| Index: src/platform/vboot_reference/vboot_firmware/lib/load_kernel_fw.c
|
| diff --git a/src/platform/vboot_reference/vboot_firmware/lib/load_kernel_fw.c b/src/platform/vboot_reference/vboot_firmware/lib/load_kernel_fw.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8b75180116df2f828a7e1be4357a4d8c73123bba
|
| --- /dev/null
|
| +++ b/src/platform/vboot_reference/vboot_firmware/lib/load_kernel_fw.c
|
| @@ -0,0 +1,277 @@
|
| +/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + *
|
| + * Functions for loading a kernel from disk.
|
| + * (Firmware portion)
|
| + */
|
| +
|
| +#include "load_kernel_fw.h"
|
| +
|
| +#include "boot_device.h"
|
| +#include "cgptlib.h"
|
| +#include "kernel_image_fw.h"
|
| +#include "rollback_index.h"
|
| +#include "utility.h"
|
| +
|
| +
|
| +int AllocAndReadGptData(GptData *gptdata) {
|
| + /* Allocates and reads GPT data from the drive. The sector_bytes and
|
| + * drive_sectors fields should be filled on input. The primary and
|
| + * secondary header and entries are filled on output.
|
| + *
|
| + * Returns 0 if successful, 1 if error. */
|
| +
|
| + uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
| +
|
| + /* No data to be written yet */
|
| + gptdata->modified = 0;
|
| +
|
| + /* Allocate all buffers */
|
| + gptdata->primary_header = (uint8_t*)Malloc(gptdata->sector_bytes);
|
| + gptdata->secondary_header = (uint8_t*)Malloc(gptdata->sector_bytes);
|
| + gptdata->primary_entries = (uint8_t*)Malloc(TOTAL_ENTRIES_SIZE);
|
| + gptdata->secondary_entries = (uint8_t*)Malloc(TOTAL_ENTRIES_SIZE);
|
| +
|
| + if (gptdata->primary_header == NULL || gptdata->secondary_header == NULL ||
|
| + gptdata->primary_entries == NULL || gptdata->secondary_entries == NULL)
|
| + return 1;
|
| +
|
| + /* Read data from the drive */
|
| + if (0 != BootDeviceReadLBA(0, 1, gptdata->primary_header))
|
| + return 1;
|
| + if (0 != BootDeviceReadLBA(1, entries_sectors, gptdata->primary_entries))
|
| + return 1;
|
| + if (0 != BootDeviceReadLBA(gptdata->drive_sectors - entries_sectors - 1,
|
| + entries_sectors, gptdata->secondary_entries))
|
| + return 1;
|
| + if (0 != BootDeviceReadLBA(gptdata->drive_sectors - entries_sectors - 1,
|
| + 1, gptdata->secondary_header))
|
| + return 1;
|
| +
|
| + return 0;
|
| +}
|
| +
|
| +void WriteAndFreeGptData(GptData *gptdata) {
|
| + /* Writes any changes for the GPT data back to the drive, then frees the
|
| + * buffers. */
|
| +
|
| + uint64_t entries_sectors = TOTAL_ENTRIES_SIZE / gptdata->sector_bytes;
|
| +
|
| + if (gptdata->primary_header) {
|
| + if (gptdata->modified & GPT_MODIFIED_HEADER1)
|
| + BootDeviceWriteLBA(0, 1, gptdata->primary_header);
|
| + Free(gptdata->primary_header);
|
| + }
|
| +
|
| + if (gptdata->primary_entries) {
|
| + if (gptdata->modified & GPT_MODIFIED_ENTRIES1)
|
| + BootDeviceWriteLBA(1, entries_sectors, gptdata->primary_entries);
|
| + Free(gptdata->primary_entries);
|
| + }
|
| +
|
| + if (gptdata->secondary_entries) {
|
| + if (gptdata->modified & GPT_MODIFIED_ENTRIES2)
|
| + BootDeviceWriteLBA(gptdata->drive_sectors - entries_sectors - 1,
|
| + entries_sectors, gptdata->secondary_entries);
|
| + Free(gptdata->secondary_entries);
|
| + }
|
| +
|
| + if (gptdata->secondary_header) {
|
| + if (gptdata->modified & GPT_MODIFIED_HEADER2)
|
| + BootDeviceWriteLBA(gptdata->drive_sectors - entries_sectors - 1,
|
| + 1, gptdata->secondary_header);
|
| + BootDeviceWriteLBA(0, 1, gptdata->primary_header);
|
| + Free(gptdata->primary_header);
|
| + }
|
| + /* TODO: What to do with return codes from the writes? */
|
| +}
|
| +
|
| +#define KBUF_SIZE 65536 /* Bytes to read at start of kernel partition */
|
| +
|
| +int LoadKernel(LoadKernelParams* params) {
|
| +
|
| + GptData gpt;
|
| + uint64_t part_start, part_size;
|
| + uint64_t blba = params->bytes_per_lba;
|
| + uint8_t* kbuf = NULL;
|
| + uint64_t kbuf_sectors;
|
| + int found_partition = 0;
|
| + int good_partition = -1;
|
| + uint16_t tpm_kernel_key_version, tpm_kernel_version;
|
| + uint16_t lowest_kernel_key_version = 0xFFFF;
|
| + uint16_t lowest_kernel_version = 0xFFFF;
|
| + KernelImage *kim = NULL;
|
| +
|
| + /* Read current kernel key index from TPM. Assumes TPM is already
|
| + * initialized. */
|
| + /* TODO: Is that a safe assumption? Normally, SetupTPM() would be called
|
| + * when the RW firmware is verified. Is it harmful to call SetupTPM()
|
| + * again if it's already initialized? It'd be easier if we could just do
|
| + * that. */
|
| + tpm_kernel_key_version = GetStoredVersion(KERNEL_KEY_VERSION);
|
| + tpm_kernel_version = GetStoredVersion(KERNEL_VERSION);
|
| +
|
| + do {
|
| + /* Read GPT data */
|
| + gpt.sector_bytes = blba;
|
| + gpt.drive_sectors = params->ending_lba + 1;
|
| + if (0 != AllocAndReadGptData(&gpt))
|
| + break;
|
| +
|
| + /* Initialize GPT library */
|
| + if (GPT_SUCCESS != GptInit(&gpt))
|
| + break;
|
| +
|
| + /* Allocate kernel header and image work buffers */
|
| + kbuf = (uint8_t*)Malloc(KBUF_SIZE);
|
| + if (!kbuf)
|
| + break;
|
| + kbuf_sectors = KBUF_SIZE / blba;
|
| + kim = (KernelImage*)Malloc(sizeof(KernelImage));
|
| + if (!kim)
|
| + break;
|
| +
|
| + /* Loop over candidate kernel partitions */
|
| + while (GPT_SUCCESS == GptNextKernelEntry(&gpt, &part_start, &part_size)) {
|
| + RSAPublicKey *kernel_sign_key = NULL;
|
| + int kernel_start, kernel_sectors;
|
| +
|
| + /* Found at least one kernel partition. */
|
| + found_partition = 1;
|
| +
|
| + /* Read the first part of the kernel partition */
|
| + if (part_size < kbuf_sectors)
|
| + continue;
|
| + if (1 != BootDeviceReadLBA(part_start, kbuf_sectors, kbuf))
|
| + continue;
|
| +
|
| + /* Verify the kernel header and preamble */
|
| + if (VERIFY_KERNEL_SUCCESS != VerifyKernelHeader(
|
| + params->header_sign_key_blob,
|
| + kbuf,
|
| + KBUF_SIZE,
|
| + (BOOT_MODE_DEVELOPER == params->boot_mode ? 1 : 0),
|
| + kim,
|
| + &kernel_sign_key)) {
|
| + continue;
|
| + }
|
| +
|
| + /* Check for rollback of key version */
|
| + if (kim->kernel_key_version < tpm_kernel_key_version) {
|
| + RSAPublicKeyFree(kernel_sign_key);
|
| + continue;
|
| + }
|
| +
|
| + /* Check for rollback of kernel version */
|
| + if (kim->kernel_key_version == tpm_kernel_key_version &&
|
| + kim->kernel_version < tpm_kernel_version) {
|
| + RSAPublicKeyFree(kernel_sign_key);
|
| + continue;
|
| + }
|
| +
|
| + /* Check for lowest key version from a valid header. */
|
| + if (lowest_kernel_key_version > kim->kernel_key_version) {
|
| + lowest_kernel_key_version = kim->kernel_key_version;
|
| + lowest_kernel_version = kim->kernel_version;
|
| + }
|
| + else if (lowest_kernel_key_version == kim->kernel_key_version &&
|
| + lowest_kernel_version > kim->kernel_version) {
|
| + lowest_kernel_version = kim->kernel_version;
|
| + }
|
| +
|
| + /* Verify kernel padding is a multiple of sector size. */
|
| + if (0 != kim->padded_header_size % blba) {
|
| + RSAPublicKeyFree(kernel_sign_key);
|
| + continue;
|
| + }
|
| +
|
| + kernel_start = part_start + (kim->padded_header_size / blba);
|
| + kernel_sectors = (kim->kernel_len + blba - 1) / blba;
|
| +
|
| + /* Read the kernel data */
|
| + if (0 != BootDeviceReadLBA(kernel_start, kernel_sectors,
|
| + params->kernel_buffer)) {
|
| + RSAPublicKeyFree(kernel_sign_key);
|
| + continue;
|
| + }
|
| +
|
| + /* Verify kernel data */
|
| + if (0 != VerifyKernelData(kernel_sign_key,
|
| + kim->kernel_signature,
|
| + params->kernel_buffer,
|
| + kim->kernel_len,
|
| + kim->kernel_sign_algorithm)) {
|
| + RSAPublicKeyFree(kernel_sign_key);
|
| + continue;
|
| + }
|
| +
|
| + /* Done with the kernel signing key, so can free it now */
|
| + RSAPublicKeyFree(kernel_sign_key);
|
| +
|
| + /* If we're still here, the kernel is valid. */
|
| + /* Save the first good partition we find; that's the one we'll boot */
|
| + if (-1 == good_partition) {
|
| + good_partition = gpt.current_kernel;
|
| + params->partition_number = gpt.current_kernel;
|
| + params->bootloader_start = (uint8_t*)params->kernel_buffer +
|
| + kim->bootloader_offset;
|
| + params->bootloader_size = kim->bootloader_size;
|
| +
|
| + /* If the good partition's key version is the same as the tpm, then
|
| + * the TPM doesn't need updating; we can stop now. Otherwise, we'll
|
| + * check all the other headers to see if they contain a newer key. */
|
| + if (kim->kernel_key_version == tpm_kernel_key_version &&
|
| + kim->kernel_version == tpm_kernel_version)
|
| + break;
|
| + }
|
| + } /* while(GptNextKernelEntry) */
|
| + } while(0);
|
| +
|
| + /* Free kernel work and image buffers */
|
| + if (kbuf)
|
| + Free(kbuf);
|
| + if (kim)
|
| + Free(kim);
|
| +
|
| + // Write and free GPT data
|
| + WriteAndFreeGptData(&gpt);
|
| +
|
| + // Handle finding a good partition
|
| + if (good_partition >= 0) {
|
| +
|
| + /* See if we need to update the TPM */
|
| + if (lowest_kernel_key_version > tpm_kernel_key_version) {
|
| + WriteStoredVersion(KERNEL_KEY_VERSION, lowest_kernel_key_version);
|
| + WriteStoredVersion(KERNEL_VERSION, lowest_kernel_version);
|
| + }
|
| + else if (lowest_kernel_key_version == tpm_kernel_key_version &&
|
| + lowest_kernel_version > tpm_kernel_version) {
|
| + WriteStoredVersion(KERNEL_VERSION, lowest_kernel_version);
|
| + }
|
| +
|
| + if (BOOT_MODE_RECOVERY != params->boot_mode) {
|
| + /* We can lock the TPM now, since we've decided which kernel we
|
| + * like. If we don't find a good kernel, we leave the TPM
|
| + * unlocked so we can try again on the next boot device. If no
|
| + * kernels are good, we'll reboot to recovery mode, so it's ok to
|
| + * leave the TPM unlocked in that case too.
|
| + *
|
| + * If we're already in recovery mode, we need to leave PP unlocked,
|
| + * so don't lock the kernel versions. */
|
| + LockKernelVersionsByLockingPP();
|
| + }
|
| +
|
| + /* Success! */
|
| + return LOAD_KERNEL_SUCCESS;
|
| + }
|
| +
|
| + // Handle error cases
|
| + if (found_partition)
|
| + return LOAD_KERNEL_INVALID;
|
| + else
|
| + return LOAD_KERNEL_NOT_FOUND;
|
| + /* TODO: no error code for "internal error", but what would the firmware do
|
| + * with that anyway? So in the do-while(0) code above, the firmware just
|
| + * does 'break' to indicate an internal error... */
|
| +}
|
|
|