPEOF) { |
+ value = |
+ frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
+ } else { |
+ value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
+ } |
+ |
+ done.Bind(&value); |
+ frame_->Push(&value); |
+ |
+ } else if (slot->var()->mode() == Variable::CONST) { |
+ // Const slots may contain 'the hole' value (the constant hasn't been |
+ // initialized yet) which needs to be converted into the 'undefined' |
+ // value. |
+ // |
+ // We currently spill the virtual frame because constants use the |
+ // potentially unsafe direct-frame access of SlotOperand. |
+ VirtualFrame::SpilledScope spilled_scope; |
+ Comment cmnt(masm_, "[ Load const"); |
+ JumpTarget exit; |
+ __ movq(rcx, SlotOperand(slot, rcx)); |
+ __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex); |
+ exit.Branch(not_equal); |
+ __ LoadRoot(rcx, Heap::kUndefinedValueRootIndex); |
+ exit.Bind(); |
+ frame_->EmitPush(rcx); |
+ |
+ } else if (slot->type() == Slot::PARAMETER) { |
+ frame_->PushParameterAt(slot->index()); |
+ |
+ } else if (slot->type() == Slot::LOCAL) { |
+ frame_->PushLocalAt(slot->index()); |
+ |
+ } else { |
+ // The other remaining slot types (LOOKUP and GLOBAL) cannot reach |
+ // here. |
+ // |
+ // The use of SlotOperand below is safe for an unspilled frame |
+ // because it will always be a context slot. |
+ ASSERT(slot->type() == Slot::CONTEXT); |
+ Result temp = allocator_->Allocate(); |
+ ASSERT(temp.is_valid()); |
+ __ movq(temp.reg(), SlotOperand(slot, temp.reg())); |
+ frame_->Push(&temp); |
+ } |
+} |
+ |
+ |
+void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, |
+ TypeofState state) { |
+ LoadFromSlot(slot, state); |
+ |
+ // Bail out quickly if we're not using lazy arguments allocation. |
+ if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; |
+ |
+ // ... or if the slot isn't a non-parameter arguments slot. |
+ if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; |
+ |
+ // Pop the loaded value from the stack. |
+ Result value = frame_->Pop(); |
+ |
+ // If the loaded value is a constant, we know if the arguments |
+ // object has been lazily loaded yet. |
+ if (value.is_constant()) { |
+ if (value.handle()->IsTheHole()) { |
+ Result arguments = StoreArgumentsObject(false); |
+ frame_->Push(&arguments); |
+ } else { |
+ frame_->Push(&value); |
+ } |
+ return; |
+ } |
+ |
+ // The loaded value is in a register. If it is the sentinel that |
+ // indicates that we haven't loaded the arguments object yet, we |
+ // need to do it now. |
+ JumpTarget exit; |
+ __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex); |
+ frame_->Push(&value); |
+ exit.Branch(not_equal); |
+ Result arguments = StoreArgumentsObject(false); |
+ frame_->SetElementAt(0, &arguments); |
+ exit.Bind(); |
+} |
+ |
+ |
+Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( |
+ Slot* slot, |
+ TypeofState typeof_state, |
+ JumpTarget* slow) { |
+ // Check that no extension objects have been created by calls to |
+ // eval from the current scope to the global scope. |
+ Register context = rsi; |
+ Result tmp = allocator_->Allocate(); |
+ ASSERT(tmp.is_valid()); // All non-reserved registers were available. |
+ |
+ Scope* s = scope(); |
+ while (s != NULL) { |
+ if (s->num_heap_slots() > 0) { |
+ if (s->calls_eval()) { |
+ // Check that extension is NULL. |
+ __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), |
+ Immediate(0)); |
+ slow->Branch(not_equal, not_taken); |
+ } |
+ // Load next context in chain. |
+ __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); |
+ __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
+ context = tmp.reg(); |
+ } |
+ // If no outer scope calls eval, we do not need to check more |
+ // context extensions. If we have reached an eval scope, we check |
+ // all extensions from this point. |
+ if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
+ s = s->outer_scope(); |
+ } |
+ |
+ if (s->is_eval_scope()) { |
+ // Loop up the context chain. There is no frame effect so it is |
+ // safe to use raw labels here. |
+ Label next, fast; |
+ if (!context.is(tmp.reg())) { |
+ __ movq(tmp.reg(), context); |
+ } |
+ // Load map for comparison into register, outside loop. |
+ __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex); |
+ __ bind(&next); |
+ // Terminate at global context. |
+ __ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset)); |
+ __ j(equal, &fast); |
+ // Check that extension is NULL. |
+ __ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); |
+ slow->Branch(not_equal); |
+ // Load next context in chain. |
+ __ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); |
+ __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
+ __ jmp(&next); |
+ __ bind(&fast); |
+ } |
+ tmp.Unuse(); |
+ |
+ // All extension objects were empty and it is safe to use a global |
+ // load IC call. |
+ LoadGlobal(); |
+ frame_->Push(slot->var()->name()); |
+ RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) |
+ ? RelocInfo::CODE_TARGET |
+ : RelocInfo::CODE_TARGET_CONTEXT; |
+ Result answer = frame_->CallLoadIC(mode); |
+ // A test rax instruction following the call signals that the inobject |
+ // property case was inlined. Ensure that there is not a test rax |
+ // instruction here. |
+ masm_->nop(); |
+ return answer; |
+} |
+ |
+ |
+void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, |
+ TypeofState typeof_state, |
+ Result* result, |
+ JumpTarget* slow, |
+ JumpTarget* done) { |
+ // Generate fast-case code for variables that might be shadowed by |
+ // eval-introduced variables. Eval is used a lot without |
+ // introducing variables. In those cases, we do not want to |
+ // perform a runtime call for all variables in the scope |
+ // containing the eval. |
+ if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { |
+ *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); |
+ done->Jump(result); |
+ |
+ } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { |
+ Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot(); |
+ Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); |
+ if (potential_slot != NULL) { |
+ // Generate fast case for locals that rewrite to slots. |
+ // Allocate a fresh register to use as a temp in |
+ // ContextSlotOperandCheckExtensions and to hold the result |
+ // value. |
+ *result = allocator_->Allocate(); |
+ ASSERT(result->is_valid()); |
+ __ movq(result->reg(), |
+ ContextSlotOperandCheckExtensions(potential_slot, |
+ *result, |
+ slow)); |
+ if (potential_slot->var()->mode() == Variable::CONST) { |
+ __ CompareRoot(result->reg(), Heap::kTheHoleValueRootIndex); |
+ done->Branch(not_equal, result); |
+ __ LoadRoot(result->reg(), Heap::kUndefinedValueRootIndex); |
+ } |
+ done->Jump(result); |
+ } else if (rewrite != NULL) { |
+ // Generate fast case for argument loads. |
+ Property* property = rewrite->AsProperty(); |
+ if (property != NULL) { |
+ VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); |
+ Literal* key_literal = property->key()->AsLiteral(); |
+ if (obj_proxy != NULL && |
+ key_literal != NULL && |
+ obj_proxy->IsArguments() && |
+ key_literal->handle()->IsSmi()) { |
+ // Load arguments object if there are no eval-introduced |
+ // variables. Then load the argument from the arguments |
+ // object using keyed load. |
+ Result arguments = allocator()->Allocate(); |
+ ASSERT(arguments.is_valid()); |
+ __ movq(arguments.reg(), |
+ ContextSlotOperandCheckExtensions(obj_proxy->var()->slot(), |
+ arguments, |
+ slow)); |
+ frame_->Push(&arguments); |
+ frame_->Push(key_literal->handle()); |
+ *result = EmitKeyedLoad(); |
+ done->Jump(result); |
+ } |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { |
+ if (slot->type() == Slot::LOOKUP) { |
+ ASSERT(slot->var()->is_dynamic()); |
+ |
+ // For now, just do a runtime call. Since the call is inevitable, |
+ // we eagerly sync the virtual frame so we can directly push the |
+ // arguments into place. |
+ frame_->SyncRange(0, frame_->element_count() - 1); |
+ |
+ frame_->EmitPush(rsi); |
+ frame_->EmitPush(slot->var()->name()); |
+ |
+ Result value; |
+ if (init_state == CONST_INIT) { |
+ // Same as the case for a normal store, but ignores attribute |
+ // (e.g. READ_ONLY) of context slot so that we can initialize const |
+ // properties (introduced via eval("const foo = (some expr);")). Also, |
+ // uses the current function context instead of the top context. |
+ // |
+ // Note that we must declare the foo upon entry of eval(), via a |
+ // context slot declaration, but we cannot initialize it at the same |
+ // time, because the const declaration may be at the end of the eval |
+ // code (sigh...) and the const variable may have been used before |
+ // (where its value is 'undefined'). Thus, we can only do the |
+ // initialization when we actually encounter the expression and when |
+ // the expression operands are defined and valid, and thus we need the |
+ // split into 2 operations: declaration of the context slot followed |
+ // by initialization. |
+ value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
+ } else { |
+ value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3); |
+ } |
+ // Storing a variable must keep the (new) value on the expression |
+ // stack. This is necessary for compiling chained assignment |
+ // expressions. |
+ frame_->Push(&value); |
+ } else { |
+ ASSERT(!slot->var()->is_dynamic()); |
+ |
+ JumpTarget exit; |
+ if (init_state == CONST_INIT) { |
+ ASSERT(slot->var()->mode() == Variable::CONST); |
+ // Only the first const initialization must be executed (the slot |
+ // still contains 'the hole' value). When the assignment is executed, |
+ // the code is identical to a normal store (see below). |
+ // |
+ // We spill the frame in the code below because the direct-frame |
+ // access of SlotOperand is potentially unsafe with an unspilled |
+ // frame. |
+ VirtualFrame::SpilledScope spilled_scope; |
+ Comment cmnt(masm_, "[ Init const"); |
+ __ movq(rcx, SlotOperand(slot, rcx)); |
+ __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex); |
+ exit.Branch(not_equal); |
+ } |
+ |
+ // We must execute the store. Storing a variable must keep the (new) |
+ // value on the stack. This is necessary for compiling assignment |
+ // expressions. |
+ // |
+ // Note: We will reach here even with slot->var()->mode() == |
+ // Variable::CONST because of const declarations which will initialize |
+ // consts to 'the hole' value and by doing so, end up calling this code. |
+ if (slot->type() == Slot::PARAMETER) { |
+ frame_->StoreToParameterAt(slot->index()); |
+ } else if (slot->type() == Slot::LOCAL) { |
+ frame_->StoreToLocalAt(slot->index()); |
+ } else { |
+ // The other slot types (LOOKUP and GLOBAL) cannot reach here. |
+ // |
+ // The use of SlotOperand below is safe for an unspilled frame |
+ // because the slot is a context slot. |
+ ASSERT(slot->type() == Slot::CONTEXT); |
+ frame_->Dup(); |
+ Result value = frame_->Pop(); |
+ value.ToRegister(); |
+ Result start = allocator_->Allocate(); |
+ ASSERT(start.is_valid()); |
+ __ movq(SlotOperand(slot, start.reg()), value.reg()); |
+ // RecordWrite may destroy the value registers. |
+ // |
+ // TODO(204): Avoid actually spilling when the value is not |
+ // needed (probably the common case). |
+ frame_->Spill(value.reg()); |
+ int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
+ Result temp = allocator_->Allocate(); |
+ ASSERT(temp.is_valid()); |
+ __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); |
+ // The results start, value, and temp are unused by going out of |
+ // scope. |
+ } |
+ |
+ exit.Bind(); |
+ } |
+} |
+ |
+ |
void CodeGenerator::VisitSlot(Slot* node) { |
Comment cmnt(masm_, "[ Slot"); |
LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); |
@@ -2557,6 +4663,17 @@ |
} |
+void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) { |
+ UNIMPLEMENTED(); |
+ // TODO(X64): Implement security policy for loads of smis. |
+} |
+ |
+ |
+bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) { |
+ return false; |
+} |
+ |
+ |
// Materialize the regexp literal 'node' in the literals array |
// 'literals' of the function. Leave the regexp boilerplate in |
// 'boilerplate'. |
@@ -3245,908 +5362,51 @@ |
} |
-void CodeGenerator::VisitCallRuntime(CallRuntime* node) { |
- if (CheckForInlineRuntimeCall(node)) { |
- return; |
- } |
- |
- ZoneList<Expression*>* args = node->arguments(); |
- Comment cmnt(masm_, "[ CallRuntime"); |
- Runtime::Function* function = node->function(); |
- |
- if (function == NULL) { |
- // Push the builtins object found in the current global object. |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ movq(temp.reg(), GlobalObject()); |
- __ movq(temp.reg(), |
- FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); |
- frame_->Push(&temp); |
- } |
- |
- // Push the arguments ("left-to-right"). |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- } |
- |
- if (function == NULL) { |
- // Call the JS runtime function. |
- frame_->Push(node->name()); |
- Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, |
- arg_count, |
- loop_nesting_); |
- frame_->RestoreContextRegister(); |
- frame_->Push(&answer); |
- } else { |
- // Call the C runtime function. |
- Result answer = frame_->CallRuntime(function, arg_count); |
- frame_->Push(&answer); |
- } |
-} |
- |
- |
-void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { |
- Comment cmnt(masm_, "[ UnaryOperation"); |
- |
- Token::Value op = node->op(); |
- |
- if (op == Token::NOT) { |
- // Swap the true and false targets but keep the same actual label |
- // as the fall through. |
- destination()->Invert(); |
- LoadCondition(node->expression(), destination(), true); |
- // Swap the labels back. |
- destination()->Invert(); |
- |
- } else if (op == Token::DELETE) { |
- Property* property = node->expression()->AsProperty(); |
- if (property != NULL) { |
- Load(property->obj()); |
- Load(property->key()); |
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); |
- frame_->Push(&answer); |
- return; |
- } |
- |
- Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); |
- if (variable != NULL) { |
- Slot* slot = variable->slot(); |
- if (variable->is_global()) { |
- LoadGlobal(); |
- frame_->Push(variable->name()); |
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE, |
- CALL_FUNCTION, 2); |
- frame_->Push(&answer); |
- return; |
- |
- } else if (slot != NULL && slot->type() == Slot::LOOKUP) { |
- // Call the runtime to look up the context holding the named |
- // variable. Sync the virtual frame eagerly so we can push the |
- // arguments directly into place. |
- frame_->SyncRange(0, frame_->element_count() - 1); |
- frame_->EmitPush(rsi); |
- frame_->EmitPush(variable->name()); |
- Result context = frame_->CallRuntime(Runtime::kLookupContext, 2); |
- ASSERT(context.is_register()); |
- frame_->EmitPush(context.reg()); |
- context.Unuse(); |
- frame_->EmitPush(variable->name()); |
- Result answer = frame_->InvokeBuiltin(Builtins::DELETE, |
- CALL_FUNCTION, 2); |
- frame_->Push(&answer); |
- return; |
- } |
- |
- // Default: Result of deleting non-global, not dynamically |
- // introduced variables is false. |
- frame_->Push(Factory::false_value()); |
- |
- } else { |
- // Default: Result of deleting expressions is true. |
- Load(node->expression()); // may have side-effects |
- frame_->SetElementAt(0, Factory::true_value()); |
- } |
- |
- } else if (op == Token::TYPEOF) { |
- // Special case for loading the typeof expression; see comment on |
- // LoadTypeofExpression(). |
- LoadTypeofExpression(node->expression()); |
- Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); |
- frame_->Push(&answer); |
- |
- } else if (op == Token::VOID) { |
- Expression* expression = node->expression(); |
- if (expression && expression->AsLiteral() && ( |
- expression->AsLiteral()->IsTrue() || |
- expression->AsLiteral()->IsFalse() || |
- expression->AsLiteral()->handle()->IsNumber() || |
- expression->AsLiteral()->handle()->IsString() || |
- expression->AsLiteral()->handle()->IsJSRegExp() || |
- expression->AsLiteral()->IsNull())) { |
- // Omit evaluating the value of the primitive literal. |
- // It will be discarded anyway, and can have no side effect. |
- frame_->Push(Factory::undefined_value()); |
- } else { |
- Load(node->expression()); |
- frame_->SetElementAt(0, Factory::undefined_value()); |
- } |
- |
- } else { |
- bool can_overwrite = |
- (node->expression()->AsBinaryOperation() != NULL && |
- node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); |
- UnaryOverwriteMode overwrite = |
- can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; |
- bool no_negative_zero = node->expression()->no_negative_zero(); |
- Load(node->expression()); |
- switch (op) { |
- case Token::NOT: |
- case Token::DELETE: |
- case Token::TYPEOF: |
- UNREACHABLE(); // handled above |
- break; |
- |
- case Token::SUB: { |
- GenericUnaryOpStub stub( |
- Token::SUB, |
- overwrite, |
- no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); |
- Result operand = frame_->Pop(); |
- Result answer = frame_->CallStub(&stub, &operand); |
- answer.set_type_info(TypeInfo::Number()); |
- frame_->Push(&answer); |
- break; |
- } |
- |
- case Token::BIT_NOT: { |
- // Smi check. |
- JumpTarget smi_label; |
- JumpTarget continue_label; |
- Result operand = frame_->Pop(); |
- operand.ToRegister(); |
- |
- Condition is_smi = masm_->CheckSmi(operand.reg()); |
- smi_label.Branch(is_smi, &operand); |
- |
- GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); |
- Result answer = frame_->CallStub(&stub, &operand); |
- continue_label.Jump(&answer); |
- |
- smi_label.Bind(&answer); |
- answer.ToRegister(); |
- frame_->Spill(answer.reg()); |
- __ SmiNot(answer.reg(), answer.reg()); |
- continue_label.Bind(&answer); |
- answer.set_type_info(TypeInfo::Smi()); |
- frame_->Push(&answer); |
- break; |
- } |
- |
- case Token::ADD: { |
- // Smi check. |
- JumpTarget continue_label; |
- Result operand = frame_->Pop(); |
- TypeInfo operand_info = operand.type_info(); |
- operand.ToRegister(); |
- Condition is_smi = masm_->CheckSmi(operand.reg()); |
- continue_label.Branch(is_smi, &operand); |
- frame_->Push(&operand); |
- Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, |
- CALL_FUNCTION, 1); |
- |
- continue_label.Bind(&answer); |
- if (operand_info.IsSmi()) { |
- answer.set_type_info(TypeInfo::Smi()); |
- } else if (operand_info.IsInteger32()) { |
- answer.set_type_info(TypeInfo::Integer32()); |
- } else { |
- answer.set_type_info(TypeInfo::Number()); |
- } |
- frame_->Push(&answer); |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- } |
- } |
-} |
- |
- |
-// The value in dst was optimistically incremented or decremented. |
-// The result overflowed or was not smi tagged. Call into the runtime |
-// to convert the argument to a number, and call the specialized add |
-// or subtract stub. The result is left in dst. |
-class DeferredPrefixCountOperation: public DeferredCode { |
- public: |
- DeferredPrefixCountOperation(Register dst, |
- bool is_increment, |
- TypeInfo input_type) |
- : dst_(dst), is_increment_(is_increment), input_type_(input_type) { |
- set_comment("[ DeferredCountOperation"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- bool is_increment_; |
- TypeInfo input_type_; |
-}; |
- |
- |
-void DeferredPrefixCountOperation::Generate() { |
- Register left; |
- if (input_type_.IsNumber()) { |
- left = dst_; |
- } else { |
- __ push(dst_); |
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); |
- left = rax; |
- } |
- |
- GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, |
- NO_OVERWRITE, |
- NO_GENERIC_BINARY_FLAGS, |
- TypeInfo::Number()); |
- stub.GenerateCall(masm_, left, Smi::FromInt(1)); |
- |
- if (!dst_.is(rax)) __ movq(dst_, rax); |
-} |
- |
- |
-// The value in dst was optimistically incremented or decremented. |
-// The result overflowed or was not smi tagged. Call into the runtime |
-// to convert the argument to a number. Update the original value in |
-// old. Call the specialized add or subtract stub. The result is |
-// left in dst. |
-class DeferredPostfixCountOperation: public DeferredCode { |
- public: |
- DeferredPostfixCountOperation(Register dst, |
- Register old, |
- bool is_increment, |
- TypeInfo input_type) |
- : dst_(dst), |
- old_(old), |
- is_increment_(is_increment), |
- input_type_(input_type) { |
- set_comment("[ DeferredCountOperation"); |
- } |
- |
- virtual void Generate(); |
- |
- private: |
- Register dst_; |
- Register old_; |
- bool is_increment_; |
- TypeInfo input_type_; |
-}; |
- |
- |
-void DeferredPostfixCountOperation::Generate() { |
- Register left; |
- if (input_type_.IsNumber()) { |
- __ push(dst_); // Save the input to use as the old value. |
- left = dst_; |
- } else { |
- __ push(dst_); |
- __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); |
- __ push(rax); // Save the result of ToNumber to use as the old value. |
- left = rax; |
- } |
- |
- GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, |
- NO_OVERWRITE, |
- NO_GENERIC_BINARY_FLAGS, |
- TypeInfo::Number()); |
- stub.GenerateCall(masm_, left, Smi::FromInt(1)); |
- |
- if (!dst_.is(rax)) __ movq(dst_, rax); |
- __ pop(old_); |
-} |
- |
- |
-void CodeGenerator::VisitCountOperation(CountOperation* node) { |
- Comment cmnt(masm_, "[ CountOperation"); |
- |
- bool is_postfix = node->is_postfix(); |
- bool is_increment = node->op() == Token::INC; |
- |
- Variable* var = node->expression()->AsVariableProxy()->AsVariable(); |
- bool is_const = (var != NULL && var->mode() == Variable::CONST); |
- |
- // Postfix operations need a stack slot under the reference to hold |
- // the old value while the new value is being stored. This is so that |
- // in the case that storing the new value requires a call, the old |
- // value will be in the frame to be spilled. |
- if (is_postfix) frame_->Push(Smi::FromInt(0)); |
- |
- // A constant reference is not saved to, so the reference is not a |
- // compound assignment reference. |
- { Reference target(this, node->expression(), !is_const); |
- if (target.is_illegal()) { |
- // Spoof the virtual frame to have the expected height (one higher |
- // than on entry). |
- if (!is_postfix) frame_->Push(Smi::FromInt(0)); |
- return; |
- } |
- target.TakeValue(); |
- |
- Result new_value = frame_->Pop(); |
- new_value.ToRegister(); |
- |
- Result old_value; // Only allocated in the postfix case. |
- if (is_postfix) { |
- // Allocate a temporary to preserve the old value. |
- old_value = allocator_->Allocate(); |
- ASSERT(old_value.is_valid()); |
- __ movq(old_value.reg(), new_value.reg()); |
- |
- // The return value for postfix operations is ToNumber(input). |
- // Keep more precise type info if the input is some kind of |
- // number already. If the input is not a number we have to wait |
- // for the deferred code to convert it. |
- if (new_value.type_info().IsNumber()) { |
- old_value.set_type_info(new_value.type_info()); |
- } |
- } |
- // Ensure the new value is writable. |
- frame_->Spill(new_value.reg()); |
- |
- DeferredCode* deferred = NULL; |
- if (is_postfix) { |
- deferred = new DeferredPostfixCountOperation(new_value.reg(), |
- old_value.reg(), |
- is_increment, |
- new_value.type_info()); |
- } else { |
- deferred = new DeferredPrefixCountOperation(new_value.reg(), |
- is_increment, |
- new_value.type_info()); |
- } |
- |
- if (new_value.is_smi()) { |
- if (FLAG_debug_code) { __ AbortIfNotSmi(new_value.reg()); } |
- } else { |
- __ JumpIfNotSmi(new_value.reg(), deferred->entry_label()); |
- } |
- if (is_increment) { |
- __ SmiAddConstant(new_value.reg(), |
- new_value.reg(), |
- Smi::FromInt(1), |
- deferred->entry_label()); |
- } else { |
- __ SmiSubConstant(new_value.reg(), |
- new_value.reg(), |
- Smi::FromInt(1), |
- deferred->entry_label()); |
- } |
- deferred->BindExit(); |
- |
- // Postfix count operations return their input converted to |
- // number. The case when the input is already a number is covered |
- // above in the allocation code for old_value. |
- if (is_postfix && !new_value.type_info().IsNumber()) { |
- old_value.set_type_info(TypeInfo::Number()); |
- } |
- |
- new_value.set_type_info(TypeInfo::Number()); |
- |
- // Postfix: store the old value in the allocated slot under the |
- // reference. |
- if (is_postfix) frame_->SetElementAt(target.size(), &old_value); |
- |
- frame_->Push(&new_value); |
- // Non-constant: update the reference. |
- if (!is_const) target.SetValue(NOT_CONST_INIT); |
- } |
- |
- // Postfix: drop the new value and use the old. |
- if (is_postfix) frame_->Drop(); |
-} |
- |
- |
-void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { |
- // According to ECMA-262 section 11.11, page 58, the binary logical |
- // operators must yield the result of one of the two expressions |
- // before any ToBoolean() conversions. This means that the value |
- // produced by a && or || operator is not necessarily a boolean. |
- |
- // NOTE: If the left hand side produces a materialized value (not |
- // control flow), we force the right hand side to do the same. This |
- // is necessary because we assume that if we get control flow on the |
- // last path out of an expression we got it on all paths. |
- if (node->op() == Token::AND) { |
- JumpTarget is_true; |
- ControlDestination dest(&is_true, destination()->false_target(), true); |
- LoadCondition(node->left(), &dest, false); |
- |
- if (dest.false_was_fall_through()) { |
- // The current false target was used as the fall-through. If |
- // there are no dangling jumps to is_true then the left |
- // subexpression was unconditionally false. Otherwise we have |
- // paths where we do have to evaluate the right subexpression. |
- if (is_true.is_linked()) { |
- // We need to compile the right subexpression. If the jump to |
- // the current false target was a forward jump then we have a |
- // valid frame, we have just bound the false target, and we |
- // have to jump around the code for the right subexpression. |
- if (has_valid_frame()) { |
- destination()->false_target()->Unuse(); |
- destination()->false_target()->Jump(); |
- } |
- is_true.Bind(); |
- // The left subexpression compiled to control flow, so the |
- // right one is free to do so as well. |
- LoadCondition(node->right(), destination(), false); |
- } else { |
- // We have actually just jumped to or bound the current false |
- // target but the current control destination is not marked as |
- // used. |
- destination()->Use(false); |
- } |
- |
- } else if (dest.is_used()) { |
- // The left subexpression compiled to control flow (and is_true |
- // was just bound), so the right is free to do so as well. |
- LoadCondition(node->right(), destination(), false); |
- |
- } else { |
- // We have a materialized value on the frame, so we exit with |
- // one on all paths. There are possibly also jumps to is_true |
- // from nested subexpressions. |
- JumpTarget pop_and_continue; |
- JumpTarget exit; |
- |
- // Avoid popping the result if it converts to 'false' using the |
- // standard ToBoolean() conversion as described in ECMA-262, |
- // section 9.2, page 30. |
- // |
- // Duplicate the TOS value. The duplicate will be popped by |
- // ToBoolean. |
- frame_->Dup(); |
- ControlDestination dest(&pop_and_continue, &exit, true); |
- ToBoolean(&dest); |
- |
- // Pop the result of evaluating the first part. |
- frame_->Drop(); |
- |
- // Compile right side expression. |
- is_true.Bind(); |
- Load(node->right()); |
- |
- // Exit (always with a materialized value). |
- exit.Bind(); |
- } |
- |
- } else { |
- ASSERT(node->op() == Token::OR); |
- JumpTarget is_false; |
- ControlDestination dest(destination()->true_target(), &is_false, false); |
- LoadCondition(node->left(), &dest, false); |
- |
- if (dest.true_was_fall_through()) { |
- // The current true target was used as the fall-through. If |
- // there are no dangling jumps to is_false then the left |
- // subexpression was unconditionally true. Otherwise we have |
- // paths where we do have to evaluate the right subexpression. |
- if (is_false.is_linked()) { |
- // We need to compile the right subexpression. If the jump to |
- // the current true target was a forward jump then we have a |
- // valid frame, we have just bound the true target, and we |
- // have to jump around the code for the right subexpression. |
- if (has_valid_frame()) { |
- destination()->true_target()->Unuse(); |
- destination()->true_target()->Jump(); |
- } |
- is_false.Bind(); |
- // The left subexpression compiled to control flow, so the |
- // right one is free to do so as well. |
- LoadCondition(node->right(), destination(), false); |
- } else { |
- // We have just jumped to or bound the current true target but |
- // the current control destination is not marked as used. |
- destination()->Use(true); |
- } |
- |
- } else if (dest.is_used()) { |
- // The left subexpression compiled to control flow (and is_false |
- // was just bound), so the right is free to do so as well. |
- LoadCondition(node->right(), destination(), false); |
- |
- } else { |
- // We have a materialized value on the frame, so we exit with |
- // one on all paths. There are possibly also jumps to is_false |
- // from nested subexpressions. |
- JumpTarget pop_and_continue; |
- JumpTarget exit; |
- |
- // Avoid popping the result if it converts to 'true' using the |
- // standard ToBoolean() conversion as described in ECMA-262, |
- // section 9.2, page 30. |
- // |
- // Duplicate the TOS value. The duplicate will be popped by |
- // ToBoolean. |
- frame_->Dup(); |
- ControlDestination dest(&exit, &pop_and_continue, false); |
- ToBoolean(&dest); |
- |
- // Pop the result of evaluating the first part. |
- frame_->Drop(); |
- |
- // Compile right side expression. |
- is_false.Bind(); |
- Load(node->right()); |
- |
- // Exit (always with a materialized value). |
- exit.Bind(); |
- } |
- } |
-} |
- |
-void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { |
- Comment cmnt(masm_, "[ BinaryOperation"); |
- |
- if (node->op() == Token::AND || node->op() == Token::OR) { |
- GenerateLogicalBooleanOperation(node); |
- } else { |
- // NOTE: The code below assumes that the slow cases (calls to runtime) |
- // never return a constant/immutable object. |
- OverwriteMode overwrite_mode = NO_OVERWRITE; |
- if (node->left()->AsBinaryOperation() != NULL && |
- node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) { |
- overwrite_mode = OVERWRITE_LEFT; |
- } else if (node->right()->AsBinaryOperation() != NULL && |
- node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) { |
- overwrite_mode = OVERWRITE_RIGHT; |
- } |
- |
- if (node->left()->IsTrivial()) { |
- Load(node->right()); |
- Result right = frame_->Pop(); |
- frame_->Push(node->left()); |
- frame_->Push(&right); |
- } else { |
- Load(node->left()); |
- Load(node->right()); |
- } |
- GenericBinaryOperation(node, overwrite_mode); |
- } |
-} |
- |
- |
- |
-void CodeGenerator::VisitCompareOperation(CompareOperation* node) { |
- Comment cmnt(masm_, "[ CompareOperation"); |
- |
- // Get the expressions from the node. |
- Expression* left = node->left(); |
- Expression* right = node->right(); |
- Token::Value op = node->op(); |
- // To make typeof testing for natives implemented in JavaScript really |
- // efficient, we generate special code for expressions of the form: |
- // 'typeof <expression> == <string>'. |
- UnaryOperation* operation = left->AsUnaryOperation(); |
- if ((op == Token::EQ || op == Token::EQ_STRICT) && |
- (operation != NULL && operation->op() == Token::TYPEOF) && |
- (right->AsLiteral() != NULL && |
- right->AsLiteral()->handle()->IsString())) { |
- Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle())); |
- |
- // Load the operand and move it to a register. |
- LoadTypeofExpression(operation->expression()); |
- Result answer = frame_->Pop(); |
- answer.ToRegister(); |
- |
- if (check->Equals(Heap::number_symbol())) { |
- Condition is_smi = masm_->CheckSmi(answer.reg()); |
- destination()->true_target()->Branch(is_smi); |
- frame_->Spill(answer.reg()); |
- __ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
- __ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex); |
- answer.Unuse(); |
- destination()->Split(equal); |
- |
- } else if (check->Equals(Heap::string_symbol())) { |
- Condition is_smi = masm_->CheckSmi(answer.reg()); |
- destination()->false_target()->Branch(is_smi); |
- |
- // It can be an undetectable string object. |
- __ movq(kScratchRegister, |
- FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), |
- Immediate(1 << Map::kIsUndetectable)); |
- destination()->false_target()->Branch(not_zero); |
- __ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE); |
- answer.Unuse(); |
- destination()->Split(below); // Unsigned byte comparison needed. |
- |
- } else if (check->Equals(Heap::boolean_symbol())) { |
- __ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex); |
- destination()->true_target()->Branch(equal); |
- __ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex); |
- answer.Unuse(); |
- destination()->Split(equal); |
- |
- } else if (check->Equals(Heap::undefined_symbol())) { |
- __ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex); |
- destination()->true_target()->Branch(equal); |
- |
- Condition is_smi = masm_->CheckSmi(answer.reg()); |
- destination()->false_target()->Branch(is_smi); |
- |
- // It can be an undetectable object. |
- __ movq(kScratchRegister, |
- FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), |
- Immediate(1 << Map::kIsUndetectable)); |
- answer.Unuse(); |
- destination()->Split(not_zero); |
- |
- } else if (check->Equals(Heap::function_symbol())) { |
- Condition is_smi = masm_->CheckSmi(answer.reg()); |
- destination()->false_target()->Branch(is_smi); |
- frame_->Spill(answer.reg()); |
- __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); |
- destination()->true_target()->Branch(equal); |
- // Regular expressions are callable so typeof == 'function'. |
- __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE); |
- answer.Unuse(); |
- destination()->Split(equal); |
- |
- } else if (check->Equals(Heap::object_symbol())) { |
- Condition is_smi = masm_->CheckSmi(answer.reg()); |
- destination()->false_target()->Branch(is_smi); |
- __ CompareRoot(answer.reg(), Heap::kNullValueRootIndex); |
- destination()->true_target()->Branch(equal); |
- |
- // Regular expressions are typeof == 'function', not 'object'. |
- __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister); |
- destination()->false_target()->Branch(equal); |
- |
- // It can be an undetectable object. |
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), |
- Immediate(1 << Map::kIsUndetectable)); |
- destination()->false_target()->Branch(not_zero); |
- __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE); |
- destination()->false_target()->Branch(below); |
- __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); |
- answer.Unuse(); |
- destination()->Split(below_equal); |
- } else { |
- // Uncommon case: typeof testing against a string literal that is |
- // never returned from the typeof operator. |
- answer.Unuse(); |
- destination()->Goto(false); |
- } |
- return; |
- } |
- |
- Condition cc = no_condition; |
- bool strict = false; |
- switch (op) { |
- case Token::EQ_STRICT: |
- strict = true; |
- // Fall through |
- case Token::EQ: |
- cc = equal; |
- break; |
- case Token::LT: |
- cc = less; |
- break; |
- case Token::GT: |
- cc = greater; |
- break; |
- case Token::LTE: |
- cc = less_equal; |
- break; |
- case Token::GTE: |
- cc = greater_equal; |
- break; |
- case Token::IN: { |
- Load(left); |
- Load(right); |
- Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); |
- frame_->Push(&answer); // push the result |
- return; |
- } |
- case Token::INSTANCEOF: { |
- Load(left); |
- Load(right); |
- InstanceofStub stub; |
- Result answer = frame_->CallStub(&stub, 2); |
- answer.ToRegister(); |
- __ testq(answer.reg(), answer.reg()); |
- answer.Unuse(); |
- destination()->Split(zero); |
- return; |
- } |
- default: |
- UNREACHABLE(); |
- } |
- |
- if (left->IsTrivial()) { |
- Load(right); |
- Result right_result = frame_->Pop(); |
- frame_->Push(left); |
- frame_->Push(&right_result); |
- } else { |
- Load(left); |
- Load(right); |
- } |
- |
- Comparison(node, cc, strict, destination()); |
-} |
- |
- |
-void CodeGenerator::VisitThisFunction(ThisFunction* node) { |
- frame_->PushFunction(); |
-} |
- |
- |
-void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { |
+void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { |
ASSERT(args->length() == 1); |
- |
- // ArgumentsAccessStub expects the key in rdx and the formal |
- // parameter count in rax. |
Load(args->at(0)); |
- Result key = frame_->Pop(); |
- // Explicitly create a constant result. |
- Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters()))); |
- // Call the shared stub to get to arguments[key]. |
- ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
- Result result = frame_->CallStub(&stub, &key, &count); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
Result value = frame_->Pop(); |
value.ToRegister(); |
ASSERT(value.is_valid()); |
Condition is_smi = masm_->CheckSmi(value.reg()); |
- destination()->false_target()->Branch(is_smi); |
- // It is a heap object - get map. |
- // Check if the object is a JS array or not. |
- __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister); |
value.Unuse(); |
- destination()->Split(equal); |
+ destination()->Split(is_smi); |
} |
-void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { |
+void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { |
+ // Conditionally generate a log call. |
+ // Args: |
+ // 0 (literal string): The type of logging (corresponds to the flags). |
+ // This is used to determine whether or not to generate the log call. |
+ // 1 (string): Format string. Access the string at argument index 2 |
+ // with '%2s' (see Logger::LogRuntime for all the formats). |
+ // 2 (array): Arguments to the format string. |
+ ASSERT_EQ(args->length(), 3); |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ if (ShouldGenerateLog(args->at(0))) { |
+ Load(args->at(1)); |
+ Load(args->at(2)); |
+ frame_->CallRuntime(Runtime::kLog, 2); |
+ } |
+#endif |
+ // Finally, we're expected to leave a value on the top of the stack. |
+ frame_->Push(Factory::undefined_value()); |
+} |
+ |
+ |
+void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { |
ASSERT(args->length() == 1); |
Load(args->at(0)); |
Result value = frame_->Pop(); |
value.ToRegister(); |
ASSERT(value.is_valid()); |
- Condition is_smi = masm_->CheckSmi(value.reg()); |
- destination()->false_target()->Branch(is_smi); |
- // It is a heap object - get map. |
- // Check if the object is a regexp. |
- __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister); |
+ Condition positive_smi = masm_->CheckPositiveSmi(value.reg()); |
value.Unuse(); |
- destination()->Split(equal); |
+ destination()->Split(positive_smi); |
} |
-void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { |
- // This generates a fast version of: |
- // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result obj = frame_->Pop(); |
- obj.ToRegister(); |
- Condition is_smi = masm_->CheckSmi(obj.reg()); |
- destination()->false_target()->Branch(is_smi); |
- |
- __ Move(kScratchRegister, Factory::null_value()); |
- __ cmpq(obj.reg(), kScratchRegister); |
- destination()->true_target()->Branch(equal); |
- |
- __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
- // Undetectable objects behave like undefined when tested with typeof. |
- __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), |
- Immediate(1 << Map::kIsUndetectable)); |
- destination()->false_target()->Branch(not_zero); |
- __ movzxbq(kScratchRegister, |
- FieldOperand(kScratchRegister, Map::kInstanceTypeOffset)); |
- __ cmpq(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE)); |
- destination()->false_target()->Branch(below); |
- __ cmpq(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE)); |
- obj.Unuse(); |
- destination()->Split(below_equal); |
-} |
- |
- |
-void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { |
- // This generates a fast version of: |
- // (%_ClassOf(arg) === 'Function') |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result obj = frame_->Pop(); |
- obj.ToRegister(); |
- Condition is_smi = masm_->CheckSmi(obj.reg()); |
- destination()->false_target()->Branch(is_smi); |
- __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister); |
- obj.Unuse(); |
- destination()->Split(equal); |
-} |
- |
- |
-void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- Load(args->at(0)); |
- Result obj = frame_->Pop(); |
- obj.ToRegister(); |
- Condition is_smi = masm_->CheckSmi(obj.reg()); |
- destination()->false_target()->Branch(is_smi); |
- __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
- __ movzxbl(kScratchRegister, |
- FieldOperand(kScratchRegister, Map::kBitFieldOffset)); |
- __ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable)); |
- obj.Unuse(); |
- destination()->Split(not_zero); |
-} |
- |
- |
-void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 0); |
- |
- // Get the frame pointer for the calling frame. |
- Result fp = allocator()->Allocate(); |
- __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
- |
- // Skip the arguments adaptor frame if it exists. |
- Label check_frame_marker; |
- __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset), |
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ j(not_equal, &check_frame_marker); |
- __ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); |
- |
- // Check the marker in the calling frame. |
- __ bind(&check_frame_marker); |
- __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), |
- Smi::FromInt(StackFrame::CONSTRUCT)); |
- fp.Unuse(); |
- destination()->Split(equal); |
-} |
- |
- |
-void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 0); |
- |
- Result fp = allocator_->Allocate(); |
- Result result = allocator_->Allocate(); |
- ASSERT(fp.is_valid() && result.is_valid()); |
- |
- Label exit; |
- |
- // Get the number of formal parameters. |
- __ Move(result.reg(), Smi::FromInt(scope()->num_parameters())); |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
- __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset), |
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ j(not_equal, &exit); |
- |
- // Arguments adaptor case: Read the arguments length from the |
- // adaptor frame. |
- __ movq(result.reg(), |
- Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- |
- __ bind(&exit); |
- result.set_type_info(TypeInfo::Smi()); |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(result.reg()); |
- } |
- frame_->Push(&result); |
-} |
- |
- |
class DeferredStringCharCodeAt : public DeferredCode { |
public: |
DeferredStringCharCodeAt(Register object, |
@@ -4352,275 +5612,293 @@ |
} |
-void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { |
+void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { |
ASSERT(args->length() == 1); |
Load(args->at(0)); |
Result value = frame_->Pop(); |
value.ToRegister(); |
ASSERT(value.is_valid()); |
- Condition positive_smi = masm_->CheckPositiveSmi(value.reg()); |
+ Condition is_smi = masm_->CheckSmi(value.reg()); |
+ destination()->false_target()->Branch(is_smi); |
+ // It is a heap object - get map. |
+ // Check if the object is a JS array or not. |
+ __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, kScratchRegister); |
value.Unuse(); |
- destination()->Split(positive_smi); |
+ destination()->Split(equal); |
} |
-// Generates the Math.pow method. Only handles special cases and |
-// branches to the runtime system for everything else. Please note |
-// that this function assumes that the callsite has executed ToNumber |
-// on both arguments. |
-void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 2); |
+void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { |
+ ASSERT(args->length() == 1); |
Load(args->at(0)); |
- Load(args->at(1)); |
+ Result value = frame_->Pop(); |
+ value.ToRegister(); |
+ ASSERT(value.is_valid()); |
+ Condition is_smi = masm_->CheckSmi(value.reg()); |
+ destination()->false_target()->Branch(is_smi); |
+ // It is a heap object - get map. |
+ // Check if the object is a regexp. |
+ __ CmpObjectType(value.reg(), JS_REGEXP_TYPE, kScratchRegister); |
+ value.Unuse(); |
+ destination()->Split(equal); |
+} |
- Label allocate_return; |
- // Load the two operands while leaving the values on the frame. |
- frame()->Dup(); |
- Result exponent = frame()->Pop(); |
- exponent.ToRegister(); |
- frame()->Spill(exponent.reg()); |
- frame()->PushElementAt(1); |
- Result base = frame()->Pop(); |
- base.ToRegister(); |
- frame()->Spill(base.reg()); |
- Result answer = allocator()->Allocate(); |
- ASSERT(answer.is_valid()); |
- ASSERT(!exponent.reg().is(base.reg())); |
- JumpTarget call_runtime; |
+void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { |
+ // This generates a fast version of: |
+ // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') |
+ ASSERT(args->length() == 1); |
+ Load(args->at(0)); |
+ Result obj = frame_->Pop(); |
+ obj.ToRegister(); |
+ Condition is_smi = masm_->CheckSmi(obj.reg()); |
+ destination()->false_target()->Branch(is_smi); |
- // Save 1 in xmm3 - we need this several times later on. |
- __ movl(answer.reg(), Immediate(1)); |
- __ cvtlsi2sd(xmm3, answer.reg()); |
+ __ Move(kScratchRegister, Factory::null_value()); |
+ __ cmpq(obj.reg(), kScratchRegister); |
+ destination()->true_target()->Branch(equal); |
- Label exponent_nonsmi; |
- Label base_nonsmi; |
- // If the exponent is a heap number go to that specific case. |
- __ JumpIfNotSmi(exponent.reg(), &exponent_nonsmi); |
- __ JumpIfNotSmi(base.reg(), &base_nonsmi); |
+ __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
+ // Undetectable objects behave like undefined when tested with typeof. |
+ __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), |
+ Immediate(1 << Map::kIsUndetectable)); |
+ destination()->false_target()->Branch(not_zero); |
+ __ movzxbq(kScratchRegister, |
+ FieldOperand(kScratchRegister, Map::kInstanceTypeOffset)); |
+ __ cmpq(kScratchRegister, Immediate(FIRST_JS_OBJECT_TYPE)); |
+ destination()->false_target()->Branch(below); |
+ __ cmpq(kScratchRegister, Immediate(LAST_JS_OBJECT_TYPE)); |
+ obj.Unuse(); |
+ destination()->Split(below_equal); |
+} |
- // Optimized version when y is an integer. |
- Label powi; |
- __ SmiToInteger32(base.reg(), base.reg()); |
- __ cvtlsi2sd(xmm0, base.reg()); |
- __ jmp(&powi); |
- // exponent is smi and base is a heapnumber. |
- __ bind(&base_nonsmi); |
- __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset), |
- Heap::kHeapNumberMapRootIndex); |
- call_runtime.Branch(not_equal); |
- __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); |
+void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { |
+ // This generates a fast version of: |
+ // (%_ClassOf(arg) === 'Function') |
+ ASSERT(args->length() == 1); |
+ Load(args->at(0)); |
+ Result obj = frame_->Pop(); |
+ obj.ToRegister(); |
+ Condition is_smi = masm_->CheckSmi(obj.reg()); |
+ destination()->false_target()->Branch(is_smi); |
+ __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister); |
+ obj.Unuse(); |
+ destination()->Split(equal); |
+} |
- // Optimized version of pow if y is an integer. |
- __ bind(&powi); |
- __ SmiToInteger32(exponent.reg(), exponent.reg()); |
- // Save exponent in base as we need to check if exponent is negative later. |
- // We know that base and exponent are in different registers. |
- __ movl(base.reg(), exponent.reg()); |
+void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { |
+ ASSERT(args->length() == 1); |
+ Load(args->at(0)); |
+ Result obj = frame_->Pop(); |
+ obj.ToRegister(); |
+ Condition is_smi = masm_->CheckSmi(obj.reg()); |
+ destination()->false_target()->Branch(is_smi); |
+ __ movq(kScratchRegister, FieldOperand(obj.reg(), HeapObject::kMapOffset)); |
+ __ movzxbl(kScratchRegister, |
+ FieldOperand(kScratchRegister, Map::kBitFieldOffset)); |
+ __ testl(kScratchRegister, Immediate(1 << Map::kIsUndetectable)); |
+ obj.Unuse(); |
+ destination()->Split(not_zero); |
+} |
- // Get absolute value of exponent. |
- Label no_neg; |
- __ cmpl(exponent.reg(), Immediate(0)); |
- __ j(greater_equal, &no_neg); |
- __ negl(exponent.reg()); |
- __ bind(&no_neg); |
- // Load xmm1 with 1. |
- __ movsd(xmm1, xmm3); |
- Label while_true; |
- Label no_multiply; |
+void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { |
+ ASSERT(args->length() == 0); |
- __ bind(&while_true); |
- __ shrl(exponent.reg(), Immediate(1)); |
- __ j(not_carry, &no_multiply); |
- __ mulsd(xmm1, xmm0); |
- __ bind(&no_multiply); |
- __ testl(exponent.reg(), exponent.reg()); |
- __ mulsd(xmm0, xmm0); |
- __ j(not_zero, &while_true); |
+ // Get the frame pointer for the calling frame. |
+ Result fp = allocator()->Allocate(); |
+ __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
- // x has the original value of y - if y is negative return 1/result. |
- __ testl(base.reg(), base.reg()); |
- __ j(positive, &allocate_return); |
- // Special case if xmm1 has reached infinity. |
- __ movl(answer.reg(), Immediate(0x7FB00000)); |
- __ movd(xmm0, answer.reg()); |
- __ cvtss2sd(xmm0, xmm0); |
- __ ucomisd(xmm0, xmm1); |
- call_runtime.Branch(equal); |
- __ divsd(xmm3, xmm1); |
- __ movsd(xmm1, xmm3); |
- __ jmp(&allocate_return); |
+ // Skip the arguments adaptor frame if it exists. |
+ Label check_frame_marker; |
+ __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset), |
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
+ __ j(not_equal, &check_frame_marker); |
+ __ movq(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); |
- // exponent (or both) is a heapnumber - no matter what we should now work |
- // on doubles. |
- __ bind(&exponent_nonsmi); |
- __ CompareRoot(FieldOperand(exponent.reg(), HeapObject::kMapOffset), |
- Heap::kHeapNumberMapRootIndex); |
- call_runtime.Branch(not_equal); |
- __ movsd(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset)); |
- // Test if exponent is nan. |
- __ ucomisd(xmm1, xmm1); |
- call_runtime.Branch(parity_even); |
+ // Check the marker in the calling frame. |
+ __ bind(&check_frame_marker); |
+ __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), |
+ Smi::FromInt(StackFrame::CONSTRUCT)); |
+ fp.Unuse(); |
+ destination()->Split(equal); |
+} |
- Label base_not_smi; |
- Label handle_special_cases; |
- __ JumpIfNotSmi(base.reg(), &base_not_smi); |
- __ SmiToInteger32(base.reg(), base.reg()); |
- __ cvtlsi2sd(xmm0, base.reg()); |
- __ jmp(&handle_special_cases); |
- __ bind(&base_not_smi); |
- __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset), |
- Heap::kHeapNumberMapRootIndex); |
- call_runtime.Branch(not_equal); |
- __ movl(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset)); |
- __ andl(answer.reg(), Immediate(HeapNumber::kExponentMask)); |
- __ cmpl(answer.reg(), Immediate(HeapNumber::kExponentMask)); |
- // base is NaN or +/-Infinity |
- call_runtime.Branch(greater_equal); |
- __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); |
- // base is in xmm0 and exponent is in xmm1. |
- __ bind(&handle_special_cases); |
- Label not_minus_half; |
- // Test for -0.5. |
- // Load xmm2 with -0.5. |
- __ movl(answer.reg(), Immediate(0xBF000000)); |
- __ movd(xmm2, answer.reg()); |
- __ cvtss2sd(xmm2, xmm2); |
- // xmm2 now has -0.5. |
- __ ucomisd(xmm2, xmm1); |
- __ j(not_equal, ¬_minus_half); |
+void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { |
+ ASSERT(args->length() == 0); |
- // Calculates reciprocal of square root. |
- // Note that 1/sqrt(x) = sqrt(1/x)) |
- __ divsd(xmm3, xmm0); |
- __ movsd(xmm1, xmm3); |
- __ sqrtsd(xmm1, xmm1); |
- __ jmp(&allocate_return); |
+ Result fp = allocator_->Allocate(); |
+ Result result = allocator_->Allocate(); |
+ ASSERT(fp.is_valid() && result.is_valid()); |
- // Test for 0.5. |
- __ bind(¬_minus_half); |
- // Load xmm2 with 0.5. |
- // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3. |
- __ addsd(xmm2, xmm3); |
- // xmm2 now has 0.5. |
- __ ucomisd(xmm2, xmm1); |
- call_runtime.Branch(not_equal); |
+ Label exit; |
- // Calculates square root. |
- __ movsd(xmm1, xmm0); |
- __ sqrtsd(xmm1, xmm1); |
+ // Get the number of formal parameters. |
+ __ Move(result.reg(), Smi::FromInt(scope()->num_parameters())); |
- JumpTarget done; |
- Label failure, success; |
- __ bind(&allocate_return); |
- // Make a copy of the frame to enable us to handle allocation |
- // failure after the JumpTarget jump. |
- VirtualFrame* clone = new VirtualFrame(frame()); |
- __ AllocateHeapNumber(answer.reg(), exponent.reg(), &failure); |
- __ movsd(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1); |
- // Remove the two original values from the frame - we only need those |
- // in the case where we branch to runtime. |
- frame()->Drop(2); |
- exponent.Unuse(); |
- base.Unuse(); |
- done.Jump(&answer); |
- // Use the copy of the original frame as our current frame. |
- RegisterFile empty_regs; |
- SetFrame(clone, &empty_regs); |
- // If we experience an allocation failure we branch to runtime. |
- __ bind(&failure); |
- call_runtime.Bind(); |
- answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2); |
+ // Check if the calling frame is an arguments adaptor frame. |
+ __ movq(fp.reg(), Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
+ __ SmiCompare(Operand(fp.reg(), StandardFrameConstants::kContextOffset), |
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
+ __ j(not_equal, &exit); |
- done.Bind(&answer); |
- frame()->Push(&answer); |
+ // Arguments adaptor case: Read the arguments length from the |
+ // adaptor frame. |
+ __ movq(result.reg(), |
+ Operand(fp.reg(), ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ |
+ __ bind(&exit); |
+ result.set_type_info(TypeInfo::Smi()); |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(result.reg()); |
+ } |
+ frame_->Push(&result); |
} |
-// Generates the Math.sqrt method. Please note - this function assumes that |
-// the callsite has executed ToNumber on the argument. |
-void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { |
+void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { |
ASSERT(args->length() == 1); |
- Load(args->at(0)); |
+ JumpTarget leave, null, function, non_function_constructor; |
+ Load(args->at(0)); // Load the object. |
+ Result obj = frame_->Pop(); |
+ obj.ToRegister(); |
+ frame_->Spill(obj.reg()); |
- // Leave original value on the frame if we need to call runtime. |
- frame()->Dup(); |
- Result result = frame()->Pop(); |
- result.ToRegister(); |
- frame()->Spill(result.reg()); |
- Label runtime; |
- Label non_smi; |
- Label load_done; |
- JumpTarget end; |
+ // If the object is a smi, we return null. |
+ Condition is_smi = masm_->CheckSmi(obj.reg()); |
+ null.Branch(is_smi); |
- __ JumpIfNotSmi(result.reg(), &non_smi); |
- __ SmiToInteger32(result.reg(), result.reg()); |
- __ cvtlsi2sd(xmm0, result.reg()); |
- __ jmp(&load_done); |
- __ bind(&non_smi); |
- __ CompareRoot(FieldOperand(result.reg(), HeapObject::kMapOffset), |
- Heap::kHeapNumberMapRootIndex); |
- __ j(not_equal, &runtime); |
- __ movsd(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset)); |
+ // Check that the object is a JS object but take special care of JS |
+ // functions to make sure they have 'Function' as their class. |
- __ bind(&load_done); |
- __ sqrtsd(xmm0, xmm0); |
- // A copy of the virtual frame to allow us to go to runtime after the |
- // JumpTarget jump. |
- Result scratch = allocator()->Allocate(); |
- VirtualFrame* clone = new VirtualFrame(frame()); |
- __ AllocateHeapNumber(result.reg(), scratch.reg(), &runtime); |
+ __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg()); |
+ null.Branch(below); |
- __ movsd(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0); |
- frame()->Drop(1); |
- scratch.Unuse(); |
- end.Jump(&result); |
- // We only branch to runtime if we have an allocation error. |
- // Use the copy of the original frame as our current frame. |
- RegisterFile empty_regs; |
- SetFrame(clone, &empty_regs); |
- __ bind(&runtime); |
- result = frame()->CallRuntime(Runtime::kMath_sqrt, 1); |
+ // As long as JS_FUNCTION_TYPE is the last instance type and it is |
+ // right after LAST_JS_OBJECT_TYPE, we can avoid checking for |
+ // LAST_JS_OBJECT_TYPE. |
+ ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
+ ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
+ __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE); |
+ function.Branch(equal); |
- end.Bind(&result); |
- frame()->Push(&result); |
+ // Check if the constructor in the map is a function. |
+ __ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); |
+ __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister); |
+ non_function_constructor.Branch(not_equal); |
+ |
+ // The obj register now contains the constructor function. Grab the |
+ // instance class name from there. |
+ __ movq(obj.reg(), |
+ FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); |
+ __ movq(obj.reg(), |
+ FieldOperand(obj.reg(), |
+ SharedFunctionInfo::kInstanceClassNameOffset)); |
+ frame_->Push(&obj); |
+ leave.Jump(); |
+ |
+ // Functions have class 'Function'. |
+ function.Bind(); |
+ frame_->Push(Factory::function_class_symbol()); |
+ leave.Jump(); |
+ |
+ // Objects with a non-function constructor have class 'Object'. |
+ non_function_constructor.Bind(); |
+ frame_->Push(Factory::Object_symbol()); |
+ leave.Jump(); |
+ |
+ // Non-JS objects have class null. |
+ null.Bind(); |
+ frame_->Push(Factory::null_value()); |
+ |
+ // All done. |
+ leave.Bind(); |
} |
-void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { |
+void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { |
ASSERT(args->length() == 1); |
- Load(args->at(0)); |
+ JumpTarget leave; |
+ Load(args->at(0)); // Load the object. |
+ frame_->Dup(); |
+ Result object = frame_->Pop(); |
+ object.ToRegister(); |
+ ASSERT(object.is_valid()); |
+ // if (object->IsSmi()) return object. |
+ Condition is_smi = masm_->CheckSmi(object.reg()); |
+ leave.Branch(is_smi); |
+ // It is a heap object - get map. |
+ Result temp = allocator()->Allocate(); |
+ ASSERT(temp.is_valid()); |
+ // if (!object->IsJSValue()) return object. |
+ __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); |
+ leave.Branch(not_equal); |
+ __ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); |
+ object.Unuse(); |
+ frame_->SetElementAt(0, &temp); |
+ leave.Bind(); |
+} |
+ |
+ |
+void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { |
+ ASSERT(args->length() == 2); |
+ JumpTarget leave; |
+ Load(args->at(0)); // Load the object. |
+ Load(args->at(1)); // Load the value. |
Result value = frame_->Pop(); |
+ Result object = frame_->Pop(); |
value.ToRegister(); |
- ASSERT(value.is_valid()); |
- Condition is_smi = masm_->CheckSmi(value.reg()); |
- value.Unuse(); |
- destination()->Split(is_smi); |
+ object.ToRegister(); |
+ |
+ // if (object->IsSmi()) return value. |
+ Condition is_smi = masm_->CheckSmi(object.reg()); |
+ leave.Branch(is_smi, &value); |
+ |
+ // It is a heap object - get its map. |
+ Result scratch = allocator_->Allocate(); |
+ ASSERT(scratch.is_valid()); |
+ // if (!object->IsJSValue()) return value. |
+ __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); |
+ leave.Branch(not_equal, &value); |
+ |
+ // Store the value. |
+ __ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); |
+ // Update the write barrier. Save the value as it will be |
+ // overwritten by the write barrier code and is needed afterward. |
+ Result duplicate_value = allocator_->Allocate(); |
+ ASSERT(duplicate_value.is_valid()); |
+ __ movq(duplicate_value.reg(), value.reg()); |
+ // The object register is also overwritten by the write barrier and |
+ // possibly aliased in the frame. |
+ frame_->Spill(object.reg()); |
+ __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), |
+ scratch.reg()); |
+ object.Unuse(); |
+ scratch.Unuse(); |
+ duplicate_value.Unuse(); |
+ |
+ // Leave. |
+ leave.Bind(&value); |
+ frame_->Push(&value); |
} |
-void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { |
- // Conditionally generate a log call. |
- // Args: |
- // 0 (literal string): The type of logging (corresponds to the flags). |
- // This is used to determine whether or not to generate the log call. |
- // 1 (string): Format string. Access the string at argument index 2 |
- // with '%2s' (see Logger::LogRuntime for all the formats). |
- // 2 (array): Arguments to the format string. |
- ASSERT_EQ(args->length(), 3); |
-#ifdef ENABLE_LOGGING_AND_PROFILING |
- if (ShouldGenerateLog(args->at(0))) { |
- Load(args->at(1)); |
- Load(args->at(2)); |
- frame_->CallRuntime(Runtime::kLog, 2); |
- } |
-#endif |
- // Finally, we're expected to leave a value on the top of the stack. |
- frame_->Push(Factory::undefined_value()); |
+void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { |
+ ASSERT(args->length() == 1); |
+ |
+ // ArgumentsAccessStub expects the key in rdx and the formal |
+ // parameter count in rax. |
+ Load(args->at(0)); |
+ Result key = frame_->Pop(); |
+ // Explicitly create a constant result. |
+ Result count(Handle<Smi>(Smi::FromInt(scope()->num_parameters()))); |
+ // Call the shared stub to get to arguments[key]. |
+ ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); |
+ Result result = frame_->CallStub(&stub, &key, &count); |
+ frame_->Push(&result); |
} |
@@ -4692,6 +5970,43 @@ |
} |
+void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { |
+ ASSERT_EQ(2, args->length()); |
+ |
+ Load(args->at(0)); |
+ Load(args->at(1)); |
+ |
+ StringAddStub stub(NO_STRING_ADD_FLAGS); |
+ Result answer = frame_->CallStub(&stub, 2); |
+ frame_->Push(&answer); |
+} |
+ |
+ |
+void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { |
+ ASSERT_EQ(3, args->length()); |
+ |
+ Load(args->at(0)); |
+ Load(args->at(1)); |
+ Load(args->at(2)); |
+ |
+ SubStringStub stub; |
+ Result answer = frame_->CallStub(&stub, 3); |
+ frame_->Push(&answer); |
+} |
+ |
+ |
+void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { |
+ ASSERT_EQ(2, args->length()); |
+ |
+ Load(args->at(0)); |
+ Load(args->at(1)); |
+ |
+ StringCompareStub stub; |
+ Result answer = frame_->CallStub(&stub, 2); |
+ frame_->Push(&answer); |
+} |
+ |
+ |
void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { |
ASSERT_EQ(args->length(), 4); |
@@ -5133,1725 +6448,1006 @@ |
} |
-void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
+// Generates the Math.pow method. Only handles special cases and |
+// branches to the runtime system for everything else. Please note |
+// that this function assumes that the callsite has executed ToNumber |
+// on both arguments. |
+void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { |
+ ASSERT(args->length() == 2); |
Load(args->at(0)); |
- TranscendentalCacheStub stub(TranscendentalCache::SIN); |
- Result result = frame_->CallStub(&stub, 1); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { |
- ASSERT_EQ(args->length(), 1); |
- Load(args->at(0)); |
- TranscendentalCacheStub stub(TranscendentalCache::COS); |
- Result result = frame_->CallStub(&stub, 1); |
- frame_->Push(&result); |
-} |
- |
- |
-void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { |
- ASSERT_EQ(2, args->length()); |
- |
- Load(args->at(0)); |
Load(args->at(1)); |
- StringAddStub stub(NO_STRING_ADD_FLAGS); |
- Result answer = frame_->CallStub(&stub, 2); |
- frame_->Push(&answer); |
-} |
+ Label allocate_return; |
+ // Load the two operands while leaving the values on the frame. |
+ frame()->Dup(); |
+ Result exponent = frame()->Pop(); |
+ exponent.ToRegister(); |
+ frame()->Spill(exponent.reg()); |
+ frame()->PushElementAt(1); |
+ Result base = frame()->Pop(); |
+ base.ToRegister(); |
+ frame()->Spill(base.reg()); |
+ Result answer = allocator()->Allocate(); |
+ ASSERT(answer.is_valid()); |
+ ASSERT(!exponent.reg().is(base.reg())); |
+ JumpTarget call_runtime; |
-void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { |
- ASSERT_EQ(3, args->length()); |
+ // Save 1 in xmm3 - we need this several times later on. |
+ __ movl(answer.reg(), Immediate(1)); |
+ __ cvtlsi2sd(xmm3, answer.reg()); |
- Load(args->at(0)); |
- Load(args->at(1)); |
- Load(args->at(2)); |
+ Label exponent_nonsmi; |
+ Label base_nonsmi; |
+ // If the exponent is a heap number go to that specific case. |
+ __ JumpIfNotSmi(exponent.reg(), &exponent_nonsmi); |
+ __ JumpIfNotSmi(base.reg(), &base_nonsmi); |
- SubStringStub stub; |
- Result answer = frame_->CallStub(&stub, 3); |
- frame_->Push(&answer); |
-} |
+ // Optimized version when y is an integer. |
+ Label powi; |
+ __ SmiToInteger32(base.reg(), base.reg()); |
+ __ cvtlsi2sd(xmm0, base.reg()); |
+ __ jmp(&powi); |
+ // exponent is smi and base is a heapnumber. |
+ __ bind(&base_nonsmi); |
+ __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset), |
+ Heap::kHeapNumberMapRootIndex); |
+ call_runtime.Branch(not_equal); |
+ __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); |
-void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { |
- ASSERT_EQ(2, args->length()); |
+ // Optimized version of pow if y is an integer. |
+ __ bind(&powi); |
+ __ SmiToInteger32(exponent.reg(), exponent.reg()); |
- Load(args->at(0)); |
- Load(args->at(1)); |
+ // Save exponent in base as we need to check if exponent is negative later. |
+ // We know that base and exponent are in different registers. |
+ __ movl(base.reg(), exponent.reg()); |
- StringCompareStub stub; |
- Result answer = frame_->CallStub(&stub, 2); |
- frame_->Push(&answer); |
-} |
+ // Get absolute value of exponent. |
+ Label no_neg; |
+ __ cmpl(exponent.reg(), Immediate(0)); |
+ __ j(greater_equal, &no_neg); |
+ __ negl(exponent.reg()); |
+ __ bind(&no_neg); |
+ // Load xmm1 with 1. |
+ __ movsd(xmm1, xmm3); |
+ Label while_true; |
+ Label no_multiply; |
-void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 1); |
- JumpTarget leave, null, function, non_function_constructor; |
- Load(args->at(0)); // Load the object. |
- Result obj = frame_->Pop(); |
- obj.ToRegister(); |
- frame_->Spill(obj.reg()); |
+ __ bind(&while_true); |
+ __ shrl(exponent.reg(), Immediate(1)); |
+ __ j(not_carry, &no_multiply); |
+ __ mulsd(xmm1, xmm0); |
+ __ bind(&no_multiply); |
+ __ testl(exponent.reg(), exponent.reg()); |
+ __ mulsd(xmm0, xmm0); |
+ __ j(not_zero, &while_true); |
- // If the object is a smi, we return null. |
- Condition is_smi = masm_->CheckSmi(obj.reg()); |
- null.Branch(is_smi); |
+ // x has the original value of y - if y is negative return 1/result. |
+ __ testl(base.reg(), base.reg()); |
+ __ j(positive, &allocate_return); |
+ // Special case if xmm1 has reached infinity. |
+ __ movl(answer.reg(), Immediate(0x7FB00000)); |
+ __ movd(xmm0, answer.reg()); |
+ __ cvtss2sd(xmm0, xmm0); |
+ __ ucomisd(xmm0, xmm1); |
+ call_runtime.Branch(equal); |
+ __ divsd(xmm3, xmm1); |
+ __ movsd(xmm1, xmm3); |
+ __ jmp(&allocate_return); |
- // Check that the object is a JS object but take special care of JS |
- // functions to make sure they have 'Function' as their class. |
+ // exponent (or both) is a heapnumber - no matter what we should now work |
+ // on doubles. |
+ __ bind(&exponent_nonsmi); |
+ __ CompareRoot(FieldOperand(exponent.reg(), HeapObject::kMapOffset), |
+ Heap::kHeapNumberMapRootIndex); |
+ call_runtime.Branch(not_equal); |
+ __ movsd(xmm1, FieldOperand(exponent.reg(), HeapNumber::kValueOffset)); |
+ // Test if exponent is nan. |
+ __ ucomisd(xmm1, xmm1); |
+ call_runtime.Branch(parity_even); |
- __ CmpObjectType(obj.reg(), FIRST_JS_OBJECT_TYPE, obj.reg()); |
- null.Branch(below); |
+ Label base_not_smi; |
+ Label handle_special_cases; |
+ __ JumpIfNotSmi(base.reg(), &base_not_smi); |
+ __ SmiToInteger32(base.reg(), base.reg()); |
+ __ cvtlsi2sd(xmm0, base.reg()); |
+ __ jmp(&handle_special_cases); |
+ __ bind(&base_not_smi); |
+ __ CompareRoot(FieldOperand(base.reg(), HeapObject::kMapOffset), |
+ Heap::kHeapNumberMapRootIndex); |
+ call_runtime.Branch(not_equal); |
+ __ movl(answer.reg(), FieldOperand(base.reg(), HeapNumber::kExponentOffset)); |
+ __ andl(answer.reg(), Immediate(HeapNumber::kExponentMask)); |
+ __ cmpl(answer.reg(), Immediate(HeapNumber::kExponentMask)); |
+ // base is NaN or +/-Infinity |
+ call_runtime.Branch(greater_equal); |
+ __ movsd(xmm0, FieldOperand(base.reg(), HeapNumber::kValueOffset)); |
- // As long as JS_FUNCTION_TYPE is the last instance type and it is |
- // right after LAST_JS_OBJECT_TYPE, we can avoid checking for |
- // LAST_JS_OBJECT_TYPE. |
- ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
- ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); |
- __ CmpInstanceType(obj.reg(), JS_FUNCTION_TYPE); |
- function.Branch(equal); |
+ // base is in xmm0 and exponent is in xmm1. |
+ __ bind(&handle_special_cases); |
+ Label not_minus_half; |
+ // Test for -0.5. |
+ // Load xmm2 with -0.5. |
+ __ movl(answer.reg(), Immediate(0xBF000000)); |
+ __ movd(xmm2, answer.reg()); |
+ __ cvtss2sd(xmm2, xmm2); |
+ // xmm2 now has -0.5. |
+ __ ucomisd(xmm2, xmm1); |
+ __ j(not_equal, ¬_minus_half); |
- // Check if the constructor in the map is a function. |
- __ movq(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); |
- __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, kScratchRegister); |
- non_function_constructor.Branch(not_equal); |
+ // Calculates reciprocal of square root. |
+ // Note that 1/sqrt(x) = sqrt(1/x)) |
+ __ divsd(xmm3, xmm0); |
+ __ movsd(xmm1, xmm3); |
+ __ sqrtsd(xmm1, xmm1); |
+ __ jmp(&allocate_return); |
- // The obj register now contains the constructor function. Grab the |
- // instance class name from there. |
- __ movq(obj.reg(), |
- FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); |
- __ movq(obj.reg(), |
- FieldOperand(obj.reg(), |
- SharedFunctionInfo::kInstanceClassNameOffset)); |
- frame_->Push(&obj); |
- leave.Jump(); |
+ // Test for 0.5. |
+ __ bind(¬_minus_half); |
+ // Load xmm2 with 0.5. |
+ // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3. |
+ __ addsd(xmm2, xmm3); |
+ // xmm2 now has 0.5. |
+ __ ucomisd(xmm2, xmm1); |
+ call_runtime.Branch(not_equal); |
- // Functions have class 'Function'. |
- function.Bind(); |
- frame_->Push(Factory::function_class_symbol()); |
- leave.Jump(); |
+ // Calculates square root. |
+ __ movsd(xmm1, xmm0); |
+ __ sqrtsd(xmm1, xmm1); |
- // Objects with a non-function constructor have class 'Object'. |
- non_function_constructor.Bind(); |
- frame_->Push(Factory::Object_symbol()); |
- leave.Jump(); |
+ JumpTarget done; |
+ Label failure, success; |
+ __ bind(&allocate_return); |
+ // Make a copy of the frame to enable us to handle allocation |
+ // failure after the JumpTarget jump. |
+ VirtualFrame* clone = new VirtualFrame(frame()); |
+ __ AllocateHeapNumber(answer.reg(), exponent.reg(), &failure); |
+ __ movsd(FieldOperand(answer.reg(), HeapNumber::kValueOffset), xmm1); |
+ // Remove the two original values from the frame - we only need those |
+ // in the case where we branch to runtime. |
+ frame()->Drop(2); |
+ exponent.Unuse(); |
+ base.Unuse(); |
+ done.Jump(&answer); |
+ // Use the copy of the original frame as our current frame. |
+ RegisterFile empty_regs; |
+ SetFrame(clone, &empty_regs); |
+ // If we experience an allocation failure we branch to runtime. |
+ __ bind(&failure); |
+ call_runtime.Bind(); |
+ answer = frame()->CallRuntime(Runtime::kMath_pow_cfunction, 2); |
- // Non-JS objects have class null. |
- null.Bind(); |
- frame_->Push(Factory::null_value()); |
- |
- // All done. |
- leave.Bind(); |
+ done.Bind(&answer); |
+ frame()->Push(&answer); |
} |
-void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { |
- ASSERT(args->length() == 2); |
- JumpTarget leave; |
- Load(args->at(0)); // Load the object. |
- Load(args->at(1)); // Load the value. |
- Result value = frame_->Pop(); |
- Result object = frame_->Pop(); |
- value.ToRegister(); |
- object.ToRegister(); |
+void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { |
+ ASSERT_EQ(args->length(), 1); |
+ Load(args->at(0)); |
+ TranscendentalCacheStub stub(TranscendentalCache::SIN); |
+ Result result = frame_->CallStub(&stub, 1); |
+ frame_->Push(&result); |
+} |
- // if (object->IsSmi()) return value. |
- Condition is_smi = masm_->CheckSmi(object.reg()); |
- leave.Branch(is_smi, &value); |
- // It is a heap object - get its map. |
- Result scratch = allocator_->Allocate(); |
- ASSERT(scratch.is_valid()); |
- // if (!object->IsJSValue()) return value. |
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); |
- leave.Branch(not_equal, &value); |
- |
- // Store the value. |
- __ movq(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); |
- // Update the write barrier. Save the value as it will be |
- // overwritten by the write barrier code and is needed afterward. |
- Result duplicate_value = allocator_->Allocate(); |
- ASSERT(duplicate_value.is_valid()); |
- __ movq(duplicate_value.reg(), value.reg()); |
- // The object register is also overwritten by the write barrier and |
- // possibly aliased in the frame. |
- frame_->Spill(object.reg()); |
- __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), |
- scratch.reg()); |
- object.Unuse(); |
- scratch.Unuse(); |
- duplicate_value.Unuse(); |
- |
- // Leave. |
- leave.Bind(&value); |
- frame_->Push(&value); |
+void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { |
+ ASSERT_EQ(args->length(), 1); |
+ Load(args->at(0)); |
+ TranscendentalCacheStub stub(TranscendentalCache::COS); |
+ Result result = frame_->CallStub(&stub, 1); |
+ frame_->Push(&result); |
} |
-void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { |
+// Generates the Math.sqrt method. Please note - this function assumes that |
+// the callsite has executed ToNumber on the argument. |
+void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { |
ASSERT(args->length() == 1); |
- JumpTarget leave; |
- Load(args->at(0)); // Load the object. |
- frame_->Dup(); |
- Result object = frame_->Pop(); |
- object.ToRegister(); |
- ASSERT(object.is_valid()); |
- // if (object->IsSmi()) return object. |
- Condition is_smi = masm_->CheckSmi(object.reg()); |
- leave.Branch(is_smi); |
- // It is a heap object - get map. |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- // if (!object->IsJSValue()) return object. |
- __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); |
- leave.Branch(not_equal); |
- __ movq(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); |
- object.Unuse(); |
- frame_->SetElementAt(0, &temp); |
- leave.Bind(); |
-} |
+ Load(args->at(0)); |
+ // Leave original value on the frame if we need to call runtime. |
+ frame()->Dup(); |
+ Result result = frame()->Pop(); |
+ result.ToRegister(); |
+ frame()->Spill(result.reg()); |
+ Label runtime; |
+ Label non_smi; |
+ Label load_done; |
+ JumpTarget end; |
-// ----------------------------------------------------------------------------- |
-// CodeGenerator implementation of Expressions |
+ __ JumpIfNotSmi(result.reg(), &non_smi); |
+ __ SmiToInteger32(result.reg(), result.reg()); |
+ __ cvtlsi2sd(xmm0, result.reg()); |
+ __ jmp(&load_done); |
+ __ bind(&non_smi); |
+ __ CompareRoot(FieldOperand(result.reg(), HeapObject::kMapOffset), |
+ Heap::kHeapNumberMapRootIndex); |
+ __ j(not_equal, &runtime); |
+ __ movsd(xmm0, FieldOperand(result.reg(), HeapNumber::kValueOffset)); |
-void CodeGenerator::LoadAndSpill(Expression* expression) { |
- // TODO(x64): No architecture specific code. Move to shared location. |
- ASSERT(in_spilled_code()); |
- set_in_spilled_code(false); |
- Load(expression); |
- frame_->SpillAll(); |
- set_in_spilled_code(true); |
-} |
+ __ bind(&load_done); |
+ __ sqrtsd(xmm0, xmm0); |
+ // A copy of the virtual frame to allow us to go to runtime after the |
+ // JumpTarget jump. |
+ Result scratch = allocator()->Allocate(); |
+ VirtualFrame* clone = new VirtualFrame(frame()); |
+ __ AllocateHeapNumber(result.reg(), scratch.reg(), &runtime); |
+ __ movsd(FieldOperand(result.reg(), HeapNumber::kValueOffset), xmm0); |
+ frame()->Drop(1); |
+ scratch.Unuse(); |
+ end.Jump(&result); |
+ // We only branch to runtime if we have an allocation error. |
+ // Use the copy of the original frame as our current frame. |
+ RegisterFile empty_regs; |
+ SetFrame(clone, &empty_regs); |
+ __ bind(&runtime); |
+ result = frame()->CallRuntime(Runtime::kMath_sqrt, 1); |
-void CodeGenerator::Load(Expression* expr) { |
-#ifdef DEBUG |
- int original_height = frame_->height(); |
-#endif |
- ASSERT(!in_spilled_code()); |
- JumpTarget true_target; |
- JumpTarget false_target; |
- ControlDestination dest(&true_target, &false_target, true); |
- LoadCondition(expr, &dest, false); |
+ end.Bind(&result); |
+ frame()->Push(&result); |
+} |
- if (dest.false_was_fall_through()) { |
- // The false target was just bound. |
- JumpTarget loaded; |
- frame_->Push(Factory::false_value()); |
- // There may be dangling jumps to the true target. |
- if (true_target.is_linked()) { |
- loaded.Jump(); |
- true_target.Bind(); |
- frame_->Push(Factory::true_value()); |
- loaded.Bind(); |
- } |
- } else if (dest.is_used()) { |
- // There is true, and possibly false, control flow (with true as |
- // the fall through). |
- JumpTarget loaded; |
- frame_->Push(Factory::true_value()); |
- if (false_target.is_linked()) { |
- loaded.Jump(); |
- false_target.Bind(); |
- frame_->Push(Factory::false_value()); |
- loaded.Bind(); |
- } |
- |
- } else { |
- // We have a valid value on top of the frame, but we still may |
- // have dangling jumps to the true and false targets from nested |
- // subexpressions (eg, the left subexpressions of the |
- // short-circuited boolean operators). |
- ASSERT(has_valid_frame()); |
- if (true_target.is_linked() || false_target.is_linked()) { |
- JumpTarget loaded; |
- loaded.Jump(); // Don't lose the current TOS. |
- if (true_target.is_linked()) { |
- true_target.Bind(); |
- frame_->Push(Factory::true_value()); |
- if (false_target.is_linked()) { |
- loaded.Jump(); |
- } |
- } |
- if (false_target.is_linked()) { |
- false_target.Bind(); |
- frame_->Push(Factory::false_value()); |
- } |
- loaded.Bind(); |
- } |
+void CodeGenerator::VisitCallRuntime(CallRuntime* node) { |
+ if (CheckForInlineRuntimeCall(node)) { |
+ return; |
} |
- ASSERT(has_valid_frame()); |
- ASSERT(frame_->height() == original_height + 1); |
-} |
+ ZoneList<Expression*>* args = node->arguments(); |
+ Comment cmnt(masm_, "[ CallRuntime"); |
+ Runtime::Function* function = node->function(); |
- |
-// Emit code to load the value of an expression to the top of the |
-// frame. If the expression is boolean-valued it may be compiled (or |
-// partially compiled) into control flow to the control destination. |
-// If force_control is true, control flow is forced. |
-void CodeGenerator::LoadCondition(Expression* x, |
- ControlDestination* dest, |
- bool force_control) { |
- ASSERT(!in_spilled_code()); |
- int original_height = frame_->height(); |
- |
- { CodeGenState new_state(this, dest); |
- Visit(x); |
- |
- // If we hit a stack overflow, we may not have actually visited |
- // the expression. In that case, we ensure that we have a |
- // valid-looking frame state because we will continue to generate |
- // code as we unwind the C++ stack. |
- // |
- // It's possible to have both a stack overflow and a valid frame |
- // state (eg, a subexpression overflowed, visiting it returned |
- // with a dummied frame state, and visiting this expression |
- // returned with a normal-looking state). |
- if (HasStackOverflow() && |
- !dest->is_used() && |
- frame_->height() == original_height) { |
- dest->Goto(true); |
- } |
+ if (function == NULL) { |
+ // Push the builtins object found in the current global object. |
+ Result temp = allocator()->Allocate(); |
+ ASSERT(temp.is_valid()); |
+ __ movq(temp.reg(), GlobalObject()); |
+ __ movq(temp.reg(), |
+ FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); |
+ frame_->Push(&temp); |
} |
- if (force_control && !dest->is_used()) { |
- // Convert the TOS value into flow to the control destination. |
- // TODO(X64): Make control flow to control destinations work. |
- ToBoolean(dest); |
+ // Push the arguments ("left-to-right"). |
+ int arg_count = args->length(); |
+ for (int i = 0; i < arg_count; i++) { |
+ Load(args->at(i)); |
} |
- ASSERT(!(force_control && !dest->is_used())); |
- ASSERT(dest->is_used() || frame_->height() == original_height + 1); |
-} |
- |
- |
-// ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and |
-// convert it to a boolean in the condition code register or jump to |
-// 'false_target'/'true_target' as appropriate. |
-void CodeGenerator::ToBoolean(ControlDestination* dest) { |
- Comment cmnt(masm_, "[ ToBoolean"); |
- |
- // The value to convert should be popped from the frame. |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- |
- if (value.is_number()) { |
- // Fast case if TypeInfo indicates only numbers. |
- if (FLAG_debug_code) { |
- __ AbortIfNotNumber(value.reg()); |
- } |
- // Smi => false iff zero. |
- __ SmiCompare(value.reg(), Smi::FromInt(0)); |
- if (value.is_smi()) { |
- value.Unuse(); |
- dest->Split(not_zero); |
- } else { |
- dest->false_target()->Branch(equal); |
- Condition is_smi = masm_->CheckSmi(value.reg()); |
- dest->true_target()->Branch(is_smi); |
- __ xorpd(xmm0, xmm0); |
- __ ucomisd(xmm0, FieldOperand(value.reg(), HeapNumber::kValueOffset)); |
- value.Unuse(); |
- dest->Split(not_zero); |
- } |
+ if (function == NULL) { |
+ // Call the JS runtime function. |
+ frame_->Push(node->name()); |
+ Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, |
+ arg_count, |
+ loop_nesting_); |
+ frame_->RestoreContextRegister(); |
+ frame_->Push(&answer); |
} else { |
- // Fast case checks. |
- // 'false' => false. |
- __ CompareRoot(value.reg(), Heap::kFalseValueRootIndex); |
- dest->false_target()->Branch(equal); |
- |
- // 'true' => true. |
- __ CompareRoot(value.reg(), Heap::kTrueValueRootIndex); |
- dest->true_target()->Branch(equal); |
- |
- // 'undefined' => false. |
- __ CompareRoot(value.reg(), Heap::kUndefinedValueRootIndex); |
- dest->false_target()->Branch(equal); |
- |
- // Smi => false iff zero. |
- __ SmiCompare(value.reg(), Smi::FromInt(0)); |
- dest->false_target()->Branch(equal); |
- Condition is_smi = masm_->CheckSmi(value.reg()); |
- dest->true_target()->Branch(is_smi); |
- |
- // Call the stub for all other cases. |
- frame_->Push(&value); // Undo the Pop() from above. |
- ToBooleanStub stub; |
- Result temp = frame_->CallStub(&stub, 1); |
- // Convert the result to a condition code. |
- __ testq(temp.reg(), temp.reg()); |
- temp.Unuse(); |
- dest->Split(not_equal); |
+ // Call the C runtime function. |
+ Result answer = frame_->CallRuntime(function, arg_count); |
+ frame_->Push(&answer); |
} |
} |
-void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) { |
- UNIMPLEMENTED(); |
- // TODO(X64): Implement security policy for loads of smis. |
-} |
+void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { |
+ Comment cmnt(masm_, "[ UnaryOperation"); |
+ Token::Value op = node->op(); |
-bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) { |
- return false; |
-} |
+ if (op == Token::NOT) { |
+ // Swap the true and false targets but keep the same actual label |
+ // as the fall through. |
+ destination()->Invert(); |
+ LoadCondition(node->expression(), destination(), true); |
+ // Swap the labels back. |
+ destination()->Invert(); |
-//------------------------------------------------------------------------------ |
-// CodeGenerator implementation of variables, lookups, and stores. |
+ } else if (op == Token::DELETE) { |
+ Property* property = node->expression()->AsProperty(); |
+ if (property != NULL) { |
+ Load(property->obj()); |
+ Load(property->key()); |
+ Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); |
+ frame_->Push(&answer); |
+ return; |
+ } |
-Reference::Reference(CodeGenerator* cgen, |
- Expression* expression, |
- bool persist_after_get) |
- : cgen_(cgen), |
- expression_(expression), |
- type_(ILLEGAL), |
- persist_after_get_(persist_after_get) { |
- cgen->LoadReference(this); |
-} |
+ Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); |
+ if (variable != NULL) { |
+ Slot* slot = variable->slot(); |
+ if (variable->is_global()) { |
+ LoadGlobal(); |
+ frame_->Push(variable->name()); |
+ Result answer = frame_->InvokeBuiltin(Builtins::DELETE, |
+ CALL_FUNCTION, 2); |
+ frame_->Push(&answer); |
+ return; |
+ } else if (slot != NULL && slot->type() == Slot::LOOKUP) { |
+ // Call the runtime to look up the context holding the named |
+ // variable. Sync the virtual frame eagerly so we can push the |
+ // arguments directly into place. |
+ frame_->SyncRange(0, frame_->element_count() - 1); |
+ frame_->EmitPush(rsi); |
+ frame_->EmitPush(variable->name()); |
+ Result context = frame_->CallRuntime(Runtime::kLookupContext, 2); |
+ ASSERT(context.is_register()); |
+ frame_->EmitPush(context.reg()); |
+ context.Unuse(); |
+ frame_->EmitPush(variable->name()); |
+ Result answer = frame_->InvokeBuiltin(Builtins::DELETE, |
+ CALL_FUNCTION, 2); |
+ frame_->Push(&answer); |
+ return; |
+ } |
-Reference::~Reference() { |
- ASSERT(is_unloaded() || is_illegal()); |
-} |
+ // Default: Result of deleting non-global, not dynamically |
+ // introduced variables is false. |
+ frame_->Push(Factory::false_value()); |
+ } else { |
+ // Default: Result of deleting expressions is true. |
+ Load(node->expression()); // may have side-effects |
+ frame_->SetElementAt(0, Factory::true_value()); |
+ } |
-void CodeGenerator::LoadReference(Reference* ref) { |
- // References are loaded from both spilled and unspilled code. Set the |
- // state to unspilled to allow that (and explicitly spill after |
- // construction at the construction sites). |
- bool was_in_spilled_code = in_spilled_code_; |
- in_spilled_code_ = false; |
+ } else if (op == Token::TYPEOF) { |
+ // Special case for loading the typeof expression; see comment on |
+ // LoadTypeofExpression(). |
+ LoadTypeofExpression(node->expression()); |
+ Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); |
+ frame_->Push(&answer); |
- Comment cmnt(masm_, "[ LoadReference"); |
- Expression* e = ref->expression(); |
- Property* property = e->AsProperty(); |
- Variable* var = e->AsVariableProxy()->AsVariable(); |
- |
- if (property != NULL) { |
- // The expression is either a property or a variable proxy that rewrites |
- // to a property. |
- Load(property->obj()); |
- if (property->key()->IsPropertyName()) { |
- ref->set_type(Reference::NAMED); |
+ } else if (op == Token::VOID) { |
+ Expression* expression = node->expression(); |
+ if (expression && expression->AsLiteral() && ( |
+ expression->AsLiteral()->IsTrue() || |
+ expression->AsLiteral()->IsFalse() || |
+ expression->AsLiteral()->handle()->IsNumber() || |
+ expression->AsLiteral()->handle()->IsString() || |
+ expression->AsLiteral()->handle()->IsJSRegExp() || |
+ expression->AsLiteral()->IsNull())) { |
+ // Omit evaluating the value of the primitive literal. |
+ // It will be discarded anyway, and can have no side effect. |
+ frame_->Push(Factory::undefined_value()); |
} else { |
- Load(property->key()); |
- ref->set_type(Reference::KEYED); |
+ Load(node->expression()); |
+ frame_->SetElementAt(0, Factory::undefined_value()); |
} |
- } else if (var != NULL) { |
- // The expression is a variable proxy that does not rewrite to a |
- // property. Global variables are treated as named property references. |
- if (var->is_global()) { |
- // If rax is free, the register allocator prefers it. Thus the code |
- // generator will load the global object into rax, which is where |
- // LoadIC wants it. Most uses of Reference call LoadIC directly |
- // after the reference is created. |
- frame_->Spill(rax); |
- LoadGlobal(); |
- ref->set_type(Reference::NAMED); |
- } else { |
- ASSERT(var->slot() != NULL); |
- ref->set_type(Reference::SLOT); |
- } |
+ |
} else { |
- // Anything else is a runtime error. |
- Load(e); |
- frame_->CallRuntime(Runtime::kThrowReferenceError, 1); |
- } |
+ bool can_overwrite = |
+ (node->expression()->AsBinaryOperation() != NULL && |
+ node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); |
+ UnaryOverwriteMode overwrite = |
+ can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; |
+ bool no_negative_zero = node->expression()->no_negative_zero(); |
+ Load(node->expression()); |
+ switch (op) { |
+ case Token::NOT: |
+ case Token::DELETE: |
+ case Token::TYPEOF: |
+ UNREACHABLE(); // handled above |
+ break; |
- in_spilled_code_ = was_in_spilled_code; |
-} |
+ case Token::SUB: { |
+ GenericUnaryOpStub stub( |
+ Token::SUB, |
+ overwrite, |
+ no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); |
+ Result operand = frame_->Pop(); |
+ Result answer = frame_->CallStub(&stub, &operand); |
+ answer.set_type_info(TypeInfo::Number()); |
+ frame_->Push(&answer); |
+ break; |
+ } |
+ case Token::BIT_NOT: { |
+ // Smi check. |
+ JumpTarget smi_label; |
+ JumpTarget continue_label; |
+ Result operand = frame_->Pop(); |
+ operand.ToRegister(); |
-void CodeGenerator::UnloadReference(Reference* ref) { |
- // Pop a reference from the stack while preserving TOS. |
- Comment cmnt(masm_, "[ UnloadReference"); |
- frame_->Nip(ref->size()); |
- ref->set_unloaded(); |
-} |
+ Condition is_smi = masm_->CheckSmi(operand.reg()); |
+ smi_label.Branch(is_smi, &operand); |
+ GenericUnaryOpStub stub(Token::BIT_NOT, overwrite); |
+ Result answer = frame_->CallStub(&stub, &operand); |
+ continue_label.Jump(&answer); |
-Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { |
- // Currently, this assertion will fail if we try to assign to |
- // a constant variable that is constant because it is read-only |
- // (such as the variable referring to a named function expression). |
- // We need to implement assignments to read-only variables. |
- // Ideally, we should do this during AST generation (by converting |
- // such assignments into expression statements); however, in general |
- // we may not be able to make the decision until past AST generation, |
- // that is when the entire program is known. |
- ASSERT(slot != NULL); |
- int index = slot->index(); |
- switch (slot->type()) { |
- case Slot::PARAMETER: |
- return frame_->ParameterAt(index); |
+ smi_label.Bind(&answer); |
+ answer.ToRegister(); |
+ frame_->Spill(answer.reg()); |
+ __ SmiNot(answer.reg(), answer.reg()); |
+ continue_label.Bind(&answer); |
+ answer.set_type_info(TypeInfo::Smi()); |
+ frame_->Push(&answer); |
+ break; |
+ } |
- case Slot::LOCAL: |
- return frame_->LocalAt(index); |
+ case Token::ADD: { |
+ // Smi check. |
+ JumpTarget continue_label; |
+ Result operand = frame_->Pop(); |
+ TypeInfo operand_info = operand.type_info(); |
+ operand.ToRegister(); |
+ Condition is_smi = masm_->CheckSmi(operand.reg()); |
+ continue_label.Branch(is_smi, &operand); |
+ frame_->Push(&operand); |
+ Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, |
+ CALL_FUNCTION, 1); |
- case Slot::CONTEXT: { |
- // Follow the context chain if necessary. |
- ASSERT(!tmp.is(rsi)); // do not overwrite context register |
- Register context = rsi; |
- int chain_length = scope()->ContextChainLength(slot->var()->scope()); |
- for (int i = 0; i < chain_length; i++) { |
- // Load the closure. |
- // (All contexts, even 'with' contexts, have a closure, |
- // and it is the same for all contexts inside a function. |
- // There is no need to go to the function context first.) |
- __ movq(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); |
- // Load the function context (which is the incoming, outer context). |
- __ movq(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); |
- context = tmp; |
+ continue_label.Bind(&answer); |
+ if (operand_info.IsSmi()) { |
+ answer.set_type_info(TypeInfo::Smi()); |
+ } else if (operand_info.IsInteger32()) { |
+ answer.set_type_info(TypeInfo::Integer32()); |
+ } else { |
+ answer.set_type_info(TypeInfo::Number()); |
+ } |
+ frame_->Push(&answer); |
+ break; |
} |
- // We may have a 'with' context now. Get the function context. |
- // (In fact this mov may never be the needed, since the scope analysis |
- // may not permit a direct context access in this case and thus we are |
- // always at a function context. However it is safe to dereference be- |
- // cause the function context of a function context is itself. Before |
- // deleting this mov we should try to create a counter-example first, |
- // though...) |
- __ movq(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); |
- return ContextOperand(tmp, index); |
+ default: |
+ UNREACHABLE(); |
} |
- |
- default: |
- UNREACHABLE(); |
- return Operand(rsp, 0); |
} |
} |
-Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, |
- Result tmp, |
- JumpTarget* slow) { |
- ASSERT(slot->type() == Slot::CONTEXT); |
- ASSERT(tmp.is_register()); |
- Register context = rsi; |
- |
- for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { |
- if (s->num_heap_slots() > 0) { |
- if (s->calls_eval()) { |
- // Check that extension is NULL. |
- __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), |
- Immediate(0)); |
- slow->Branch(not_equal, not_taken); |
- } |
- __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); |
- __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
- context = tmp.reg(); |
- } |
+// The value in dst was optimistically incremented or decremented. |
+// The result overflowed or was not smi tagged. Call into the runtime |
+// to convert the argument to a number, and call the specialized add |
+// or subtract stub. The result is left in dst. |
+class DeferredPrefixCountOperation: public DeferredCode { |
+ public: |
+ DeferredPrefixCountOperation(Register dst, |
+ bool is_increment, |
+ TypeInfo input_type) |
+ : dst_(dst), is_increment_(is_increment), input_type_(input_type) { |
+ set_comment("[ DeferredCountOperation"); |
} |
- // Check that last extension is NULL. |
- __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); |
- slow->Branch(not_equal, not_taken); |
- __ movq(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); |
- return ContextOperand(tmp.reg(), slot->index()); |
-} |
+ virtual void Generate(); |
-void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { |
- if (slot->type() == Slot::LOOKUP) { |
- ASSERT(slot->var()->is_dynamic()); |
+ private: |
+ Register dst_; |
+ bool is_increment_; |
+ TypeInfo input_type_; |
+}; |
- JumpTarget slow; |
- JumpTarget done; |
- Result value; |
- // Generate fast case for loading from slots that correspond to |
- // local/global variables or arguments unless they are shadowed by |
- // eval-introduced bindings. |
- EmitDynamicLoadFromSlotFastCase(slot, |
- typeof_state, |
- &value, |
- &slow, |
- &done); |
+void DeferredPrefixCountOperation::Generate() { |
+ Register left; |
+ if (input_type_.IsNumber()) { |
+ left = dst_; |
+ } else { |
+ __ push(dst_); |
+ __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); |
+ left = rax; |
+ } |
- slow.Bind(); |
- // A runtime call is inevitable. We eagerly sync frame elements |
- // to memory so that we can push the arguments directly into place |
- // on top of the frame. |
- frame_->SyncRange(0, frame_->element_count() - 1); |
- frame_->EmitPush(rsi); |
- __ movq(kScratchRegister, slot->var()->name(), RelocInfo::EMBEDDED_OBJECT); |
- frame_->EmitPush(kScratchRegister); |
- if (typeof_state == INSIDE_TYPEOF) { |
- value = |
- frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); |
- } else { |
- value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2); |
- } |
+ GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, |
+ NO_OVERWRITE, |
+ NO_GENERIC_BINARY_FLAGS, |
+ TypeInfo::Number()); |
+ stub.GenerateCall(masm_, left, Smi::FromInt(1)); |
- done.Bind(&value); |
- frame_->Push(&value); |
+ if (!dst_.is(rax)) __ movq(dst_, rax); |
+} |
- } else if (slot->var()->mode() == Variable::CONST) { |
- // Const slots may contain 'the hole' value (the constant hasn't been |
- // initialized yet) which needs to be converted into the 'undefined' |
- // value. |
- // |
- // We currently spill the virtual frame because constants use the |
- // potentially unsafe direct-frame access of SlotOperand. |
- VirtualFrame::SpilledScope spilled_scope; |
- Comment cmnt(masm_, "[ Load const"); |
- JumpTarget exit; |
- __ movq(rcx, SlotOperand(slot, rcx)); |
- __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex); |
- exit.Branch(not_equal); |
- __ LoadRoot(rcx, Heap::kUndefinedValueRootIndex); |
- exit.Bind(); |
- frame_->EmitPush(rcx); |
- } else if (slot->type() == Slot::PARAMETER) { |
- frame_->PushParameterAt(slot->index()); |
- |
- } else if (slot->type() == Slot::LOCAL) { |
- frame_->PushLocalAt(slot->index()); |
- |
- } else { |
- // The other remaining slot types (LOOKUP and GLOBAL) cannot reach |
- // here. |
- // |
- // The use of SlotOperand below is safe for an unspilled frame |
- // because it will always be a context slot. |
- ASSERT(slot->type() == Slot::CONTEXT); |
- Result temp = allocator_->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ movq(temp.reg(), SlotOperand(slot, temp.reg())); |
- frame_->Push(&temp); |
+// The value in dst was optimistically incremented or decremented. |
+// The result overflowed or was not smi tagged. Call into the runtime |
+// to convert the argument to a number. Update the original value in |
+// old. Call the specialized add or subtract stub. The result is |
+// left in dst. |
+class DeferredPostfixCountOperation: public DeferredCode { |
+ public: |
+ DeferredPostfixCountOperation(Register dst, |
+ Register old, |
+ bool is_increment, |
+ TypeInfo input_type) |
+ : dst_(dst), |
+ old_(old), |
+ is_increment_(is_increment), |
+ input_type_(input_type) { |
+ set_comment("[ DeferredCountOperation"); |
} |
-} |
+ virtual void Generate(); |
-void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, |
- TypeofState state) { |
- LoadFromSlot(slot, state); |
+ private: |
+ Register dst_; |
+ Register old_; |
+ bool is_increment_; |
+ TypeInfo input_type_; |
+}; |
- // Bail out quickly if we're not using lazy arguments allocation. |
- if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; |
- // ... or if the slot isn't a non-parameter arguments slot. |
- if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; |
- |
- // Pop the loaded value from the stack. |
- Result value = frame_->Pop(); |
- |
- // If the loaded value is a constant, we know if the arguments |
- // object has been lazily loaded yet. |
- if (value.is_constant()) { |
- if (value.handle()->IsTheHole()) { |
- Result arguments = StoreArgumentsObject(false); |
- frame_->Push(&arguments); |
- } else { |
- frame_->Push(&value); |
- } |
- return; |
+void DeferredPostfixCountOperation::Generate() { |
+ Register left; |
+ if (input_type_.IsNumber()) { |
+ __ push(dst_); // Save the input to use as the old value. |
+ left = dst_; |
+ } else { |
+ __ push(dst_); |
+ __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); |
+ __ push(rax); // Save the result of ToNumber to use as the old value. |
+ left = rax; |
} |
- // The loaded value is in a register. If it is the sentinel that |
- // indicates that we haven't loaded the arguments object yet, we |
- // need to do it now. |
- JumpTarget exit; |
- __ CompareRoot(value.reg(), Heap::kTheHoleValueRootIndex); |
- frame_->Push(&value); |
- exit.Branch(not_equal); |
- Result arguments = StoreArgumentsObject(false); |
- frame_->SetElementAt(0, &arguments); |
- exit.Bind(); |
+ GenericBinaryOpStub stub(is_increment_ ? Token::ADD : Token::SUB, |
+ NO_OVERWRITE, |
+ NO_GENERIC_BINARY_FLAGS, |
+ TypeInfo::Number()); |
+ stub.GenerateCall(masm_, left, Smi::FromInt(1)); |
+ |
+ if (!dst_.is(rax)) __ movq(dst_, rax); |
+ __ pop(old_); |
} |
-void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { |
- if (slot->type() == Slot::LOOKUP) { |
- ASSERT(slot->var()->is_dynamic()); |
+void CodeGenerator::VisitCountOperation(CountOperation* node) { |
+ Comment cmnt(masm_, "[ CountOperation"); |
- // For now, just do a runtime call. Since the call is inevitable, |
- // we eagerly sync the virtual frame so we can directly push the |
- // arguments into place. |
- frame_->SyncRange(0, frame_->element_count() - 1); |
+ bool is_postfix = node->is_postfix(); |
+ bool is_increment = node->op() == Token::INC; |
- frame_->EmitPush(rsi); |
- frame_->EmitPush(slot->var()->name()); |
+ Variable* var = node->expression()->AsVariableProxy()->AsVariable(); |
+ bool is_const = (var != NULL && var->mode() == Variable::CONST); |
- Result value; |
- if (init_state == CONST_INIT) { |
- // Same as the case for a normal store, but ignores attribute |
- // (e.g. READ_ONLY) of context slot so that we can initialize const |
- // properties (introduced via eval("const foo = (some expr);")). Also, |
- // uses the current function context instead of the top context. |
- // |
- // Note that we must declare the foo upon entry of eval(), via a |
- // context slot declaration, but we cannot initialize it at the same |
- // time, because the const declaration may be at the end of the eval |
- // code (sigh...) and the const variable may have been used before |
- // (where its value is 'undefined'). Thus, we can only do the |
- // initialization when we actually encounter the expression and when |
- // the expression operands are defined and valid, and thus we need the |
- // split into 2 operations: declaration of the context slot followed |
- // by initialization. |
- value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); |
- } else { |
- value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3); |
- } |
- // Storing a variable must keep the (new) value on the expression |
- // stack. This is necessary for compiling chained assignment |
- // expressions. |
- frame_->Push(&value); |
- } else { |
- ASSERT(!slot->var()->is_dynamic()); |
+ // Postfix operations need a stack slot under the reference to hold |
+ // the old value while the new value is being stored. This is so that |
+ // in the case that storing the new value requires a call, the old |
+ // value will be in the frame to be spilled. |
+ if (is_postfix) frame_->Push(Smi::FromInt(0)); |
- JumpTarget exit; |
- if (init_state == CONST_INIT) { |
- ASSERT(slot->var()->mode() == Variable::CONST); |
- // Only the first const initialization must be executed (the slot |
- // still contains 'the hole' value). When the assignment is executed, |
- // the code is identical to a normal store (see below). |
- // |
- // We spill the frame in the code below because the direct-frame |
- // access of SlotOperand is potentially unsafe with an unspilled |
- // frame. |
- VirtualFrame::SpilledScope spilled_scope; |
- Comment cmnt(masm_, "[ Init const"); |
- __ movq(rcx, SlotOperand(slot, rcx)); |
- __ CompareRoot(rcx, Heap::kTheHoleValueRootIndex); |
- exit.Branch(not_equal); |
+ // A constant reference is not saved to, so the reference is not a |
+ // compound assignment reference. |
+ { Reference target(this, node->expression(), !is_const); |
+ if (target.is_illegal()) { |
+ // Spoof the virtual frame to have the expected height (one higher |
+ // than on entry). |
+ if (!is_postfix) frame_->Push(Smi::FromInt(0)); |
+ return; |
} |
+ target.TakeValue(); |
- // We must execute the store. Storing a variable must keep the (new) |
- // value on the stack. This is necessary for compiling assignment |
- // expressions. |
- // |
- // Note: We will reach here even with slot->var()->mode() == |
- // Variable::CONST because of const declarations which will initialize |
- // consts to 'the hole' value and by doing so, end up calling this code. |
- if (slot->type() == Slot::PARAMETER) { |
- frame_->StoreToParameterAt(slot->index()); |
- } else if (slot->type() == Slot::LOCAL) { |
- frame_->StoreToLocalAt(slot->index()); |
- } else { |
- // The other slot types (LOOKUP and GLOBAL) cannot reach here. |
- // |
- // The use of SlotOperand below is safe for an unspilled frame |
- // because the slot is a context slot. |
- ASSERT(slot->type() == Slot::CONTEXT); |
- frame_->Dup(); |
- Result value = frame_->Pop(); |
- value.ToRegister(); |
- Result start = allocator_->Allocate(); |
- ASSERT(start.is_valid()); |
- __ movq(SlotOperand(slot, start.reg()), value.reg()); |
- // RecordWrite may destroy the value registers. |
- // |
- // TODO(204): Avoid actually spilling when the value is not |
- // needed (probably the common case). |
- frame_->Spill(value.reg()); |
- int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; |
- Result temp = allocator_->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); |
- // The results start, value, and temp are unused by going out of |
- // scope. |
- } |
+ Result new_value = frame_->Pop(); |
+ new_value.ToRegister(); |
- exit.Bind(); |
- } |
-} |
+ Result old_value; // Only allocated in the postfix case. |
+ if (is_postfix) { |
+ // Allocate a temporary to preserve the old value. |
+ old_value = allocator_->Allocate(); |
+ ASSERT(old_value.is_valid()); |
+ __ movq(old_value.reg(), new_value.reg()); |
- |
-Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( |
- Slot* slot, |
- TypeofState typeof_state, |
- JumpTarget* slow) { |
- // Check that no extension objects have been created by calls to |
- // eval from the current scope to the global scope. |
- Register context = rsi; |
- Result tmp = allocator_->Allocate(); |
- ASSERT(tmp.is_valid()); // All non-reserved registers were available. |
- |
- Scope* s = scope(); |
- while (s != NULL) { |
- if (s->num_heap_slots() > 0) { |
- if (s->calls_eval()) { |
- // Check that extension is NULL. |
- __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), |
- Immediate(0)); |
- slow->Branch(not_equal, not_taken); |
+ // The return value for postfix operations is ToNumber(input). |
+ // Keep more precise type info if the input is some kind of |
+ // number already. If the input is not a number we have to wait |
+ // for the deferred code to convert it. |
+ if (new_value.type_info().IsNumber()) { |
+ old_value.set_type_info(new_value.type_info()); |
} |
- // Load next context in chain. |
- __ movq(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); |
- __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
- context = tmp.reg(); |
} |
- // If no outer scope calls eval, we do not need to check more |
- // context extensions. If we have reached an eval scope, we check |
- // all extensions from this point. |
- if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; |
- s = s->outer_scope(); |
- } |
+ // Ensure the new value is writable. |
+ frame_->Spill(new_value.reg()); |
- if (s->is_eval_scope()) { |
- // Loop up the context chain. There is no frame effect so it is |
- // safe to use raw labels here. |
- Label next, fast; |
- if (!context.is(tmp.reg())) { |
- __ movq(tmp.reg(), context); |
+ DeferredCode* deferred = NULL; |
+ if (is_postfix) { |
+ deferred = new DeferredPostfixCountOperation(new_value.reg(), |
+ old_value.reg(), |
+ is_increment, |
+ new_value.type_info()); |
+ } else { |
+ deferred = new DeferredPrefixCountOperation(new_value.reg(), |
+ is_increment, |
+ new_value.type_info()); |
} |
- // Load map for comparison into register, outside loop. |
- __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex); |
- __ bind(&next); |
- // Terminate at global context. |
- __ cmpq(kScratchRegister, FieldOperand(tmp.reg(), HeapObject::kMapOffset)); |
- __ j(equal, &fast); |
- // Check that extension is NULL. |
- __ cmpq(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); |
- slow->Branch(not_equal); |
- // Load next context in chain. |
- __ movq(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); |
- __ movq(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); |
- __ jmp(&next); |
- __ bind(&fast); |
- } |
- tmp.Unuse(); |
- // All extension objects were empty and it is safe to use a global |
- // load IC call. |
- LoadGlobal(); |
- frame_->Push(slot->var()->name()); |
- RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) |
- ? RelocInfo::CODE_TARGET |
- : RelocInfo::CODE_TARGET_CONTEXT; |
- Result answer = frame_->CallLoadIC(mode); |
- // A test rax instruction following the call signals that the inobject |
- // property case was inlined. Ensure that there is not a test rax |
- // instruction here. |
- masm_->nop(); |
- return answer; |
-} |
- |
- |
-void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, |
- TypeofState typeof_state, |
- Result* result, |
- JumpTarget* slow, |
- JumpTarget* done) { |
- // Generate fast-case code for variables that might be shadowed by |
- // eval-introduced variables. Eval is used a lot without |
- // introducing variables. In those cases, we do not want to |
- // perform a runtime call for all variables in the scope |
- // containing the eval. |
- if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { |
- *result = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); |
- done->Jump(result); |
- |
- } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { |
- Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot(); |
- Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); |
- if (potential_slot != NULL) { |
- // Generate fast case for locals that rewrite to slots. |
- // Allocate a fresh register to use as a temp in |
- // ContextSlotOperandCheckExtensions and to hold the result |
- // value. |
- *result = allocator_->Allocate(); |
- ASSERT(result->is_valid()); |
- __ movq(result->reg(), |
- ContextSlotOperandCheckExtensions(potential_slot, |
- *result, |
- slow)); |
- if (potential_slot->var()->mode() == Variable::CONST) { |
- __ CompareRoot(result->reg(), Heap::kTheHoleValueRootIndex); |
- done->Branch(not_equal, result); |
- __ LoadRoot(result->reg(), Heap::kUndefinedValueRootIndex); |
- } |
- done->Jump(result); |
- } else if (rewrite != NULL) { |
- // Generate fast case for argument loads. |
- Property* property = rewrite->AsProperty(); |
- if (property != NULL) { |
- VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); |
- Literal* key_literal = property->key()->AsLiteral(); |
- if (obj_proxy != NULL && |
- key_literal != NULL && |
- obj_proxy->IsArguments() && |
- key_literal->handle()->IsSmi()) { |
- // Load arguments object if there are no eval-introduced |
- // variables. Then load the argument from the arguments |
- // object using keyed load. |
- Result arguments = allocator()->Allocate(); |
- ASSERT(arguments.is_valid()); |
- __ movq(arguments.reg(), |
- ContextSlotOperandCheckExtensions(obj_proxy->var()->slot(), |
- arguments, |
- slow)); |
- frame_->Push(&arguments); |
- frame_->Push(key_literal->handle()); |
- *result = EmitKeyedLoad(); |
- done->Jump(result); |
- } |
- } |
+ if (new_value.is_smi()) { |
+ if (FLAG_debug_code) { __ AbortIfNotSmi(new_value.reg()); } |
+ } else { |
+ __ JumpIfNotSmi(new_value.reg(), deferred->entry_label()); |
} |
- } |
-} |
- |
- |
-void CodeGenerator::LoadGlobal() { |
- if (in_spilled_code()) { |
- frame_->EmitPush(GlobalObject()); |
- } else { |
- Result temp = allocator_->Allocate(); |
- __ movq(temp.reg(), GlobalObject()); |
- frame_->Push(&temp); |
- } |
-} |
- |
- |
-void CodeGenerator::LoadGlobalReceiver() { |
- Result temp = allocator_->Allocate(); |
- Register reg = temp.reg(); |
- __ movq(reg, GlobalObject()); |
- __ movq(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); |
- frame_->Push(&temp); |
-} |
- |
- |
-ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { |
- if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; |
- ASSERT(scope()->arguments_shadow() != NULL); |
- // We don't want to do lazy arguments allocation for functions that |
- // have heap-allocated contexts, because it interfers with the |
- // uninitialized const tracking in the context objects. |
- return (scope()->num_heap_slots() > 0) |
- ? EAGER_ARGUMENTS_ALLOCATION |
- : LAZY_ARGUMENTS_ALLOCATION; |
-} |
- |
- |
-Result CodeGenerator::StoreArgumentsObject(bool initial) { |
- ArgumentsAllocationMode mode = ArgumentsMode(); |
- ASSERT(mode != NO_ARGUMENTS_ALLOCATION); |
- |
- Comment cmnt(masm_, "[ store arguments object"); |
- if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { |
- // When using lazy arguments allocation, we store the hole value |
- // as a sentinel indicating that the arguments object hasn't been |
- // allocated yet. |
- frame_->Push(Factory::the_hole_value()); |
- } else { |
- ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); |
- frame_->PushFunction(); |
- frame_->PushReceiverSlotAddress(); |
- frame_->Push(Smi::FromInt(scope()->num_parameters())); |
- Result result = frame_->CallStub(&stub, 3); |
- frame_->Push(&result); |
- } |
- |
- |
- Variable* arguments = scope()->arguments()->var(); |
- Variable* shadow = scope()->arguments_shadow()->var(); |
- ASSERT(arguments != NULL && arguments->slot() != NULL); |
- ASSERT(shadow != NULL && shadow->slot() != NULL); |
- JumpTarget done; |
- bool skip_arguments = false; |
- if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { |
- // We have to skip storing into the arguments slot if it has |
- // already been written to. This can happen if the a function |
- // has a local variable named 'arguments'. |
- LoadFromSlot(scope()->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); |
- Result probe = frame_->Pop(); |
- if (probe.is_constant()) { |
- // We have to skip updating the arguments object if it has been |
- // assigned a proper value. |
- skip_arguments = !probe.handle()->IsTheHole(); |
+ if (is_increment) { |
+ __ SmiAddConstant(new_value.reg(), |
+ new_value.reg(), |
+ Smi::FromInt(1), |
+ deferred->entry_label()); |
} else { |
- __ CompareRoot(probe.reg(), Heap::kTheHoleValueRootIndex); |
- probe.Unuse(); |
- done.Branch(not_equal); |
+ __ SmiSubConstant(new_value.reg(), |
+ new_value.reg(), |
+ Smi::FromInt(1), |
+ deferred->entry_label()); |
} |
- } |
- if (!skip_arguments) { |
- StoreToSlot(arguments->slot(), NOT_CONST_INIT); |
- if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); |
- } |
- StoreToSlot(shadow->slot(), NOT_CONST_INIT); |
- return frame_->Pop(); |
-} |
+ deferred->BindExit(); |
+ // Postfix count operations return their input converted to |
+ // number. The case when the input is already a number is covered |
+ // above in the allocation code for old_value. |
+ if (is_postfix && !new_value.type_info().IsNumber()) { |
+ old_value.set_type_info(TypeInfo::Number()); |
+ } |
-void CodeGenerator::LoadTypeofExpression(Expression* expr) { |
- // Special handling of identifiers as subexpressions of typeof. |
- Variable* variable = expr->AsVariableProxy()->AsVariable(); |
- if (variable != NULL && !variable->is_this() && variable->is_global()) { |
- // For a global variable we build the property reference |
- // <global>.<variable> and perform a (regular non-contextual) property |
- // load to make sure we do not get reference errors. |
- Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); |
- Literal key(variable->name()); |
- Property property(&global, &key, RelocInfo::kNoPosition); |
- Reference ref(this, &property); |
- ref.GetValue(); |
- } else if (variable != NULL && variable->slot() != NULL) { |
- // For a variable that rewrites to a slot, we signal it is the immediate |
- // subexpression of a typeof. |
- LoadFromSlotCheckForArguments(variable->slot(), INSIDE_TYPEOF); |
- } else { |
- // Anything else can be handled normally. |
- Load(expr); |
- } |
-} |
+ new_value.set_type_info(TypeInfo::Number()); |
+ // Postfix: store the old value in the allocated slot under the |
+ // reference. |
+ if (is_postfix) frame_->SetElementAt(target.size(), &old_value); |
-static bool CouldBeNaN(const Result& result) { |
- if (result.type_info().IsSmi()) return false; |
- if (result.type_info().IsInteger32()) return false; |
- if (!result.is_constant()) return true; |
- if (!result.handle()->IsHeapNumber()) return false; |
- return isnan(HeapNumber::cast(*result.handle())->value()); |
-} |
- |
- |
-// Convert from signed to unsigned comparison to match the way EFLAGS are set |
-// by FPU and XMM compare instructions. |
-static Condition DoubleCondition(Condition cc) { |
- switch (cc) { |
- case less: return below; |
- case equal: return equal; |
- case less_equal: return below_equal; |
- case greater: return above; |
- case greater_equal: return above_equal; |
- default: UNREACHABLE(); |
+ frame_->Push(&new_value); |
+ // Non-constant: update the reference. |
+ if (!is_const) target.SetValue(NOT_CONST_INIT); |
} |
- UNREACHABLE(); |
- return equal; |
+ |
+ // Postfix: drop the new value and use the old. |
+ if (is_postfix) frame_->Drop(); |
} |
-void CodeGenerator::Comparison(AstNode* node, |
- Condition cc, |
- bool strict, |
- ControlDestination* dest) { |
- // Strict only makes sense for equality comparisons. |
- ASSERT(!strict || cc == equal); |
+void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { |
+ // According to ECMA-262 section 11.11, page 58, the binary logical |
+ // operators must yield the result of one of the two expressions |
+ // before any ToBoolean() conversions. This means that the value |
+ // produced by a && or || operator is not necessarily a boolean. |
- Result left_side; |
- Result right_side; |
- // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. |
- if (cc == greater || cc == less_equal) { |
- cc = ReverseCondition(cc); |
- left_side = frame_->Pop(); |
- right_side = frame_->Pop(); |
- } else { |
- right_side = frame_->Pop(); |
- left_side = frame_->Pop(); |
- } |
- ASSERT(cc == less || cc == equal || cc == greater_equal); |
+ // NOTE: If the left hand side produces a materialized value (not |
+ // control flow), we force the right hand side to do the same. This |
+ // is necessary because we assume that if we get control flow on the |
+ // last path out of an expression we got it on all paths. |
+ if (node->op() == Token::AND) { |
+ JumpTarget is_true; |
+ ControlDestination dest(&is_true, destination()->false_target(), true); |
+ LoadCondition(node->left(), &dest, false); |
- // If either side is a constant smi, optimize the comparison. |
- bool left_side_constant_smi = false; |
- bool left_side_constant_null = false; |
- bool left_side_constant_1_char_string = false; |
- if (left_side.is_constant()) { |
- left_side_constant_smi = left_side.handle()->IsSmi(); |
- left_side_constant_null = left_side.handle()->IsNull(); |
- left_side_constant_1_char_string = |
- (left_side.handle()->IsString() && |
- String::cast(*left_side.handle())->length() == 1 && |
- String::cast(*left_side.handle())->IsAsciiRepresentation()); |
- } |
- bool right_side_constant_smi = false; |
- bool right_side_constant_null = false; |
- bool right_side_constant_1_char_string = false; |
- if (right_side.is_constant()) { |
- right_side_constant_smi = right_side.handle()->IsSmi(); |
- right_side_constant_null = right_side.handle()->IsNull(); |
- right_side_constant_1_char_string = |
- (right_side.handle()->IsString() && |
- String::cast(*right_side.handle())->length() == 1 && |
- String::cast(*right_side.handle())->IsAsciiRepresentation()); |
- } |
- |
- if (left_side_constant_smi || right_side_constant_smi) { |
- if (left_side_constant_smi && right_side_constant_smi) { |
- // Trivial case, comparing two constants. |
- int left_value = Smi::cast(*left_side.handle())->value(); |
- int right_value = Smi::cast(*right_side.handle())->value(); |
- switch (cc) { |
- case less: |
- dest->Goto(left_value < right_value); |
- break; |
- case equal: |
- dest->Goto(left_value == right_value); |
- break; |
- case greater_equal: |
- dest->Goto(left_value >= right_value); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
- } else { |
- // Only one side is a constant Smi. |
- // If left side is a constant Smi, reverse the operands. |
- // Since one side is a constant Smi, conversion order does not matter. |
- if (left_side_constant_smi) { |
- Result temp = left_side; |
- left_side = right_side; |
- right_side = temp; |
- cc = ReverseCondition(cc); |
- // This may re-introduce greater or less_equal as the value of cc. |
- // CompareStub and the inline code both support all values of cc. |
- } |
- // Implement comparison against a constant Smi, inlining the case |
- // where both sides are Smis. |
- left_side.ToRegister(); |
- Register left_reg = left_side.reg(); |
- Handle<Object> right_val = right_side.handle(); |
- |
- // Here we split control flow to the stub call and inlined cases |
- // before finally splitting it to the control destination. We use |
- // a jump target and branching to duplicate the virtual frame at |
- // the first split. We manually handle the off-frame references |
- // by reconstituting them on the non-fall-through path. |
- JumpTarget is_smi; |
- |
- if (left_side.is_smi()) { |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(left_side.reg()); |
+ if (dest.false_was_fall_through()) { |
+ // The current false target was used as the fall-through. If |
+ // there are no dangling jumps to is_true then the left |
+ // subexpression was unconditionally false. Otherwise we have |
+ // paths where we do have to evaluate the right subexpression. |
+ if (is_true.is_linked()) { |
+ // We need to compile the right subexpression. If the jump to |
+ // the current false target was a forward jump then we have a |
+ // valid frame, we have just bound the false target, and we |
+ // have to jump around the code for the right subexpression. |
+ if (has_valid_frame()) { |
+ destination()->false_target()->Unuse(); |
+ destination()->false_target()->Jump(); |
} |
+ is_true.Bind(); |
+ // The left subexpression compiled to control flow, so the |
+ // right one is free to do so as well. |
+ LoadCondition(node->right(), destination(), false); |
} else { |
- Condition left_is_smi = masm_->CheckSmi(left_side.reg()); |
- is_smi.Branch(left_is_smi); |
- |
- bool is_loop_condition = (node->AsExpression() != NULL) && |
- node->AsExpression()->is_loop_condition(); |
- if (!is_loop_condition && right_val->IsSmi()) { |
- // Right side is a constant smi and left side has been checked |
- // not to be a smi. |
- JumpTarget not_number; |
- __ Cmp(FieldOperand(left_reg, HeapObject::kMapOffset), |
- Factory::heap_number_map()); |
- not_number.Branch(not_equal, &left_side); |
- __ movsd(xmm1, |
- FieldOperand(left_reg, HeapNumber::kValueOffset)); |
- int value = Smi::cast(*right_val)->value(); |
- if (value == 0) { |
- __ xorpd(xmm0, xmm0); |
- } else { |
- Result temp = allocator()->Allocate(); |
- __ movl(temp.reg(), Immediate(value)); |
- __ cvtlsi2sd(xmm0, temp.reg()); |
- temp.Unuse(); |
- } |
- __ ucomisd(xmm1, xmm0); |
- // Jump to builtin for NaN. |
- not_number.Branch(parity_even, &left_side); |
- left_side.Unuse(); |
- dest->true_target()->Branch(DoubleCondition(cc)); |
- dest->false_target()->Jump(); |
- not_number.Bind(&left_side); |
- } |
- |
- // Setup and call the compare stub. |
- CompareStub stub(cc, strict, kCantBothBeNaN); |
- Result result = frame_->CallStub(&stub, &left_side, &right_side); |
- result.ToRegister(); |
- __ testq(result.reg(), result.reg()); |
- result.Unuse(); |
- dest->true_target()->Branch(cc); |
- dest->false_target()->Jump(); |
- |
- is_smi.Bind(); |
+ // We have actually just jumped to or bound the current false |
+ // target but the current control destination is not marked as |
+ // used. |
+ destination()->Use(false); |
} |
- left_side = Result(left_reg); |
- right_side = Result(right_val); |
- // Test smi equality and comparison by signed int comparison. |
- // Both sides are smis, so we can use an Immediate. |
- __ SmiCompare(left_side.reg(), Smi::cast(*right_side.handle())); |
- left_side.Unuse(); |
- right_side.Unuse(); |
- dest->Split(cc); |
- } |
- } else if (cc == equal && |
- (left_side_constant_null || right_side_constant_null)) { |
- // To make null checks efficient, we check if either the left side or |
- // the right side is the constant 'null'. |
- // If so, we optimize the code by inlining a null check instead of |
- // calling the (very) general runtime routine for checking equality. |
- Result operand = left_side_constant_null ? right_side : left_side; |
- right_side.Unuse(); |
- left_side.Unuse(); |
- operand.ToRegister(); |
- __ CompareRoot(operand.reg(), Heap::kNullValueRootIndex); |
- if (strict) { |
- operand.Unuse(); |
- dest->Split(equal); |
- } else { |
- // The 'null' value is only equal to 'undefined' if using non-strict |
- // comparisons. |
- dest->true_target()->Branch(equal); |
- __ CompareRoot(operand.reg(), Heap::kUndefinedValueRootIndex); |
- dest->true_target()->Branch(equal); |
- Condition is_smi = masm_->CheckSmi(operand.reg()); |
- dest->false_target()->Branch(is_smi); |
+ } else if (dest.is_used()) { |
+ // The left subexpression compiled to control flow (and is_true |
+ // was just bound), so the right is free to do so as well. |
+ LoadCondition(node->right(), destination(), false); |
- // It can be an undetectable object. |
- // Use a scratch register in preference to spilling operand.reg(). |
- Result temp = allocator()->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ movq(temp.reg(), |
- FieldOperand(operand.reg(), HeapObject::kMapOffset)); |
- __ testb(FieldOperand(temp.reg(), Map::kBitFieldOffset), |
- Immediate(1 << Map::kIsUndetectable)); |
- temp.Unuse(); |
- operand.Unuse(); |
- dest->Split(not_zero); |
- } |
- } else if (left_side_constant_1_char_string || |
- right_side_constant_1_char_string) { |
- if (left_side_constant_1_char_string && right_side_constant_1_char_string) { |
- // Trivial case, comparing two constants. |
- int left_value = String::cast(*left_side.handle())->Get(0); |
- int right_value = String::cast(*right_side.handle())->Get(0); |
- switch (cc) { |
- case less: |
- dest->Goto(left_value < right_value); |
- break; |
- case equal: |
- dest->Goto(left_value == right_value); |
- break; |
- case greater_equal: |
- dest->Goto(left_value >= right_value); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
} else { |
- // Only one side is a constant 1 character string. |
- // If left side is a constant 1-character string, reverse the operands. |
- // Since one side is a constant string, conversion order does not matter. |
- if (left_side_constant_1_char_string) { |
- Result temp = left_side; |
- left_side = right_side; |
- right_side = temp; |
- cc = ReverseCondition(cc); |
- // This may reintroduce greater or less_equal as the value of cc. |
- // CompareStub and the inline code both support all values of cc. |
- } |
- // Implement comparison against a constant string, inlining the case |
- // where both sides are strings. |
- left_side.ToRegister(); |
+ // We have a materialized value on the frame, so we exit with |
+ // one on all paths. There are possibly also jumps to is_true |
+ // from nested subexpressions. |
+ JumpTarget pop_and_continue; |
+ JumpTarget exit; |
- // Here we split control flow to the stub call and inlined cases |
- // before finally splitting it to the control destination. We use |
- // a jump target and branching to duplicate the virtual frame at |
- // the first split. We manually handle the off-frame references |
- // by reconstituting them on the non-fall-through path. |
- JumpTarget is_not_string, is_string; |
- Register left_reg = left_side.reg(); |
- Handle<Object> right_val = right_side.handle(); |
- ASSERT(StringShape(String::cast(*right_val)).IsSymbol()); |
- Condition is_smi = masm()->CheckSmi(left_reg); |
- is_not_string.Branch(is_smi, &left_side); |
- Result temp = allocator_->Allocate(); |
- ASSERT(temp.is_valid()); |
- __ movq(temp.reg(), |
- FieldOperand(left_reg, HeapObject::kMapOffset)); |
- __ movzxbl(temp.reg(), |
- FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); |
- // If we are testing for equality then make use of the symbol shortcut. |
- // Check if the left hand side has the same type as the right hand |
- // side (which is always a symbol). |
- if (cc == equal) { |
- Label not_a_symbol; |
- ASSERT(kSymbolTag != 0); |
- // Ensure that no non-strings have the symbol bit set. |
- ASSERT(kNotStringTag + kIsSymbolMask > LAST_TYPE); |
- __ testb(temp.reg(), Immediate(kIsSymbolMask)); // Test the symbol bit. |
- __ j(zero, ¬_a_symbol); |
- // They are symbols, so do identity compare. |
- __ Cmp(left_reg, right_side.handle()); |
- dest->true_target()->Branch(equal); |
- dest->false_target()->Branch(not_equal); |
- __ bind(¬_a_symbol); |
- } |
- // Call the compare stub if the left side is not a flat ascii string. |
- __ andb(temp.reg(), |
- Immediate(kIsNotStringMask | |
- kStringRepresentationMask | |
- kStringEncodingMask)); |
- __ cmpb(temp.reg(), |
- Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); |
- temp.Unuse(); |
- is_string.Branch(equal, &left_side); |
+ // Avoid popping the result if it converts to 'false' using the |
+ // standard ToBoolean() conversion as described in ECMA-262, |
+ // section 9.2, page 30. |
+ // |
+ // Duplicate the TOS value. The duplicate will be popped by |
+ // ToBoolean. |
+ frame_->Dup(); |
+ ControlDestination dest(&pop_and_continue, &exit, true); |
+ ToBoolean(&dest); |
- // Setup and call the compare stub. |
- is_not_string.Bind(&left_side); |
- CompareStub stub(cc, strict, kCantBothBeNaN); |
- Result result = frame_->CallStub(&stub, &left_side, &right_side); |
- result.ToRegister(); |
- __ testq(result.reg(), result.reg()); |
- result.Unuse(); |
- dest->true_target()->Branch(cc); |
- dest->false_target()->Jump(); |
+ // Pop the result of evaluating the first part. |
+ frame_->Drop(); |
- is_string.Bind(&left_side); |
- // left_side is a sequential ASCII string. |
- ASSERT(left_side.reg().is(left_reg)); |
- right_side = Result(right_val); |
- Result temp2 = allocator_->Allocate(); |
- ASSERT(temp2.is_valid()); |
- // Test string equality and comparison. |
- if (cc == equal) { |
- Label comparison_done; |
- __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset), |
- Smi::FromInt(1)); |
- __ j(not_equal, &comparison_done); |
- uint8_t char_value = |
- static_cast<uint8_t>(String::cast(*right_val)->Get(0)); |
- __ cmpb(FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize), |
- Immediate(char_value)); |
- __ bind(&comparison_done); |
- } else { |
- __ movq(temp2.reg(), |
- FieldOperand(left_side.reg(), String::kLengthOffset)); |
- __ SmiSubConstant(temp2.reg(), temp2.reg(), Smi::FromInt(1)); |
- Label comparison; |
- // If the length is 0 then the subtraction gave -1 which compares less |
- // than any character. |
- __ j(negative, &comparison); |
- // Otherwise load the first character. |
- __ movzxbl(temp2.reg(), |
- FieldOperand(left_side.reg(), SeqAsciiString::kHeaderSize)); |
- __ bind(&comparison); |
- // Compare the first character of the string with the |
- // constant 1-character string. |
- uint8_t char_value = |
- static_cast<uint8_t>(String::cast(*right_side.handle())->Get(0)); |
- __ cmpb(temp2.reg(), Immediate(char_value)); |
- Label characters_were_different; |
- __ j(not_equal, &characters_were_different); |
- // If the first character is the same then the long string sorts after |
- // the short one. |
- __ SmiCompare(FieldOperand(left_side.reg(), String::kLengthOffset), |
- Smi::FromInt(1)); |
- __ bind(&characters_were_different); |
- } |
- temp2.Unuse(); |
- left_side.Unuse(); |
- right_side.Unuse(); |
- dest->Split(cc); |
+ // Compile right side expression. |
+ is_true.Bind(); |
+ Load(node->right()); |
+ |
+ // Exit (always with a materialized value). |
+ exit.Bind(); |
} |
+ |
} else { |
- // Neither side is a constant Smi, constant 1-char string, or constant null. |
- // If either side is a non-smi constant, skip the smi check. |
- bool known_non_smi = |
- (left_side.is_constant() && !left_side.handle()->IsSmi()) || |
- (right_side.is_constant() && !right_side.handle()->IsSmi()) || |
- left_side.type_info().IsDouble() || |
- right_side.type_info().IsDouble(); |
+ ASSERT(node->op() == Token::OR); |
+ JumpTarget is_false; |
+ ControlDestination dest(destination()->true_target(), &is_false, false); |
+ LoadCondition(node->left(), &dest, false); |
- NaNInformation nan_info = |
- (CouldBeNaN(left_side) && CouldBeNaN(right_side)) ? |
- kBothCouldBeNaN : |
- kCantBothBeNaN; |
- |
- // Inline number comparison handling any combination of smi's and heap |
- // numbers if: |
- // code is in a loop |
- // the compare operation is different from equal |
- // compare is not a for-loop comparison |
- // The reason for excluding equal is that it will most likely be done |
- // with smi's (not heap numbers) and the code to comparing smi's is inlined |
- // separately. The same reason applies for for-loop comparison which will |
- // also most likely be smi comparisons. |
- bool is_loop_condition = (node->AsExpression() != NULL) |
- && node->AsExpression()->is_loop_condition(); |
- bool inline_number_compare = |
- loop_nesting() > 0 && cc != equal && !is_loop_condition; |
- |
- left_side.ToRegister(); |
- right_side.ToRegister(); |
- |
- if (known_non_smi) { |
- // Inlined equality check: |
- // If at least one of the objects is not NaN, then if the objects |
- // are identical, they are equal. |
- if (nan_info == kCantBothBeNaN && cc == equal) { |
- __ cmpq(left_side.reg(), right_side.reg()); |
- dest->true_target()->Branch(equal); |
+ if (dest.true_was_fall_through()) { |
+ // The current true target was used as the fall-through. If |
+ // there are no dangling jumps to is_false then the left |
+ // subexpression was unconditionally true. Otherwise we have |
+ // paths where we do have to evaluate the right subexpression. |
+ if (is_false.is_linked()) { |
+ // We need to compile the right subexpression. If the jump to |
+ // the current true target was a forward jump then we have a |
+ // valid frame, we have just bound the true target, and we |
+ // have to jump around the code for the right subexpression. |
+ if (has_valid_frame()) { |
+ destination()->true_target()->Unuse(); |
+ destination()->true_target()->Jump(); |
+ } |
+ is_false.Bind(); |
+ // The left subexpression compiled to control flow, so the |
+ // right one is free to do so as well. |
+ LoadCondition(node->right(), destination(), false); |
+ } else { |
+ // We have just jumped to or bound the current true target but |
+ // the current control destination is not marked as used. |
+ destination()->Use(true); |
} |
- // Inlined number comparison: |
- if (inline_number_compare) { |
- GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); |
- } |
+ } else if (dest.is_used()) { |
+ // The left subexpression compiled to control flow (and is_false |
+ // was just bound), so the right is free to do so as well. |
+ LoadCondition(node->right(), destination(), false); |
- CompareStub stub(cc, strict, nan_info, !inline_number_compare); |
- Result answer = frame_->CallStub(&stub, &left_side, &right_side); |
- __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flag. |
- answer.Unuse(); |
- dest->Split(cc); |
} else { |
- // Here we split control flow to the stub call and inlined cases |
- // before finally splitting it to the control destination. We use |
- // a jump target and branching to duplicate the virtual frame at |
- // the first split. We manually handle the off-frame references |
- // by reconstituting them on the non-fall-through path. |
- JumpTarget is_smi; |
- Register left_reg = left_side.reg(); |
- Register right_reg = right_side.reg(); |
+ // We have a materialized value on the frame, so we exit with |
+ // one on all paths. There are possibly also jumps to is_false |
+ // from nested subexpressions. |
+ JumpTarget pop_and_continue; |
+ JumpTarget exit; |
- Condition both_smi = masm_->CheckBothSmi(left_reg, right_reg); |
- is_smi.Branch(both_smi); |
+ // Avoid popping the result if it converts to 'true' using the |
+ // standard ToBoolean() conversion as described in ECMA-262, |
+ // section 9.2, page 30. |
+ // |
+ // Duplicate the TOS value. The duplicate will be popped by |
+ // ToBoolean. |
+ frame_->Dup(); |
+ ControlDestination dest(&exit, &pop_and_continue, false); |
+ ToBoolean(&dest); |
- // Inline the equality check if both operands can't be a NaN. If both |
- // objects are the same they are equal. |
- if (nan_info == kCantBothBeNaN && cc == equal) { |
- __ cmpq(left_side.reg(), right_side.reg()); |
- dest->true_target()->Branch(equal); |
- } |
+ // Pop the result of evaluating the first part. |
+ frame_->Drop(); |
- // Inlined number comparison: |
- if (inline_number_compare) { |
- GenerateInlineNumberComparison(&left_side, &right_side, cc, dest); |
- } |
+ // Compile right side expression. |
+ is_false.Bind(); |
+ Load(node->right()); |
- CompareStub stub(cc, strict, nan_info, !inline_number_compare); |
- Result answer = frame_->CallStub(&stub, &left_side, &right_side); |
- __ testq(answer.reg(), answer.reg()); // Sets both zero and sign flags. |
- answer.Unuse(); |
- dest->true_target()->Branch(cc); |
- dest->false_target()->Jump(); |
- |
- is_smi.Bind(); |
- left_side = Result(left_reg); |
- right_side = Result(right_reg); |
- __ SmiCompare(left_side.reg(), right_side.reg()); |
- right_side.Unuse(); |
- left_side.Unuse(); |
- dest->Split(cc); |
+ // Exit (always with a materialized value). |
+ exit.Bind(); |
} |
} |
} |
+void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { |
+ Comment cmnt(masm_, "[ BinaryOperation"); |
-// Load a comparison operand into into a XMM register. Jump to not_numbers jump |
-// target passing the left and right result if the operand is not a number. |
-static void LoadComparisonOperand(MacroAssembler* masm_, |
- Result* operand, |
- XMMRegister xmm_reg, |
- Result* left_side, |
- Result* right_side, |
- JumpTarget* not_numbers) { |
- Label done; |
- if (operand->type_info().IsDouble()) { |
- // Operand is known to be a heap number, just load it. |
- __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); |
- } else if (operand->type_info().IsSmi()) { |
- // Operand is known to be a smi. Convert it to double and keep the original |
- // smi. |
- __ SmiToInteger32(kScratchRegister, operand->reg()); |
- __ cvtlsi2sd(xmm_reg, kScratchRegister); |
+ if (node->op() == Token::AND || node->op() == Token::OR) { |
+ GenerateLogicalBooleanOperation(node); |
} else { |
- // Operand type not known, check for smi or heap number. |
- Label smi; |
- __ JumpIfSmi(operand->reg(), &smi); |
- if (!operand->type_info().IsNumber()) { |
- __ LoadRoot(kScratchRegister, Heap::kHeapNumberMapRootIndex); |
- __ cmpq(FieldOperand(operand->reg(), HeapObject::kMapOffset), |
- kScratchRegister); |
- not_numbers->Branch(not_equal, left_side, right_side, taken); |
+ // NOTE: The code below assumes that the slow cases (calls to runtime) |
+ // never return a constant/immutable object. |
+ OverwriteMode overwrite_mode = NO_OVERWRITE; |
+ if (node->left()->AsBinaryOperation() != NULL && |
+ node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) { |
+ overwrite_mode = OVERWRITE_LEFT; |
+ } else if (node->right()->AsBinaryOperation() != NULL && |
+ node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) { |
+ overwrite_mode = OVERWRITE_RIGHT; |
} |
- __ movsd(xmm_reg, FieldOperand(operand->reg(), HeapNumber::kValueOffset)); |
- __ jmp(&done); |
- __ bind(&smi); |
- // Comvert smi to float and keep the original smi. |
- __ SmiToInteger32(kScratchRegister, operand->reg()); |
- __ cvtlsi2sd(xmm_reg, kScratchRegister); |
- __ jmp(&done); |
+ if (node->left()->IsTrivial()) { |
+ Load(node->right()); |
+ Result right = frame_->Pop(); |
+ frame_->Push(node->left()); |
+ frame_->Push(&right); |
+ } else { |
+ Load(node->left()); |
+ Load(node->right()); |
+ } |
+ GenericBinaryOperation(node, overwrite_mode); |
} |
- __ bind(&done); |
} |
-void CodeGenerator::GenerateInlineNumberComparison(Result* left_side, |
- Result* right_side, |
- Condition cc, |
- ControlDestination* dest) { |
- ASSERT(left_side->is_register()); |
- ASSERT(right_side->is_register()); |
- |
- JumpTarget not_numbers; |
- // Load left and right operand into registers xmm0 and xmm1 and compare. |
- LoadComparisonOperand(masm_, left_side, xmm0, left_side, right_side, |
- ¬_numbers); |
- LoadComparisonOperand(masm_, right_side, xmm1, left_side, right_side, |
- ¬_numbers); |
- __ ucomisd(xmm0, xmm1); |
- // Bail out if a NaN is involved. |
- not_numbers.Branch(parity_even, left_side, right_side); |
- |
- // Split to destination targets based on comparison. |
- left_side->Unuse(); |
- right_side->Unuse(); |
- dest->true_target()->Branch(DoubleCondition(cc)); |
- dest->false_target()->Jump(); |
- |
- not_numbers.Bind(left_side, right_side); |
+void CodeGenerator::VisitThisFunction(ThisFunction* node) { |
+ frame_->PushFunction(); |
} |
-class DeferredInlineBinaryOperation: public DeferredCode { |
- public: |
- DeferredInlineBinaryOperation(Token::Value op, |
- Register dst, |
- Register left, |
- Register right, |
- OverwriteMode mode) |
- : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) { |
- set_comment("[ DeferredInlineBinaryOperation"); |
- } |
+void CodeGenerator::VisitCompareOperation(CompareOperation* node) { |
+ Comment cmnt(masm_, "[ CompareOperation"); |
- virtual void Generate(); |
+ // Get the expressions from the node. |
+ Expression* left = node->left(); |
+ Expression* right = node->right(); |
+ Token::Value op = node->op(); |
+ // To make typeof testing for natives implemented in JavaScript really |
+ // efficient, we generate special code for expressions of the form: |
+ // 'typeof <expression> == <string>'. |
+ UnaryOperation* operation = left->AsUnaryOperation(); |
+ if ((op == Token::EQ || op == Token::EQ_STRICT) && |
+ (operation != NULL && operation->op() == Token::TYPEOF) && |
+ (right->AsLiteral() != NULL && |
+ right->AsLiteral()->handle()->IsString())) { |
+ Handle<String> check(Handle<String>::cast(right->AsLiteral()->handle())); |
- private: |
- Token::Value op_; |
- Register dst_; |
- Register left_; |
- Register right_; |
- OverwriteMode mode_; |
-}; |
+ // Load the operand and move it to a register. |
+ LoadTypeofExpression(operation->expression()); |
+ Result answer = frame_->Pop(); |
+ answer.ToRegister(); |
+ if (check->Equals(Heap::number_symbol())) { |
+ Condition is_smi = masm_->CheckSmi(answer.reg()); |
+ destination()->true_target()->Branch(is_smi); |
+ frame_->Spill(answer.reg()); |
+ __ movq(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
+ __ CompareRoot(answer.reg(), Heap::kHeapNumberMapRootIndex); |
+ answer.Unuse(); |
+ destination()->Split(equal); |
-void DeferredInlineBinaryOperation::Generate() { |
- Label done; |
- if ((op_ == Token::ADD) |
- || (op_ == Token::SUB) |
- || (op_ == Token::MUL) |
- || (op_ == Token::DIV)) { |
- Label call_runtime; |
- Label left_smi, right_smi, load_right, do_op; |
- __ JumpIfSmi(left_, &left_smi); |
- __ CompareRoot(FieldOperand(left_, HeapObject::kMapOffset), |
- Heap::kHeapNumberMapRootIndex); |
- __ j(not_equal, &call_runtime); |
- __ movsd(xmm0, FieldOperand(left_, HeapNumber::kValueOffset)); |
- if (mode_ == OVERWRITE_LEFT) { |
- __ movq(dst_, left_); |
- } |
- __ jmp(&load_right); |
+ } else if (check->Equals(Heap::string_symbol())) { |
+ Condition is_smi = masm_->CheckSmi(answer.reg()); |
+ destination()->false_target()->Branch(is_smi); |
- __ bind(&left_smi); |
- __ SmiToInteger32(left_, left_); |
- __ cvtlsi2sd(xmm0, left_); |
- __ Integer32ToSmi(left_, left_); |
- if (mode_ == OVERWRITE_LEFT) { |
- Label alloc_failure; |
- __ AllocateHeapNumber(dst_, no_reg, &call_runtime); |
- } |
+ // It can be an undetectable string object. |
+ __ movq(kScratchRegister, |
+ FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
+ __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), |
+ Immediate(1 << Map::kIsUndetectable)); |
+ destination()->false_target()->Branch(not_zero); |
+ __ CmpInstanceType(kScratchRegister, FIRST_NONSTRING_TYPE); |
+ answer.Unuse(); |
+ destination()->Split(below); // Unsigned byte comparison needed. |
- __ bind(&load_right); |
- __ JumpIfSmi(right_, &right_smi); |
- __ CompareRoot(FieldOperand(right_, HeapObject::kMapOffset), |
- Heap::kHeapNumberMapRootIndex); |
- __ j(not_equal, &call_runtime); |
- __ movsd(xmm1, FieldOperand(right_, HeapNumber::kValueOffset)); |
- if (mode_ == OVERWRITE_RIGHT) { |
- __ movq(dst_, right_); |
- } else if (mode_ == NO_OVERWRITE) { |
- Label alloc_failure; |
- __ AllocateHeapNumber(dst_, no_reg, &call_runtime); |
- } |
- __ jmp(&do_op); |
+ } else if (check->Equals(Heap::boolean_symbol())) { |
+ __ CompareRoot(answer.reg(), Heap::kTrueValueRootIndex); |
+ destination()->true_target()->Branch(equal); |
+ __ CompareRoot(answer.reg(), Heap::kFalseValueRootIndex); |
+ answer.Unuse(); |
+ destination()->Split(equal); |
- __ bind(&right_smi); |
- __ SmiToInteger32(right_, right_); |
- __ cvtlsi2sd(xmm1, right_); |
- __ Integer32ToSmi(right_, right_); |
- if (mode_ == OVERWRITE_RIGHT || mode_ == NO_OVERWRITE) { |
- Label alloc_failure; |
- __ AllocateHeapNumber(dst_, no_reg, &call_runtime); |
- } |
+ } else if (check->Equals(Heap::undefined_symbol())) { |
+ __ CompareRoot(answer.reg(), Heap::kUndefinedValueRootIndex); |
+ destination()->true_target()->Branch(equal); |
- __ bind(&do_op); |
- switch (op_) { |
- case Token::ADD: __ addsd(xmm0, xmm1); break; |
- case Token::SUB: __ subsd(xmm0, xmm1); break; |
- case Token::MUL: __ mulsd(xmm0, xmm1); break; |
- case Token::DIV: __ divsd(xmm0, xmm1); break; |
- default: UNREACHABLE(); |
- } |
- __ movsd(FieldOperand(dst_, HeapNumber::kValueOffset), xmm0); |
- __ jmp(&done); |
+ Condition is_smi = masm_->CheckSmi(answer.reg()); |
+ destination()->false_target()->Branch(is_smi); |
- __ bind(&call_runtime); |
- } |
- GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB); |
- stub.GenerateCall(masm_, left_, right_); |
- if (!dst_.is(rax)) __ movq(dst_, rax); |
- __ bind(&done); |
-} |
+ // It can be an undetectable object. |
+ __ movq(kScratchRegister, |
+ FieldOperand(answer.reg(), HeapObject::kMapOffset)); |
+ __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), |
+ Immediate(1 << Map::kIsUndetectable)); |
+ answer.Unuse(); |
+ destination()->Split(not_zero); |
+ } else if (check->Equals(Heap::function_symbol())) { |
+ Condition is_smi = masm_->CheckSmi(answer.reg()); |
+ destination()->false_target()->Branch(is_smi); |
+ frame_->Spill(answer.reg()); |
+ __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); |
+ destination()->true_target()->Branch(equal); |
+ // Regular expressions are callable so typeof == 'function'. |
+ __ CmpInstanceType(answer.reg(), JS_REGEXP_TYPE); |
+ answer.Unuse(); |
+ destination()->Split(equal); |
-static TypeInfo CalculateTypeInfo(TypeInfo operands_type, |
- Token::Value op, |
- const Result& right, |
- const Result& left) { |
- // Set TypeInfo of result according to the operation performed. |
- // We rely on the fact that smis have a 32 bit payload on x64. |
- STATIC_ASSERT(kSmiValueSize == 32); |
- switch (op) { |
- case Token::COMMA: |
- return right.type_info(); |
- case Token::OR: |
- case Token::AND: |
- // Result type can be either of the two input types. |
- return operands_type; |
- case Token::BIT_OR: |
- case Token::BIT_XOR: |
- case Token::BIT_AND: |
- // Result is always a smi. |
- return TypeInfo::Smi(); |
- case Token::SAR: |
- case Token::SHL: |
- // Result is always a smi. |
- return TypeInfo::Smi(); |
- case Token::SHR: |
- // Result of x >>> y is always a smi if masked y >= 1, otherwise a number. |
- return (right.is_constant() && right.handle()->IsSmi() |
- && (Smi::cast(*right.handle())->value() & 0x1F) >= 1) |
- ? TypeInfo::Smi() |
- : TypeInfo::Number(); |
- case Token::ADD: |
- if (operands_type.IsNumber()) { |
- return TypeInfo::Number(); |
- } else if (left.type_info().IsString() || right.type_info().IsString()) { |
- return TypeInfo::String(); |
- } else { |
- return TypeInfo::Unknown(); |
- } |
- case Token::SUB: |
- case Token::MUL: |
- case Token::DIV: |
- case Token::MOD: |
- // Result is always a number. |
- return TypeInfo::Number(); |
- default: |
- UNREACHABLE(); |
- } |
- UNREACHABLE(); |
- return TypeInfo::Unknown(); |
-} |
+ } else if (check->Equals(Heap::object_symbol())) { |
+ Condition is_smi = masm_->CheckSmi(answer.reg()); |
+ destination()->false_target()->Branch(is_smi); |
+ __ CompareRoot(answer.reg(), Heap::kNullValueRootIndex); |
+ destination()->true_target()->Branch(equal); |
+ // Regular expressions are typeof == 'function', not 'object'. |
+ __ CmpObjectType(answer.reg(), JS_REGEXP_TYPE, kScratchRegister); |
+ destination()->false_target()->Branch(equal); |
-void CodeGenerator::GenericBinaryOperation(BinaryOperation* expr, |
- OverwriteMode overwrite_mode) { |
- Comment cmnt(masm_, "[ BinaryOperation"); |
- Token::Value op = expr->op(); |
- Comment cmnt_token(masm_, Token::String(op)); |
- |
- if (op == Token::COMMA) { |
- // Simply discard left value. |
- frame_->Nip(1); |
+ // It can be an undetectable object. |
+ __ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset), |
+ Immediate(1 << Map::kIsUndetectable)); |
+ destination()->false_target()->Branch(not_zero); |
+ __ CmpInstanceType(kScratchRegister, FIRST_JS_OBJECT_TYPE); |
+ destination()->false_target()->Branch(below); |
+ __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); |
+ answer.Unuse(); |
+ destination()->Split(below_equal); |
+ } else { |
+ // Uncommon case: typeof testing against a string literal that is |
+ // never returned from the typeof operator. |
+ answer.Unuse(); |
+ destination()->Goto(false); |
+ } |
return; |
} |
- Result right = frame_->Pop(); |
- Result left = frame_->Pop(); |
- |
- if (op == Token::ADD) { |
- const bool left_is_string = left.type_info().IsString(); |
- const bool right_is_string = right.type_info().IsString(); |
- // Make sure constant strings have string type info. |
- ASSERT(!(left.is_constant() && left.handle()->IsString()) || |
- left_is_string); |
- ASSERT(!(right.is_constant() && right.handle()->IsString()) || |
- right_is_string); |
- if (left_is_string || right_is_string) { |
- frame_->Push(&left); |
- frame_->Push(&right); |
- Result answer; |
- if (left_is_string) { |
- if (right_is_string) { |
- StringAddStub stub(NO_STRING_CHECK_IN_STUB); |
- answer = frame_->CallStub(&stub, 2); |
- } else { |
- answer = |
- frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2); |
- } |
- } else if (right_is_string) { |
- answer = |
- frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2); |
- } |
- answer.set_type_info(TypeInfo::String()); |
- frame_->Push(&answer); |
+ Condition cc = no_condition; |
+ bool strict = false; |
+ switch (op) { |
+ case Token::EQ_STRICT: |
+ strict = true; |
+ // Fall through |
+ case Token::EQ: |
+ cc = equal; |
+ break; |
+ case Token::LT: |
+ cc = less; |
+ break; |
+ case Token::GT: |
+ cc = greater; |
+ break; |
+ case Token::LTE: |
+ cc = less_equal; |
+ break; |
+ case Token::GTE: |
+ cc = greater_equal; |
+ break; |
+ case Token::IN: { |
+ Load(left); |
+ Load(right); |
+ Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); |
+ frame_->Push(&answer); // push the result |
return; |
} |
- // Neither operand is known to be a string. |
+ case Token::INSTANCEOF: { |
+ Load(left); |
+ Load(right); |
+ InstanceofStub stub; |
+ Result answer = frame_->CallStub(&stub, 2); |
+ answer.ToRegister(); |
+ __ testq(answer.reg(), answer.reg()); |
+ answer.Unuse(); |
+ destination()->Split(zero); |
+ return; |
+ } |
+ default: |
+ UNREACHABLE(); |
} |
- bool left_is_smi_constant = left.is_constant() && left.handle()->IsSmi(); |
- bool left_is_non_smi_constant = left.is_constant() && !left.handle()->IsSmi(); |
- bool right_is_smi_constant = right.is_constant() && right.handle()->IsSmi(); |
- bool right_is_non_smi_constant = |
- right.is_constant() && !right.handle()->IsSmi(); |
- |
- if (left_is_smi_constant && right_is_smi_constant) { |
- // Compute the constant result at compile time, and leave it on the frame. |
- int left_int = Smi::cast(*left.handle())->value(); |
- int right_int = Smi::cast(*right.handle())->value(); |
- if (FoldConstantSmis(op, left_int, right_int)) return; |
+ if (left->IsTrivial()) { |
+ Load(right); |
+ Result right_result = frame_->Pop(); |
+ frame_->Push(left); |
+ frame_->Push(&right_result); |
+ } else { |
+ Load(left); |
+ Load(right); |
} |
- // Get number type of left and right sub-expressions. |
- TypeInfo operands_type = |
- TypeInfo::Combine(left.type_info(), right.type_info()); |
+ Comparison(node, cc, strict, destination()); |
+} |
- TypeInfo result_type = CalculateTypeInfo(operands_type, op, right, left); |
- Result answer; |
- if (left_is_non_smi_constant || right_is_non_smi_constant) { |
- // Go straight to the slow case, with no smi code. |
- GenericBinaryOpStub stub(op, |
- overwrite_mode, |
- NO_SMI_CODE_IN_STUB, |
- operands_type); |
- answer = stub.GenerateCall(masm_, frame_, &left, &right); |
- } else if (right_is_smi_constant) { |
- answer = ConstantSmiBinaryOperation(expr, &left, right.handle(), |
- false, overwrite_mode); |
- } else if (left_is_smi_constant) { |
- answer = ConstantSmiBinaryOperation(expr, &right, left.handle(), |
- true, overwrite_mode); |
- } else { |
- // Set the flags based on the operation, type and loop nesting level. |
- // Bit operations always assume they likely operate on Smis. Still only |
- // generate the inline Smi check code if this operation is part of a loop. |
- // For all other operations only inline the Smi check code for likely smis |
- // if the operation is part of a loop. |
- if (loop_nesting() > 0 && |
- (Token::IsBitOp(op) || |
- operands_type.IsInteger32() || |
- expr->type()->IsLikelySmi())) { |
- answer = LikelySmiBinaryOperation(expr, &left, &right, overwrite_mode); |
- } else { |
- GenericBinaryOpStub stub(op, |
- overwrite_mode, |
- NO_GENERIC_BINARY_FLAGS, |
- operands_type); |
- answer = stub.GenerateCall(masm_, frame_, &left, &right); |
- } |
- } |
- |
- answer.set_type_info(result_type); |
- frame_->Push(&answer); |
+#ifdef DEBUG |
+bool CodeGenerator::HasValidEntryRegisters() { |
+ return (allocator()->count(rax) == (frame()->is_used(rax) ? 1 : 0)) |
+ && (allocator()->count(rbx) == (frame()->is_used(rbx) ? 1 : 0)) |
+ && (allocator()->count(rcx) == (frame()->is_used(rcx) ? 1 : 0)) |
+ && (allocator()->count(rdx) == (frame()->is_used(rdx) ? 1 : 0)) |
+ && (allocator()->count(rdi) == (frame()->is_used(rdi) ? 1 : 0)) |
+ && (allocator()->count(r8) == (frame()->is_used(r8) ? 1 : 0)) |
+ && (allocator()->count(r9) == (frame()->is_used(r9) ? 1 : 0)) |
+ && (allocator()->count(r11) == (frame()->is_used(r11) ? 1 : 0)) |
+ && (allocator()->count(r14) == (frame()->is_used(r14) ? 1 : 0)) |
+ && (allocator()->count(r12) == (frame()->is_used(r12) ? 1 : 0)); |
} |
+#endif |
+ |
// Emit a LoadIC call to get the value from receiver and leave it in |
// dst. The receiver register is restored after the call. |
class DeferredReferenceGetNamedValue: public DeferredCode { |
@@ -6898,623 +7494,155 @@ |
} |
-void DeferredInlineSmiAdd::Generate() { |
- GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
- igostub.GenerateCall(masm_, dst_, value_); |
- if (!dst_.is(rax)) __ movq(dst_, rax); |
-} |
+class DeferredReferenceGetKeyedValue: public DeferredCode { |
+ public: |
+ explicit DeferredReferenceGetKeyedValue(Register dst, |
+ Register receiver, |
+ Register key) |
+ : dst_(dst), receiver_(receiver), key_(key) { |
+ set_comment("[ DeferredReferenceGetKeyedValue"); |
+ } |
+ virtual void Generate(); |
-void DeferredInlineSmiAddReversed::Generate() { |
- GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
- igostub.GenerateCall(masm_, value_, dst_); |
- if (!dst_.is(rax)) __ movq(dst_, rax); |
-} |
+ Label* patch_site() { return &patch_site_; } |
+ private: |
+ Label patch_site_; |
+ Register dst_; |
+ Register receiver_; |
+ Register key_; |
+}; |
-void DeferredInlineSmiSub::Generate() { |
- GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB); |
- igostub.GenerateCall(masm_, dst_, value_); |
- if (!dst_.is(rax)) __ movq(dst_, rax); |
-} |
- |
-void DeferredInlineSmiOperation::Generate() { |
- // For mod we don't generate all the Smi code inline. |
- GenericBinaryOpStub stub( |
- op_, |
- overwrite_mode_, |
- (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB); |
- stub.GenerateCall(masm_, src_, value_); |
- if (!dst_.is(rax)) __ movq(dst_, rax); |
-} |
- |
- |
-void DeferredInlineSmiOperationReversed::Generate() { |
- GenericBinaryOpStub stub( |
- op_, |
- overwrite_mode_, |
- NO_SMI_CODE_IN_STUB); |
- stub.GenerateCall(masm_, value_, src_); |
- if (!dst_.is(rax)) __ movq(dst_, rax); |
-} |
- |
- |
-Result CodeGenerator::ConstantSmiBinaryOperation(BinaryOperation* expr, |
- Result* operand, |
- Handle<Object> value, |
- bool reversed, |
- OverwriteMode overwrite_mode) { |
- // Generate inline code for a binary operation when one of the |
- // operands is a constant smi. Consumes the argument "operand". |
- if (IsUnsafeSmi(value)) { |
- Result unsafe_operand(value); |
- if (reversed) { |
- return LikelySmiBinaryOperation(expr, &unsafe_operand, operand, |
- overwrite_mode); |
+void DeferredReferenceGetKeyedValue::Generate() { |
+ if (receiver_.is(rdx)) { |
+ if (!key_.is(rax)) { |
+ __ movq(rax, key_); |
+ } // else do nothing. |
+ } else if (receiver_.is(rax)) { |
+ if (key_.is(rdx)) { |
+ __ xchg(rax, rdx); |
+ } else if (key_.is(rax)) { |
+ __ movq(rdx, receiver_); |
} else { |
- return LikelySmiBinaryOperation(expr, operand, &unsafe_operand, |
- overwrite_mode); |
+ __ movq(rdx, receiver_); |
+ __ movq(rax, key_); |
} |
+ } else if (key_.is(rax)) { |
+ __ movq(rdx, receiver_); |
+ } else { |
+ __ movq(rax, key_); |
+ __ movq(rdx, receiver_); |
} |
+ // Calculate the delta from the IC call instruction to the map check |
+ // movq instruction in the inlined version. This delta is stored in |
+ // a test(rax, delta) instruction after the call so that we can find |
+ // it in the IC initialization code and patch the movq instruction. |
+ // This means that we cannot allow test instructions after calls to |
+ // KeyedLoadIC stubs in other places. |
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); |
+ __ Call(ic, RelocInfo::CODE_TARGET); |
+ // The delta from the start of the map-compare instruction to the |
+ // test instruction. We use masm_-> directly here instead of the __ |
+ // macro because the macro sometimes uses macro expansion to turn |
+ // into something that can't return a value. This is encountered |
+ // when doing generated code coverage tests. |
+ int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
+ // Here we use masm_-> instead of the __ macro because this is the |
+ // instruction that gets patched and coverage code gets in the way. |
+ // TODO(X64): Consider whether it's worth switching the test to a |
+ // 7-byte NOP with non-zero immediate (0f 1f 80 xxxxxxxx) which won't |
+ // be generated normally. |
+ masm_->testl(rax, Immediate(-delta_to_patch_site)); |
+ __ IncrementCounter(&Counters::keyed_load_inline_miss, 1); |
- // Get the literal value. |
- Smi* smi_value = Smi::cast(*value); |
- int int_value = smi_value->value(); |
- |
- Token::Value op = expr->op(); |
- Result answer; |
- switch (op) { |
- case Token::ADD: { |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- DeferredCode* deferred = NULL; |
- if (reversed) { |
- deferred = new DeferredInlineSmiAddReversed(operand->reg(), |
- smi_value, |
- overwrite_mode); |
- } else { |
- deferred = new DeferredInlineSmiAdd(operand->reg(), |
- smi_value, |
- overwrite_mode); |
- } |
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
- deferred); |
- __ SmiAddConstant(operand->reg(), |
- operand->reg(), |
- smi_value, |
- deferred->entry_label()); |
- deferred->BindExit(); |
- answer = *operand; |
- break; |
- } |
- |
- case Token::SUB: { |
- if (reversed) { |
- Result constant_operand(value); |
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
- overwrite_mode); |
- } else { |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- DeferredCode* deferred = new DeferredInlineSmiSub(operand->reg(), |
- smi_value, |
- overwrite_mode); |
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
- deferred); |
- // A smi currently fits in a 32-bit Immediate. |
- __ SmiSubConstant(operand->reg(), |
- operand->reg(), |
- smi_value, |
- deferred->entry_label()); |
- deferred->BindExit(); |
- answer = *operand; |
- } |
- break; |
- } |
- |
- case Token::SAR: |
- if (reversed) { |
- Result constant_operand(value); |
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
- overwrite_mode); |
- } else { |
- // Only the least significant 5 bits of the shift value are used. |
- // In the slow case, this masking is done inside the runtime call. |
- int shift_value = int_value & 0x1f; |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, |
- operand->reg(), |
- operand->reg(), |
- smi_value, |
- overwrite_mode); |
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
- deferred); |
- __ SmiShiftArithmeticRightConstant(operand->reg(), |
- operand->reg(), |
- shift_value); |
- deferred->BindExit(); |
- answer = *operand; |
- } |
- break; |
- |
- case Token::SHR: |
- if (reversed) { |
- Result constant_operand(value); |
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
- overwrite_mode); |
- } else { |
- // Only the least significant 5 bits of the shift value are used. |
- // In the slow case, this masking is done inside the runtime call. |
- int shift_value = int_value & 0x1f; |
- operand->ToRegister(); |
- answer = allocator()->Allocate(); |
- ASSERT(answer.is_valid()); |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, |
- answer.reg(), |
- operand->reg(), |
- smi_value, |
- overwrite_mode); |
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
- deferred); |
- __ SmiShiftLogicalRightConstant(answer.reg(), |
- operand->reg(), |
- shift_value, |
- deferred->entry_label()); |
- deferred->BindExit(); |
- operand->Unuse(); |
- } |
- break; |
- |
- case Token::SHL: |
- if (reversed) { |
- operand->ToRegister(); |
- |
- // We need rcx to be available to hold operand, and to be spilled. |
- // SmiShiftLeft implicitly modifies rcx. |
- if (operand->reg().is(rcx)) { |
- frame_->Spill(operand->reg()); |
- answer = allocator()->Allocate(); |
- } else { |
- Result rcx_reg = allocator()->Allocate(rcx); |
- // answer must not be rcx. |
- answer = allocator()->Allocate(); |
- // rcx_reg goes out of scope. |
- } |
- |
- DeferredInlineSmiOperationReversed* deferred = |
- new DeferredInlineSmiOperationReversed(op, |
- answer.reg(), |
- smi_value, |
- operand->reg(), |
- overwrite_mode); |
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
- deferred); |
- |
- __ Move(answer.reg(), smi_value); |
- __ SmiShiftLeft(answer.reg(), answer.reg(), operand->reg()); |
- operand->Unuse(); |
- |
- deferred->BindExit(); |
- } else { |
- // Only the least significant 5 bits of the shift value are used. |
- // In the slow case, this masking is done inside the runtime call. |
- int shift_value = int_value & 0x1f; |
- operand->ToRegister(); |
- if (shift_value == 0) { |
- // Spill operand so it can be overwritten in the slow case. |
- frame_->Spill(operand->reg()); |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, |
- operand->reg(), |
- operand->reg(), |
- smi_value, |
- overwrite_mode); |
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
- deferred); |
- deferred->BindExit(); |
- answer = *operand; |
- } else { |
- // Use a fresh temporary for nonzero shift values. |
- answer = allocator()->Allocate(); |
- ASSERT(answer.is_valid()); |
- DeferredInlineSmiOperation* deferred = |
- new DeferredInlineSmiOperation(op, |
- answer.reg(), |
- operand->reg(), |
- smi_value, |
- overwrite_mode); |
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
- deferred); |
- __ SmiShiftLeftConstant(answer.reg(), |
- operand->reg(), |
- shift_value); |
- deferred->BindExit(); |
- operand->Unuse(); |
- } |
- } |
- break; |
- |
- case Token::BIT_OR: |
- case Token::BIT_XOR: |
- case Token::BIT_AND: { |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- if (reversed) { |
- // Bit operations with a constant smi are commutative. |
- // We can swap left and right operands with no problem. |
- // Swap left and right overwrite modes. 0->0, 1->2, 2->1. |
- overwrite_mode = static_cast<OverwriteMode>((2 * overwrite_mode) % 3); |
- } |
- DeferredCode* deferred = new DeferredInlineSmiOperation(op, |
- operand->reg(), |
- operand->reg(), |
- smi_value, |
- overwrite_mode); |
- JumpIfNotSmiUsingTypeInfo(operand->reg(), operand->type_info(), |
- deferred); |
- if (op == Token::BIT_AND) { |
- __ SmiAndConstant(operand->reg(), operand->reg(), smi_value); |
- } else if (op == Token::BIT_XOR) { |
- if (int_value != 0) { |
- __ SmiXorConstant(operand->reg(), operand->reg(), smi_value); |
- } |
- } else { |
- ASSERT(op == Token::BIT_OR); |
- if (int_value != 0) { |
- __ SmiOrConstant(operand->reg(), operand->reg(), smi_value); |
- } |
- } |
- deferred->BindExit(); |
- answer = *operand; |
- break; |
- } |
- |
- // Generate inline code for mod of powers of 2 and negative powers of 2. |
- case Token::MOD: |
- if (!reversed && |
- int_value != 0 && |
- (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { |
- operand->ToRegister(); |
- frame_->Spill(operand->reg()); |
- DeferredCode* deferred = |
- new DeferredInlineSmiOperation(op, |
- operand->reg(), |
- operand->reg(), |
- smi_value, |
- overwrite_mode); |
- // Check for negative or non-Smi left hand side. |
- __ JumpIfNotPositiveSmi(operand->reg(), deferred->entry_label()); |
- if (int_value < 0) int_value = -int_value; |
- if (int_value == 1) { |
- __ Move(operand->reg(), Smi::FromInt(0)); |
- } else { |
- __ SmiAndConstant(operand->reg(), |
- operand->reg(), |
- Smi::FromInt(int_value - 1)); |
- } |
- deferred->BindExit(); |
- answer = *operand; |
- break; // This break only applies if we generated code for MOD. |
- } |
- // Fall through if we did not find a power of 2 on the right hand side! |
- // The next case must be the default. |
- |
- default: { |
- Result constant_operand(value); |
- if (reversed) { |
- answer = LikelySmiBinaryOperation(expr, &constant_operand, operand, |
- overwrite_mode); |
- } else { |
- answer = LikelySmiBinaryOperation(expr, operand, &constant_operand, |
- overwrite_mode); |
- } |
- break; |
- } |
- } |
- ASSERT(answer.is_valid()); |
- return answer; |
+ if (!dst_.is(rax)) __ movq(dst_, rax); |
} |
-void CodeGenerator::JumpIfNotSmiUsingTypeInfo(Register reg, |
- TypeInfo type, |
- DeferredCode* deferred) { |
- if (!type.IsSmi()) { |
- __ JumpIfNotSmi(reg, deferred->entry_label()); |
+class DeferredReferenceSetKeyedValue: public DeferredCode { |
+ public: |
+ DeferredReferenceSetKeyedValue(Register value, |
+ Register key, |
+ Register receiver) |
+ : value_(value), key_(key), receiver_(receiver) { |
+ set_comment("[ DeferredReferenceSetKeyedValue"); |
} |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(reg); |
- } |
-} |
+ virtual void Generate(); |
-void CodeGenerator::JumpIfNotBothSmiUsingTypeInfo(Register left, |
- Register right, |
- TypeInfo left_info, |
- TypeInfo right_info, |
- DeferredCode* deferred) { |
- if (!left_info.IsSmi() && !right_info.IsSmi()) { |
- __ JumpIfNotBothSmi(left, right, deferred->entry_label()); |
- } else if (!left_info.IsSmi()) { |
- __ JumpIfNotSmi(left, deferred->entry_label()); |
- } else if (!right_info.IsSmi()) { |
- __ JumpIfNotSmi(right, deferred->entry_label()); |
- } |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(left); |
- __ AbortIfNotSmi(right); |
- } |
-} |
+ Label* patch_site() { return &patch_site_; } |
+ private: |
+ Register value_; |
+ Register key_; |
+ Register receiver_; |
+ Label patch_site_; |
+}; |
-// Implements a binary operation using a deferred code object and some |
-// inline code to operate on smis quickly. |
-Result CodeGenerator::LikelySmiBinaryOperation(BinaryOperation* expr, |
- Result* left, |
- Result* right, |
- OverwriteMode overwrite_mode) { |
- // Copy the type info because left and right may be overwritten. |
- TypeInfo left_type_info = left->type_info(); |
- TypeInfo right_type_info = right->type_info(); |
- Token::Value op = expr->op(); |
- Result answer; |
- // Special handling of div and mod because they use fixed registers. |
- if (op == Token::DIV || op == Token::MOD) { |
- // We need rax as the quotient register, rdx as the remainder |
- // register, neither left nor right in rax or rdx, and left copied |
- // to rax. |
- Result quotient; |
- Result remainder; |
- bool left_is_in_rax = false; |
- // Step 1: get rax for quotient. |
- if ((left->is_register() && left->reg().is(rax)) || |
- (right->is_register() && right->reg().is(rax))) { |
- // One or both is in rax. Use a fresh non-rdx register for |
- // them. |
- Result fresh = allocator_->Allocate(); |
- ASSERT(fresh.is_valid()); |
- if (fresh.reg().is(rdx)) { |
- remainder = fresh; |
- fresh = allocator_->Allocate(); |
- ASSERT(fresh.is_valid()); |
- } |
- if (left->is_register() && left->reg().is(rax)) { |
- quotient = *left; |
- *left = fresh; |
- left_is_in_rax = true; |
- } |
- if (right->is_register() && right->reg().is(rax)) { |
- quotient = *right; |
- *right = fresh; |
- } |
- __ movq(fresh.reg(), rax); |
- } else { |
- // Neither left nor right is in rax. |
- quotient = allocator_->Allocate(rax); |
- } |
- ASSERT(quotient.is_register() && quotient.reg().is(rax)); |
- ASSERT(!(left->is_register() && left->reg().is(rax))); |
- ASSERT(!(right->is_register() && right->reg().is(rax))); |
- // Step 2: get rdx for remainder if necessary. |
- if (!remainder.is_valid()) { |
- if ((left->is_register() && left->reg().is(rdx)) || |
- (right->is_register() && right->reg().is(rdx))) { |
- Result fresh = allocator_->Allocate(); |
- ASSERT(fresh.is_valid()); |
- if (left->is_register() && left->reg().is(rdx)) { |
- remainder = *left; |
- *left = fresh; |
- } |
- if (right->is_register() && right->reg().is(rdx)) { |
- remainder = *right; |
- *right = fresh; |
- } |
- __ movq(fresh.reg(), rdx); |
- } else { |
- // Neither left nor right is in rdx. |
- remainder = allocator_->Allocate(rdx); |
- } |
- } |
- ASSERT(remainder.is_register() && remainder.reg().is(rdx)); |
- ASSERT(!(left->is_register() && left->reg().is(rdx))); |
- ASSERT(!(right->is_register() && right->reg().is(rdx))); |
- |
- left->ToRegister(); |
- right->ToRegister(); |
- frame_->Spill(rax); |
- frame_->Spill(rdx); |
- |
- // Check that left and right are smi tagged. |
- DeferredInlineBinaryOperation* deferred = |
- new DeferredInlineBinaryOperation(op, |
- (op == Token::DIV) ? rax : rdx, |
- left->reg(), |
- right->reg(), |
- overwrite_mode); |
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), |
- left_type_info, right_type_info, deferred); |
- |
- if (op == Token::DIV) { |
- __ SmiDiv(rax, left->reg(), right->reg(), deferred->entry_label()); |
- deferred->BindExit(); |
- left->Unuse(); |
- right->Unuse(); |
- answer = quotient; |
+void DeferredReferenceSetKeyedValue::Generate() { |
+ __ IncrementCounter(&Counters::keyed_store_inline_miss, 1); |
+ // Move value, receiver, and key to registers rax, rdx, and rcx, as |
+ // the IC stub expects. |
+ // Move value to rax, using xchg if the receiver or key is in rax. |
+ if (!value_.is(rax)) { |
+ if (!receiver_.is(rax) && !key_.is(rax)) { |
+ __ movq(rax, value_); |
} else { |
- ASSERT(op == Token::MOD); |
- __ SmiMod(rdx, left->reg(), right->reg(), deferred->entry_label()); |
- deferred->BindExit(); |
- left->Unuse(); |
- right->Unuse(); |
- answer = remainder; |
- } |
- ASSERT(answer.is_valid()); |
- return answer; |
- } |
- |
- // Special handling of shift operations because they use fixed |
- // registers. |
- if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { |
- // Move left out of rcx if necessary. |
- if (left->is_register() && left->reg().is(rcx)) { |
- *left = allocator_->Allocate(); |
- ASSERT(left->is_valid()); |
- __ movq(left->reg(), rcx); |
- } |
- right->ToRegister(rcx); |
- left->ToRegister(); |
- ASSERT(left->is_register() && !left->reg().is(rcx)); |
- ASSERT(right->is_register() && right->reg().is(rcx)); |
- |
- // We will modify right, it must be spilled. |
- frame_->Spill(rcx); |
- |
- // Use a fresh answer register to avoid spilling the left operand. |
- answer = allocator_->Allocate(); |
- ASSERT(answer.is_valid()); |
- // Check that both operands are smis using the answer register as a |
- // temporary. |
- DeferredInlineBinaryOperation* deferred = |
- new DeferredInlineBinaryOperation(op, |
- answer.reg(), |
- left->reg(), |
- rcx, |
- overwrite_mode); |
- |
- Label do_op; |
- if (right_type_info.IsSmi()) { |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(right->reg()); |
+ __ xchg(rax, value_); |
+ // Update receiver_ and key_ if they are affected by the swap. |
+ if (receiver_.is(rax)) { |
+ receiver_ = value_; |
+ } else if (receiver_.is(value_)) { |
+ receiver_ = rax; |
} |
- __ movq(answer.reg(), left->reg()); |
- // If left is not known to be a smi, check if it is. |
- // If left is not known to be a number, and it isn't a smi, check if |
- // it is a HeapNumber. |
- if (!left_type_info.IsSmi()) { |
- __ JumpIfSmi(answer.reg(), &do_op); |
- if (!left_type_info.IsNumber()) { |
- // Branch if not a heapnumber. |
- __ Cmp(FieldOperand(answer.reg(), HeapObject::kMapOffset), |
- Factory::heap_number_map()); |
- deferred->Branch(not_equal); |
- } |
- // Load integer value into answer register using truncation. |
- __ cvttsd2si(answer.reg(), |
- FieldOperand(answer.reg(), HeapNumber::kValueOffset)); |
- // Branch if we might have overflowed. |
- // (False negative for Smi::kMinValue) |
- __ cmpq(answer.reg(), Immediate(0x80000000)); |
- deferred->Branch(equal); |
- // TODO(lrn): Inline shifts on int32 here instead of first smi-tagging. |
- __ Integer32ToSmi(answer.reg(), answer.reg()); |
- } else { |
- // Fast case - both are actually smis. |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(left->reg()); |
- } |
+ if (key_.is(rax)) { |
+ key_ = value_; |
+ } else if (key_.is(value_)) { |
+ key_ = rax; |
} |
- } else { |
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), rcx, |
- left_type_info, right_type_info, deferred); |
} |
- __ bind(&do_op); |
- |
- // Perform the operation. |
- switch (op) { |
- case Token::SAR: |
- __ SmiShiftArithmeticRight(answer.reg(), left->reg(), rcx); |
- break; |
- case Token::SHR: { |
- __ SmiShiftLogicalRight(answer.reg(), |
- left->reg(), |
- rcx, |
- deferred->entry_label()); |
- break; |
- } |
- case Token::SHL: { |
- __ SmiShiftLeft(answer.reg(), |
- left->reg(), |
- rcx); |
- break; |
- } |
- default: |
- UNREACHABLE(); |
- } |
- deferred->BindExit(); |
- left->Unuse(); |
- right->Unuse(); |
- ASSERT(answer.is_valid()); |
- return answer; |
} |
- |
- // Handle the other binary operations. |
- left->ToRegister(); |
- right->ToRegister(); |
- // A newly allocated register answer is used to hold the answer. The |
- // registers containing left and right are not modified so they don't |
- // need to be spilled in the fast case. |
- answer = allocator_->Allocate(); |
- ASSERT(answer.is_valid()); |
- |
- // Perform the smi tag check. |
- DeferredInlineBinaryOperation* deferred = |
- new DeferredInlineBinaryOperation(op, |
- answer.reg(), |
- left->reg(), |
- right->reg(), |
- overwrite_mode); |
- JumpIfNotBothSmiUsingTypeInfo(left->reg(), right->reg(), |
- left_type_info, right_type_info, deferred); |
- |
- switch (op) { |
- case Token::ADD: |
- __ SmiAdd(answer.reg(), |
- left->reg(), |
- right->reg(), |
- deferred->entry_label()); |
- break; |
- |
- case Token::SUB: |
- __ SmiSub(answer.reg(), |
- left->reg(), |
- right->reg(), |
- deferred->entry_label()); |
- break; |
- |
- case Token::MUL: { |
- __ SmiMul(answer.reg(), |
- left->reg(), |
- right->reg(), |
- deferred->entry_label()); |
- break; |
+ // Value is now in rax. Its original location is remembered in value_, |
+ // and the value is restored to value_ before returning. |
+ // The variables receiver_ and key_ are not preserved. |
+ // Move receiver and key to rdx and rcx, swapping if necessary. |
+ if (receiver_.is(rdx)) { |
+ if (!key_.is(rcx)) { |
+ __ movq(rcx, key_); |
+ } // Else everything is already in the right place. |
+ } else if (receiver_.is(rcx)) { |
+ if (key_.is(rdx)) { |
+ __ xchg(rcx, rdx); |
+ } else if (key_.is(rcx)) { |
+ __ movq(rdx, receiver_); |
+ } else { |
+ __ movq(rdx, receiver_); |
+ __ movq(rcx, key_); |
} |
- |
- case Token::BIT_OR: |
- __ SmiOr(answer.reg(), left->reg(), right->reg()); |
- break; |
- |
- case Token::BIT_AND: |
- __ SmiAnd(answer.reg(), left->reg(), right->reg()); |
- break; |
- |
- case Token::BIT_XOR: |
- __ SmiXor(answer.reg(), left->reg(), right->reg()); |
- break; |
- |
- default: |
- UNREACHABLE(); |
- break; |
+ } else if (key_.is(rcx)) { |
+ __ movq(rdx, receiver_); |
+ } else { |
+ __ movq(rcx, key_); |
+ __ movq(rdx, receiver_); |
} |
- deferred->BindExit(); |
- left->Unuse(); |
- right->Unuse(); |
- ASSERT(answer.is_valid()); |
- return answer; |
+ |
+ // Call the IC stub. |
+ Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); |
+ __ Call(ic, RelocInfo::CODE_TARGET); |
+ // The delta from the start of the map-compare instructions (initial movq) |
+ // to the test instruction. We use masm_-> directly here instead of the |
+ // __ macro because the macro sometimes uses macro expansion to turn |
+ // into something that can't return a value. This is encountered |
+ // when doing generated code coverage tests. |
+ int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); |
+ // Here we use masm_-> instead of the __ macro because this is the |
+ // instruction that gets patched and coverage code gets in the way. |
+ masm_->testl(rax, Immediate(-delta_to_patch_site)); |
+ // Restore value (returned from store IC). |
+ if (!value_.is(rax)) __ movq(value_, rax); |
} |
@@ -8140,91 +8268,702 @@ |
} |
-bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { |
- Object* answer_object = Heap::undefined_value(); |
- switch (op) { |
- case Token::ADD: |
- // Use intptr_t to detect overflow of 32-bit int. |
- if (Smi::IsValid(static_cast<intptr_t>(left) + right)) { |
- answer_object = Smi::FromInt(left + right); |
+void GenericBinaryOpStub::GenerateCall( |
+ MacroAssembler* masm, |
+ Register left, |
+ Register right) { |
+ if (!ArgsInRegistersSupported()) { |
+ // Pass arguments on the stack. |
+ __ push(left); |
+ __ push(right); |
+ } else { |
+ // The calling convention with registers is left in rdx and right in rax. |
+ Register left_arg = rdx; |
+ Register right_arg = rax; |
+ if (!(left.is(left_arg) && right.is(right_arg))) { |
+ if (left.is(right_arg) && right.is(left_arg)) { |
+ if (IsOperationCommutative()) { |
+ SetArgsReversed(); |
+ } else { |
+ __ xchg(left, right); |
+ } |
+ } else if (left.is(left_arg)) { |
+ __ movq(right_arg, right); |
+ } else if (right.is(right_arg)) { |
+ __ movq(left_arg, left); |
+ } else if (left.is(right_arg)) { |
+ if (IsOperationCommutative()) { |
+ __ movq(left_arg, right); |
+ SetArgsReversed(); |
+ } else { |
+ // Order of moves important to avoid destroying left argument. |
+ __ movq(left_arg, left); |
+ __ movq(right_arg, right); |
+ } |
+ } else if (right.is(left_arg)) { |
+ if (IsOperationCommutative()) { |
+ __ movq(right_arg, left); |
+ SetArgsReversed(); |
+ } else { |
+ // Order of moves important to avoid destroying right argument. |
+ __ movq(right_arg, right); |
+ __ movq(left_arg, left); |
+ } |
+ } else { |
+ // Order of moves is not important. |
+ __ movq(left_arg, left); |
+ __ movq(right_arg, right); |
} |
+ } |
+ |
+ // Update flags to indicate that arguments are in registers. |
+ SetArgsInRegisters(); |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
+ } |
+ |
+ // Call the stub. |
+ __ CallStub(this); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateCall( |
+ MacroAssembler* masm, |
+ Register left, |
+ Smi* right) { |
+ if (!ArgsInRegistersSupported()) { |
+ // Pass arguments on the stack. |
+ __ push(left); |
+ __ Push(right); |
+ } else { |
+ // The calling convention with registers is left in rdx and right in rax. |
+ Register left_arg = rdx; |
+ Register right_arg = rax; |
+ if (left.is(left_arg)) { |
+ __ Move(right_arg, right); |
+ } else if (left.is(right_arg) && IsOperationCommutative()) { |
+ __ Move(left_arg, right); |
+ SetArgsReversed(); |
+ } else { |
+ // For non-commutative operations, left and right_arg might be |
+ // the same register. Therefore, the order of the moves is |
+ // important here in order to not overwrite left before moving |
+ // it to left_arg. |
+ __ movq(left_arg, left); |
+ __ Move(right_arg, right); |
+ } |
+ |
+ // Update flags to indicate that arguments are in registers. |
+ SetArgsInRegisters(); |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
+ } |
+ |
+ // Call the stub. |
+ __ CallStub(this); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateCall( |
+ MacroAssembler* masm, |
+ Smi* left, |
+ Register right) { |
+ if (!ArgsInRegistersSupported()) { |
+ // Pass arguments on the stack. |
+ __ Push(left); |
+ __ push(right); |
+ } else { |
+ // The calling convention with registers is left in rdx and right in rax. |
+ Register left_arg = rdx; |
+ Register right_arg = rax; |
+ if (right.is(right_arg)) { |
+ __ Move(left_arg, left); |
+ } else if (right.is(left_arg) && IsOperationCommutative()) { |
+ __ Move(right_arg, left); |
+ SetArgsReversed(); |
+ } else { |
+ // For non-commutative operations, right and left_arg might be |
+ // the same register. Therefore, the order of the moves is |
+ // important here in order to not overwrite right before moving |
+ // it to right_arg. |
+ __ movq(right_arg, right); |
+ __ Move(left_arg, left); |
+ } |
+ // Update flags to indicate that arguments are in registers. |
+ SetArgsInRegisters(); |
+ __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
+ } |
+ |
+ // Call the stub. |
+ __ CallStub(this); |
+} |
+ |
+ |
+Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm, |
+ VirtualFrame* frame, |
+ Result* left, |
+ Result* right) { |
+ if (ArgsInRegistersSupported()) { |
+ SetArgsInRegisters(); |
+ return frame->CallStub(this, left, right); |
+ } else { |
+ frame->Push(left); |
+ frame->Push(right); |
+ return frame->CallStub(this, 2); |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { |
+ // 1. Move arguments into rdx, rax except for DIV and MOD, which need the |
+ // dividend in rax and rdx free for the division. Use rax, rbx for those. |
+ Comment load_comment(masm, "-- Load arguments"); |
+ Register left = rdx; |
+ Register right = rax; |
+ if (op_ == Token::DIV || op_ == Token::MOD) { |
+ left = rax; |
+ right = rbx; |
+ if (HasArgsInRegisters()) { |
+ __ movq(rbx, rax); |
+ __ movq(rax, rdx); |
+ } |
+ } |
+ if (!HasArgsInRegisters()) { |
+ __ movq(right, Operand(rsp, 1 * kPointerSize)); |
+ __ movq(left, Operand(rsp, 2 * kPointerSize)); |
+ } |
+ |
+ Label not_smis; |
+ // 2. Smi check both operands. |
+ if (static_operands_type_.IsSmi()) { |
+ // Skip smi check if we know that both arguments are smis. |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotSmi(left); |
+ __ AbortIfNotSmi(right); |
+ } |
+ if (op_ == Token::BIT_OR) { |
+ // Handle OR here, since we do extra smi-checking in the or code below. |
+ __ SmiOr(right, right, left); |
+ GenerateReturn(masm); |
+ return; |
+ } |
+ } else { |
+ if (op_ != Token::BIT_OR) { |
+ // Skip the check for OR as it is better combined with the |
+ // actual operation. |
+ Comment smi_check_comment(masm, "-- Smi check arguments"); |
+ __ JumpIfNotBothSmi(left, right, ¬_smis); |
+ } |
+ } |
+ |
+ // 3. Operands are both smis (except for OR), perform the operation leaving |
+ // the result in rax and check the result if necessary. |
+ Comment perform_smi(masm, "-- Perform smi operation"); |
+ Label use_fp_on_smis; |
+ switch (op_) { |
+ case Token::ADD: { |
+ ASSERT(right.is(rax)); |
+ __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative. |
break; |
- case Token::SUB: |
- // Use intptr_t to detect overflow of 32-bit int. |
- if (Smi::IsValid(static_cast<intptr_t>(left) - right)) { |
- answer_object = Smi::FromInt(left - right); |
- } |
+ } |
+ |
+ case Token::SUB: { |
+ __ SmiSub(left, left, right, &use_fp_on_smis); |
+ __ movq(rax, left); |
break; |
- case Token::MUL: { |
- double answer = static_cast<double>(left) * right; |
- if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { |
- // If the product is zero and the non-zero factor is negative, |
- // the spec requires us to return floating point negative zero. |
- if (answer != 0 || (left + right) >= 0) { |
- answer_object = Smi::FromInt(static_cast<int>(answer)); |
- } |
- } |
- } |
+ } |
+ |
+ case Token::MUL: |
+ ASSERT(right.is(rax)); |
+ __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative. |
break; |
+ |
case Token::DIV: |
+ ASSERT(left.is(rax)); |
+ __ SmiDiv(left, left, right, &use_fp_on_smis); |
+ break; |
+ |
case Token::MOD: |
+ ASSERT(left.is(rax)); |
+ __ SmiMod(left, left, right, slow); |
break; |
+ |
case Token::BIT_OR: |
- answer_object = Smi::FromInt(left | right); |
+ ASSERT(right.is(rax)); |
+ __ movq(rcx, right); // Save the right operand. |
+ __ SmiOr(right, right, left); // BIT_OR is commutative. |
+ __ testb(right, Immediate(kSmiTagMask)); |
+ __ j(not_zero, ¬_smis); |
break; |
+ |
case Token::BIT_AND: |
- answer_object = Smi::FromInt(left & right); |
+ ASSERT(right.is(rax)); |
+ __ SmiAnd(right, right, left); // BIT_AND is commutative. |
break; |
+ |
case Token::BIT_XOR: |
- answer_object = Smi::FromInt(left ^ right); |
+ ASSERT(right.is(rax)); |
+ __ SmiXor(right, right, left); // BIT_XOR is commutative. |
break; |
- case Token::SHL: { |
- int shift_amount = right & 0x1F; |
- if (Smi::IsValid(left << shift_amount)) { |
- answer_object = Smi::FromInt(left << shift_amount); |
+ case Token::SHL: |
+ case Token::SHR: |
+ case Token::SAR: |
+ switch (op_) { |
+ case Token::SAR: |
+ __ SmiShiftArithmeticRight(left, left, right); |
+ break; |
+ case Token::SHR: |
+ __ SmiShiftLogicalRight(left, left, right, slow); |
+ break; |
+ case Token::SHL: |
+ __ SmiShiftLeft(left, left, right); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ __ movq(rax, left); |
+ break; |
+ |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ |
+ // 4. Emit return of result in rax. |
+ GenerateReturn(masm); |
+ |
+ // 5. For some operations emit inline code to perform floating point |
+ // operations on known smis (e.g., if the result of the operation |
+ // overflowed the smi range). |
+ switch (op_) { |
+ case Token::ADD: |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: { |
+ ASSERT(use_fp_on_smis.is_linked()); |
+ __ bind(&use_fp_on_smis); |
+ if (op_ == Token::DIV) { |
+ __ movq(rdx, rax); |
+ __ movq(rax, rbx); |
+ } |
+ // left is rdx, right is rax. |
+ __ AllocateHeapNumber(rbx, rcx, slow); |
+ FloatingPointHelper::LoadSSE2SmiOperands(masm); |
+ switch (op_) { |
+ case Token::ADD: __ addsd(xmm0, xmm1); break; |
+ case Token::SUB: __ subsd(xmm0, xmm1); break; |
+ case Token::MUL: __ mulsd(xmm0, xmm1); break; |
+ case Token::DIV: __ divsd(xmm0, xmm1); break; |
+ default: UNREACHABLE(); |
+ } |
+ __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0); |
+ __ movq(rax, rbx); |
+ GenerateReturn(masm); |
+ } |
+ default: |
+ break; |
+ } |
+ |
+ // 6. Non-smi operands, fall out to the non-smi code with the operands in |
+ // rdx and rax. |
+ Comment done_comment(masm, "-- Enter non-smi code"); |
+ __ bind(¬_smis); |
+ |
+ switch (op_) { |
+ case Token::DIV: |
+ case Token::MOD: |
+ // Operands are in rax, rbx at this point. |
+ __ movq(rdx, rax); |
+ __ movq(rax, rbx); |
+ break; |
+ |
+ case Token::BIT_OR: |
+ // Right operand is saved in rcx and rax was destroyed by the smi |
+ // operation. |
+ __ movq(rax, rcx); |
+ break; |
+ |
+ default: |
+ break; |
+ } |
+} |
+ |
+ |
+void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
+ Label call_runtime; |
+ |
+ if (ShouldGenerateSmiCode()) { |
+ GenerateSmiCode(masm, &call_runtime); |
+ } else if (op_ != Token::MOD) { |
+ if (!HasArgsInRegisters()) { |
+ GenerateLoadArguments(masm); |
+ } |
+ } |
+ // Floating point case. |
+ if (ShouldGenerateFPCode()) { |
+ switch (op_) { |
+ case Token::ADD: |
+ case Token::SUB: |
+ case Token::MUL: |
+ case Token::DIV: { |
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
+ HasSmiCodeInStub()) { |
+ // Execution reaches this point when the first non-smi argument occurs |
+ // (and only if smi code is generated). This is the right moment to |
+ // patch to HEAP_NUMBERS state. The transition is attempted only for |
+ // the four basic operations. The stub stays in the DEFAULT state |
+ // forever for all other operations (also if smi code is skipped). |
+ GenerateTypeTransition(masm); |
+ break; |
} |
+ |
+ Label not_floats; |
+ // rax: y |
+ // rdx: x |
+ if (static_operands_type_.IsNumber()) { |
+ if (FLAG_debug_code) { |
+ // Assert at runtime that inputs are only numbers. |
+ __ AbortIfNotNumber(rdx); |
+ __ AbortIfNotNumber(rax); |
+ } |
+ FloatingPointHelper::LoadSSE2NumberOperands(masm); |
+ } else { |
+ FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime); |
+ } |
+ |
+ switch (op_) { |
+ case Token::ADD: __ addsd(xmm0, xmm1); break; |
+ case Token::SUB: __ subsd(xmm0, xmm1); break; |
+ case Token::MUL: __ mulsd(xmm0, xmm1); break; |
+ case Token::DIV: __ divsd(xmm0, xmm1); break; |
+ default: UNREACHABLE(); |
+ } |
+ // Allocate a heap number, if needed. |
+ Label skip_allocation; |
+ OverwriteMode mode = mode_; |
+ if (HasArgsReversed()) { |
+ if (mode == OVERWRITE_RIGHT) { |
+ mode = OVERWRITE_LEFT; |
+ } else if (mode == OVERWRITE_LEFT) { |
+ mode = OVERWRITE_RIGHT; |
+ } |
+ } |
+ switch (mode) { |
+ case OVERWRITE_LEFT: |
+ __ JumpIfNotSmi(rdx, &skip_allocation); |
+ __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
+ __ movq(rdx, rbx); |
+ __ bind(&skip_allocation); |
+ __ movq(rax, rdx); |
+ break; |
+ case OVERWRITE_RIGHT: |
+ // If the argument in rax is already an object, we skip the |
+ // allocation of a heap number. |
+ __ JumpIfNotSmi(rax, &skip_allocation); |
+ // Fall through! |
+ case NO_OVERWRITE: |
+ // Allocate a heap number for the result. Keep rax and rdx intact |
+ // for the possible runtime call. |
+ __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
+ __ movq(rax, rbx); |
+ __ bind(&skip_allocation); |
+ break; |
+ default: UNREACHABLE(); |
+ } |
+ __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
+ GenerateReturn(masm); |
+ __ bind(¬_floats); |
+ if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
+ !HasSmiCodeInStub()) { |
+ // Execution reaches this point when the first non-number argument |
+ // occurs (and only if smi code is skipped from the stub, otherwise |
+ // the patching has already been done earlier in this case branch). |
+ // A perfect moment to try patching to STRINGS for ADD operation. |
+ if (op_ == Token::ADD) { |
+ GenerateTypeTransition(masm); |
+ } |
+ } |
break; |
} |
- case Token::SHR: { |
- int shift_amount = right & 0x1F; |
- unsigned int unsigned_left = left; |
- unsigned_left >>= shift_amount; |
- if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) { |
- answer_object = Smi::FromInt(unsigned_left); |
- } |
+ case Token::MOD: { |
+ // For MOD we go directly to runtime in the non-smi case. |
break; |
} |
- case Token::SAR: { |
- int shift_amount = right & 0x1F; |
- unsigned int unsigned_left = left; |
- if (left < 0) { |
- // Perform arithmetic shift of a negative number by |
- // complementing number, logical shifting, complementing again. |
- unsigned_left = ~unsigned_left; |
- unsigned_left >>= shift_amount; |
- unsigned_left = ~unsigned_left; |
+ case Token::BIT_OR: |
+ case Token::BIT_AND: |
+ case Token::BIT_XOR: |
+ case Token::SAR: |
+ case Token::SHL: |
+ case Token::SHR: { |
+ Label skip_allocation, non_smi_shr_result; |
+ Register heap_number_map = r9; |
+ __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
+ if (static_operands_type_.IsNumber()) { |
+ if (FLAG_debug_code) { |
+ // Assert at runtime that inputs are only numbers. |
+ __ AbortIfNotNumber(rdx); |
+ __ AbortIfNotNumber(rax); |
+ } |
+ FloatingPointHelper::LoadNumbersAsIntegers(masm); |
} else { |
- unsigned_left >>= shift_amount; |
+ FloatingPointHelper::LoadAsIntegers(masm, |
+ &call_runtime, |
+ heap_number_map); |
} |
- ASSERT(Smi::IsValid(static_cast<int32_t>(unsigned_left))); |
- answer_object = Smi::FromInt(static_cast<int32_t>(unsigned_left)); |
+ switch (op_) { |
+ case Token::BIT_OR: __ orl(rax, rcx); break; |
+ case Token::BIT_AND: __ andl(rax, rcx); break; |
+ case Token::BIT_XOR: __ xorl(rax, rcx); break; |
+ case Token::SAR: __ sarl_cl(rax); break; |
+ case Token::SHL: __ shll_cl(rax); break; |
+ case Token::SHR: { |
+ __ shrl_cl(rax); |
+ // Check if result is negative. This can only happen for a shift |
+ // by zero. |
+ __ testl(rax, rax); |
+ __ j(negative, &non_smi_shr_result); |
+ break; |
+ } |
+ default: UNREACHABLE(); |
+ } |
+ |
+ STATIC_ASSERT(kSmiValueSize == 32); |
+ // Tag smi result and return. |
+ __ Integer32ToSmi(rax, rax); |
+ GenerateReturn(masm); |
+ |
+ // All bit-ops except SHR return a signed int32 that can be |
+ // returned immediately as a smi. |
+ // We might need to allocate a HeapNumber if we shift a negative |
+ // number right by zero (i.e., convert to UInt32). |
+ if (op_ == Token::SHR) { |
+ ASSERT(non_smi_shr_result.is_linked()); |
+ __ bind(&non_smi_shr_result); |
+ // Allocate a heap number if needed. |
+ __ movl(rbx, rax); // rbx holds result value (uint32 value as int64). |
+ switch (mode_) { |
+ case OVERWRITE_LEFT: |
+ case OVERWRITE_RIGHT: |
+ // If the operand was an object, we skip the |
+ // allocation of a heap number. |
+ __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ? |
+ 1 * kPointerSize : 2 * kPointerSize)); |
+ __ JumpIfNotSmi(rax, &skip_allocation); |
+ // Fall through! |
+ case NO_OVERWRITE: |
+ // Allocate heap number in new space. |
+ // Not using AllocateHeapNumber macro in order to reuse |
+ // already loaded heap_number_map. |
+ __ AllocateInNewSpace(HeapNumber::kSize, |
+ rax, |
+ rcx, |
+ no_reg, |
+ &call_runtime, |
+ TAG_OBJECT); |
+ // Set the map. |
+ if (FLAG_debug_code) { |
+ __ AbortIfNotRootValue(heap_number_map, |
+ Heap::kHeapNumberMapRootIndex, |
+ "HeapNumberMap register clobbered."); |
+ } |
+ __ movq(FieldOperand(rax, HeapObject::kMapOffset), |
+ heap_number_map); |
+ __ bind(&skip_allocation); |
+ break; |
+ default: UNREACHABLE(); |
+ } |
+ // Store the result in the HeapNumber and return. |
+ __ cvtqsi2sd(xmm0, rbx); |
+ __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
+ GenerateReturn(masm); |
+ } |
+ |
break; |
} |
+ default: UNREACHABLE(); break; |
+ } |
+ } |
+ |
+ // If all else fails, use the runtime system to get the correct |
+ // result. If arguments was passed in registers now place them on the |
+ // stack in the correct order below the return address. |
+ __ bind(&call_runtime); |
+ |
+ if (HasArgsInRegisters()) { |
+ GenerateRegisterArgsPush(masm); |
+ } |
+ |
+ switch (op_) { |
+ case Token::ADD: { |
+ // Registers containing left and right operands respectively. |
+ Register lhs, rhs; |
+ |
+ if (HasArgsReversed()) { |
+ lhs = rax; |
+ rhs = rdx; |
+ } else { |
+ lhs = rdx; |
+ rhs = rax; |
+ } |
+ |
+ // Test for string arguments before calling runtime. |
+ Label not_strings, both_strings, not_string1, string1, string1_smi2; |
+ |
+ // If this stub has already generated FP-specific code then the arguments |
+ // are already in rdx and rax. |
+ if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { |
+ GenerateLoadArguments(masm); |
+ } |
+ |
+ Condition is_smi; |
+ is_smi = masm->CheckSmi(lhs); |
+ __ j(is_smi, ¬_string1); |
+ __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8); |
+ __ j(above_equal, ¬_string1); |
+ |
+ // First argument is a a string, test second. |
+ is_smi = masm->CheckSmi(rhs); |
+ __ j(is_smi, &string1_smi2); |
+ __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9); |
+ __ j(above_equal, &string1); |
+ |
+ // First and second argument are strings. |
+ StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
+ __ TailCallStub(&string_add_stub); |
+ |
+ __ bind(&string1_smi2); |
+ // First argument is a string, second is a smi. Try to lookup the number |
+ // string for the smi in the number string cache. |
+ NumberToStringStub::GenerateLookupNumberStringCache( |
+ masm, rhs, rbx, rcx, r8, true, &string1); |
+ |
+ // Replace second argument on stack and tailcall string add stub to make |
+ // the result. |
+ __ movq(Operand(rsp, 1 * kPointerSize), rbx); |
+ __ TailCallStub(&string_add_stub); |
+ |
+ // Only first argument is a string. |
+ __ bind(&string1); |
+ __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); |
+ |
+ // First argument was not a string, test second. |
+ __ bind(¬_string1); |
+ is_smi = masm->CheckSmi(rhs); |
+ __ j(is_smi, ¬_strings); |
+ __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs); |
+ __ j(above_equal, ¬_strings); |
+ |
+ // Only second argument is a string. |
+ __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); |
+ |
+ __ bind(¬_strings); |
+ // Neither argument is a string. |
+ __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
+ break; |
+ } |
+ case Token::SUB: |
+ __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
+ break; |
+ case Token::MUL: |
+ __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
+ break; |
+ case Token::DIV: |
+ __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
+ break; |
+ case Token::MOD: |
+ __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_OR: |
+ __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_AND: |
+ __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
+ break; |
+ case Token::BIT_XOR: |
+ __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
+ break; |
+ case Token::SAR: |
+ __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
+ break; |
+ case Token::SHL: |
+ __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
+ break; |
+ case Token::SHR: |
+ __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
+ break; |
default: |
UNREACHABLE(); |
- break; |
} |
- if (answer_object == Heap::undefined_value()) { |
- return false; |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { |
+ ASSERT(!HasArgsInRegisters()); |
+ __ movq(rax, Operand(rsp, 1 * kPointerSize)); |
+ __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
+} |
+ |
+ |
+void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { |
+ // If arguments are not passed in registers remove them from the stack before |
+ // returning. |
+ if (!HasArgsInRegisters()) { |
+ __ ret(2 * kPointerSize); // Remove both operands |
+ } else { |
+ __ ret(0); |
} |
- frame_->Push(Handle<Object>(answer_object)); |
- return true; |
} |
-// End of CodeGenerator implementation. |
+void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
+ ASSERT(HasArgsInRegisters()); |
+ __ pop(rcx); |
+ if (HasArgsReversed()) { |
+ __ push(rax); |
+ __ push(rdx); |
+ } else { |
+ __ push(rdx); |
+ __ push(rax); |
+ } |
+ __ push(rcx); |
+} |
+ |
+void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
+ Label get_result; |
+ |
+ // Ensure the operands are on the stack. |
+ if (HasArgsInRegisters()) { |
+ GenerateRegisterArgsPush(masm); |
+ } |
+ |
+ // Left and right arguments are already on stack. |
+ __ pop(rcx); // Save the return address. |
+ |
+ // Push this stub's key. |
+ __ Push(Smi::FromInt(MinorKey())); |
+ |
+ // Although the operation and the type info are encoded into the key, |
+ // the encoding is opaque, so push them too. |
+ __ Push(Smi::FromInt(op_)); |
+ |
+ __ Push(Smi::FromInt(runtime_operands_type_)); |
+ |
+ __ push(rcx); // The return address. |
+ |
+ // Perform patching to an appropriate fast case and return the result. |
+ __ TailCallExternalReference( |
+ ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
+ 5, |
+ 1); |
+} |
+ |
+ |
+Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
+ GenericBinaryOpStub stub(key, type_info); |
+ return stub.GetCode(); |
+} |
+ |
+ |
void TranscendentalCacheStub::Generate(MacroAssembler* masm) { |
// Input on stack: |
// rsp[8]: argument (should be number). |
@@ -8501,6 +9240,148 @@ |
} |
+// Input: rdx, rax are the left and right objects of a bit op. |
+// Output: rax, rcx are left and right integers for a bit op. |
+void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) { |
+ // Check float operands. |
+ Label done; |
+ Label rax_is_smi; |
+ Label rax_is_object; |
+ Label rdx_is_object; |
+ |
+ __ JumpIfNotSmi(rdx, &rdx_is_object); |
+ __ SmiToInteger32(rdx, rdx); |
+ __ JumpIfSmi(rax, &rax_is_smi); |
+ |
+ __ bind(&rax_is_object); |
+ IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx. |
+ __ jmp(&done); |
+ |
+ __ bind(&rdx_is_object); |
+ IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx. |
+ __ JumpIfNotSmi(rax, &rax_is_object); |
+ __ bind(&rax_is_smi); |
+ __ SmiToInteger32(rcx, rax); |
+ |
+ __ bind(&done); |
+ __ movl(rax, rdx); |
+} |
+ |
+ |
+// Input: rdx, rax are the left and right objects of a bit op. |
+// Output: rax, rcx are left and right integers for a bit op. |
+void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
+ Label* conversion_failure, |
+ Register heap_number_map) { |
+ // Check float operands. |
+ Label arg1_is_object, check_undefined_arg1; |
+ Label arg2_is_object, check_undefined_arg2; |
+ Label load_arg2, done; |
+ |
+ __ JumpIfNotSmi(rdx, &arg1_is_object); |
+ __ SmiToInteger32(rdx, rdx); |
+ __ jmp(&load_arg2); |
+ |
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
+ __ bind(&check_undefined_arg1); |
+ __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); |
+ __ j(not_equal, conversion_failure); |
+ __ movl(rdx, Immediate(0)); |
+ __ jmp(&load_arg2); |
+ |
+ __ bind(&arg1_is_object); |
+ __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map); |
+ __ j(not_equal, &check_undefined_arg1); |
+ // Get the untagged integer version of the edx heap number in rcx. |
+ IntegerConvert(masm, rdx, rdx); |
+ |
+ // Here rdx has the untagged integer, rax has a Smi or a heap number. |
+ __ bind(&load_arg2); |
+ // Test if arg2 is a Smi. |
+ __ JumpIfNotSmi(rax, &arg2_is_object); |
+ __ SmiToInteger32(rax, rax); |
+ __ movl(rcx, rax); |
+ __ jmp(&done); |
+ |
+ // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
+ __ bind(&check_undefined_arg2); |
+ __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); |
+ __ j(not_equal, conversion_failure); |
+ __ movl(rcx, Immediate(0)); |
+ __ jmp(&done); |
+ |
+ __ bind(&arg2_is_object); |
+ __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); |
+ __ j(not_equal, &check_undefined_arg2); |
+ // Get the untagged integer version of the eax heap number in ecx. |
+ IntegerConvert(masm, rcx, rax); |
+ __ bind(&done); |
+ __ movl(rax, rdx); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) { |
+ __ SmiToInteger32(kScratchRegister, rdx); |
+ __ cvtlsi2sd(xmm0, kScratchRegister); |
+ __ SmiToInteger32(kScratchRegister, rax); |
+ __ cvtlsi2sd(xmm1, kScratchRegister); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) { |
+ Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done; |
+ // Load operand in rdx into xmm0. |
+ __ JumpIfSmi(rdx, &load_smi_rdx); |
+ __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
+ // Load operand in rax into xmm1. |
+ __ JumpIfSmi(rax, &load_smi_rax); |
+ __ bind(&load_nonsmi_rax); |
+ __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ jmp(&done); |
+ |
+ __ bind(&load_smi_rdx); |
+ __ SmiToInteger32(kScratchRegister, rdx); |
+ __ cvtlsi2sd(xmm0, kScratchRegister); |
+ __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
+ |
+ __ bind(&load_smi_rax); |
+ __ SmiToInteger32(kScratchRegister, rax); |
+ __ cvtlsi2sd(xmm1, kScratchRegister); |
+ |
+ __ bind(&done); |
+} |
+ |
+ |
+void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, |
+ Label* not_numbers) { |
+ Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; |
+ // Load operand in rdx into xmm0, or branch to not_numbers. |
+ __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); |
+ __ JumpIfSmi(rdx, &load_smi_rdx); |
+ __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx); |
+ __ j(not_equal, not_numbers); // Argument in rdx is not a number. |
+ __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
+ // Load operand in rax into xmm1, or branch to not_numbers. |
+ __ JumpIfSmi(rax, &load_smi_rax); |
+ |
+ __ bind(&load_nonsmi_rax); |
+ __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx); |
+ __ j(not_equal, not_numbers); |
+ __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
+ __ jmp(&done); |
+ |
+ __ bind(&load_smi_rdx); |
+ __ SmiToInteger32(kScratchRegister, rdx); |
+ __ cvtlsi2sd(xmm0, kScratchRegister); |
+ __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
+ |
+ __ bind(&load_smi_rax); |
+ __ SmiToInteger32(kScratchRegister, rax); |
+ __ cvtlsi2sd(xmm1, kScratchRegister); |
+ __ bind(&done); |
+} |
+ |
+ |
void GenericUnaryOpStub::Generate(MacroAssembler* masm) { |
Label slow, done; |
@@ -8585,6 +9466,172 @@ |
} |
+void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
+ // The key is in rdx and the parameter count is in rax. |
+ |
+ // The displacement is used for skipping the frame pointer on the |
+ // stack. It is the offset of the last parameter (if any) relative |
+ // to the frame pointer. |
+ static const int kDisplacement = 1 * kPointerSize; |
+ |
+ // Check that the key is a smi. |
+ Label slow; |
+ __ JumpIfNotSmi(rdx, &slow); |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor; |
+ __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
+ __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset), |
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
+ __ j(equal, &adaptor); |
+ |
+ // Check index against formal parameters count limit passed in |
+ // through register rax. Use unsigned comparison to get negative |
+ // check for free. |
+ __ cmpq(rdx, rax); |
+ __ j(above_equal, &slow); |
+ |
+ // Read the argument from the stack and return it. |
+ SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); |
+ __ lea(rbx, Operand(rbp, index.reg, index.scale, 0)); |
+ index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
+ __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
+ __ Ret(); |
+ |
+ // Arguments adaptor case: Check index against actual arguments |
+ // limit found in the arguments adaptor frame. Use unsigned |
+ // comparison to get negative check for free. |
+ __ bind(&adaptor); |
+ __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ __ cmpq(rdx, rcx); |
+ __ j(above_equal, &slow); |
+ |
+ // Read the argument from the stack and return it. |
+ index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2); |
+ __ lea(rbx, Operand(rbx, index.reg, index.scale, 0)); |
+ index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
+ __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
+ __ Ret(); |
+ |
+ // Slow-case: Handle non-smi or out-of-bounds access to arguments |
+ // by calling the runtime system. |
+ __ bind(&slow); |
+ __ pop(rbx); // Return address. |
+ __ push(rdx); |
+ __ push(rbx); |
+ __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
+} |
+ |
+ |
+void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
+ // rsp[0] : return address |
+ // rsp[8] : number of parameters |
+ // rsp[16] : receiver displacement |
+ // rsp[24] : function |
+ |
+ // The displacement is used for skipping the return address and the |
+ // frame pointer on the stack. It is the offset of the last |
+ // parameter (if any) relative to the frame pointer. |
+ static const int kDisplacement = 2 * kPointerSize; |
+ |
+ // Check if the calling frame is an arguments adaptor frame. |
+ Label adaptor_frame, try_allocate, runtime; |
+ __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
+ __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), |
+ Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
+ __ j(equal, &adaptor_frame); |
+ |
+ // Get the length from the frame. |
+ __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize)); |
+ __ jmp(&try_allocate); |
+ |
+ // Patch the arguments.length and the parameters pointer. |
+ __ bind(&adaptor_frame); |
+ __ SmiToInteger32(rcx, |
+ Operand(rdx, |
+ ArgumentsAdaptorFrameConstants::kLengthOffset)); |
+ // Space on stack must already hold a smi. |
+ __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx); |
+ // Do not clobber the length index for the indexing operation since |
+ // it is used compute the size for allocation later. |
+ __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement)); |
+ __ movq(Operand(rsp, 2 * kPointerSize), rdx); |
+ |
+ // Try the new space allocation. Start out with computing the size of |
+ // the arguments object and the elements array. |
+ Label add_arguments_object; |
+ __ bind(&try_allocate); |
+ __ testl(rcx, rcx); |
+ __ j(zero, &add_arguments_object); |
+ __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize)); |
+ __ bind(&add_arguments_object); |
+ __ addl(rcx, Immediate(Heap::kArgumentsObjectSize)); |
+ |
+ // Do the allocation of both objects in one go. |
+ __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); |
+ |
+ // Get the arguments boilerplate from the current (global) context. |
+ int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
+ __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
+ __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); |
+ __ movq(rdi, Operand(rdi, offset)); |
+ |
+ // Copy the JS object part. |
+ STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize); |
+ __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize)); |
+ __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize)); |
+ __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize)); |
+ __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister); |
+ __ movq(FieldOperand(rax, 1 * kPointerSize), rdx); |
+ __ movq(FieldOperand(rax, 2 * kPointerSize), rbx); |
+ |
+ // Setup the callee in-object property. |
+ ASSERT(Heap::arguments_callee_index == 0); |
+ __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize)); |
+ __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister); |
+ |
+ // Get the length (smi tagged) and set that as an in-object property too. |
+ ASSERT(Heap::arguments_length_index == 1); |
+ __ movq(rcx, Operand(rsp, 1 * kPointerSize)); |
+ __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx); |
+ |
+ // If there are no actual arguments, we're done. |
+ Label done; |
+ __ SmiTest(rcx); |
+ __ j(zero, &done); |
+ |
+ // Get the parameters pointer from the stack and untag the length. |
+ __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
+ |
+ // Setup the elements pointer in the allocated arguments object and |
+ // initialize the header in the elements fixed array. |
+ __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize)); |
+ __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); |
+ __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); |
+ __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); |
+ __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); |
+ __ SmiToInteger32(rcx, rcx); // Untag length for the loop below. |
+ |
+ // Copy the fixed array slots. |
+ Label loop; |
+ __ bind(&loop); |
+ __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver. |
+ __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister); |
+ __ addq(rdi, Immediate(kPointerSize)); |
+ __ subq(rdx, Immediate(kPointerSize)); |
+ __ decl(rcx); |
+ __ j(not_zero, &loop); |
+ |
+ // Return and remove the on-stack parameters. |
+ __ bind(&done); |
+ __ ret(3 * kPointerSize); |
+ |
+ // Do the runtime call to allocate the arguments object. |
+ __ bind(&runtime); |
+ __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
+} |
+ |
+ |
void RegExpExecStub::Generate(MacroAssembler* masm) { |
// Just jump directly to runtime if native RegExp is not selected at compile |
// time or if regexp entry in generated code is turned off runtime switch or |
@@ -8932,18 +9979,6 @@ |
} |
-void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm, |
- Register hash, |
- Register mask) { |
- __ and_(hash, mask); |
- // Each entry in string cache consists of two pointer sized fields, |
- // but times_twice_pointer_size (multiplication by 16) scale factor |
- // is not supported by addrmode on x64 platform. |
- // So we have to premultiply entry index before lookup. |
- __ shl(hash, Immediate(kPointerSizeLog2 + 1)); |
-} |
- |
- |
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, |
Register object, |
Register result, |
@@ -9023,6 +10058,18 @@ |
} |
+void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm, |
+ Register hash, |
+ Register mask) { |
+ __ and_(hash, mask); |
+ // Each entry in string cache consists of two pointer sized fields, |
+ // but times_twice_pointer_size (multiplication by 16) scale factor |
+ // is not supported by addrmode on x64 platform. |
+ // So we have to premultiply entry index before lookup. |
+ __ shl(hash, Immediate(kPointerSizeLog2 + 1)); |
+} |
+ |
+ |
void NumberToStringStub::Generate(MacroAssembler* masm) { |
Label runtime; |
@@ -9038,12 +10085,6 @@ |
} |
-void RecordWriteStub::Generate(MacroAssembler* masm) { |
- masm->RecordWriteHelper(object_, addr_, scratch_); |
- masm->ret(0); |
-} |
- |
- |
static int NegativeComparisonResult(Condition cc) { |
ASSERT(cc != equal); |
ASSERT((cc == less) || (cc == less_equal) |
@@ -9319,283 +10360,76 @@ |
} |
-// Call the function just below TOS on the stack with the given |
-// arguments. The receiver is the TOS. |
-void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, |
- CallFunctionFlags flags, |
- int position) { |
- // Push the arguments ("left-to-right") on the stack. |
- int arg_count = args->length(); |
- for (int i = 0; i < arg_count; i++) { |
- Load(args->at(i)); |
- frame_->SpillTop(); |
- } |
+void StackCheckStub::Generate(MacroAssembler* masm) { |
+ // Because builtins always remove the receiver from the stack, we |
+ // have to fake one to avoid underflowing the stack. The receiver |
+ // must be inserted below the return address on the stack so we |
+ // temporarily store that in a register. |
+ __ pop(rax); |
+ __ Push(Smi::FromInt(0)); |
+ __ push(rax); |
- // Record the position for debugging purposes. |
- CodeForSourcePosition(position); |
- |
- // Use the shared code stub to call the function. |
- InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; |
- CallFunctionStub call_function(arg_count, in_loop, flags); |
- Result answer = frame_->CallStub(&call_function, arg_count + 1); |
- // Restore context and replace function on the stack with the |
- // result of the stub invocation. |
- frame_->RestoreContextRegister(); |
- frame_->SetElementAt(0, &answer); |
+ // Do tail-call to runtime routine. |
+ __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
} |
-void InstanceofStub::Generate(MacroAssembler* masm) { |
- // Implements "value instanceof function" operator. |
- // Expected input state: |
- // rsp[0] : return address |
- // rsp[1] : function pointer |
- // rsp[2] : value |
- // Returns a bitwise zero to indicate that the value |
- // is and instance of the function and anything else to |
- // indicate that the value is not an instance. |
- |
- // Get the object - go slow case if it's a smi. |
+void CallFunctionStub::Generate(MacroAssembler* masm) { |
Label slow; |
- __ movq(rax, Operand(rsp, 2 * kPointerSize)); |
- __ JumpIfSmi(rax, &slow); |
- // Check that the left hand is a JS object. Leave its map in rax. |
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); |
- __ j(below, &slow); |
- __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE); |
- __ j(above, &slow); |
+ // If the receiver might be a value (string, number or boolean) check for this |
+ // and box it if it is. |
+ if (ReceiverMightBeValue()) { |
+ // Get the receiver from the stack. |
+ // +1 ~ return address |
+ Label receiver_is_value, receiver_is_js_object; |
+ __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize)); |
- // Get the prototype of the function. |
- __ movq(rdx, Operand(rsp, 1 * kPointerSize)); |
- // rdx is function, rax is map. |
+ // Check if receiver is a smi (which is a number value). |
+ __ JumpIfSmi(rax, &receiver_is_value); |
- // Look up the function and the map in the instanceof cache. |
- Label miss; |
- __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
- __ j(not_equal, &miss); |
- __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
- __ j(not_equal, &miss); |
- __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
- __ ret(2 * kPointerSize); |
+ // Check if the receiver is a valid JS object. |
+ __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi); |
+ __ j(above_equal, &receiver_is_js_object); |
- __ bind(&miss); |
- __ TryGetFunctionPrototype(rdx, rbx, &slow); |
+ // Call the runtime to box the value. |
+ __ bind(&receiver_is_value); |
+ __ EnterInternalFrame(); |
+ __ push(rax); |
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
+ __ LeaveInternalFrame(); |
+ __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax); |
- // Check that the function prototype is a JS object. |
- __ JumpIfSmi(rbx, &slow); |
- __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister); |
- __ j(below, &slow); |
- __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); |
- __ j(above, &slow); |
+ __ bind(&receiver_is_js_object); |
+ } |
- // Register mapping: |
- // rax is object map. |
- // rdx is function. |
- // rbx is function prototype. |
- __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
- __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
+ // Get the function to call from the stack. |
+ // +2 ~ receiver, return address |
+ __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize)); |
- __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset)); |
+ // Check that the function really is a JavaScript function. |
+ __ JumpIfSmi(rdi, &slow); |
+ // Goto slow case if we do not have a function. |
+ __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
+ __ j(not_equal, &slow); |
- // Loop through the prototype chain looking for the function prototype. |
- Label loop, is_instance, is_not_instance; |
- __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); |
- __ bind(&loop); |
- __ cmpq(rcx, rbx); |
- __ j(equal, &is_instance); |
- __ cmpq(rcx, kScratchRegister); |
- // The code at is_not_instance assumes that kScratchRegister contains a |
- // non-zero GCable value (the null object in this case). |
- __ j(equal, &is_not_instance); |
- __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); |
- __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); |
- __ jmp(&loop); |
+ // Fast-case: Just invoke the function. |
+ ParameterCount actual(argc_); |
+ __ InvokeFunction(rdi, actual, JUMP_FUNCTION); |
- __ bind(&is_instance); |
- __ xorl(rax, rax); |
- // Store bitwise zero in the cache. This is a Smi in GC terms. |
- ASSERT_EQ(0, kSmiTag); |
- __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
- __ ret(2 * kPointerSize); |
- |
- __ bind(&is_not_instance); |
- // We have to store a non-zero value in the cache. |
- __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex); |
- __ ret(2 * kPointerSize); |
- |
- // Slow-case: Go through the JavaScript implementation. |
+ // Slow-case: Non-function called. |
__ bind(&slow); |
- __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
+ // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
+ // of the original receiver from the call site). |
+ __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi); |
+ __ Set(rax, argc_); |
+ __ Set(rbx, 0); |
+ __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); |
+ Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
+ __ Jump(adaptor, RelocInfo::CODE_TARGET); |
} |
-void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { |
- // rsp[0] : return address |
- // rsp[8] : number of parameters |
- // rsp[16] : receiver displacement |
- // rsp[24] : function |
- |
- // The displacement is used for skipping the return address and the |
- // frame pointer on the stack. It is the offset of the last |
- // parameter (if any) relative to the frame pointer. |
- static const int kDisplacement = 2 * kPointerSize; |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- Label adaptor_frame, try_allocate, runtime; |
- __ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
- __ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset), |
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ j(equal, &adaptor_frame); |
- |
- // Get the length from the frame. |
- __ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize)); |
- __ jmp(&try_allocate); |
- |
- // Patch the arguments.length and the parameters pointer. |
- __ bind(&adaptor_frame); |
- __ SmiToInteger32(rcx, |
- Operand(rdx, |
- ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- // Space on stack must already hold a smi. |
- __ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx); |
- // Do not clobber the length index for the indexing operation since |
- // it is used compute the size for allocation later. |
- __ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement)); |
- __ movq(Operand(rsp, 2 * kPointerSize), rdx); |
- |
- // Try the new space allocation. Start out with computing the size of |
- // the arguments object and the elements array. |
- Label add_arguments_object; |
- __ bind(&try_allocate); |
- __ testl(rcx, rcx); |
- __ j(zero, &add_arguments_object); |
- __ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize)); |
- __ bind(&add_arguments_object); |
- __ addl(rcx, Immediate(Heap::kArgumentsObjectSize)); |
- |
- // Do the allocation of both objects in one go. |
- __ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT); |
- |
- // Get the arguments boilerplate from the current (global) context. |
- int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX); |
- __ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
- __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); |
- __ movq(rdi, Operand(rdi, offset)); |
- |
- // Copy the JS object part. |
- STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize); |
- __ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize)); |
- __ movq(rdx, FieldOperand(rdi, 1 * kPointerSize)); |
- __ movq(rbx, FieldOperand(rdi, 2 * kPointerSize)); |
- __ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister); |
- __ movq(FieldOperand(rax, 1 * kPointerSize), rdx); |
- __ movq(FieldOperand(rax, 2 * kPointerSize), rbx); |
- |
- // Setup the callee in-object property. |
- ASSERT(Heap::arguments_callee_index == 0); |
- __ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize)); |
- __ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister); |
- |
- // Get the length (smi tagged) and set that as an in-object property too. |
- ASSERT(Heap::arguments_length_index == 1); |
- __ movq(rcx, Operand(rsp, 1 * kPointerSize)); |
- __ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx); |
- |
- // If there are no actual arguments, we're done. |
- Label done; |
- __ SmiTest(rcx); |
- __ j(zero, &done); |
- |
- // Get the parameters pointer from the stack and untag the length. |
- __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
- |
- // Setup the elements pointer in the allocated arguments object and |
- // initialize the header in the elements fixed array. |
- __ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize)); |
- __ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi); |
- __ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex); |
- __ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister); |
- __ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx); |
- __ SmiToInteger32(rcx, rcx); // Untag length for the loop below. |
- |
- // Copy the fixed array slots. |
- Label loop; |
- __ bind(&loop); |
- __ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver. |
- __ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister); |
- __ addq(rdi, Immediate(kPointerSize)); |
- __ subq(rdx, Immediate(kPointerSize)); |
- __ decl(rcx); |
- __ j(not_zero, &loop); |
- |
- // Return and remove the on-stack parameters. |
- __ bind(&done); |
- __ ret(3 * kPointerSize); |
- |
- // Do the runtime call to allocate the arguments object. |
- __ bind(&runtime); |
- __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); |
-} |
- |
- |
-void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
- // The key is in rdx and the parameter count is in rax. |
- |
- // The displacement is used for skipping the frame pointer on the |
- // stack. It is the offset of the last parameter (if any) relative |
- // to the frame pointer. |
- static const int kDisplacement = 1 * kPointerSize; |
- |
- // Check that the key is a smi. |
- Label slow; |
- __ JumpIfNotSmi(rdx, &slow); |
- |
- // Check if the calling frame is an arguments adaptor frame. |
- Label adaptor; |
- __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); |
- __ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset), |
- Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
- __ j(equal, &adaptor); |
- |
- // Check index against formal parameters count limit passed in |
- // through register rax. Use unsigned comparison to get negative |
- // check for free. |
- __ cmpq(rdx, rax); |
- __ j(above_equal, &slow); |
- |
- // Read the argument from the stack and return it. |
- SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2); |
- __ lea(rbx, Operand(rbp, index.reg, index.scale, 0)); |
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
- __ Ret(); |
- |
- // Arguments adaptor case: Check index against actual arguments |
- // limit found in the arguments adaptor frame. Use unsigned |
- // comparison to get negative check for free. |
- __ bind(&adaptor); |
- __ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
- __ cmpq(rdx, rcx); |
- __ j(above_equal, &slow); |
- |
- // Read the argument from the stack and return it. |
- index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2); |
- __ lea(rbx, Operand(rbx, index.reg, index.scale, 0)); |
- index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2); |
- __ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement)); |
- __ Ret(); |
- |
- // Slow-case: Handle non-smi or out-of-bounds access to arguments |
- // by calling the runtime system. |
- __ bind(&slow); |
- __ pop(rbx); // Return address. |
- __ push(rdx); |
- __ push(rbx); |
- __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
-} |
- |
- |
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { |
// Check that stack should contain next handler, frame pointer, state and |
// return address in that order. |
@@ -9625,6 +10459,11 @@ |
} |
+void ApiGetterEntryStub::Generate(MacroAssembler* masm) { |
+ UNREACHABLE(); |
+} |
+ |
+ |
void CEntryStub::GenerateCore(MacroAssembler* masm, |
Label* throw_normal_exception, |
Label* throw_termination_exception, |
@@ -9815,62 +10654,6 @@ |
} |
-void CallFunctionStub::Generate(MacroAssembler* masm) { |
- Label slow; |
- |
- // If the receiver might be a value (string, number or boolean) check for this |
- // and box it if it is. |
- if (ReceiverMightBeValue()) { |
- // Get the receiver from the stack. |
- // +1 ~ return address |
- Label receiver_is_value, receiver_is_js_object; |
- __ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize)); |
- |
- // Check if receiver is a smi (which is a number value). |
- __ JumpIfSmi(rax, &receiver_is_value); |
- |
- // Check if the receiver is a valid JS object. |
- __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi); |
- __ j(above_equal, &receiver_is_js_object); |
- |
- // Call the runtime to box the value. |
- __ bind(&receiver_is_value); |
- __ EnterInternalFrame(); |
- __ push(rax); |
- __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
- __ LeaveInternalFrame(); |
- __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax); |
- |
- __ bind(&receiver_is_js_object); |
- } |
- |
- // Get the function to call from the stack. |
- // +2 ~ receiver, return address |
- __ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize)); |
- |
- // Check that the function really is a JavaScript function. |
- __ JumpIfSmi(rdi, &slow); |
- // Goto slow case if we do not have a function. |
- __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
- __ j(not_equal, &slow); |
- |
- // Fast-case: Just invoke the function. |
- ParameterCount actual(argc_); |
- __ InvokeFunction(rdi, actual, JUMP_FUNCTION); |
- |
- // Slow-case: Non-function called. |
- __ bind(&slow); |
- // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
- // of the original receiver from the call site). |
- __ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi); |
- __ Set(rax, argc_); |
- __ Set(rbx, 0); |
- __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); |
- Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
- __ Jump(adaptor, RelocInfo::CODE_TARGET); |
-} |
- |
- |
void CEntryStub::Generate(MacroAssembler* masm) { |
// rax: number of arguments including receiver |
// rbx: pointer to C function (C callee-saved) |
@@ -9939,11 +10722,6 @@ |
} |
-void ApiGetterEntryStub::Generate(MacroAssembler* masm) { |
- UNREACHABLE(); |
-} |
- |
- |
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
Label invoke, exit; |
#ifdef ENABLE_LOGGING_AND_PROFILING |
@@ -10075,890 +10853,91 @@ |
} |
-// ----------------------------------------------------------------------------- |
-// Implementation of stubs. |
+void InstanceofStub::Generate(MacroAssembler* masm) { |
+ // Implements "value instanceof function" operator. |
+ // Expected input state: |
+ // rsp[0] : return address |
+ // rsp[1] : function pointer |
+ // rsp[2] : value |
+ // Returns a bitwise zero to indicate that the value |
+ // is and instance of the function and anything else to |
+ // indicate that the value is not an instance. |
-// Stub classes have public member named masm, not masm_. |
+ // Get the object - go slow case if it's a smi. |
+ Label slow; |
+ __ movq(rax, Operand(rsp, 2 * kPointerSize)); |
+ __ JumpIfSmi(rax, &slow); |
-void StackCheckStub::Generate(MacroAssembler* masm) { |
- // Because builtins always remove the receiver from the stack, we |
- // have to fake one to avoid underflowing the stack. The receiver |
- // must be inserted below the return address on the stack so we |
- // temporarily store that in a register. |
- __ pop(rax); |
- __ Push(Smi::FromInt(0)); |
- __ push(rax); |
+ // Check that the left hand is a JS object. Leave its map in rax. |
+ __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax); |
+ __ j(below, &slow); |
+ __ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE); |
+ __ j(above, &slow); |
- // Do tail-call to runtime routine. |
- __ TailCallRuntime(Runtime::kStackGuard, 1, 1); |
-} |
+ // Get the prototype of the function. |
+ __ movq(rdx, Operand(rsp, 1 * kPointerSize)); |
+ // rdx is function, rax is map. |
+ // Look up the function and the map in the instanceof cache. |
+ Label miss; |
+ __ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
+ __ j(not_equal, &miss); |
+ __ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
+ __ j(not_equal, &miss); |
+ __ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ ret(2 * kPointerSize); |
-void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) { |
- __ SmiToInteger32(kScratchRegister, rdx); |
- __ cvtlsi2sd(xmm0, kScratchRegister); |
- __ SmiToInteger32(kScratchRegister, rax); |
- __ cvtlsi2sd(xmm1, kScratchRegister); |
-} |
+ __ bind(&miss); |
+ __ TryGetFunctionPrototype(rdx, rbx, &slow); |
+ // Check that the function prototype is a JS object. |
+ __ JumpIfSmi(rbx, &slow); |
+ __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister); |
+ __ j(below, &slow); |
+ __ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE); |
+ __ j(above, &slow); |
-void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) { |
- Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done; |
- // Load operand in rdx into xmm0. |
- __ JumpIfSmi(rdx, &load_smi_rdx); |
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
- // Load operand in rax into xmm1. |
- __ JumpIfSmi(rax, &load_smi_rax); |
- __ bind(&load_nonsmi_rax); |
- __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ jmp(&done); |
+ // Register mapping: |
+ // rax is object map. |
+ // rdx is function. |
+ // rbx is function prototype. |
+ __ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex); |
+ __ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex); |
- __ bind(&load_smi_rdx); |
- __ SmiToInteger32(kScratchRegister, rdx); |
- __ cvtlsi2sd(xmm0, kScratchRegister); |
- __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
+ __ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset)); |
- __ bind(&load_smi_rax); |
- __ SmiToInteger32(kScratchRegister, rax); |
- __ cvtlsi2sd(xmm1, kScratchRegister); |
+ // Loop through the prototype chain looking for the function prototype. |
+ Label loop, is_instance, is_not_instance; |
+ __ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex); |
+ __ bind(&loop); |
+ __ cmpq(rcx, rbx); |
+ __ j(equal, &is_instance); |
+ __ cmpq(rcx, kScratchRegister); |
+ // The code at is_not_instance assumes that kScratchRegister contains a |
+ // non-zero GCable value (the null object in this case). |
+ __ j(equal, &is_not_instance); |
+ __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); |
+ __ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset)); |
+ __ jmp(&loop); |
- __ bind(&done); |
-} |
+ __ bind(&is_instance); |
+ __ xorl(rax, rax); |
+ // Store bitwise zero in the cache. This is a Smi in GC terms. |
+ ASSERT_EQ(0, kSmiTag); |
+ __ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ ret(2 * kPointerSize); |
+ __ bind(&is_not_instance); |
+ // We have to store a non-zero value in the cache. |
+ __ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex); |
+ __ ret(2 * kPointerSize); |
-void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm, |
- Label* not_numbers) { |
- Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done; |
- // Load operand in rdx into xmm0, or branch to not_numbers. |
- __ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex); |
- __ JumpIfSmi(rdx, &load_smi_rdx); |
- __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx); |
- __ j(not_equal, not_numbers); // Argument in rdx is not a number. |
- __ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset)); |
- // Load operand in rax into xmm1, or branch to not_numbers. |
- __ JumpIfSmi(rax, &load_smi_rax); |
- |
- __ bind(&load_nonsmi_rax); |
- __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx); |
- __ j(not_equal, not_numbers); |
- __ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset)); |
- __ jmp(&done); |
- |
- __ bind(&load_smi_rdx); |
- __ SmiToInteger32(kScratchRegister, rdx); |
- __ cvtlsi2sd(xmm0, kScratchRegister); |
- __ JumpIfNotSmi(rax, &load_nonsmi_rax); |
- |
- __ bind(&load_smi_rax); |
- __ SmiToInteger32(kScratchRegister, rax); |
- __ cvtlsi2sd(xmm1, kScratchRegister); |
- __ bind(&done); |
+ // Slow-case: Go through the JavaScript implementation. |
+ __ bind(&slow); |
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
} |
-// Input: rdx, rax are the left and right objects of a bit op. |
-// Output: rax, rcx are left and right integers for a bit op. |
-void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm, |
- Label* conversion_failure, |
- Register heap_number_map) { |
- // Check float operands. |
- Label arg1_is_object, check_undefined_arg1; |
- Label arg2_is_object, check_undefined_arg2; |
- Label load_arg2, done; |
- |
- __ JumpIfNotSmi(rdx, &arg1_is_object); |
- __ SmiToInteger32(rdx, rdx); |
- __ jmp(&load_arg2); |
- |
- // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
- __ bind(&check_undefined_arg1); |
- __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); |
- __ j(not_equal, conversion_failure); |
- __ movl(rdx, Immediate(0)); |
- __ jmp(&load_arg2); |
- |
- __ bind(&arg1_is_object); |
- __ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map); |
- __ j(not_equal, &check_undefined_arg1); |
- // Get the untagged integer version of the edx heap number in rcx. |
- IntegerConvert(masm, rdx, rdx); |
- |
- // Here rdx has the untagged integer, rax has a Smi or a heap number. |
- __ bind(&load_arg2); |
- // Test if arg2 is a Smi. |
- __ JumpIfNotSmi(rax, &arg2_is_object); |
- __ SmiToInteger32(rax, rax); |
- __ movl(rcx, rax); |
- __ jmp(&done); |
- |
- // If the argument is undefined it converts to zero (ECMA-262, section 9.5). |
- __ bind(&check_undefined_arg2); |
- __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); |
- __ j(not_equal, conversion_failure); |
- __ movl(rcx, Immediate(0)); |
- __ jmp(&done); |
- |
- __ bind(&arg2_is_object); |
- __ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map); |
- __ j(not_equal, &check_undefined_arg2); |
- // Get the untagged integer version of the eax heap number in ecx. |
- IntegerConvert(masm, rcx, rax); |
- __ bind(&done); |
- __ movl(rax, rdx); |
-} |
- |
- |
-// Input: rdx, rax are the left and right objects of a bit op. |
-// Output: rax, rcx are left and right integers for a bit op. |
-void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) { |
- // Check float operands. |
- Label done; |
- Label rax_is_smi; |
- Label rax_is_object; |
- Label rdx_is_object; |
- |
- __ JumpIfNotSmi(rdx, &rdx_is_object); |
- __ SmiToInteger32(rdx, rdx); |
- __ JumpIfSmi(rax, &rax_is_smi); |
- |
- __ bind(&rax_is_object); |
- IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx. |
- __ jmp(&done); |
- |
- __ bind(&rdx_is_object); |
- IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx. |
- __ JumpIfNotSmi(rax, &rax_is_object); |
- __ bind(&rax_is_smi); |
- __ SmiToInteger32(rcx, rax); |
- |
- __ bind(&done); |
- __ movl(rax, rdx); |
-} |
- |
- |
-const char* GenericBinaryOpStub::GetName() { |
- if (name_ != NULL) return name_; |
- const int len = 100; |
- name_ = Bootstrapper::AllocateAutoDeletedArray(len); |
- if (name_ == NULL) return "OOM"; |
- const char* op_name = Token::Name(op_); |
- const char* overwrite_name; |
- switch (mode_) { |
- case NO_OVERWRITE: overwrite_name = "Alloc"; break; |
- case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; |
- case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; |
- default: overwrite_name = "UnknownOverwrite"; break; |
- } |
- |
- OS::SNPrintF(Vector<char>(name_, len), |
- "GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s", |
- op_name, |
- overwrite_name, |
- (flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "", |
- args_in_registers_ ? "RegArgs" : "StackArgs", |
- args_reversed_ ? "_R" : "", |
- static_operands_type_.ToString(), |
- BinaryOpIC::GetName(runtime_operands_type_)); |
- return name_; |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateCall( |
- MacroAssembler* masm, |
- Register left, |
- Register right) { |
- if (!ArgsInRegistersSupported()) { |
- // Pass arguments on the stack. |
- __ push(left); |
- __ push(right); |
- } else { |
- // The calling convention with registers is left in rdx and right in rax. |
- Register left_arg = rdx; |
- Register right_arg = rax; |
- if (!(left.is(left_arg) && right.is(right_arg))) { |
- if (left.is(right_arg) && right.is(left_arg)) { |
- if (IsOperationCommutative()) { |
- SetArgsReversed(); |
- } else { |
- __ xchg(left, right); |
- } |
- } else if (left.is(left_arg)) { |
- __ movq(right_arg, right); |
- } else if (right.is(right_arg)) { |
- __ movq(left_arg, left); |
- } else if (left.is(right_arg)) { |
- if (IsOperationCommutative()) { |
- __ movq(left_arg, right); |
- SetArgsReversed(); |
- } else { |
- // Order of moves important to avoid destroying left argument. |
- __ movq(left_arg, left); |
- __ movq(right_arg, right); |
- } |
- } else if (right.is(left_arg)) { |
- if (IsOperationCommutative()) { |
- __ movq(right_arg, left); |
- SetArgsReversed(); |
- } else { |
- // Order of moves important to avoid destroying right argument. |
- __ movq(right_arg, right); |
- __ movq(left_arg, left); |
- } |
- } else { |
- // Order of moves is not important. |
- __ movq(left_arg, left); |
- __ movq(right_arg, right); |
- } |
- } |
- |
- // Update flags to indicate that arguments are in registers. |
- SetArgsInRegisters(); |
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
- } |
- |
- // Call the stub. |
- __ CallStub(this); |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateCall( |
- MacroAssembler* masm, |
- Register left, |
- Smi* right) { |
- if (!ArgsInRegistersSupported()) { |
- // Pass arguments on the stack. |
- __ push(left); |
- __ Push(right); |
- } else { |
- // The calling convention with registers is left in rdx and right in rax. |
- Register left_arg = rdx; |
- Register right_arg = rax; |
- if (left.is(left_arg)) { |
- __ Move(right_arg, right); |
- } else if (left.is(right_arg) && IsOperationCommutative()) { |
- __ Move(left_arg, right); |
- SetArgsReversed(); |
- } else { |
- // For non-commutative operations, left and right_arg might be |
- // the same register. Therefore, the order of the moves is |
- // important here in order to not overwrite left before moving |
- // it to left_arg. |
- __ movq(left_arg, left); |
- __ Move(right_arg, right); |
- } |
- |
- // Update flags to indicate that arguments are in registers. |
- SetArgsInRegisters(); |
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
- } |
- |
- // Call the stub. |
- __ CallStub(this); |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateCall( |
- MacroAssembler* masm, |
- Smi* left, |
- Register right) { |
- if (!ArgsInRegistersSupported()) { |
- // Pass arguments on the stack. |
- __ Push(left); |
- __ push(right); |
- } else { |
- // The calling convention with registers is left in rdx and right in rax. |
- Register left_arg = rdx; |
- Register right_arg = rax; |
- if (right.is(right_arg)) { |
- __ Move(left_arg, left); |
- } else if (right.is(left_arg) && IsOperationCommutative()) { |
- __ Move(right_arg, left); |
- SetArgsReversed(); |
- } else { |
- // For non-commutative operations, right and left_arg might be |
- // the same register. Therefore, the order of the moves is |
- // important here in order to not overwrite right before moving |
- // it to right_arg. |
- __ movq(right_arg, right); |
- __ Move(left_arg, left); |
- } |
- // Update flags to indicate that arguments are in registers. |
- SetArgsInRegisters(); |
- __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); |
- } |
- |
- // Call the stub. |
- __ CallStub(this); |
-} |
- |
- |
-Result GenericBinaryOpStub::GenerateCall(MacroAssembler* masm, |
- VirtualFrame* frame, |
- Result* left, |
- Result* right) { |
- if (ArgsInRegistersSupported()) { |
- SetArgsInRegisters(); |
- return frame->CallStub(this, left, right); |
- } else { |
- frame->Push(left); |
- frame->Push(right); |
- return frame->CallStub(this, 2); |
- } |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { |
- // 1. Move arguments into rdx, rax except for DIV and MOD, which need the |
- // dividend in rax and rdx free for the division. Use rax, rbx for those. |
- Comment load_comment(masm, "-- Load arguments"); |
- Register left = rdx; |
- Register right = rax; |
- if (op_ == Token::DIV || op_ == Token::MOD) { |
- left = rax; |
- right = rbx; |
- if (HasArgsInRegisters()) { |
- __ movq(rbx, rax); |
- __ movq(rax, rdx); |
- } |
- } |
- if (!HasArgsInRegisters()) { |
- __ movq(right, Operand(rsp, 1 * kPointerSize)); |
- __ movq(left, Operand(rsp, 2 * kPointerSize)); |
- } |
- |
- Label not_smis; |
- // 2. Smi check both operands. |
- if (static_operands_type_.IsSmi()) { |
- // Skip smi check if we know that both arguments are smis. |
- if (FLAG_debug_code) { |
- __ AbortIfNotSmi(left); |
- __ AbortIfNotSmi(right); |
- } |
- if (op_ == Token::BIT_OR) { |
- // Handle OR here, since we do extra smi-checking in the or code below. |
- __ SmiOr(right, right, left); |
- GenerateReturn(masm); |
- return; |
- } |
- } else { |
- if (op_ != Token::BIT_OR) { |
- // Skip the check for OR as it is better combined with the |
- // actual operation. |
- Comment smi_check_comment(masm, "-- Smi check arguments"); |
- __ JumpIfNotBothSmi(left, right, ¬_smis); |
- } |
- } |
- |
- // 3. Operands are both smis (except for OR), perform the operation leaving |
- // the result in rax and check the result if necessary. |
- Comment perform_smi(masm, "-- Perform smi operation"); |
- Label use_fp_on_smis; |
- switch (op_) { |
- case Token::ADD: { |
- ASSERT(right.is(rax)); |
- __ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative. |
- break; |
- } |
- |
- case Token::SUB: { |
- __ SmiSub(left, left, right, &use_fp_on_smis); |
- __ movq(rax, left); |
- break; |
- } |
- |
- case Token::MUL: |
- ASSERT(right.is(rax)); |
- __ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative. |
- break; |
- |
- case Token::DIV: |
- ASSERT(left.is(rax)); |
- __ SmiDiv(left, left, right, &use_fp_on_smis); |
- break; |
- |
- case Token::MOD: |
- ASSERT(left.is(rax)); |
- __ SmiMod(left, left, right, slow); |
- break; |
- |
- case Token::BIT_OR: |
- ASSERT(right.is(rax)); |
- __ movq(rcx, right); // Save the right operand. |
- __ SmiOr(right, right, left); // BIT_OR is commutative. |
- __ testb(right, Immediate(kSmiTagMask)); |
- __ j(not_zero, ¬_smis); |
- break; |
- |
- case Token::BIT_AND: |
- ASSERT(right.is(rax)); |
- __ SmiAnd(right, right, left); // BIT_AND is commutative. |
- break; |
- |
- case Token::BIT_XOR: |
- ASSERT(right.is(rax)); |
- __ SmiXor(right, right, left); // BIT_XOR is commutative. |
- break; |
- |
- case Token::SHL: |
- case Token::SHR: |
- case Token::SAR: |
- switch (op_) { |
- case Token::SAR: |
- __ SmiShiftArithmeticRight(left, left, right); |
- break; |
- case Token::SHR: |
- __ SmiShiftLogicalRight(left, left, right, slow); |
- break; |
- case Token::SHL: |
- __ SmiShiftLeft(left, left, right); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
- __ movq(rax, left); |
- break; |
- |
- default: |
- UNREACHABLE(); |
- break; |
- } |
- |
- // 4. Emit return of result in rax. |
- GenerateReturn(masm); |
- |
- // 5. For some operations emit inline code to perform floating point |
- // operations on known smis (e.g., if the result of the operation |
- // overflowed the smi range). |
- switch (op_) { |
- case Token::ADD: |
- case Token::SUB: |
- case Token::MUL: |
- case Token::DIV: { |
- ASSERT(use_fp_on_smis.is_linked()); |
- __ bind(&use_fp_on_smis); |
- if (op_ == Token::DIV) { |
- __ movq(rdx, rax); |
- __ movq(rax, rbx); |
- } |
- // left is rdx, right is rax. |
- __ AllocateHeapNumber(rbx, rcx, slow); |
- FloatingPointHelper::LoadSSE2SmiOperands(masm); |
- switch (op_) { |
- case Token::ADD: __ addsd(xmm0, xmm1); break; |
- case Token::SUB: __ subsd(xmm0, xmm1); break; |
- case Token::MUL: __ mulsd(xmm0, xmm1); break; |
- case Token::DIV: __ divsd(xmm0, xmm1); break; |
- default: UNREACHABLE(); |
- } |
- __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0); |
- __ movq(rax, rbx); |
- GenerateReturn(masm); |
- } |
- default: |
- break; |
- } |
- |
- // 6. Non-smi operands, fall out to the non-smi code with the operands in |
- // rdx and rax. |
- Comment done_comment(masm, "-- Enter non-smi code"); |
- __ bind(¬_smis); |
- |
- switch (op_) { |
- case Token::DIV: |
- case Token::MOD: |
- // Operands are in rax, rbx at this point. |
- __ movq(rdx, rax); |
- __ movq(rax, rbx); |
- break; |
- |
- case Token::BIT_OR: |
- // Right operand is saved in rcx and rax was destroyed by the smi |
- // operation. |
- __ movq(rax, rcx); |
- break; |
- |
- default: |
- break; |
- } |
-} |
- |
- |
-void GenericBinaryOpStub::Generate(MacroAssembler* masm) { |
- Label call_runtime; |
- |
- if (ShouldGenerateSmiCode()) { |
- GenerateSmiCode(masm, &call_runtime); |
- } else if (op_ != Token::MOD) { |
- if (!HasArgsInRegisters()) { |
- GenerateLoadArguments(masm); |
- } |
- } |
- // Floating point case. |
- if (ShouldGenerateFPCode()) { |
- switch (op_) { |
- case Token::ADD: |
- case Token::SUB: |
- case Token::MUL: |
- case Token::DIV: { |
- if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
- HasSmiCodeInStub()) { |
- // Execution reaches this point when the first non-smi argument occurs |
- // (and only if smi code is generated). This is the right moment to |
- // patch to HEAP_NUMBERS state. The transition is attempted only for |
- // the four basic operations. The stub stays in the DEFAULT state |
- // forever for all other operations (also if smi code is skipped). |
- GenerateTypeTransition(masm); |
- break; |
- } |
- |
- Label not_floats; |
- // rax: y |
- // rdx: x |
- if (static_operands_type_.IsNumber()) { |
- if (FLAG_debug_code) { |
- // Assert at runtime that inputs are only numbers. |
- __ AbortIfNotNumber(rdx); |
- __ AbortIfNotNumber(rax); |
- } |
- FloatingPointHelper::LoadSSE2NumberOperands(masm); |
- } else { |
- FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime); |
- } |
- |
- switch (op_) { |
- case Token::ADD: __ addsd(xmm0, xmm1); break; |
- case Token::SUB: __ subsd(xmm0, xmm1); break; |
- case Token::MUL: __ mulsd(xmm0, xmm1); break; |
- case Token::DIV: __ divsd(xmm0, xmm1); break; |
- default: UNREACHABLE(); |
- } |
- // Allocate a heap number, if needed. |
- Label skip_allocation; |
- OverwriteMode mode = mode_; |
- if (HasArgsReversed()) { |
- if (mode == OVERWRITE_RIGHT) { |
- mode = OVERWRITE_LEFT; |
- } else if (mode == OVERWRITE_LEFT) { |
- mode = OVERWRITE_RIGHT; |
- } |
- } |
- switch (mode) { |
- case OVERWRITE_LEFT: |
- __ JumpIfNotSmi(rdx, &skip_allocation); |
- __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
- __ movq(rdx, rbx); |
- __ bind(&skip_allocation); |
- __ movq(rax, rdx); |
- break; |
- case OVERWRITE_RIGHT: |
- // If the argument in rax is already an object, we skip the |
- // allocation of a heap number. |
- __ JumpIfNotSmi(rax, &skip_allocation); |
- // Fall through! |
- case NO_OVERWRITE: |
- // Allocate a heap number for the result. Keep rax and rdx intact |
- // for the possible runtime call. |
- __ AllocateHeapNumber(rbx, rcx, &call_runtime); |
- __ movq(rax, rbx); |
- __ bind(&skip_allocation); |
- break; |
- default: UNREACHABLE(); |
- } |
- __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
- GenerateReturn(masm); |
- __ bind(¬_floats); |
- if (runtime_operands_type_ == BinaryOpIC::DEFAULT && |
- !HasSmiCodeInStub()) { |
- // Execution reaches this point when the first non-number argument |
- // occurs (and only if smi code is skipped from the stub, otherwise |
- // the patching has already been done earlier in this case branch). |
- // A perfect moment to try patching to STRINGS for ADD operation. |
- if (op_ == Token::ADD) { |
- GenerateTypeTransition(masm); |
- } |
- } |
- break; |
- } |
- case Token::MOD: { |
- // For MOD we go directly to runtime in the non-smi case. |
- break; |
- } |
- case Token::BIT_OR: |
- case Token::BIT_AND: |
- case Token::BIT_XOR: |
- case Token::SAR: |
- case Token::SHL: |
- case Token::SHR: { |
- Label skip_allocation, non_smi_shr_result; |
- Register heap_number_map = r9; |
- __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
- if (static_operands_type_.IsNumber()) { |
- if (FLAG_debug_code) { |
- // Assert at runtime that inputs are only numbers. |
- __ AbortIfNotNumber(rdx); |
- __ AbortIfNotNumber(rax); |
- } |
- FloatingPointHelper::LoadNumbersAsIntegers(masm); |
- } else { |
- FloatingPointHelper::LoadAsIntegers(masm, |
- &call_runtime, |
- heap_number_map); |
- } |
- switch (op_) { |
- case Token::BIT_OR: __ orl(rax, rcx); break; |
- case Token::BIT_AND: __ andl(rax, rcx); break; |
- case Token::BIT_XOR: __ xorl(rax, rcx); break; |
- case Token::SAR: __ sarl_cl(rax); break; |
- case Token::SHL: __ shll_cl(rax); break; |
- case Token::SHR: { |
- __ shrl_cl(rax); |
- // Check if result is negative. This can only happen for a shift |
- // by zero. |
- __ testl(rax, rax); |
- __ j(negative, &non_smi_shr_result); |
- break; |
- } |
- default: UNREACHABLE(); |
- } |
- |
- STATIC_ASSERT(kSmiValueSize == 32); |
- // Tag smi result and return. |
- __ Integer32ToSmi(rax, rax); |
- GenerateReturn(masm); |
- |
- // All bit-ops except SHR return a signed int32 that can be |
- // returned immediately as a smi. |
- // We might need to allocate a HeapNumber if we shift a negative |
- // number right by zero (i.e., convert to UInt32). |
- if (op_ == Token::SHR) { |
- ASSERT(non_smi_shr_result.is_linked()); |
- __ bind(&non_smi_shr_result); |
- // Allocate a heap number if needed. |
- __ movl(rbx, rax); // rbx holds result value (uint32 value as int64). |
- switch (mode_) { |
- case OVERWRITE_LEFT: |
- case OVERWRITE_RIGHT: |
- // If the operand was an object, we skip the |
- // allocation of a heap number. |
- __ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ? |
- 1 * kPointerSize : 2 * kPointerSize)); |
- __ JumpIfNotSmi(rax, &skip_allocation); |
- // Fall through! |
- case NO_OVERWRITE: |
- // Allocate heap number in new space. |
- // Not using AllocateHeapNumber macro in order to reuse |
- // already loaded heap_number_map. |
- __ AllocateInNewSpace(HeapNumber::kSize, |
- rax, |
- rcx, |
- no_reg, |
- &call_runtime, |
- TAG_OBJECT); |
- // Set the map. |
- if (FLAG_debug_code) { |
- __ AbortIfNotRootValue(heap_number_map, |
- Heap::kHeapNumberMapRootIndex, |
- "HeapNumberMap register clobbered."); |
- } |
- __ movq(FieldOperand(rax, HeapObject::kMapOffset), |
- heap_number_map); |
- __ bind(&skip_allocation); |
- break; |
- default: UNREACHABLE(); |
- } |
- // Store the result in the HeapNumber and return. |
- __ cvtqsi2sd(xmm0, rbx); |
- __ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0); |
- GenerateReturn(masm); |
- } |
- |
- break; |
- } |
- default: UNREACHABLE(); break; |
- } |
- } |
- |
- // If all else fails, use the runtime system to get the correct |
- // result. If arguments was passed in registers now place them on the |
- // stack in the correct order below the return address. |
- __ bind(&call_runtime); |
- |
- if (HasArgsInRegisters()) { |
- GenerateRegisterArgsPush(masm); |
- } |
- |
- switch (op_) { |
- case Token::ADD: { |
- // Registers containing left and right operands respectively. |
- Register lhs, rhs; |
- |
- if (HasArgsReversed()) { |
- lhs = rax; |
- rhs = rdx; |
- } else { |
- lhs = rdx; |
- rhs = rax; |
- } |
- |
- // Test for string arguments before calling runtime. |
- Label not_strings, both_strings, not_string1, string1, string1_smi2; |
- |
- // If this stub has already generated FP-specific code then the arguments |
- // are already in rdx and rax. |
- if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) { |
- GenerateLoadArguments(masm); |
- } |
- |
- Condition is_smi; |
- is_smi = masm->CheckSmi(lhs); |
- __ j(is_smi, ¬_string1); |
- __ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8); |
- __ j(above_equal, ¬_string1); |
- |
- // First argument is a a string, test second. |
- is_smi = masm->CheckSmi(rhs); |
- __ j(is_smi, &string1_smi2); |
- __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9); |
- __ j(above_equal, &string1); |
- |
- // First and second argument are strings. |
- StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); |
- __ TailCallStub(&string_add_stub); |
- |
- __ bind(&string1_smi2); |
- // First argument is a string, second is a smi. Try to lookup the number |
- // string for the smi in the number string cache. |
- NumberToStringStub::GenerateLookupNumberStringCache( |
- masm, rhs, rbx, rcx, r8, true, &string1); |
- |
- // Replace second argument on stack and tailcall string add stub to make |
- // the result. |
- __ movq(Operand(rsp, 1 * kPointerSize), rbx); |
- __ TailCallStub(&string_add_stub); |
- |
- // Only first argument is a string. |
- __ bind(&string1); |
- __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); |
- |
- // First argument was not a string, test second. |
- __ bind(¬_string1); |
- is_smi = masm->CheckSmi(rhs); |
- __ j(is_smi, ¬_strings); |
- __ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs); |
- __ j(above_equal, ¬_strings); |
- |
- // Only second argument is a string. |
- __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); |
- |
- __ bind(¬_strings); |
- // Neither argument is a string. |
- __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); |
- break; |
- } |
- case Token::SUB: |
- __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); |
- break; |
- case Token::MUL: |
- __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); |
- break; |
- case Token::DIV: |
- __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); |
- break; |
- case Token::MOD: |
- __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); |
- break; |
- case Token::BIT_OR: |
- __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); |
- break; |
- case Token::BIT_AND: |
- __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); |
- break; |
- case Token::BIT_XOR: |
- __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); |
- break; |
- case Token::SAR: |
- __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); |
- break; |
- case Token::SHL: |
- __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); |
- break; |
- case Token::SHR: |
- __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); |
- break; |
- default: |
- UNREACHABLE(); |
- } |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { |
- ASSERT(!HasArgsInRegisters()); |
- __ movq(rax, Operand(rsp, 1 * kPointerSize)); |
- __ movq(rdx, Operand(rsp, 2 * kPointerSize)); |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { |
- // If arguments are not passed in registers remove them from the stack before |
- // returning. |
- if (!HasArgsInRegisters()) { |
- __ ret(2 * kPointerSize); // Remove both operands |
- } else { |
- __ ret(0); |
- } |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { |
- ASSERT(HasArgsInRegisters()); |
- __ pop(rcx); |
- if (HasArgsReversed()) { |
- __ push(rax); |
- __ push(rdx); |
- } else { |
- __ push(rdx); |
- __ push(rax); |
- } |
- __ push(rcx); |
-} |
- |
- |
-void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { |
- Label get_result; |
- |
- // Ensure the operands are on the stack. |
- if (HasArgsInRegisters()) { |
- GenerateRegisterArgsPush(masm); |
- } |
- |
- // Left and right arguments are already on stack. |
- __ pop(rcx); // Save the return address. |
- |
- // Push this stub's key. |
- __ Push(Smi::FromInt(MinorKey())); |
- |
- // Although the operation and the type info are encoded into the key, |
- // the encoding is opaque, so push them too. |
- __ Push(Smi::FromInt(op_)); |
- |
- __ Push(Smi::FromInt(runtime_operands_type_)); |
- |
- __ push(rcx); // The return address. |
- |
- // Perform patching to an appropriate fast case and return the result. |
- __ TailCallExternalReference( |
- ExternalReference(IC_Utility(IC::kBinaryOp_Patch)), |
- 5, |
- 1); |
-} |
- |
- |
-Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) { |
- GenericBinaryOpStub stub(key, type_info); |
- return stub.GetCode(); |
-} |
- |
- |
int CompareStub::MinorKey() { |
// Encode the three parameters in a unique 16 bit value. To avoid duplicate |
// stubs the never NaN NaN condition is only taken into account if the |
@@ -12064,6 +12043,11 @@ |
#undef __ |
+void RecordWriteStub::Generate(MacroAssembler* masm) { |
+ masm->RecordWriteHelper(object_, addr_, scratch_); |
+ masm->ret(0); |
+} |
+ |
} } // namespace v8::internal |
#endif // V8_TARGET_ARCH_X64 |