| Index: src/heap.cc
|
| diff --git a/src/heap.cc b/src/heap.cc
|
| index d554a3ba684c10517bc6cbb2cd5620ebceef564c..79aced7d4d33c90a8df1fcae98b16e870d60df62 100644
|
| --- a/src/heap.cc
|
| +++ b/src/heap.cc
|
| @@ -326,13 +326,6 @@ void Heap::GarbageCollectionPrologue() {
|
| }
|
|
|
| if (FLAG_gc_verbose) Print();
|
| -
|
| - if (FLAG_print_rset) {
|
| - // Not all spaces have remembered set bits that we care about.
|
| - old_pointer_space_->PrintRSet();
|
| - map_space_->PrintRSet();
|
| - lo_space_->PrintRSet();
|
| - }
|
| #endif
|
|
|
| #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
|
| @@ -519,9 +512,8 @@ void Heap::ReserveSpace(
|
| Heap::CollectGarbage(cell_space_size, CELL_SPACE);
|
| gc_performed = true;
|
| }
|
| - // We add a slack-factor of 2 in order to have space for the remembered
|
| - // set and a series of large-object allocations that are only just larger
|
| - // than the page size.
|
| + // We add a slack-factor of 2 in order to have space for a series of
|
| + // large-object allocations that are only just larger than the page size.
|
| large_object_size *= 2;
|
| // The ReserveSpace method on the large object space checks how much
|
| // we can expand the old generation. This includes expansion caused by
|
| @@ -572,6 +564,25 @@ void Heap::ClearJSFunctionResultCaches() {
|
| }
|
|
|
|
|
| +#ifdef DEBUG
|
| +
|
| +enum PageWatermarkValidity {
|
| + ALL_VALID,
|
| + ALL_INVALID
|
| +};
|
| +
|
| +static void VerifyPageWatermarkValidity(PagedSpace* space,
|
| + PageWatermarkValidity validity) {
|
| + PageIterator it(space, PageIterator::PAGES_IN_USE);
|
| + bool expected_value = (validity == ALL_VALID);
|
| + while (it.has_next()) {
|
| + Page* page = it.next();
|
| + ASSERT(page->IsWatermarkValid() == expected_value);
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +
|
| void Heap::PerformGarbageCollection(AllocationSpace space,
|
| GarbageCollector collector,
|
| GCTracer* tracer) {
|
| @@ -816,6 +827,20 @@ void Heap::Scavenge() {
|
|
|
| gc_state_ = SCAVENGE;
|
|
|
| + Page::FlipMeaningOfInvalidatedWatermarkFlag();
|
| +#ifdef DEBUG
|
| + VerifyPageWatermarkValidity(old_pointer_space_, ALL_VALID);
|
| + VerifyPageWatermarkValidity(map_space_, ALL_VALID);
|
| +#endif
|
| +
|
| + // We do not update an allocation watermark of the top page during linear
|
| + // allocation to avoid overhead. So to maintain the watermark invariant
|
| + // we have to manually cache the watermark and mark the top page as having an
|
| + // invalid watermark. This guarantees that dirty regions iteration will use a
|
| + // correct watermark even if a linear allocation happens.
|
| + old_pointer_space_->FlushTopPageWatermark();
|
| + map_space_->FlushTopPageWatermark();
|
| +
|
| // Implements Cheney's copying algorithm
|
| LOG(ResourceEvent("scavenge", "begin"));
|
|
|
| @@ -858,9 +883,17 @@ void Heap::Scavenge() {
|
|
|
| // Copy objects reachable from the old generation. By definition,
|
| // there are no intergenerational pointers in code or data spaces.
|
| - IterateRSet(old_pointer_space_, &ScavengePointer);
|
| - IterateRSet(map_space_, &ScavengePointer);
|
| - lo_space_->IterateRSet(&ScavengePointer);
|
| + IterateDirtyRegions(old_pointer_space_,
|
| + &IteratePointersInDirtyRegion,
|
| + &ScavengePointer,
|
| + WATERMARK_CAN_BE_INVALID);
|
| +
|
| + IterateDirtyRegions(map_space_,
|
| + &IteratePointersInDirtyMapsRegion,
|
| + &ScavengePointer,
|
| + WATERMARK_CAN_BE_INVALID);
|
| +
|
| + lo_space_->IterateDirtyRegions(&ScavengePointer);
|
|
|
| // Copy objects reachable from cells by scavenging cell values directly.
|
| HeapObjectIterator cell_iterator(cell_space_);
|
| @@ -963,9 +996,8 @@ Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
|
| // Copy the from-space object to its new location (given by the
|
| // forwarding address) and fix its map.
|
| HeapObject* target = source->map_word().ToForwardingAddress();
|
| - CopyBlock(reinterpret_cast<Object**>(target->address()),
|
| - reinterpret_cast<Object**>(source->address()),
|
| - source->SizeFromMap(map));
|
| + int size = source->SizeFromMap(map);
|
| + CopyBlock(target->address(), source->address(), size);
|
| target->set_map(map);
|
|
|
| #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
|
| @@ -973,8 +1005,10 @@ Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
|
| RecordCopiedObject(target);
|
| #endif
|
| // Visit the newly copied object for pointers to new space.
|
| - target->Iterate(scavenge_visitor);
|
| - UpdateRSet(target);
|
| + ASSERT(!target->IsMap());
|
| + IterateAndMarkPointersToNewSpace(target->address(),
|
| + target->address() + size,
|
| + &ScavengePointer);
|
| }
|
|
|
| // Take another spin if there are now unswept objects in new space
|
| @@ -985,117 +1019,6 @@ Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
|
| }
|
|
|
|
|
| -void Heap::ClearRSetRange(Address start, int size_in_bytes) {
|
| - uint32_t start_bit;
|
| - Address start_word_address =
|
| - Page::ComputeRSetBitPosition(start, 0, &start_bit);
|
| - uint32_t end_bit;
|
| - Address end_word_address =
|
| - Page::ComputeRSetBitPosition(start + size_in_bytes - kIntSize,
|
| - 0,
|
| - &end_bit);
|
| -
|
| - // We want to clear the bits in the starting word starting with the
|
| - // first bit, and in the ending word up to and including the last
|
| - // bit. Build a pair of bitmasks to do that.
|
| - uint32_t start_bitmask = start_bit - 1;
|
| - uint32_t end_bitmask = ~((end_bit << 1) - 1);
|
| -
|
| - // If the start address and end address are the same, we mask that
|
| - // word once, otherwise mask the starting and ending word
|
| - // separately and all the ones in between.
|
| - if (start_word_address == end_word_address) {
|
| - Memory::uint32_at(start_word_address) &= (start_bitmask | end_bitmask);
|
| - } else {
|
| - Memory::uint32_at(start_word_address) &= start_bitmask;
|
| - Memory::uint32_at(end_word_address) &= end_bitmask;
|
| - start_word_address += kIntSize;
|
| - memset(start_word_address, 0, end_word_address - start_word_address);
|
| - }
|
| -}
|
| -
|
| -
|
| -class UpdateRSetVisitor: public ObjectVisitor {
|
| - public:
|
| -
|
| - void VisitPointer(Object** p) {
|
| - UpdateRSet(p);
|
| - }
|
| -
|
| - void VisitPointers(Object** start, Object** end) {
|
| - // Update a store into slots [start, end), used (a) to update remembered
|
| - // set when promoting a young object to old space or (b) to rebuild
|
| - // remembered sets after a mark-compact collection.
|
| - for (Object** p = start; p < end; p++) UpdateRSet(p);
|
| - }
|
| - private:
|
| -
|
| - void UpdateRSet(Object** p) {
|
| - // The remembered set should not be set. It should be clear for objects
|
| - // newly copied to old space, and it is cleared before rebuilding in the
|
| - // mark-compact collector.
|
| - ASSERT(!Page::IsRSetSet(reinterpret_cast<Address>(p), 0));
|
| - if (Heap::InNewSpace(*p)) {
|
| - Page::SetRSet(reinterpret_cast<Address>(p), 0);
|
| - }
|
| - }
|
| -};
|
| -
|
| -
|
| -int Heap::UpdateRSet(HeapObject* obj) {
|
| - ASSERT(!InNewSpace(obj));
|
| - // Special handling of fixed arrays to iterate the body based on the start
|
| - // address and offset. Just iterating the pointers as in UpdateRSetVisitor
|
| - // will not work because Page::SetRSet needs to have the start of the
|
| - // object for large object pages.
|
| - if (obj->IsFixedArray()) {
|
| - FixedArray* array = FixedArray::cast(obj);
|
| - int length = array->length();
|
| - for (int i = 0; i < length; i++) {
|
| - int offset = FixedArray::kHeaderSize + i * kPointerSize;
|
| - ASSERT(!Page::IsRSetSet(obj->address(), offset));
|
| - if (Heap::InNewSpace(array->get(i))) {
|
| - Page::SetRSet(obj->address(), offset);
|
| - }
|
| - }
|
| - } else if (!obj->IsCode()) {
|
| - // Skip code object, we know it does not contain inter-generational
|
| - // pointers.
|
| - UpdateRSetVisitor v;
|
| - obj->Iterate(&v);
|
| - }
|
| - return obj->Size();
|
| -}
|
| -
|
| -
|
| -void Heap::RebuildRSets() {
|
| - // By definition, we do not care about remembered set bits in code,
|
| - // data, or cell spaces.
|
| - map_space_->ClearRSet();
|
| - RebuildRSets(map_space_);
|
| -
|
| - old_pointer_space_->ClearRSet();
|
| - RebuildRSets(old_pointer_space_);
|
| -
|
| - Heap::lo_space_->ClearRSet();
|
| - RebuildRSets(lo_space_);
|
| -}
|
| -
|
| -
|
| -void Heap::RebuildRSets(PagedSpace* space) {
|
| - HeapObjectIterator it(space);
|
| - for (HeapObject* obj = it.next(); obj != NULL; obj = it.next())
|
| - Heap::UpdateRSet(obj);
|
| -}
|
| -
|
| -
|
| -void Heap::RebuildRSets(LargeObjectSpace* space) {
|
| - LargeObjectIterator it(space);
|
| - for (HeapObject* obj = it.next(); obj != NULL; obj = it.next())
|
| - Heap::UpdateRSet(obj);
|
| -}
|
| -
|
| -
|
| #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
|
| void Heap::RecordCopiedObject(HeapObject* obj) {
|
| bool should_record = false;
|
| @@ -1121,9 +1044,7 @@ HeapObject* Heap::MigrateObject(HeapObject* source,
|
| HeapObject* target,
|
| int size) {
|
| // Copy the content of source to target.
|
| - CopyBlock(reinterpret_cast<Object**>(target->address()),
|
| - reinterpret_cast<Object**>(source->address()),
|
| - size);
|
| + CopyBlock(target->address(), source->address(), size);
|
|
|
| // Set the forwarding address.
|
| source->set_map_word(MapWord::FromForwardingAddress(target));
|
| @@ -1178,21 +1099,30 @@ void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
|
| if (object_size > MaxObjectSizeInPagedSpace()) {
|
| result = lo_space_->AllocateRawFixedArray(object_size);
|
| if (!result->IsFailure()) {
|
| - // Save the from-space object pointer and its map pointer at the
|
| - // top of the to space to be swept and copied later. Write the
|
| - // forwarding address over the map word of the from-space
|
| - // object.
|
| HeapObject* target = HeapObject::cast(result);
|
| - promotion_queue.insert(object, first_word.ToMap());
|
| - object->set_map_word(MapWord::FromForwardingAddress(target));
|
|
|
| - // Give the space allocated for the result a proper map by
|
| - // treating it as a free list node (not linked into the free
|
| - // list).
|
| - FreeListNode* node = FreeListNode::FromAddress(target->address());
|
| - node->set_size(object_size);
|
| + if (object->IsFixedArray()) {
|
| + // Save the from-space object pointer and its map pointer at the
|
| + // top of the to space to be swept and copied later. Write the
|
| + // forwarding address over the map word of the from-space
|
| + // object.
|
| + promotion_queue.insert(object, first_word.ToMap());
|
| + object->set_map_word(MapWord::FromForwardingAddress(target));
|
| +
|
| + // Give the space allocated for the result a proper map by
|
| + // treating it as a free list node (not linked into the free
|
| + // list).
|
| + FreeListNode* node = FreeListNode::FromAddress(target->address());
|
| + node->set_size(object_size);
|
| +
|
| + *p = target;
|
| + } else {
|
| + // In large object space only fixed arrays might possibly contain
|
| + // intergenerational references.
|
| + // All other objects can be copied immediately and not revisited.
|
| + *p = MigrateObject(object, target, object_size);
|
| + }
|
|
|
| - *p = target;
|
| tracer()->increment_promoted_objects_size(object_size);
|
| return;
|
| }
|
| @@ -1682,7 +1612,7 @@ bool Heap::CreateInitialObjects() {
|
| // loop above because it needs to be allocated manually with the special
|
| // hash code in place. The hash code for the hidden_symbol is zero to ensure
|
| // that it will always be at the first entry in property descriptors.
|
| - obj = AllocateSymbol(CStrVector(""), 0, String::kHashComputedMask);
|
| + obj = AllocateSymbol(CStrVector(""), 0, String::kZeroHash);
|
| if (obj->IsFailure()) return false;
|
| hidden_symbol_ = String::cast(obj);
|
|
|
| @@ -1918,6 +1848,9 @@ Object* Heap::AllocateSharedFunctionInfo(Object* name) {
|
| share->set_compiler_hints(0);
|
| share->set_this_property_assignments_count(0);
|
| share->set_this_property_assignments(undefined_value());
|
| + share->set_num_literals(0);
|
| + share->set_end_position(0);
|
| + share->set_function_token_position(0);
|
| return result;
|
| }
|
|
|
| @@ -2179,8 +2112,8 @@ Object* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
|
| : lo_space_->AllocateRaw(size);
|
| if (result->IsFailure()) return result;
|
|
|
| - reinterpret_cast<Array*>(result)->set_map(byte_array_map());
|
| - reinterpret_cast<Array*>(result)->set_length(length);
|
| + reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map());
|
| + reinterpret_cast<ByteArray*>(result)->set_length(length);
|
| return result;
|
| }
|
|
|
| @@ -2195,8 +2128,8 @@ Object* Heap::AllocateByteArray(int length) {
|
| Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
|
| if (result->IsFailure()) return result;
|
|
|
| - reinterpret_cast<Array*>(result)->set_map(byte_array_map());
|
| - reinterpret_cast<Array*>(result)->set_length(length);
|
| + reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map());
|
| + reinterpret_cast<ByteArray*>(result)->set_length(length);
|
| return result;
|
| }
|
|
|
| @@ -2312,9 +2245,7 @@ Object* Heap::CopyCode(Code* code) {
|
| // Copy code object.
|
| Address old_addr = code->address();
|
| Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
|
| - CopyBlock(reinterpret_cast<Object**>(new_addr),
|
| - reinterpret_cast<Object**>(old_addr),
|
| - obj_size);
|
| + CopyBlock(new_addr, old_addr, obj_size);
|
| // Relocate the copy.
|
| Code* new_code = Code::cast(result);
|
| ASSERT(!CodeRange::exists() || CodeRange::contains(code->address()));
|
| @@ -2460,8 +2391,8 @@ Object* Heap::AllocateArgumentsObject(Object* callee, int length) {
|
| // Copy the content. The arguments boilerplate doesn't have any
|
| // fields that point to new space so it's safe to skip the write
|
| // barrier here.
|
| - CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(result)->address()),
|
| - reinterpret_cast<Object**>(boilerplate->address()),
|
| + CopyBlock(HeapObject::cast(result)->address(),
|
| + boilerplate->address(),
|
| kArgumentsObjectSize);
|
|
|
| // Set the two properties.
|
| @@ -2683,8 +2614,8 @@ Object* Heap::CopyJSObject(JSObject* source) {
|
| clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
|
| if (clone->IsFailure()) return clone;
|
| Address clone_address = HeapObject::cast(clone)->address();
|
| - CopyBlock(reinterpret_cast<Object**>(clone_address),
|
| - reinterpret_cast<Object**>(source->address()),
|
| + CopyBlock(clone_address,
|
| + source->address(),
|
| object_size);
|
| // Update write barrier for all fields that lie beyond the header.
|
| RecordWrites(clone_address,
|
| @@ -2696,8 +2627,8 @@ Object* Heap::CopyJSObject(JSObject* source) {
|
| ASSERT(Heap::InNewSpace(clone));
|
| // Since we know the clone is allocated in new space, we can copy
|
| // the contents without worrying about updating the write barrier.
|
| - CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(clone)->address()),
|
| - reinterpret_cast<Object**>(source->address()),
|
| + CopyBlock(HeapObject::cast(clone)->address(),
|
| + source->address(),
|
| object_size);
|
| }
|
|
|
| @@ -2968,8 +2899,8 @@ Object* Heap::AllocateEmptyFixedArray() {
|
| Object* result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
|
| if (result->IsFailure()) return result;
|
| // Initialize the object.
|
| - reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
|
| - reinterpret_cast<Array*>(result)->set_length(0);
|
| + reinterpret_cast<FixedArray*>(result)->set_map(fixed_array_map());
|
| + reinterpret_cast<FixedArray*>(result)->set_length(0);
|
| return result;
|
| }
|
|
|
| @@ -2994,9 +2925,7 @@ Object* Heap::CopyFixedArray(FixedArray* src) {
|
| if (obj->IsFailure()) return obj;
|
| if (Heap::InNewSpace(obj)) {
|
| HeapObject* dst = HeapObject::cast(obj);
|
| - CopyBlock(reinterpret_cast<Object**>(dst->address()),
|
| - reinterpret_cast<Object**>(src->address()),
|
| - FixedArray::SizeFor(len));
|
| + CopyBlock(dst->address(), src->address(), FixedArray::SizeFor(len));
|
| return obj;
|
| }
|
| HeapObject::cast(obj)->set_map(src->map());
|
| @@ -3017,8 +2946,8 @@ Object* Heap::AllocateFixedArray(int length) {
|
| Object* result = AllocateRawFixedArray(length);
|
| if (!result->IsFailure()) {
|
| // Initialize header.
|
| - reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
|
| - FixedArray* array = FixedArray::cast(result);
|
| + FixedArray* array = reinterpret_cast<FixedArray*>(result);
|
| + array->set_map(fixed_array_map());
|
| array->set_length(length);
|
| // Initialize body.
|
| ASSERT(!Heap::InNewSpace(undefined_value()));
|
| @@ -3045,27 +2974,10 @@ Object* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) {
|
| space = LO_SPACE;
|
| }
|
|
|
| - // Specialize allocation for the space.
|
| - Object* result = Failure::OutOfMemoryException();
|
| - if (space == NEW_SPACE) {
|
| - // We cannot use Heap::AllocateRaw() because it will not properly
|
| - // allocate extra remembered set bits if always_allocate() is true and
|
| - // new space allocation fails.
|
| - result = new_space_.AllocateRaw(size);
|
| - if (result->IsFailure() && always_allocate()) {
|
| - if (size <= MaxObjectSizeInPagedSpace()) {
|
| - result = old_pointer_space_->AllocateRaw(size);
|
| - } else {
|
| - result = lo_space_->AllocateRawFixedArray(size);
|
| - }
|
| - }
|
| - } else if (space == OLD_POINTER_SPACE) {
|
| - result = old_pointer_space_->AllocateRaw(size);
|
| - } else {
|
| - ASSERT(space == LO_SPACE);
|
| - result = lo_space_->AllocateRawFixedArray(size);
|
| - }
|
| - return result;
|
| + AllocationSpace retry_space =
|
| + (size <= MaxObjectSizeInPagedSpace()) ? OLD_POINTER_SPACE : LO_SPACE;
|
| +
|
| + return AllocateRaw(size, space, retry_space);
|
| }
|
|
|
|
|
| @@ -3113,7 +3025,7 @@ Object* Heap::AllocateUninitializedFixedArray(int length) {
|
| Object* Heap::AllocateHashTable(int length, PretenureFlag pretenure) {
|
| Object* result = Heap::AllocateFixedArray(length, pretenure);
|
| if (result->IsFailure()) return result;
|
| - reinterpret_cast<Array*>(result)->set_map(hash_table_map());
|
| + reinterpret_cast<HeapObject*>(result)->set_map(hash_table_map());
|
| ASSERT(result->IsHashTable());
|
| return result;
|
| }
|
| @@ -3365,6 +3277,49 @@ bool Heap::InSpace(Address addr, AllocationSpace space) {
|
|
|
|
|
| #ifdef DEBUG
|
| +static void DummyScavengePointer(HeapObject** p) {
|
| +}
|
| +
|
| +
|
| +static void VerifyPointersUnderWatermark(
|
| + PagedSpace* space,
|
| + DirtyRegionCallback visit_dirty_region) {
|
| + PageIterator it(space, PageIterator::PAGES_IN_USE);
|
| +
|
| + while (it.has_next()) {
|
| + Page* page = it.next();
|
| + Address start = page->ObjectAreaStart();
|
| + Address end = page->AllocationWatermark();
|
| +
|
| + Heap::IterateDirtyRegions(Page::kAllRegionsDirtyMarks,
|
| + start,
|
| + end,
|
| + visit_dirty_region,
|
| + &DummyScavengePointer);
|
| + }
|
| +}
|
| +
|
| +
|
| +static void VerifyPointersUnderWatermark(LargeObjectSpace* space) {
|
| + LargeObjectIterator it(space);
|
| + for (HeapObject* object = it.next(); object != NULL; object = it.next()) {
|
| + if (object->IsFixedArray()) {
|
| + Address slot_address = object->address();
|
| + Address end = object->address() + object->Size();
|
| +
|
| + while (slot_address < end) {
|
| + HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
|
| + // When we are not in GC the Heap::InNewSpace() predicate
|
| + // checks that pointers which satisfy predicate point into
|
| + // the active semispace.
|
| + Heap::InNewSpace(*slot);
|
| + slot_address += kPointerSize;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| void Heap::Verify() {
|
| ASSERT(HasBeenSetup());
|
|
|
| @@ -3373,14 +3328,23 @@ void Heap::Verify() {
|
|
|
| new_space_.Verify();
|
|
|
| - VerifyPointersAndRSetVisitor rset_visitor;
|
| - old_pointer_space_->Verify(&rset_visitor);
|
| - map_space_->Verify(&rset_visitor);
|
| + VerifyPointersAndDirtyRegionsVisitor dirty_regions_visitor;
|
| + old_pointer_space_->Verify(&dirty_regions_visitor);
|
| + map_space_->Verify(&dirty_regions_visitor);
|
|
|
| - VerifyPointersVisitor no_rset_visitor;
|
| - old_data_space_->Verify(&no_rset_visitor);
|
| - code_space_->Verify(&no_rset_visitor);
|
| - cell_space_->Verify(&no_rset_visitor);
|
| + VerifyPointersUnderWatermark(old_pointer_space_,
|
| + &IteratePointersInDirtyRegion);
|
| + VerifyPointersUnderWatermark(map_space_,
|
| + &IteratePointersInDirtyMapsRegion);
|
| + VerifyPointersUnderWatermark(lo_space_);
|
| +
|
| + VerifyPageWatermarkValidity(old_pointer_space_, ALL_INVALID);
|
| + VerifyPageWatermarkValidity(map_space_, ALL_INVALID);
|
| +
|
| + VerifyPointersVisitor no_dirty_regions_visitor;
|
| + old_data_space_->Verify(&no_dirty_regions_visitor);
|
| + code_space_->Verify(&no_dirty_regions_visitor);
|
| + cell_space_->Verify(&no_dirty_regions_visitor);
|
|
|
| lo_space_->Verify();
|
| }
|
| @@ -3433,65 +3397,253 @@ void Heap::ZapFromSpace() {
|
| #endif // DEBUG
|
|
|
|
|
| -int Heap::IterateRSetRange(Address object_start,
|
| - Address object_end,
|
| - Address rset_start,
|
| - ObjectSlotCallback copy_object_func) {
|
| - Address object_address = object_start;
|
| - Address rset_address = rset_start;
|
| - int set_bits_count = 0;
|
| -
|
| - // Loop over all the pointers in [object_start, object_end).
|
| - while (object_address < object_end) {
|
| - uint32_t rset_word = Memory::uint32_at(rset_address);
|
| - if (rset_word != 0) {
|
| - uint32_t result_rset = rset_word;
|
| - for (uint32_t bitmask = 1; bitmask != 0; bitmask = bitmask << 1) {
|
| - // Do not dereference pointers at or past object_end.
|
| - if ((rset_word & bitmask) != 0 && object_address < object_end) {
|
| - Object** object_p = reinterpret_cast<Object**>(object_address);
|
| - if (Heap::InNewSpace(*object_p)) {
|
| - copy_object_func(reinterpret_cast<HeapObject**>(object_p));
|
| - }
|
| - // If this pointer does not need to be remembered anymore, clear
|
| - // the remembered set bit.
|
| - if (!Heap::InNewSpace(*object_p)) result_rset &= ~bitmask;
|
| - set_bits_count++;
|
| - }
|
| - object_address += kPointerSize;
|
| +bool Heap::IteratePointersInDirtyRegion(Address start,
|
| + Address end,
|
| + ObjectSlotCallback copy_object_func) {
|
| + Address slot_address = start;
|
| + bool pointers_to_new_space_found = false;
|
| +
|
| + while (slot_address < end) {
|
| + Object** slot = reinterpret_cast<Object**>(slot_address);
|
| + if (Heap::InNewSpace(*slot)) {
|
| + ASSERT((*slot)->IsHeapObject());
|
| + copy_object_func(reinterpret_cast<HeapObject**>(slot));
|
| + if (Heap::InNewSpace(*slot)) {
|
| + ASSERT((*slot)->IsHeapObject());
|
| + pointers_to_new_space_found = true;
|
| }
|
| - // Update the remembered set if it has changed.
|
| - if (result_rset != rset_word) {
|
| - Memory::uint32_at(rset_address) = result_rset;
|
| + }
|
| + slot_address += kPointerSize;
|
| + }
|
| + return pointers_to_new_space_found;
|
| +}
|
| +
|
| +
|
| +// Compute start address of the first map following given addr.
|
| +static inline Address MapStartAlign(Address addr) {
|
| + Address page = Page::FromAddress(addr)->ObjectAreaStart();
|
| + return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
|
| +}
|
| +
|
| +
|
| +// Compute end address of the first map preceding given addr.
|
| +static inline Address MapEndAlign(Address addr) {
|
| + Address page = Page::FromAllocationTop(addr)->ObjectAreaStart();
|
| + return page + ((addr - page) / Map::kSize * Map::kSize);
|
| +}
|
| +
|
| +
|
| +static bool IteratePointersInDirtyMaps(Address start,
|
| + Address end,
|
| + ObjectSlotCallback copy_object_func) {
|
| + ASSERT(MapStartAlign(start) == start);
|
| + ASSERT(MapEndAlign(end) == end);
|
| +
|
| + Address map_address = start;
|
| + bool pointers_to_new_space_found = false;
|
| +
|
| + while (map_address < end) {
|
| + ASSERT(!Heap::InNewSpace(Memory::Object_at(map_address)));
|
| + ASSERT(Memory::Object_at(map_address)->IsMap());
|
| +
|
| + Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
|
| + Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
|
| +
|
| + if (Heap::IteratePointersInDirtyRegion(pointer_fields_start,
|
| + pointer_fields_end,
|
| + copy_object_func)) {
|
| + pointers_to_new_space_found = true;
|
| + }
|
| +
|
| + map_address += Map::kSize;
|
| + }
|
| +
|
| + return pointers_to_new_space_found;
|
| +}
|
| +
|
| +
|
| +bool Heap::IteratePointersInDirtyMapsRegion(
|
| + Address start,
|
| + Address end,
|
| + ObjectSlotCallback copy_object_func) {
|
| + Address map_aligned_start = MapStartAlign(start);
|
| + Address map_aligned_end = MapEndAlign(end);
|
| +
|
| + bool contains_pointers_to_new_space = false;
|
| +
|
| + if (map_aligned_start != start) {
|
| + Address prev_map = map_aligned_start - Map::kSize;
|
| + ASSERT(Memory::Object_at(prev_map)->IsMap());
|
| +
|
| + Address pointer_fields_start =
|
| + Max(start, prev_map + Map::kPointerFieldsBeginOffset);
|
| +
|
| + Address pointer_fields_end =
|
| + Min(prev_map + Map::kCodeCacheOffset + kPointerSize, end);
|
| +
|
| + contains_pointers_to_new_space =
|
| + IteratePointersInDirtyRegion(pointer_fields_start,
|
| + pointer_fields_end,
|
| + copy_object_func)
|
| + || contains_pointers_to_new_space;
|
| + }
|
| +
|
| + contains_pointers_to_new_space =
|
| + IteratePointersInDirtyMaps(map_aligned_start,
|
| + map_aligned_end,
|
| + copy_object_func)
|
| + || contains_pointers_to_new_space;
|
| +
|
| + if (map_aligned_end != end) {
|
| + ASSERT(Memory::Object_at(map_aligned_end)->IsMap());
|
| +
|
| + Address pointer_fields_start = map_aligned_end + Map::kPrototypeOffset;
|
| +
|
| + Address pointer_fields_end =
|
| + Min(end, map_aligned_end + Map::kCodeCacheOffset + kPointerSize);
|
| +
|
| + contains_pointers_to_new_space =
|
| + IteratePointersInDirtyRegion(pointer_fields_start,
|
| + pointer_fields_end,
|
| + copy_object_func)
|
| + || contains_pointers_to_new_space;
|
| + }
|
| +
|
| + return contains_pointers_to_new_space;
|
| +}
|
| +
|
| +
|
| +void Heap::IterateAndMarkPointersToNewSpace(Address start,
|
| + Address end,
|
| + ObjectSlotCallback callback) {
|
| + Address slot_address = start;
|
| + Page* page = Page::FromAddress(start);
|
| +
|
| + uint32_t marks = page->GetRegionMarks();
|
| +
|
| + while (slot_address < end) {
|
| + Object** slot = reinterpret_cast<Object**>(slot_address);
|
| + if (Heap::InNewSpace(*slot)) {
|
| + ASSERT((*slot)->IsHeapObject());
|
| + callback(reinterpret_cast<HeapObject**>(slot));
|
| + if (Heap::InNewSpace(*slot)) {
|
| + ASSERT((*slot)->IsHeapObject());
|
| + marks |= page->GetRegionMaskForAddress(slot_address);
|
| + }
|
| + }
|
| + slot_address += kPointerSize;
|
| + }
|
| +
|
| + page->SetRegionMarks(marks);
|
| +}
|
| +
|
| +
|
| +uint32_t Heap::IterateDirtyRegions(
|
| + uint32_t marks,
|
| + Address area_start,
|
| + Address area_end,
|
| + DirtyRegionCallback visit_dirty_region,
|
| + ObjectSlotCallback copy_object_func) {
|
| + uint32_t newmarks = 0;
|
| + uint32_t mask = 1;
|
| +
|
| + if (area_start >= area_end) {
|
| + return newmarks;
|
| + }
|
| +
|
| + Address region_start = area_start;
|
| +
|
| + // area_start does not necessarily coincide with start of the first region.
|
| + // Thus to calculate the beginning of the next region we have to align
|
| + // area_start by Page::kRegionSize.
|
| + Address second_region =
|
| + reinterpret_cast<Address>(
|
| + reinterpret_cast<intptr_t>(area_start + Page::kRegionSize) &
|
| + ~Page::kRegionAlignmentMask);
|
| +
|
| + // Next region might be beyond area_end.
|
| + Address region_end = Min(second_region, area_end);
|
| +
|
| + if (marks & mask) {
|
| + if (visit_dirty_region(region_start, region_end, copy_object_func)) {
|
| + newmarks |= mask;
|
| + }
|
| + }
|
| + mask <<= 1;
|
| +
|
| + // Iterate subsequent regions which fully lay inside [area_start, area_end[.
|
| + region_start = region_end;
|
| + region_end = region_start + Page::kRegionSize;
|
| +
|
| + while (region_end <= area_end) {
|
| + if (marks & mask) {
|
| + if (visit_dirty_region(region_start, region_end, copy_object_func)) {
|
| + newmarks |= mask;
|
| + }
|
| + }
|
| +
|
| + region_start = region_end;
|
| + region_end = region_start + Page::kRegionSize;
|
| +
|
| + mask <<= 1;
|
| + }
|
| +
|
| + if (region_start != area_end) {
|
| + // A small piece of area left uniterated because area_end does not coincide
|
| + // with region end. Check whether region covering last part of area is
|
| + // dirty.
|
| + if (marks & mask) {
|
| + if (visit_dirty_region(region_start, area_end, copy_object_func)) {
|
| + newmarks |= mask;
|
| }
|
| - } else {
|
| - // No bits in the word were set. This is the common case.
|
| - object_address += kPointerSize * kBitsPerInt;
|
| }
|
| - rset_address += kIntSize;
|
| }
|
| - return set_bits_count;
|
| +
|
| + return newmarks;
|
| }
|
|
|
|
|
| -void Heap::IterateRSet(PagedSpace* space, ObjectSlotCallback copy_object_func) {
|
| - ASSERT(Page::is_rset_in_use());
|
| - ASSERT(space == old_pointer_space_ || space == map_space_);
|
|
|
| - static void* paged_rset_histogram = StatsTable::CreateHistogram(
|
| - "V8.RSetPaged",
|
| - 0,
|
| - Page::kObjectAreaSize / kPointerSize,
|
| - 30);
|
| +void Heap::IterateDirtyRegions(
|
| + PagedSpace* space,
|
| + DirtyRegionCallback visit_dirty_region,
|
| + ObjectSlotCallback copy_object_func,
|
| + ExpectedPageWatermarkState expected_page_watermark_state) {
|
|
|
| PageIterator it(space, PageIterator::PAGES_IN_USE);
|
| +
|
| while (it.has_next()) {
|
| Page* page = it.next();
|
| - int count = IterateRSetRange(page->ObjectAreaStart(), page->AllocationTop(),
|
| - page->RSetStart(), copy_object_func);
|
| - if (paged_rset_histogram != NULL) {
|
| - StatsTable::AddHistogramSample(paged_rset_histogram, count);
|
| + uint32_t marks = page->GetRegionMarks();
|
| +
|
| + if (marks != Page::kAllRegionsCleanMarks) {
|
| + Address start = page->ObjectAreaStart();
|
| +
|
| + // Do not try to visit pointers beyond page allocation watermark.
|
| + // Page can contain garbage pointers there.
|
| + Address end;
|
| +
|
| + if ((expected_page_watermark_state == WATERMARK_SHOULD_BE_VALID) ||
|
| + page->IsWatermarkValid()) {
|
| + end = page->AllocationWatermark();
|
| + } else {
|
| + end = page->CachedAllocationWatermark();
|
| + }
|
| +
|
| + ASSERT(space == old_pointer_space_ ||
|
| + (space == map_space_ &&
|
| + ((page->ObjectAreaStart() - end) % Map::kSize == 0)));
|
| +
|
| + page->SetRegionMarks(IterateDirtyRegions(marks,
|
| + start,
|
| + end,
|
| + visit_dirty_region,
|
| + copy_object_func));
|
| }
|
| +
|
| + // Mark page watermark as invalid to maintain watermark validity invariant.
|
| + // See Page::FlipMeaningOfInvalidatedWatermarkFlag() for details.
|
| + page->InvalidateWatermark(true);
|
| }
|
| }
|
|
|
|
|