OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2009 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "base/crypto/rsa_private_key.h" |
| 6 |
| 7 #include <iostream> |
| 8 #include <list> |
| 9 |
| 10 #include "base/logging.h" |
| 11 #include "base/scoped_ptr.h" |
| 12 #include "base/string_util.h" |
| 13 |
| 14 // This file manually encodes and decodes RSA private keys using PrivateKeyInfo |
| 15 // from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are: |
| 16 // |
| 17 // PrivateKeyInfo ::= SEQUENCE { |
| 18 // version Version, |
| 19 // privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, |
| 20 // privateKey PrivateKey, |
| 21 // attributes [0] IMPLICIT Attributes OPTIONAL |
| 22 // } |
| 23 // |
| 24 // RSAPrivateKey ::= SEQUENCE { |
| 25 // version Version, |
| 26 // modulus INTEGER, |
| 27 // publicExponent INTEGER, |
| 28 // privateExponent INTEGER, |
| 29 // prime1 INTEGER, |
| 30 // prime2 INTEGER, |
| 31 // exponent1 INTEGER, |
| 32 // exponent2 INTEGER, |
| 33 // coefficient INTEGER |
| 34 // } |
| 35 |
| 36 namespace { |
| 37 // Helper for error handling during key import. |
| 38 #define READ_ASSERT(truth) \ |
| 39 if (!(truth)) { \ |
| 40 NOTREACHED(); \ |
| 41 return false; \ |
| 42 } |
| 43 } // namespace |
| 44 |
| 45 namespace base { |
| 46 |
| 47 const uint8 PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { |
| 48 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, |
| 49 0x05, 0x00 |
| 50 }; |
| 51 |
| 52 void PrivateKeyInfoCodec::PrependBytes(uint8* val, |
| 53 int start, |
| 54 int num_bytes, |
| 55 std::list<uint8>* data) { |
| 56 while(num_bytes > 0) { |
| 57 --num_bytes; |
| 58 data->push_front(val[start + num_bytes]); |
| 59 } |
| 60 } |
| 61 |
| 62 void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8>* data) { |
| 63 // The high bit is used to indicate whether additional octets are needed to |
| 64 // represent the length. |
| 65 if (size < 0x80) { |
| 66 data->push_front(static_cast<uint8>(size)); |
| 67 } else { |
| 68 uint8 num_bytes = 0; |
| 69 while (size > 0) { |
| 70 data->push_front(static_cast<uint8>(size & 0xFF)); |
| 71 size >>= 8; |
| 72 num_bytes++; |
| 73 } |
| 74 CHECK(num_bytes <= 4); |
| 75 data->push_front(0x80 | num_bytes); |
| 76 } |
| 77 } |
| 78 |
| 79 void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(uint8 type, |
| 80 uint32 length, |
| 81 std::list<uint8>* output) { |
| 82 PrependLength(length, output); |
| 83 output->push_front(type); |
| 84 } |
| 85 |
| 86 void PrivateKeyInfoCodec::PrependBitString(uint8* val, |
| 87 int num_bytes, |
| 88 std::list<uint8>* output) { |
| 89 // Start with the data. |
| 90 PrependBytes(val, 0, num_bytes, output); |
| 91 // Zero unused bits. |
| 92 output->push_front(0); |
| 93 // Add the length. |
| 94 PrependLength(num_bytes + 1, output); |
| 95 // Finally, add the bit string tag. |
| 96 output->push_front((uint8) kBitStringTag); |
| 97 } |
| 98 |
| 99 bool PrivateKeyInfoCodec::ReadLength(uint8** pos, uint8* end, uint32* result) { |
| 100 READ_ASSERT(*pos < end); |
| 101 int length = 0; |
| 102 |
| 103 // If the MSB is not set, the length is just the byte itself. |
| 104 if (!(**pos & 0x80)) { |
| 105 length = **pos; |
| 106 (*pos)++; |
| 107 } else { |
| 108 // Otherwise, the lower 7 indicate the length of the length. |
| 109 int length_of_length = **pos & 0x7F; |
| 110 READ_ASSERT(length_of_length <= 4); |
| 111 (*pos)++; |
| 112 READ_ASSERT(*pos + length_of_length < end); |
| 113 |
| 114 length = 0; |
| 115 for (int i = 0; i < length_of_length; ++i) { |
| 116 length <<= 8; |
| 117 length |= **pos; |
| 118 (*pos)++; |
| 119 } |
| 120 } |
| 121 |
| 122 READ_ASSERT(*pos + length <= end); |
| 123 if (result) *result = length; |
| 124 return true; |
| 125 } |
| 126 |
| 127 bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8** pos, |
| 128 uint8* end, |
| 129 uint8 expected_tag, |
| 130 uint32* length) { |
| 131 READ_ASSERT(*pos < end); |
| 132 READ_ASSERT(**pos == expected_tag); |
| 133 (*pos)++; |
| 134 |
| 135 return ReadLength(pos, end, length); |
| 136 } |
| 137 |
| 138 bool PrivateKeyInfoCodec::ReadSequence(uint8** pos, uint8* end) { |
| 139 return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); |
| 140 } |
| 141 |
| 142 bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8** pos, uint8* end) { |
| 143 READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); |
| 144 READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, |
| 145 sizeof(kRsaAlgorithmIdentifier)) == 0); |
| 146 (*pos) += sizeof(kRsaAlgorithmIdentifier); |
| 147 return true; |
| 148 } |
| 149 |
| 150 bool PrivateKeyInfoCodec::ReadVersion(uint8** pos, uint8* end) { |
| 151 uint32 length = 0; |
| 152 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) |
| 153 return false; |
| 154 |
| 155 // The version should be zero. |
| 156 for (uint32 i = 0; i < length; ++i) { |
| 157 READ_ASSERT(**pos == 0x00); |
| 158 (*pos)++; |
| 159 } |
| 160 |
| 161 return true; |
| 162 } |
| 163 |
| 164 bool PrivateKeyInfoCodec::Export(std::vector<uint8>* output) { |
| 165 std::list<uint8> content; |
| 166 |
| 167 // Version (always zero) |
| 168 uint8 version = 0; |
| 169 |
| 170 PrependInteger(coefficient_, &content); |
| 171 PrependInteger(exponent2_, &content); |
| 172 PrependInteger(exponent1_, &content); |
| 173 PrependInteger(prime2_, &content); |
| 174 PrependInteger(prime1_, &content); |
| 175 PrependInteger(private_exponent_, &content); |
| 176 PrependInteger(public_exponent_, &content); |
| 177 PrependInteger(modulus_, &content); |
| 178 PrependInteger(&version, 1, &content); |
| 179 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| 180 PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); |
| 181 |
| 182 // RSA algorithm OID |
| 183 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
| 184 content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
| 185 |
| 186 PrependInteger(&version, 1, &content); |
| 187 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| 188 |
| 189 // Copy everying into the output. |
| 190 output->reserve(content.size()); |
| 191 for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i) |
| 192 output->push_back(*i); |
| 193 |
| 194 return true; |
| 195 } |
| 196 |
| 197 bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8>* output) { |
| 198 // Create a sequence with the modulus (n) and public exponent (e). |
| 199 std::list<uint8> content; |
| 200 PrependInteger(&public_exponent_[0], |
| 201 static_cast<int>(public_exponent_.size()), |
| 202 &content); |
| 203 PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content); |
| 204 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| 205 |
| 206 // Copy the sequence with n and e into a buffer. |
| 207 std::vector<uint8> bit_string; |
| 208 for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i) |
| 209 bit_string.push_back(*i); |
| 210 content.clear(); |
| 211 // Add the sequence as the contents of a bit string. |
| 212 PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()), |
| 213 &content); |
| 214 |
| 215 // Add the RSA algorithm OID. |
| 216 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
| 217 content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
| 218 |
| 219 // Finally, wrap everything in a sequence. |
| 220 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| 221 |
| 222 // Copy everything into the output. |
| 223 output->reserve(content.size()); |
| 224 for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i) |
| 225 output->push_back(*i); |
| 226 |
| 227 return true; |
| 228 } |
| 229 |
| 230 bool PrivateKeyInfoCodec::Import(const std::vector<uint8>& input) { |
| 231 if (input.empty()) { |
| 232 return false; |
| 233 } |
| 234 |
| 235 // Parse the private key info up to the public key values, ignoring |
| 236 // the subsequent private key values. |
| 237 uint8* src = const_cast<uint8*>(&input.front()); |
| 238 uint8* end = src + input.size(); |
| 239 if (!ReadSequence(&src, end) || |
| 240 !ReadVersion(&src, end) || |
| 241 !ReadAlgorithmIdentifier(&src, end) || |
| 242 !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || |
| 243 !ReadSequence(&src, end) || |
| 244 !ReadVersion(&src, end) || |
| 245 !ReadInteger(&src, end, &modulus_)) |
| 246 return false; |
| 247 |
| 248 int mod_size = modulus_.size(); |
| 249 READ_ASSERT(mod_size % 2 == 0); |
| 250 int primes_size = mod_size / 2; |
| 251 |
| 252 if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || |
| 253 !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || |
| 254 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || |
| 255 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || |
| 256 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || |
| 257 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || |
| 258 !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) |
| 259 return false; |
| 260 |
| 261 READ_ASSERT(src == end); |
| 262 |
| 263 |
| 264 return true; |
| 265 } |
| 266 |
| 267 void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8>& in, |
| 268 std::list<uint8>* out) { |
| 269 uint8* ptr = const_cast<uint8*>(&in.front()); |
| 270 PrependIntegerImpl(ptr, in.size(), out, big_endian_); |
| 271 } |
| 272 |
| 273 // Helper to prepend an ASN.1 integer. |
| 274 void PrivateKeyInfoCodec::PrependInteger(uint8* val, |
| 275 int num_bytes, |
| 276 std::list<uint8>* data) { |
| 277 PrependIntegerImpl(val, num_bytes, data, big_endian_); |
| 278 } |
| 279 |
| 280 void PrivateKeyInfoCodec::PrependIntegerImpl(uint8* val, |
| 281 int num_bytes, |
| 282 std::list<uint8>* data, |
| 283 bool big_endian) { |
| 284 // Reverse input if little-endian. |
| 285 std::vector<uint8> tmp; |
| 286 if (!big_endian) { |
| 287 tmp.assign(val, val + num_bytes); |
| 288 reverse(tmp.begin(), tmp.end()); |
| 289 val = &tmp.front(); |
| 290 } |
| 291 |
| 292 // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes |
| 293 // from the most-significant end of the integer. |
| 294 int start = 0; |
| 295 while (start < (num_bytes - 1) && val[start] == 0x00) { |
| 296 start++; |
| 297 num_bytes--; |
| 298 } |
| 299 PrependBytes(val, start, num_bytes, data); |
| 300 |
| 301 // ASN.1 integers are signed. To encode a positive integer whose sign bit |
| 302 // (the most significant bit) would otherwise be set and make the number |
| 303 // negative, ASN.1 requires a leading null byte to force the integer to be |
| 304 // positive. |
| 305 uint8 front = data->front(); |
| 306 if ((front & 0x80) != 0) { |
| 307 data->push_front(0x00); |
| 308 num_bytes++; |
| 309 } |
| 310 |
| 311 PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); |
| 312 } |
| 313 |
| 314 bool PrivateKeyInfoCodec::ReadInteger(uint8** pos, |
| 315 uint8* end, |
| 316 std::vector<uint8>* out) { |
| 317 return ReadIntegerImpl(pos, end, out, big_endian_); |
| 318 } |
| 319 |
| 320 bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8** pos, |
| 321 uint8* end, |
| 322 std::vector<uint8>* out, |
| 323 bool big_endian) { |
| 324 uint32 length = 0; |
| 325 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) |
| 326 return false; |
| 327 |
| 328 // The first byte can be zero to force positiveness. We can ignore this. |
| 329 if (**pos == 0x00) { |
| 330 ++(*pos); |
| 331 --length; |
| 332 } |
| 333 |
| 334 if (length) |
| 335 out->insert(out->end(), *pos, (*pos) + length); |
| 336 |
| 337 (*pos) += length; |
| 338 |
| 339 // Reverse output if little-endian. |
| 340 if (!big_endian) |
| 341 reverse(out->begin(), out->end()); |
| 342 return true; |
| 343 } |
| 344 |
| 345 bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(uint8** pos, |
| 346 uint8* end, |
| 347 size_t expected_size, |
| 348 std::vector<uint8>* out) { |
| 349 std::vector<uint8> temp; |
| 350 if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian |
| 351 return false; |
| 352 |
| 353 int pad = expected_size - temp.size(); |
| 354 int index = 0; |
| 355 if (out->size() == expected_size + 1) { |
| 356 READ_ASSERT(out->front() == 0x00); |
| 357 pad++; |
| 358 index++; |
| 359 } else { |
| 360 READ_ASSERT(out->size() <= expected_size); |
| 361 } |
| 362 |
| 363 while(pad) { |
| 364 out->push_back(0x00); |
| 365 pad--; |
| 366 } |
| 367 out->insert(out->end(), temp.begin(), temp.end()); |
| 368 |
| 369 // Reverse output if little-endian. |
| 370 if (!big_endian_) |
| 371 reverse(out->begin(), out->end()); |
| 372 return true; |
| 373 } |
| 374 |
| 375 } // namespace base |
OLD | NEW |