Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(9)

Side by Side Diff: src/spaces.cc

Issue 2274001: Revert r4715. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: Created 10 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/spaces.h ('k') | src/spaces-inl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2006-2008 the V8 project authors. All rights reserved. 1 // Copyright 2006-2008 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without 2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are 3 // modification, are permitted provided that the following conditions are
4 // met: 4 // met:
5 // 5 //
6 // * Redistributions of source code must retain the above copyright 6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer. 7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above 8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following 9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided 10 // disclaimer in the documentation and/or other materials provided
(...skipping 23 matching lines...) Expand all
34 namespace v8 { 34 namespace v8 {
35 namespace internal { 35 namespace internal {
36 36
37 // For contiguous spaces, top should be in the space (or at the end) and limit 37 // For contiguous spaces, top should be in the space (or at the end) and limit
38 // should be the end of the space. 38 // should be the end of the space.
39 #define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \ 39 #define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \
40 ASSERT((space).low() <= (info).top \ 40 ASSERT((space).low() <= (info).top \
41 && (info).top <= (space).high() \ 41 && (info).top <= (space).high() \
42 && (info).limit == (space).high()) 42 && (info).limit == (space).high())
43 43
44 intptr_t Page::watermark_invalidated_mark_ = Page::WATERMARK_INVALIDATED;
45 44
46 // ---------------------------------------------------------------------------- 45 // ----------------------------------------------------------------------------
47 // HeapObjectIterator 46 // HeapObjectIterator
48 47
49 HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { 48 HeapObjectIterator::HeapObjectIterator(PagedSpace* space) {
50 Initialize(space->bottom(), space->top(), NULL); 49 Initialize(space->bottom(), space->top(), NULL);
51 } 50 }
52 51
53 52
54 HeapObjectIterator::HeapObjectIterator(PagedSpace* space, 53 HeapObjectIterator::HeapObjectIterator(PagedSpace* space,
(...skipping 78 matching lines...) Expand 10 before | Expand all | Expand 10 after
133 } 132 }
134 } 133 }
135 #endif 134 #endif
136 stop_page_ = space->last_page_; 135 stop_page_ = space->last_page_;
137 break; 136 break;
138 } 137 }
139 } 138 }
140 139
141 140
142 // ----------------------------------------------------------------------------- 141 // -----------------------------------------------------------------------------
142 // Page
143
144 #ifdef DEBUG
145 Page::RSetState Page::rset_state_ = Page::IN_USE;
146 #endif
147
148 // -----------------------------------------------------------------------------
143 // CodeRange 149 // CodeRange
144 150
145 List<CodeRange::FreeBlock> CodeRange::free_list_(0); 151 List<CodeRange::FreeBlock> CodeRange::free_list_(0);
146 List<CodeRange::FreeBlock> CodeRange::allocation_list_(0); 152 List<CodeRange::FreeBlock> CodeRange::allocation_list_(0);
147 int CodeRange::current_allocation_block_index_ = 0; 153 int CodeRange::current_allocation_block_index_ = 0;
148 VirtualMemory* CodeRange::code_range_ = NULL; 154 VirtualMemory* CodeRange::code_range_ = NULL;
149 155
150 156
151 bool CodeRange::Setup(const size_t requested) { 157 bool CodeRange::Setup(const size_t requested) {
152 ASSERT(code_range_ == NULL); 158 ASSERT(code_range_ == NULL);
(...skipping 358 matching lines...) Expand 10 before | Expand all | Expand 10 after
511 size_t chunk_size = chunks_[chunk_id].size(); 517 size_t chunk_size = chunks_[chunk_id].size();
512 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize); 518 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize);
513 ASSERT(pages_in_chunk <= 519 ASSERT(pages_in_chunk <=
514 ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize)); 520 ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize));
515 #endif 521 #endif
516 522
517 Address page_addr = low; 523 Address page_addr = low;
518 for (int i = 0; i < pages_in_chunk; i++) { 524 for (int i = 0; i < pages_in_chunk; i++) {
519 Page* p = Page::FromAddress(page_addr); 525 Page* p = Page::FromAddress(page_addr);
520 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; 526 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
521 p->InvalidateWatermark(true);
522 p->SetIsLargeObjectPage(false); 527 p->SetIsLargeObjectPage(false);
523 p->SetAllocationWatermark(p->ObjectAreaStart());
524 p->SetCachedAllocationWatermark(p->ObjectAreaStart());
525 page_addr += Page::kPageSize; 528 page_addr += Page::kPageSize;
526 } 529 }
527 530
528 // Set the next page of the last page to 0. 531 // Set the next page of the last page to 0.
529 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); 532 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
530 last_page->opaque_header = OffsetFrom(0) | chunk_id; 533 last_page->opaque_header = OffsetFrom(0) | chunk_id;
531 534
532 return Page::FromAddress(low); 535 return Page::FromAddress(low);
533 } 536 }
534 537
(...skipping 136 matching lines...) Expand 10 before | Expand all | Expand 10 after
671 674
672 if (prev->is_valid()) { 675 if (prev->is_valid()) {
673 SetNextPage(prev, Page::FromAddress(page_addr)); 676 SetNextPage(prev, Page::FromAddress(page_addr));
674 } 677 }
675 678
676 for (int i = 0; i < pages_in_chunk; i++) { 679 for (int i = 0; i < pages_in_chunk; i++) {
677 Page* p = Page::FromAddress(page_addr); 680 Page* p = Page::FromAddress(page_addr);
678 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; 681 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id;
679 page_addr += Page::kPageSize; 682 page_addr += Page::kPageSize;
680 683
681 p->InvalidateWatermark(true);
682 if (p->WasInUseBeforeMC()) { 684 if (p->WasInUseBeforeMC()) {
683 *last_page_in_use = p; 685 *last_page_in_use = p;
684 } 686 }
685 } 687 }
686 688
687 // Set the next page of the last page to 0. 689 // Set the next page of the last page to 0.
688 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); 690 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize);
689 last_page->opaque_header = OffsetFrom(0) | chunk_id; 691 last_page->opaque_header = OffsetFrom(0) | chunk_id;
690 692
691 if (last_page->WasInUseBeforeMC()) { 693 if (last_page->WasInUseBeforeMC()) {
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after
735 if (!first_page_->is_valid()) return false; 737 if (!first_page_->is_valid()) return false;
736 } 738 }
737 739
738 // We are sure that the first page is valid and that we have at least one 740 // We are sure that the first page is valid and that we have at least one
739 // page. 741 // page.
740 ASSERT(first_page_->is_valid()); 742 ASSERT(first_page_->is_valid());
741 ASSERT(num_pages > 0); 743 ASSERT(num_pages > 0);
742 accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize); 744 accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize);
743 ASSERT(Capacity() <= max_capacity_); 745 ASSERT(Capacity() <= max_capacity_);
744 746
745 // Sequentially clear region marks in the newly allocated 747 // Sequentially initialize remembered sets in the newly allocated
746 // pages and cache the current last page in the space. 748 // pages and cache the current last page in the space.
747 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { 749 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) {
748 p->SetRegionMarks(Page::kAllRegionsCleanMarks); 750 p->ClearRSet();
749 last_page_ = p; 751 last_page_ = p;
750 } 752 }
751 753
752 // Use first_page_ for allocation. 754 // Use first_page_ for allocation.
753 SetAllocationInfo(&allocation_info_, first_page_); 755 SetAllocationInfo(&allocation_info_, first_page_);
754 756
755 page_list_is_chunk_ordered_ = true; 757 page_list_is_chunk_ordered_ = true;
756 758
757 return true; 759 return true;
758 } 760 }
(...skipping 26 matching lines...) Expand all
785 Page* page = first_page_; 787 Page* page = first_page_;
786 while (page->is_valid()) { 788 while (page->is_valid()) {
787 MemoryAllocator::UnprotectChunkFromPage(page); 789 MemoryAllocator::UnprotectChunkFromPage(page);
788 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page(); 790 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page();
789 } 791 }
790 } 792 }
791 793
792 #endif 794 #endif
793 795
794 796
795 void PagedSpace::MarkAllPagesClean() { 797 void PagedSpace::ClearRSet() {
796 PageIterator it(this, PageIterator::ALL_PAGES); 798 PageIterator it(this, PageIterator::ALL_PAGES);
797 while (it.has_next()) { 799 while (it.has_next()) {
798 it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks); 800 it.next()->ClearRSet();
799 } 801 }
800 } 802 }
801 803
802 804
803 Object* PagedSpace::FindObject(Address addr) { 805 Object* PagedSpace::FindObject(Address addr) {
804 // Note: this function can only be called before or after mark-compact GC 806 // Note: this function can only be called before or after mark-compact GC
805 // because it accesses map pointers. 807 // because it accesses map pointers.
806 ASSERT(!MarkCompactCollector::in_use()); 808 ASSERT(!MarkCompactCollector::in_use());
807 809
808 if (!Contains(addr)) return Failure::Exception(); 810 if (!Contains(addr)) return Failure::Exception();
(...skipping 82 matching lines...) Expand 10 before | Expand all | Expand 10 after
891 ASSERT(current_page->next_page()->is_valid()); 893 ASSERT(current_page->next_page()->is_valid());
892 // We do not add the top of page block for current page to the space's 894 // We do not add the top of page block for current page to the space's
893 // free list---the block may contain live objects so we cannot write 895 // free list---the block may contain live objects so we cannot write
894 // bookkeeping information to it. Instead, we will recover top of page 896 // bookkeeping information to it. Instead, we will recover top of page
895 // blocks when we move objects to their new locations. 897 // blocks when we move objects to their new locations.
896 // 898 //
897 // We do however write the allocation pointer to the page. The encoding 899 // We do however write the allocation pointer to the page. The encoding
898 // of forwarding addresses is as an offset in terms of live bytes, so we 900 // of forwarding addresses is as an offset in terms of live bytes, so we
899 // need quick access to the allocation top of each page to decode 901 // need quick access to the allocation top of each page to decode
900 // forwarding addresses. 902 // forwarding addresses.
901 current_page->SetAllocationWatermark(mc_forwarding_info_.top); 903 current_page->mc_relocation_top = mc_forwarding_info_.top;
902 current_page->next_page()->InvalidateWatermark(true);
903 SetAllocationInfo(&mc_forwarding_info_, current_page->next_page()); 904 SetAllocationInfo(&mc_forwarding_info_, current_page->next_page());
904 return AllocateLinearly(&mc_forwarding_info_, size_in_bytes); 905 return AllocateLinearly(&mc_forwarding_info_, size_in_bytes);
905 } 906 }
906 907
907 908
908 bool PagedSpace::Expand(Page* last_page) { 909 bool PagedSpace::Expand(Page* last_page) {
909 ASSERT(max_capacity_ % Page::kObjectAreaSize == 0); 910 ASSERT(max_capacity_ % Page::kObjectAreaSize == 0);
910 ASSERT(Capacity() % Page::kObjectAreaSize == 0); 911 ASSERT(Capacity() % Page::kObjectAreaSize == 0);
911 912
912 if (Capacity() == max_capacity_) return false; 913 if (Capacity() == max_capacity_) return false;
913 914
914 ASSERT(Capacity() < max_capacity_); 915 ASSERT(Capacity() < max_capacity_);
915 // Last page must be valid and its next page is invalid. 916 // Last page must be valid and its next page is invalid.
916 ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid()); 917 ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid());
917 918
918 int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize; 919 int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize;
919 if (available_pages <= 0) return false; 920 if (available_pages <= 0) return false;
920 921
921 int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk); 922 int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk);
922 Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this); 923 Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this);
923 if (!p->is_valid()) return false; 924 if (!p->is_valid()) return false;
924 925
925 accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize); 926 accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize);
926 ASSERT(Capacity() <= max_capacity_); 927 ASSERT(Capacity() <= max_capacity_);
927 928
928 MemoryAllocator::SetNextPage(last_page, p); 929 MemoryAllocator::SetNextPage(last_page, p);
929 930
930 // Sequentially clear region marks of new pages and and cache the 931 // Sequentially clear remembered set of new pages and and cache the
931 // new last page in the space. 932 // new last page in the space.
932 while (p->is_valid()) { 933 while (p->is_valid()) {
933 p->SetRegionMarks(Page::kAllRegionsCleanMarks); 934 p->ClearRSet();
934 last_page_ = p; 935 last_page_ = p;
935 p = p->next_page(); 936 p = p->next_page();
936 } 937 }
937 938
938 return true; 939 return true;
939 } 940 }
940 941
941 942
942 #ifdef DEBUG 943 #ifdef DEBUG
943 int PagedSpace::CountTotalPages() { 944 int PagedSpace::CountTotalPages() {
(...skipping 78 matching lines...) Expand 10 before | Expand all | Expand 10 after
1022 Page* top_page = Page::FromAllocationTop(allocation_info_.top); 1023 Page* top_page = Page::FromAllocationTop(allocation_info_.top);
1023 ASSERT(MemoryAllocator::IsPageInSpace(top_page, this)); 1024 ASSERT(MemoryAllocator::IsPageInSpace(top_page, this));
1024 1025
1025 // Loop over all the pages. 1026 // Loop over all the pages.
1026 bool above_allocation_top = false; 1027 bool above_allocation_top = false;
1027 Page* current_page = first_page_; 1028 Page* current_page = first_page_;
1028 while (current_page->is_valid()) { 1029 while (current_page->is_valid()) {
1029 if (above_allocation_top) { 1030 if (above_allocation_top) {
1030 // We don't care what's above the allocation top. 1031 // We don't care what's above the allocation top.
1031 } else { 1032 } else {
1033 // Unless this is the last page in the space containing allocated
1034 // objects, the allocation top should be at a constant offset from the
1035 // object area end.
1032 Address top = current_page->AllocationTop(); 1036 Address top = current_page->AllocationTop();
1033 if (current_page == top_page) { 1037 if (current_page == top_page) {
1034 ASSERT(top == allocation_info_.top); 1038 ASSERT(top == allocation_info_.top);
1035 // The next page will be above the allocation top. 1039 // The next page will be above the allocation top.
1036 above_allocation_top = true; 1040 above_allocation_top = true;
1041 } else {
1042 ASSERT(top == PageAllocationLimit(current_page));
1037 } 1043 }
1038 1044
1039 // It should be packed with objects from the bottom to the top. 1045 // It should be packed with objects from the bottom to the top.
1040 Address current = current_page->ObjectAreaStart(); 1046 Address current = current_page->ObjectAreaStart();
1041 while (current < top) { 1047 while (current < top) {
1042 HeapObject* object = HeapObject::FromAddress(current); 1048 HeapObject* object = HeapObject::FromAddress(current);
1043 1049
1044 // The first word should be a map, and we expect all map pointers to 1050 // The first word should be a map, and we expect all map pointers to
1045 // be in map space. 1051 // be in map space.
1046 Map* map = object->map(); 1052 Map* map = object->map();
1047 ASSERT(map->IsMap()); 1053 ASSERT(map->IsMap());
1048 ASSERT(Heap::map_space()->Contains(map)); 1054 ASSERT(Heap::map_space()->Contains(map));
1049 1055
1050 // Perform space-specific object verification. 1056 // Perform space-specific object verification.
1051 VerifyObject(object); 1057 VerifyObject(object);
1052 1058
1053 // The object itself should look OK. 1059 // The object itself should look OK.
1054 object->Verify(); 1060 object->Verify();
1055 1061
1056 // All the interior pointers should be contained in the heap and 1062 // All the interior pointers should be contained in the heap and
1057 // have page regions covering intergenerational references should be 1063 // have their remembered set bits set if required as determined
1058 // marked dirty. 1064 // by the visitor.
1059 int size = object->Size(); 1065 int size = object->Size();
1060 object->IterateBody(map->instance_type(), size, visitor); 1066 object->IterateBody(map->instance_type(), size, visitor);
1061 1067
1062 current += size; 1068 current += size;
1063 } 1069 }
1064 1070
1065 // The allocation pointer should not be in the middle of an object. 1071 // The allocation pointer should not be in the middle of an object.
1066 ASSERT(current == top); 1072 ASSERT(current == top);
1067 } 1073 }
1068 1074
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after
1107 return false; 1113 return false;
1108 } 1114 }
1109 if (!from_space_.Setup(start + maximum_semispace_capacity, 1115 if (!from_space_.Setup(start + maximum_semispace_capacity,
1110 initial_semispace_capacity, 1116 initial_semispace_capacity,
1111 maximum_semispace_capacity)) { 1117 maximum_semispace_capacity)) {
1112 return false; 1118 return false;
1113 } 1119 }
1114 1120
1115 start_ = start; 1121 start_ = start;
1116 address_mask_ = ~(size - 1); 1122 address_mask_ = ~(size - 1);
1117 object_mask_ = address_mask_ | kHeapObjectTagMask; 1123 object_mask_ = address_mask_ | kHeapObjectTag;
1118 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; 1124 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1119 1125
1120 allocation_info_.top = to_space_.low(); 1126 allocation_info_.top = to_space_.low();
1121 allocation_info_.limit = to_space_.high(); 1127 allocation_info_.limit = to_space_.high();
1122 mc_forwarding_info_.top = NULL; 1128 mc_forwarding_info_.top = NULL;
1123 mc_forwarding_info_.limit = NULL; 1129 mc_forwarding_info_.limit = NULL;
1124 1130
1125 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); 1131 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
1126 return true; 1132 return true;
1127 } 1133 }
(...skipping 183 matching lines...) Expand 10 before | Expand all | Expand 10 after
1311 // otherwise. In the mark-compact collector, the memory region of the from 1317 // otherwise. In the mark-compact collector, the memory region of the from
1312 // space is used as the marking stack. It requires contiguous memory 1318 // space is used as the marking stack. It requires contiguous memory
1313 // addresses. 1319 // addresses.
1314 initial_capacity_ = initial_capacity; 1320 initial_capacity_ = initial_capacity;
1315 capacity_ = initial_capacity; 1321 capacity_ = initial_capacity;
1316 maximum_capacity_ = maximum_capacity; 1322 maximum_capacity_ = maximum_capacity;
1317 committed_ = false; 1323 committed_ = false;
1318 1324
1319 start_ = start; 1325 start_ = start;
1320 address_mask_ = ~(maximum_capacity - 1); 1326 address_mask_ = ~(maximum_capacity - 1);
1321 object_mask_ = address_mask_ | kHeapObjectTagMask; 1327 object_mask_ = address_mask_ | kHeapObjectTag;
1322 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; 1328 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag;
1323 age_mark_ = start_; 1329 age_mark_ = start_;
1324 1330
1325 return Commit(); 1331 return Commit();
1326 } 1332 }
1327 1333
1328 1334
1329 void SemiSpace::TearDown() { 1335 void SemiSpace::TearDown() {
1330 start_ = NULL; 1336 start_ = NULL;
1331 capacity_ = 0; 1337 capacity_ = 0;
(...skipping 289 matching lines...) Expand 10 before | Expand all | Expand 10 after
1621 ASSERT(size_in_bytes > 0); 1627 ASSERT(size_in_bytes > 0);
1622 ASSERT(IsAligned(size_in_bytes, kPointerSize)); 1628 ASSERT(IsAligned(size_in_bytes, kPointerSize));
1623 1629
1624 // We write a map and possibly size information to the block. If the block 1630 // We write a map and possibly size information to the block. If the block
1625 // is big enough to be a ByteArray with at least one extra word (the next 1631 // is big enough to be a ByteArray with at least one extra word (the next
1626 // pointer), we set its map to be the byte array map and its size to an 1632 // pointer), we set its map to be the byte array map and its size to an
1627 // appropriate array length for the desired size from HeapObject::Size(). 1633 // appropriate array length for the desired size from HeapObject::Size().
1628 // If the block is too small (eg, one or two words), to hold both a size 1634 // If the block is too small (eg, one or two words), to hold both a size
1629 // field and a next pointer, we give it a filler map that gives it the 1635 // field and a next pointer, we give it a filler map that gives it the
1630 // correct size. 1636 // correct size.
1631 if (size_in_bytes > ByteArray::kHeaderSize) { 1637 if (size_in_bytes > ByteArray::kAlignedSize) {
1632 set_map(Heap::raw_unchecked_byte_array_map()); 1638 set_map(Heap::raw_unchecked_byte_array_map());
1633 // Can't use ByteArray::cast because it fails during deserialization. 1639 // Can't use ByteArray::cast because it fails during deserialization.
1634 ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this); 1640 ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this);
1635 this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes)); 1641 this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes));
1636 } else if (size_in_bytes == kPointerSize) { 1642 } else if (size_in_bytes == kPointerSize) {
1637 set_map(Heap::raw_unchecked_one_pointer_filler_map()); 1643 set_map(Heap::raw_unchecked_one_pointer_filler_map());
1638 } else if (size_in_bytes == 2 * kPointerSize) { 1644 } else if (size_in_bytes == 2 * kPointerSize) {
1639 set_map(Heap::raw_unchecked_two_pointer_filler_map()); 1645 set_map(Heap::raw_unchecked_two_pointer_filler_map());
1640 } else { 1646 } else {
1641 UNREACHABLE(); 1647 UNREACHABLE();
(...skipping 252 matching lines...) Expand 10 before | Expand all | Expand 10 after
1894 ASSERT(Waste() == 0); 1900 ASSERT(Waste() == 0);
1895 ASSERT(AvailableFree() == 0); 1901 ASSERT(AvailableFree() == 0);
1896 1902
1897 // Build the free list for the space. 1903 // Build the free list for the space.
1898 int computed_size = 0; 1904 int computed_size = 0;
1899 PageIterator it(this, PageIterator::PAGES_USED_BY_MC); 1905 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
1900 while (it.has_next()) { 1906 while (it.has_next()) {
1901 Page* p = it.next(); 1907 Page* p = it.next();
1902 // Space below the relocation pointer is allocated. 1908 // Space below the relocation pointer is allocated.
1903 computed_size += 1909 computed_size +=
1904 static_cast<int>(p->AllocationWatermark() - p->ObjectAreaStart()); 1910 static_cast<int>(p->mc_relocation_top - p->ObjectAreaStart());
1905 if (it.has_next()) { 1911 if (it.has_next()) {
1906 // Free the space at the top of the page. 1912 // Free the space at the top of the page. We cannot use
1913 // p->mc_relocation_top after the call to Free (because Free will clear
1914 // remembered set bits).
1907 int extra_size = 1915 int extra_size =
1908 static_cast<int>(p->ObjectAreaEnd() - p->AllocationWatermark()); 1916 static_cast<int>(p->ObjectAreaEnd() - p->mc_relocation_top);
1909 if (extra_size > 0) { 1917 if (extra_size > 0) {
1910 int wasted_bytes = free_list_.Free(p->AllocationWatermark(), 1918 int wasted_bytes = free_list_.Free(p->mc_relocation_top, extra_size);
1911 extra_size);
1912 // The bytes we have just "freed" to add to the free list were 1919 // The bytes we have just "freed" to add to the free list were
1913 // already accounted as available. 1920 // already accounted as available.
1914 accounting_stats_.WasteBytes(wasted_bytes); 1921 accounting_stats_.WasteBytes(wasted_bytes);
1915 } 1922 }
1916 } 1923 }
1917 } 1924 }
1918 1925
1919 // Make sure the computed size - based on the used portion of the pages in 1926 // Make sure the computed size - based on the used portion of the pages in
1920 // use - matches the size obtained while computing forwarding addresses. 1927 // use - matches the size obtained while computing forwarding addresses.
1921 ASSERT(computed_size == Size()); 1928 ASSERT(computed_size == Size());
(...skipping 27 matching lines...) Expand all
1949 MemoryAllocator::SetNextPage(prev, last->next_page()); 1956 MemoryAllocator::SetNextPage(prev, last->next_page());
1950 } 1957 }
1951 1958
1952 // Attach it after the last page. 1959 // Attach it after the last page.
1953 MemoryAllocator::SetNextPage(last_page_, first); 1960 MemoryAllocator::SetNextPage(last_page_, first);
1954 last_page_ = last; 1961 last_page_ = last;
1955 MemoryAllocator::SetNextPage(last, NULL); 1962 MemoryAllocator::SetNextPage(last, NULL);
1956 1963
1957 // Clean them up. 1964 // Clean them up.
1958 do { 1965 do {
1959 first->InvalidateWatermark(true); 1966 first->ClearRSet();
1960 first->SetAllocationWatermark(first->ObjectAreaStart());
1961 first->SetCachedAllocationWatermark(first->ObjectAreaStart());
1962 first->SetRegionMarks(Page::kAllRegionsCleanMarks);
1963 first = first->next_page(); 1967 first = first->next_page();
1964 } while (first != NULL); 1968 } while (first != NULL);
1965 1969
1966 // Order of pages in this space might no longer be consistent with 1970 // Order of pages in this space might no longer be consistent with
1967 // order of pages in chunks. 1971 // order of pages in chunks.
1968 page_list_is_chunk_ordered_ = false; 1972 page_list_is_chunk_ordered_ = false;
1969 } 1973 }
1970 1974
1971 1975
1972 void PagedSpace::PrepareForMarkCompact(bool will_compact) { 1976 void PagedSpace::PrepareForMarkCompact(bool will_compact) {
(...skipping 19 matching lines...) Expand all
1992 MemoryAllocator::RelinkPageListInChunkOrder(this, 1996 MemoryAllocator::RelinkPageListInChunkOrder(this,
1993 &first_page_, 1997 &first_page_,
1994 &last_page_, 1998 &last_page_,
1995 &new_last_in_use); 1999 &new_last_in_use);
1996 ASSERT(new_last_in_use->is_valid()); 2000 ASSERT(new_last_in_use->is_valid());
1997 2001
1998 if (new_last_in_use != last_in_use) { 2002 if (new_last_in_use != last_in_use) {
1999 // Current allocation top points to a page which is now in the middle 2003 // Current allocation top points to a page which is now in the middle
2000 // of page list. We should move allocation top forward to the new last 2004 // of page list. We should move allocation top forward to the new last
2001 // used page so various object iterators will continue to work properly. 2005 // used page so various object iterators will continue to work properly.
2002 last_in_use->SetAllocationWatermark(last_in_use->AllocationTop());
2003 2006
2004 int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) - 2007 int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) -
2005 last_in_use->AllocationTop()); 2008 last_in_use->AllocationTop());
2006 2009
2007 if (size_in_bytes > 0) { 2010 if (size_in_bytes > 0) {
2008 // There is still some space left on this page. Create a fake 2011 // There is still some space left on this page. Create a fake
2009 // object which will occupy all free space on this page. 2012 // object which will occupy all free space on this page.
2010 // Otherwise iterators would not be able to scan this page 2013 // Otherwise iterators would not be able to scan this page
2011 // correctly. 2014 // correctly.
2012 2015
(...skipping 12 matching lines...) Expand all
2025 PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE); 2028 PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE);
2026 while (pages_in_use_iterator.has_next()) { 2029 while (pages_in_use_iterator.has_next()) {
2027 Page* p = pages_in_use_iterator.next(); 2030 Page* p = pages_in_use_iterator.next();
2028 if (!p->WasInUseBeforeMC()) { 2031 if (!p->WasInUseBeforeMC()) {
2029 // Empty page is in the middle of a sequence of used pages. 2032 // Empty page is in the middle of a sequence of used pages.
2030 // Create a fake object which will occupy all free space on this page. 2033 // Create a fake object which will occupy all free space on this page.
2031 // Otherwise iterators would not be able to scan this page correctly. 2034 // Otherwise iterators would not be able to scan this page correctly.
2032 int size_in_bytes = static_cast<int>(PageAllocationLimit(p) - 2035 int size_in_bytes = static_cast<int>(PageAllocationLimit(p) -
2033 p->ObjectAreaStart()); 2036 p->ObjectAreaStart());
2034 2037
2035 p->SetAllocationWatermark(p->ObjectAreaStart());
2036 Heap::CreateFillerObjectAt(p->ObjectAreaStart(), size_in_bytes); 2038 Heap::CreateFillerObjectAt(p->ObjectAreaStart(), size_in_bytes);
2037 } 2039 }
2038 } 2040 }
2039 2041
2040 page_list_is_chunk_ordered_ = true; 2042 page_list_is_chunk_ordered_ = true;
2041 } 2043 }
2042 } 2044 }
2043 } 2045 }
2044 2046
2045 2047
(...skipping 11 matching lines...) Expand all
2057 while (bytes_left_to_reserve > 0) { 2059 while (bytes_left_to_reserve > 0) {
2058 if (!reserved_page->next_page()->is_valid()) { 2060 if (!reserved_page->next_page()->is_valid()) {
2059 if (Heap::OldGenerationAllocationLimitReached()) return false; 2061 if (Heap::OldGenerationAllocationLimitReached()) return false;
2060 Expand(reserved_page); 2062 Expand(reserved_page);
2061 } 2063 }
2062 bytes_left_to_reserve -= Page::kPageSize; 2064 bytes_left_to_reserve -= Page::kPageSize;
2063 reserved_page = reserved_page->next_page(); 2065 reserved_page = reserved_page->next_page();
2064 if (!reserved_page->is_valid()) return false; 2066 if (!reserved_page->is_valid()) return false;
2065 } 2067 }
2066 ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid()); 2068 ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid());
2067 TopPageOf(allocation_info_)->next_page()->InvalidateWatermark(true);
2068 SetAllocationInfo(&allocation_info_, 2069 SetAllocationInfo(&allocation_info_,
2069 TopPageOf(allocation_info_)->next_page()); 2070 TopPageOf(allocation_info_)->next_page());
2070 return true; 2071 return true;
2071 } 2072 }
2072 2073
2073 2074
2074 // You have to call this last, since the implementation from PagedSpace 2075 // You have to call this last, since the implementation from PagedSpace
2075 // doesn't know that memory was 'promised' to large object space. 2076 // doesn't know that memory was 'promised' to large object space.
2076 bool LargeObjectSpace::ReserveSpace(int bytes) { 2077 bool LargeObjectSpace::ReserveSpace(int bytes) {
2077 return Heap::OldGenerationSpaceAvailable() >= bytes; 2078 return Heap::OldGenerationSpaceAvailable() >= bytes;
(...skipping 14 matching lines...) Expand all
2092 } 2093 }
2093 2094
2094 // There is no next page in this space. Try free list allocation unless that 2095 // There is no next page in this space. Try free list allocation unless that
2095 // is currently forbidden. 2096 // is currently forbidden.
2096 if (!Heap::linear_allocation()) { 2097 if (!Heap::linear_allocation()) {
2097 int wasted_bytes; 2098 int wasted_bytes;
2098 Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes); 2099 Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes);
2099 accounting_stats_.WasteBytes(wasted_bytes); 2100 accounting_stats_.WasteBytes(wasted_bytes);
2100 if (!result->IsFailure()) { 2101 if (!result->IsFailure()) {
2101 accounting_stats_.AllocateBytes(size_in_bytes); 2102 accounting_stats_.AllocateBytes(size_in_bytes);
2102 2103 return HeapObject::cast(result);
2103 HeapObject* obj = HeapObject::cast(result);
2104 Page* p = Page::FromAddress(obj->address());
2105
2106 if (obj->address() >= p->AllocationWatermark()) {
2107 p->SetAllocationWatermark(obj->address() + size_in_bytes);
2108 }
2109
2110 return obj;
2111 } 2104 }
2112 } 2105 }
2113 2106
2114 // Free list allocation failed and there is no next page. Fail if we have 2107 // Free list allocation failed and there is no next page. Fail if we have
2115 // hit the old generation size limit that should cause a garbage 2108 // hit the old generation size limit that should cause a garbage
2116 // collection. 2109 // collection.
2117 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { 2110 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
2118 return NULL; 2111 return NULL;
2119 } 2112 }
2120 2113
2121 // Try to expand the space and allocate in the new next page. 2114 // Try to expand the space and allocate in the new next page.
2122 ASSERT(!current_page->next_page()->is_valid()); 2115 ASSERT(!current_page->next_page()->is_valid());
2123 if (Expand(current_page)) { 2116 if (Expand(current_page)) {
2124 return AllocateInNextPage(current_page, size_in_bytes); 2117 return AllocateInNextPage(current_page, size_in_bytes);
2125 } 2118 }
2126 2119
2127 // Finally, fail. 2120 // Finally, fail.
2128 return NULL; 2121 return NULL;
2129 } 2122 }
2130 2123
2131 2124
2132 void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { 2125 void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
2133 current_page->SetAllocationWatermark(allocation_info_.top);
2134 int free_size = 2126 int free_size =
2135 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); 2127 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
2136 if (free_size > 0) { 2128 if (free_size > 0) {
2137 int wasted_bytes = free_list_.Free(allocation_info_.top, free_size); 2129 int wasted_bytes = free_list_.Free(allocation_info_.top, free_size);
2138 accounting_stats_.WasteBytes(wasted_bytes); 2130 accounting_stats_.WasteBytes(wasted_bytes);
2139 } 2131 }
2140 } 2132 }
2141 2133
2142 2134
2143 void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { 2135 void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) {
2144 current_page->SetAllocationWatermark(allocation_info_.top);
2145 int free_size = 2136 int free_size =
2146 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); 2137 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top);
2147 // In the fixed space free list all the free list items have the right size. 2138 // In the fixed space free list all the free list items have the right size.
2148 // We use up the rest of the page while preserving this invariant. 2139 // We use up the rest of the page while preserving this invariant.
2149 while (free_size >= object_size_in_bytes_) { 2140 while (free_size >= object_size_in_bytes_) {
2150 free_list_.Free(allocation_info_.top); 2141 free_list_.Free(allocation_info_.top);
2151 allocation_info_.top += object_size_in_bytes_; 2142 allocation_info_.top += object_size_in_bytes_;
2152 free_size -= object_size_in_bytes_; 2143 free_size -= object_size_in_bytes_;
2153 accounting_stats_.WasteBytes(object_size_in_bytes_); 2144 accounting_stats_.WasteBytes(object_size_in_bytes_);
2154 } 2145 }
2155 } 2146 }
2156 2147
2157 2148
2158 // Add the block at the top of the page to the space's free list, set the 2149 // Add the block at the top of the page to the space's free list, set the
2159 // allocation info to the next page (assumed to be one), and allocate 2150 // allocation info to the next page (assumed to be one), and allocate
2160 // linearly there. 2151 // linearly there.
2161 HeapObject* OldSpace::AllocateInNextPage(Page* current_page, 2152 HeapObject* OldSpace::AllocateInNextPage(Page* current_page,
2162 int size_in_bytes) { 2153 int size_in_bytes) {
2163 ASSERT(current_page->next_page()->is_valid()); 2154 ASSERT(current_page->next_page()->is_valid());
2164 current_page->next_page()->InvalidateWatermark(true);
2165 PutRestOfCurrentPageOnFreeList(current_page); 2155 PutRestOfCurrentPageOnFreeList(current_page);
2166 SetAllocationInfo(&allocation_info_, current_page->next_page()); 2156 SetAllocationInfo(&allocation_info_, current_page->next_page());
2167 return AllocateLinearly(&allocation_info_, size_in_bytes); 2157 return AllocateLinearly(&allocation_info_, size_in_bytes);
2168 } 2158 }
2169 2159
2170 2160
2171 #ifdef DEBUG 2161 #ifdef DEBUG
2172 struct CommentStatistic { 2162 struct CommentStatistic {
2173 const char* comment; 2163 const char* comment;
2174 int size; 2164 int size;
(...skipping 124 matching lines...) Expand 10 before | Expand all | Expand 10 after
2299 } 2289 }
2300 } 2290 }
2301 } 2291 }
2302 2292
2303 2293
2304 void OldSpace::ReportStatistics() { 2294 void OldSpace::ReportStatistics() {
2305 int pct = Available() * 100 / Capacity(); 2295 int pct = Available() * 100 / Capacity();
2306 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", 2296 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
2307 Capacity(), Waste(), Available(), pct); 2297 Capacity(), Waste(), Available(), pct);
2308 2298
2299 // Report remembered set statistics.
2300 int rset_marked_pointers = 0;
2301 int rset_marked_arrays = 0;
2302 int rset_marked_array_elements = 0;
2303 int cross_gen_pointers = 0;
2304 int cross_gen_array_elements = 0;
2305
2306 PageIterator page_it(this, PageIterator::PAGES_IN_USE);
2307 while (page_it.has_next()) {
2308 Page* p = page_it.next();
2309
2310 for (Address rset_addr = p->RSetStart();
2311 rset_addr < p->RSetEnd();
2312 rset_addr += kIntSize) {
2313 int rset = Memory::int_at(rset_addr);
2314 if (rset != 0) {
2315 // Bits were set
2316 int intoff =
2317 static_cast<int>(rset_addr - p->address() - Page::kRSetOffset);
2318 int bitoff = 0;
2319 for (; bitoff < kBitsPerInt; ++bitoff) {
2320 if ((rset & (1 << bitoff)) != 0) {
2321 int bitpos = intoff*kBitsPerByte + bitoff;
2322 Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits);
2323 Object** obj = reinterpret_cast<Object**>(slot);
2324 if (*obj == Heap::raw_unchecked_fixed_array_map()) {
2325 rset_marked_arrays++;
2326 FixedArray* fa = FixedArray::cast(HeapObject::FromAddress(slot));
2327
2328 rset_marked_array_elements += fa->length();
2329 // Manually inline FixedArray::IterateBody
2330 Address elm_start = slot + FixedArray::kHeaderSize;
2331 Address elm_stop = elm_start + fa->length() * kPointerSize;
2332 for (Address elm_addr = elm_start;
2333 elm_addr < elm_stop; elm_addr += kPointerSize) {
2334 // Filter non-heap-object pointers
2335 Object** elm_p = reinterpret_cast<Object**>(elm_addr);
2336 if (Heap::InNewSpace(*elm_p))
2337 cross_gen_array_elements++;
2338 }
2339 } else {
2340 rset_marked_pointers++;
2341 if (Heap::InNewSpace(*obj))
2342 cross_gen_pointers++;
2343 }
2344 }
2345 }
2346 }
2347 }
2348 }
2349
2350 pct = rset_marked_pointers == 0 ?
2351 0 : cross_gen_pointers * 100 / rset_marked_pointers;
2352 PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n",
2353 rset_marked_pointers, cross_gen_pointers, pct);
2354 PrintF(" rset_marked arrays %d, ", rset_marked_arrays);
2355 PrintF(" elements %d, ", rset_marked_array_elements);
2356 pct = rset_marked_array_elements == 0 ? 0
2357 : cross_gen_array_elements * 100 / rset_marked_array_elements;
2358 PrintF(" pointers to new space %d (%%%d)\n", cross_gen_array_elements, pct);
2359 PrintF(" total rset-marked bits %d\n",
2360 (rset_marked_pointers + rset_marked_arrays));
2361 pct = (rset_marked_pointers + rset_marked_array_elements) == 0 ? 0
2362 : (cross_gen_pointers + cross_gen_array_elements) * 100 /
2363 (rset_marked_pointers + rset_marked_array_elements);
2364 PrintF(" total rset pointers %d, true cross generation ones %d (%%%d)\n",
2365 (rset_marked_pointers + rset_marked_array_elements),
2366 (cross_gen_pointers + cross_gen_array_elements),
2367 pct);
2368
2309 ClearHistograms(); 2369 ClearHistograms();
2310 HeapObjectIterator obj_it(this); 2370 HeapObjectIterator obj_it(this);
2311 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) 2371 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2312 CollectHistogramInfo(obj); 2372 CollectHistogramInfo(obj);
2313 ReportHistogram(true); 2373 ReportHistogram(true);
2314 } 2374 }
2375
2376
2377 // Dump the range of remembered set words between [start, end) corresponding
2378 // to the pointers starting at object_p. The allocation_top is an object
2379 // pointer which should not be read past. This is important for large object
2380 // pages, where some bits in the remembered set range do not correspond to
2381 // allocated addresses.
2382 static void PrintRSetRange(Address start, Address end, Object** object_p,
2383 Address allocation_top) {
2384 Address rset_address = start;
2385
2386 // If the range starts on on odd numbered word (eg, for large object extra
2387 // remembered set ranges), print some spaces.
2388 if ((reinterpret_cast<uintptr_t>(start) / kIntSize) % 2 == 1) {
2389 PrintF(" ");
2390 }
2391
2392 // Loop over all the words in the range.
2393 while (rset_address < end) {
2394 uint32_t rset_word = Memory::uint32_at(rset_address);
2395 int bit_position = 0;
2396
2397 // Loop over all the bits in the word.
2398 while (bit_position < kBitsPerInt) {
2399 if (object_p == reinterpret_cast<Object**>(allocation_top)) {
2400 // Print a bar at the allocation pointer.
2401 PrintF("|");
2402 } else if (object_p > reinterpret_cast<Object**>(allocation_top)) {
2403 // Do not dereference object_p past the allocation pointer.
2404 PrintF("#");
2405 } else if ((rset_word & (1 << bit_position)) == 0) {
2406 // Print a dot for zero bits.
2407 PrintF(".");
2408 } else if (Heap::InNewSpace(*object_p)) {
2409 // Print an X for one bits for pointers to new space.
2410 PrintF("X");
2411 } else {
2412 // Print a circle for one bits for pointers to old space.
2413 PrintF("o");
2414 }
2415
2416 // Print a space after every 8th bit except the last.
2417 if (bit_position % 8 == 7 && bit_position != (kBitsPerInt - 1)) {
2418 PrintF(" ");
2419 }
2420
2421 // Advance to next bit.
2422 bit_position++;
2423 object_p++;
2424 }
2425
2426 // Print a newline after every odd numbered word, otherwise a space.
2427 if ((reinterpret_cast<uintptr_t>(rset_address) / kIntSize) % 2 == 1) {
2428 PrintF("\n");
2429 } else {
2430 PrintF(" ");
2431 }
2432
2433 // Advance to next remembered set word.
2434 rset_address += kIntSize;
2435 }
2436 }
2437
2438
2439 void PagedSpace::DoPrintRSet(const char* space_name) {
2440 PageIterator it(this, PageIterator::PAGES_IN_USE);
2441 while (it.has_next()) {
2442 Page* p = it.next();
2443 PrintF("%s page 0x%x:\n", space_name, p);
2444 PrintRSetRange(p->RSetStart(), p->RSetEnd(),
2445 reinterpret_cast<Object**>(p->ObjectAreaStart()),
2446 p->AllocationTop());
2447 PrintF("\n");
2448 }
2449 }
2450
2451
2452 void OldSpace::PrintRSet() { DoPrintRSet("old"); }
2315 #endif 2453 #endif
2316 2454
2317 // ----------------------------------------------------------------------------- 2455 // -----------------------------------------------------------------------------
2318 // FixedSpace implementation 2456 // FixedSpace implementation
2319 2457
2320 void FixedSpace::PrepareForMarkCompact(bool will_compact) { 2458 void FixedSpace::PrepareForMarkCompact(bool will_compact) {
2321 // Call prepare of the super class. 2459 // Call prepare of the super class.
2322 PagedSpace::PrepareForMarkCompact(will_compact); 2460 PagedSpace::PrepareForMarkCompact(will_compact);
2323 2461
2324 if (will_compact) { 2462 if (will_compact) {
(...skipping 29 matching lines...) Expand all
2354 // Update allocation_top of each page in use and compute waste. 2492 // Update allocation_top of each page in use and compute waste.
2355 int computed_size = 0; 2493 int computed_size = 0;
2356 PageIterator it(this, PageIterator::PAGES_USED_BY_MC); 2494 PageIterator it(this, PageIterator::PAGES_USED_BY_MC);
2357 while (it.has_next()) { 2495 while (it.has_next()) {
2358 Page* page = it.next(); 2496 Page* page = it.next();
2359 Address page_top = page->AllocationTop(); 2497 Address page_top = page->AllocationTop();
2360 computed_size += static_cast<int>(page_top - page->ObjectAreaStart()); 2498 computed_size += static_cast<int>(page_top - page->ObjectAreaStart());
2361 if (it.has_next()) { 2499 if (it.has_next()) {
2362 accounting_stats_.WasteBytes( 2500 accounting_stats_.WasteBytes(
2363 static_cast<int>(page->ObjectAreaEnd() - page_top)); 2501 static_cast<int>(page->ObjectAreaEnd() - page_top));
2364 page->SetAllocationWatermark(page_top);
2365 } 2502 }
2366 } 2503 }
2367 2504
2368 // Make sure the computed size - based on the used portion of the 2505 // Make sure the computed size - based on the used portion of the
2369 // pages in use - matches the size we adjust during allocation. 2506 // pages in use - matches the size we adjust during allocation.
2370 ASSERT(computed_size == Size()); 2507 ASSERT(computed_size == Size());
2371 } 2508 }
2372 2509
2373 2510
2374 // Slow case for normal allocation. Try in order: (1) allocate in the next 2511 // Slow case for normal allocation. Try in order: (1) allocate in the next
2375 // page in the space, (2) allocate off the space's free list, (3) expand the 2512 // page in the space, (2) allocate off the space's free list, (3) expand the
2376 // space, (4) fail. 2513 // space, (4) fail.
2377 HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) { 2514 HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) {
2378 ASSERT_EQ(object_size_in_bytes_, size_in_bytes); 2515 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
2379 // Linear allocation in this space has failed. If there is another page 2516 // Linear allocation in this space has failed. If there is another page
2380 // in the space, move to that page and allocate there. This allocation 2517 // in the space, move to that page and allocate there. This allocation
2381 // should succeed. 2518 // should succeed.
2382 Page* current_page = TopPageOf(allocation_info_); 2519 Page* current_page = TopPageOf(allocation_info_);
2383 if (current_page->next_page()->is_valid()) { 2520 if (current_page->next_page()->is_valid()) {
2384 return AllocateInNextPage(current_page, size_in_bytes); 2521 return AllocateInNextPage(current_page, size_in_bytes);
2385 } 2522 }
2386 2523
2387 // There is no next page in this space. Try free list allocation unless 2524 // There is no next page in this space. Try free list allocation unless
2388 // that is currently forbidden. The fixed space free list implicitly assumes 2525 // that is currently forbidden. The fixed space free list implicitly assumes
2389 // that all free blocks are of the fixed size. 2526 // that all free blocks are of the fixed size.
2390 if (!Heap::linear_allocation()) { 2527 if (!Heap::linear_allocation()) {
2391 Object* result = free_list_.Allocate(); 2528 Object* result = free_list_.Allocate();
2392 if (!result->IsFailure()) { 2529 if (!result->IsFailure()) {
2393 accounting_stats_.AllocateBytes(size_in_bytes); 2530 accounting_stats_.AllocateBytes(size_in_bytes);
2394 HeapObject* obj = HeapObject::cast(result); 2531 return HeapObject::cast(result);
2395 Page* p = Page::FromAddress(obj->address());
2396
2397 if (obj->address() >= p->AllocationWatermark()) {
2398 p->SetAllocationWatermark(obj->address() + size_in_bytes);
2399 }
2400
2401 return obj;
2402 } 2532 }
2403 } 2533 }
2404 2534
2405 // Free list allocation failed and there is no next page. Fail if we have 2535 // Free list allocation failed and there is no next page. Fail if we have
2406 // hit the old generation size limit that should cause a garbage 2536 // hit the old generation size limit that should cause a garbage
2407 // collection. 2537 // collection.
2408 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { 2538 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) {
2409 return NULL; 2539 return NULL;
2410 } 2540 }
2411 2541
2412 // Try to expand the space and allocate in the new next page. 2542 // Try to expand the space and allocate in the new next page.
2413 ASSERT(!current_page->next_page()->is_valid()); 2543 ASSERT(!current_page->next_page()->is_valid());
2414 if (Expand(current_page)) { 2544 if (Expand(current_page)) {
2415 return AllocateInNextPage(current_page, size_in_bytes); 2545 return AllocateInNextPage(current_page, size_in_bytes);
2416 } 2546 }
2417 2547
2418 // Finally, fail. 2548 // Finally, fail.
2419 return NULL; 2549 return NULL;
2420 } 2550 }
2421 2551
2422 2552
2423 // Move to the next page (there is assumed to be one) and allocate there. 2553 // Move to the next page (there is assumed to be one) and allocate there.
2424 // The top of page block is always wasted, because it is too small to hold a 2554 // The top of page block is always wasted, because it is too small to hold a
2425 // map. 2555 // map.
2426 HeapObject* FixedSpace::AllocateInNextPage(Page* current_page, 2556 HeapObject* FixedSpace::AllocateInNextPage(Page* current_page,
2427 int size_in_bytes) { 2557 int size_in_bytes) {
2428 ASSERT(current_page->next_page()->is_valid()); 2558 ASSERT(current_page->next_page()->is_valid());
2429 ASSERT(allocation_info_.top == PageAllocationLimit(current_page)); 2559 ASSERT(allocation_info_.top == PageAllocationLimit(current_page));
2430 ASSERT_EQ(object_size_in_bytes_, size_in_bytes); 2560 ASSERT_EQ(object_size_in_bytes_, size_in_bytes);
2431 current_page->next_page()->InvalidateWatermark(true);
2432 current_page->SetAllocationWatermark(allocation_info_.top);
2433 accounting_stats_.WasteBytes(page_extra_); 2561 accounting_stats_.WasteBytes(page_extra_);
2434 SetAllocationInfo(&allocation_info_, current_page->next_page()); 2562 SetAllocationInfo(&allocation_info_, current_page->next_page());
2435 return AllocateLinearly(&allocation_info_, size_in_bytes); 2563 return AllocateLinearly(&allocation_info_, size_in_bytes);
2436 } 2564 }
2437 2565
2438 2566
2439 #ifdef DEBUG 2567 #ifdef DEBUG
2440 void FixedSpace::ReportStatistics() { 2568 void FixedSpace::ReportStatistics() {
2441 int pct = Available() * 100 / Capacity(); 2569 int pct = Available() * 100 / Capacity();
2442 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", 2570 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n",
2443 Capacity(), Waste(), Available(), pct); 2571 Capacity(), Waste(), Available(), pct);
2444 2572
2573 // Report remembered set statistics.
2574 int rset_marked_pointers = 0;
2575 int cross_gen_pointers = 0;
2576
2577 PageIterator page_it(this, PageIterator::PAGES_IN_USE);
2578 while (page_it.has_next()) {
2579 Page* p = page_it.next();
2580
2581 for (Address rset_addr = p->RSetStart();
2582 rset_addr < p->RSetEnd();
2583 rset_addr += kIntSize) {
2584 int rset = Memory::int_at(rset_addr);
2585 if (rset != 0) {
2586 // Bits were set
2587 int intoff =
2588 static_cast<int>(rset_addr - p->address() - Page::kRSetOffset);
2589 int bitoff = 0;
2590 for (; bitoff < kBitsPerInt; ++bitoff) {
2591 if ((rset & (1 << bitoff)) != 0) {
2592 int bitpos = intoff*kBitsPerByte + bitoff;
2593 Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits);
2594 Object** obj = reinterpret_cast<Object**>(slot);
2595 rset_marked_pointers++;
2596 if (Heap::InNewSpace(*obj))
2597 cross_gen_pointers++;
2598 }
2599 }
2600 }
2601 }
2602 }
2603
2604 pct = rset_marked_pointers == 0 ?
2605 0 : cross_gen_pointers * 100 / rset_marked_pointers;
2606 PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n",
2607 rset_marked_pointers, cross_gen_pointers, pct);
2608
2445 ClearHistograms(); 2609 ClearHistograms();
2446 HeapObjectIterator obj_it(this); 2610 HeapObjectIterator obj_it(this);
2447 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) 2611 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next())
2448 CollectHistogramInfo(obj); 2612 CollectHistogramInfo(obj);
2449 ReportHistogram(false); 2613 ReportHistogram(false);
2450 } 2614 }
2615
2616
2617 void FixedSpace::PrintRSet() { DoPrintRSet(name_); }
2451 #endif 2618 #endif
2452 2619
2453 2620
2454 // ----------------------------------------------------------------------------- 2621 // -----------------------------------------------------------------------------
2455 // MapSpace implementation 2622 // MapSpace implementation
2456 2623
2457 void MapSpace::PrepareForMarkCompact(bool will_compact) { 2624 void MapSpace::PrepareForMarkCompact(bool will_compact) {
2458 // Call prepare of the super class. 2625 // Call prepare of the super class.
2459 FixedSpace::PrepareForMarkCompact(will_compact); 2626 FixedSpace::PrepareForMarkCompact(will_compact);
2460 2627
(...skipping 158 matching lines...) Expand 10 before | Expand all | Expand 10 after
2619 if (chunk == NULL) { 2786 if (chunk == NULL) {
2620 return Failure::RetryAfterGC(requested_size, identity()); 2787 return Failure::RetryAfterGC(requested_size, identity());
2621 } 2788 }
2622 2789
2623 size_ += static_cast<int>(chunk_size); 2790 size_ += static_cast<int>(chunk_size);
2624 page_count_++; 2791 page_count_++;
2625 chunk->set_next(first_chunk_); 2792 chunk->set_next(first_chunk_);
2626 chunk->set_size(chunk_size); 2793 chunk->set_size(chunk_size);
2627 first_chunk_ = chunk; 2794 first_chunk_ = chunk;
2628 2795
2629 // Initialize page header. 2796 // Set the object address and size in the page header and clear its
2797 // remembered set.
2630 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize)); 2798 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize));
2631 Address object_address = page->ObjectAreaStart(); 2799 Address object_address = page->ObjectAreaStart();
2632 // Clear the low order bit of the second word in the page to flag it as a 2800 // Clear the low order bit of the second word in the page to flag it as a
2633 // large object page. If the chunk_size happened to be written there, its 2801 // large object page. If the chunk_size happened to be written there, its
2634 // low order bit should already be clear. 2802 // low order bit should already be clear.
2635 ASSERT((chunk_size & 0x1) == 0); 2803 ASSERT((chunk_size & 0x1) == 0);
2636 page->SetIsLargeObjectPage(true); 2804 page->SetIsLargeObjectPage(true);
2637 page->SetRegionMarks(Page::kAllRegionsCleanMarks); 2805 page->ClearRSet();
2806 int extra_bytes = requested_size - object_size;
2807 if (extra_bytes > 0) {
2808 // The extra memory for the remembered set should be cleared.
2809 memset(object_address + object_size, 0, extra_bytes);
2810 }
2811
2638 return HeapObject::FromAddress(object_address); 2812 return HeapObject::FromAddress(object_address);
2639 } 2813 }
2640 2814
2641 2815
2642 Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) { 2816 Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) {
2643 ASSERT(0 < size_in_bytes); 2817 ASSERT(0 < size_in_bytes);
2644 return AllocateRawInternal(size_in_bytes, 2818 return AllocateRawInternal(size_in_bytes,
2645 size_in_bytes, 2819 size_in_bytes,
2646 EXECUTABLE); 2820 EXECUTABLE);
2647 } 2821 }
2648 2822
2649 2823
2650 Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) { 2824 Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) {
2651 ASSERT(0 < size_in_bytes); 2825 ASSERT(0 < size_in_bytes);
2652 return AllocateRawInternal(size_in_bytes, 2826 int extra_rset_bytes = ExtraRSetBytesFor(size_in_bytes);
2827 return AllocateRawInternal(size_in_bytes + extra_rset_bytes,
2653 size_in_bytes, 2828 size_in_bytes,
2654 NOT_EXECUTABLE); 2829 NOT_EXECUTABLE);
2655 } 2830 }
2656 2831
2657 2832
2658 Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) { 2833 Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) {
2659 ASSERT(0 < size_in_bytes); 2834 ASSERT(0 < size_in_bytes);
2660 return AllocateRawInternal(size_in_bytes, 2835 return AllocateRawInternal(size_in_bytes,
2661 size_in_bytes, 2836 size_in_bytes,
2662 NOT_EXECUTABLE); 2837 NOT_EXECUTABLE);
2663 } 2838 }
2664 2839
2665 2840
2666 // GC support 2841 // GC support
2667 Object* LargeObjectSpace::FindObject(Address a) { 2842 Object* LargeObjectSpace::FindObject(Address a) {
2668 for (LargeObjectChunk* chunk = first_chunk_; 2843 for (LargeObjectChunk* chunk = first_chunk_;
2669 chunk != NULL; 2844 chunk != NULL;
2670 chunk = chunk->next()) { 2845 chunk = chunk->next()) {
2671 Address chunk_address = chunk->address(); 2846 Address chunk_address = chunk->address();
2672 if (chunk_address <= a && a < chunk_address + chunk->size()) { 2847 if (chunk_address <= a && a < chunk_address + chunk->size()) {
2673 return chunk->GetObject(); 2848 return chunk->GetObject();
2674 } 2849 }
2675 } 2850 }
2676 return Failure::Exception(); 2851 return Failure::Exception();
2677 } 2852 }
2678 2853
2679 void LargeObjectSpace::IterateDirtyRegions(ObjectSlotCallback copy_object) { 2854
2855 void LargeObjectSpace::ClearRSet() {
2856 ASSERT(Page::is_rset_in_use());
2857
2858 LargeObjectIterator it(this);
2859 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
2860 // We only have code, sequential strings, or fixed arrays in large
2861 // object space, and only fixed arrays need remembered set support.
2862 if (object->IsFixedArray()) {
2863 // Clear the normal remembered set region of the page;
2864 Page* page = Page::FromAddress(object->address());
2865 page->ClearRSet();
2866
2867 // Clear the extra remembered set.
2868 int size = object->Size();
2869 int extra_rset_bytes = ExtraRSetBytesFor(size);
2870 memset(object->address() + size, 0, extra_rset_bytes);
2871 }
2872 }
2873 }
2874
2875
2876 void LargeObjectSpace::IterateRSet(ObjectSlotCallback copy_object_func) {
2877 ASSERT(Page::is_rset_in_use());
2878
2879 static void* lo_rset_histogram = StatsTable::CreateHistogram(
2880 "V8.RSetLO",
2881 0,
2882 // Keeping this histogram's buckets the same as the paged space histogram.
2883 Page::kObjectAreaSize / kPointerSize,
2884 30);
2885
2680 LargeObjectIterator it(this); 2886 LargeObjectIterator it(this);
2681 for (HeapObject* object = it.next(); object != NULL; object = it.next()) { 2887 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
2682 // We only have code, sequential strings, or fixed arrays in large 2888 // We only have code, sequential strings, or fixed arrays in large
2683 // object space, and only fixed arrays can possibly contain pointers to 2889 // object space, and only fixed arrays can possibly contain pointers to
2684 // the young generation. 2890 // the young generation.
2685 if (object->IsFixedArray()) { 2891 if (object->IsFixedArray()) {
2892 // Iterate the normal page remembered set range.
2686 Page* page = Page::FromAddress(object->address()); 2893 Page* page = Page::FromAddress(object->address());
2687 uint32_t marks = page->GetRegionMarks(); 2894 Address object_end = object->address() + object->Size();
2688 uint32_t newmarks = Page::kAllRegionsCleanMarks; 2895 int count = Heap::IterateRSetRange(page->ObjectAreaStart(),
2896 Min(page->ObjectAreaEnd(), object_end),
2897 page->RSetStart(),
2898 copy_object_func);
2689 2899
2690 if (marks != Page::kAllRegionsCleanMarks) { 2900 // Iterate the extra array elements.
2691 // For a large page a single dirty mark corresponds to several 2901 if (object_end > page->ObjectAreaEnd()) {
2692 // regions (modulo 32). So we treat a large page as a sequence of 2902 count += Heap::IterateRSetRange(page->ObjectAreaEnd(), object_end,
2693 // normal pages of size Page::kPageSize having same dirty marks 2903 object_end, copy_object_func);
2694 // and subsequently iterate dirty regions on each of these pages. 2904 }
2695 Address start = object->address(); 2905 if (lo_rset_histogram != NULL) {
2696 Address end = page->ObjectAreaEnd(); 2906 StatsTable::AddHistogramSample(lo_rset_histogram, count);
2697 Address object_end = start + object->Size();
2698
2699 // Iterate regions of the first normal page covering object.
2700 uint32_t first_region_number = page->GetRegionNumberForAddress(start);
2701 newmarks |=
2702 Heap::IterateDirtyRegions(marks >> first_region_number,
2703 start,
2704 end,
2705 &Heap::IteratePointersInDirtyRegion,
2706 copy_object) << first_region_number;
2707
2708 start = end;
2709 end = start + Page::kPageSize;
2710 while (end <= object_end) {
2711 // Iterate next 32 regions.
2712 newmarks |=
2713 Heap::IterateDirtyRegions(marks,
2714 start,
2715 end,
2716 &Heap::IteratePointersInDirtyRegion,
2717 copy_object);
2718 start = end;
2719 end = start + Page::kPageSize;
2720 }
2721
2722 if (start != object_end) {
2723 // Iterate the last piece of an object which is less than
2724 // Page::kPageSize.
2725 newmarks |=
2726 Heap::IterateDirtyRegions(marks,
2727 start,
2728 object_end,
2729 &Heap::IteratePointersInDirtyRegion,
2730 copy_object);
2731 }
2732
2733 page->SetRegionMarks(newmarks);
2734 } 2907 }
2735 } 2908 }
2736 } 2909 }
2737 } 2910 }
2738 2911
2739 2912
2740 void LargeObjectSpace::FreeUnmarkedObjects() { 2913 void LargeObjectSpace::FreeUnmarkedObjects() {
2741 LargeObjectChunk* previous = NULL; 2914 LargeObjectChunk* previous = NULL;
2742 LargeObjectChunk* current = first_chunk_; 2915 LargeObjectChunk* current = first_chunk_;
2743 while (current != NULL) { 2916 while (current != NULL) {
(...skipping 71 matching lines...) Expand 10 before | Expand all | Expand 10 after
2815 2988
2816 // Byte arrays and strings don't have interior pointers. 2989 // Byte arrays and strings don't have interior pointers.
2817 if (object->IsCode()) { 2990 if (object->IsCode()) {
2818 VerifyPointersVisitor code_visitor; 2991 VerifyPointersVisitor code_visitor;
2819 object->IterateBody(map->instance_type(), 2992 object->IterateBody(map->instance_type(),
2820 object->Size(), 2993 object->Size(),
2821 &code_visitor); 2994 &code_visitor);
2822 } else if (object->IsFixedArray()) { 2995 } else if (object->IsFixedArray()) {
2823 // We loop over fixed arrays ourselves, rather then using the visitor, 2996 // We loop over fixed arrays ourselves, rather then using the visitor,
2824 // because the visitor doesn't support the start/offset iteration 2997 // because the visitor doesn't support the start/offset iteration
2825 // needed for IsRegionDirty. 2998 // needed for IsRSetSet.
2826 FixedArray* array = FixedArray::cast(object); 2999 FixedArray* array = FixedArray::cast(object);
2827 for (int j = 0; j < array->length(); j++) { 3000 for (int j = 0; j < array->length(); j++) {
2828 Object* element = array->get(j); 3001 Object* element = array->get(j);
2829 if (element->IsHeapObject()) { 3002 if (element->IsHeapObject()) {
2830 HeapObject* element_object = HeapObject::cast(element); 3003 HeapObject* element_object = HeapObject::cast(element);
2831 ASSERT(Heap::Contains(element_object)); 3004 ASSERT(Heap::Contains(element_object));
2832 ASSERT(element_object->map()->IsMap()); 3005 ASSERT(element_object->map()->IsMap());
2833 if (Heap::InNewSpace(element_object)) { 3006 if (Heap::InNewSpace(element_object)) {
2834 Address array_addr = object->address(); 3007 ASSERT(Page::IsRSetSet(object->address(),
2835 Address element_addr = array_addr + FixedArray::kHeaderSize + 3008 FixedArray::kHeaderSize + j * kPointerSize));
2836 j * kPointerSize;
2837
2838 ASSERT(Page::FromAddress(array_addr)->IsRegionDirty(element_addr));
2839 } 3009 }
2840 } 3010 }
2841 } 3011 }
2842 } 3012 }
2843 } 3013 }
2844 } 3014 }
2845 3015
2846 3016
2847 void LargeObjectSpace::Print() { 3017 void LargeObjectSpace::Print() {
2848 LargeObjectIterator it(this); 3018 LargeObjectIterator it(this);
(...skipping 20 matching lines...) Expand all
2869 3039
2870 void LargeObjectSpace::CollectCodeStatistics() { 3040 void LargeObjectSpace::CollectCodeStatistics() {
2871 LargeObjectIterator obj_it(this); 3041 LargeObjectIterator obj_it(this);
2872 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) { 3042 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) {
2873 if (obj->IsCode()) { 3043 if (obj->IsCode()) {
2874 Code* code = Code::cast(obj); 3044 Code* code = Code::cast(obj);
2875 code_kind_statistics[code->kind()] += code->Size(); 3045 code_kind_statistics[code->kind()] += code->Size();
2876 } 3046 }
2877 } 3047 }
2878 } 3048 }
3049
3050
3051 void LargeObjectSpace::PrintRSet() {
3052 LargeObjectIterator it(this);
3053 for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
3054 if (object->IsFixedArray()) {
3055 Page* page = Page::FromAddress(object->address());
3056
3057 Address allocation_top = object->address() + object->Size();
3058 PrintF("large page 0x%x:\n", page);
3059 PrintRSetRange(page->RSetStart(), page->RSetEnd(),
3060 reinterpret_cast<Object**>(object->address()),
3061 allocation_top);
3062 int extra_array_bytes = object->Size() - Page::kObjectAreaSize;
3063 int extra_rset_bits = RoundUp(extra_array_bytes / kPointerSize,
3064 kBitsPerInt);
3065 PrintF("------------------------------------------------------------"
3066 "-----------\n");
3067 PrintRSetRange(allocation_top,
3068 allocation_top + extra_rset_bits / kBitsPerByte,
3069 reinterpret_cast<Object**>(object->address()
3070 + Page::kObjectAreaSize),
3071 allocation_top);
3072 PrintF("\n");
3073 }
3074 }
3075 }
2879 #endif // DEBUG 3076 #endif // DEBUG
2880 3077
2881 } } // namespace v8::internal 3078 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/spaces.h ('k') | src/spaces-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698