Index: src/heap.cc |
diff --git a/src/heap.cc b/src/heap.cc |
index d554a3ba684c10517bc6cbb2cd5620ebceef564c..79aced7d4d33c90a8df1fcae98b16e870d60df62 100644 |
--- a/src/heap.cc |
+++ b/src/heap.cc |
@@ -326,13 +326,6 @@ void Heap::GarbageCollectionPrologue() { |
} |
if (FLAG_gc_verbose) Print(); |
- |
- if (FLAG_print_rset) { |
- // Not all spaces have remembered set bits that we care about. |
- old_pointer_space_->PrintRSet(); |
- map_space_->PrintRSet(); |
- lo_space_->PrintRSet(); |
- } |
#endif |
#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
@@ -519,9 +512,8 @@ void Heap::ReserveSpace( |
Heap::CollectGarbage(cell_space_size, CELL_SPACE); |
gc_performed = true; |
} |
- // We add a slack-factor of 2 in order to have space for the remembered |
- // set and a series of large-object allocations that are only just larger |
- // than the page size. |
+ // We add a slack-factor of 2 in order to have space for a series of |
+ // large-object allocations that are only just larger than the page size. |
large_object_size *= 2; |
// The ReserveSpace method on the large object space checks how much |
// we can expand the old generation. This includes expansion caused by |
@@ -572,6 +564,25 @@ void Heap::ClearJSFunctionResultCaches() { |
} |
+#ifdef DEBUG |
+ |
+enum PageWatermarkValidity { |
+ ALL_VALID, |
+ ALL_INVALID |
+}; |
+ |
+static void VerifyPageWatermarkValidity(PagedSpace* space, |
+ PageWatermarkValidity validity) { |
+ PageIterator it(space, PageIterator::PAGES_IN_USE); |
+ bool expected_value = (validity == ALL_VALID); |
+ while (it.has_next()) { |
+ Page* page = it.next(); |
+ ASSERT(page->IsWatermarkValid() == expected_value); |
+ } |
+} |
+#endif |
+ |
+ |
void Heap::PerformGarbageCollection(AllocationSpace space, |
GarbageCollector collector, |
GCTracer* tracer) { |
@@ -816,6 +827,20 @@ void Heap::Scavenge() { |
gc_state_ = SCAVENGE; |
+ Page::FlipMeaningOfInvalidatedWatermarkFlag(); |
+#ifdef DEBUG |
+ VerifyPageWatermarkValidity(old_pointer_space_, ALL_VALID); |
+ VerifyPageWatermarkValidity(map_space_, ALL_VALID); |
+#endif |
+ |
+ // We do not update an allocation watermark of the top page during linear |
+ // allocation to avoid overhead. So to maintain the watermark invariant |
+ // we have to manually cache the watermark and mark the top page as having an |
+ // invalid watermark. This guarantees that dirty regions iteration will use a |
+ // correct watermark even if a linear allocation happens. |
+ old_pointer_space_->FlushTopPageWatermark(); |
+ map_space_->FlushTopPageWatermark(); |
+ |
// Implements Cheney's copying algorithm |
LOG(ResourceEvent("scavenge", "begin")); |
@@ -858,9 +883,17 @@ void Heap::Scavenge() { |
// Copy objects reachable from the old generation. By definition, |
// there are no intergenerational pointers in code or data spaces. |
- IterateRSet(old_pointer_space_, &ScavengePointer); |
- IterateRSet(map_space_, &ScavengePointer); |
- lo_space_->IterateRSet(&ScavengePointer); |
+ IterateDirtyRegions(old_pointer_space_, |
+ &IteratePointersInDirtyRegion, |
+ &ScavengePointer, |
+ WATERMARK_CAN_BE_INVALID); |
+ |
+ IterateDirtyRegions(map_space_, |
+ &IteratePointersInDirtyMapsRegion, |
+ &ScavengePointer, |
+ WATERMARK_CAN_BE_INVALID); |
+ |
+ lo_space_->IterateDirtyRegions(&ScavengePointer); |
// Copy objects reachable from cells by scavenging cell values directly. |
HeapObjectIterator cell_iterator(cell_space_); |
@@ -963,9 +996,8 @@ Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, |
// Copy the from-space object to its new location (given by the |
// forwarding address) and fix its map. |
HeapObject* target = source->map_word().ToForwardingAddress(); |
- CopyBlock(reinterpret_cast<Object**>(target->address()), |
- reinterpret_cast<Object**>(source->address()), |
- source->SizeFromMap(map)); |
+ int size = source->SizeFromMap(map); |
+ CopyBlock(target->address(), source->address(), size); |
target->set_map(map); |
#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
@@ -973,8 +1005,10 @@ Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, |
RecordCopiedObject(target); |
#endif |
// Visit the newly copied object for pointers to new space. |
- target->Iterate(scavenge_visitor); |
- UpdateRSet(target); |
+ ASSERT(!target->IsMap()); |
+ IterateAndMarkPointersToNewSpace(target->address(), |
+ target->address() + size, |
+ &ScavengePointer); |
} |
// Take another spin if there are now unswept objects in new space |
@@ -985,117 +1019,6 @@ Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, |
} |
-void Heap::ClearRSetRange(Address start, int size_in_bytes) { |
- uint32_t start_bit; |
- Address start_word_address = |
- Page::ComputeRSetBitPosition(start, 0, &start_bit); |
- uint32_t end_bit; |
- Address end_word_address = |
- Page::ComputeRSetBitPosition(start + size_in_bytes - kIntSize, |
- 0, |
- &end_bit); |
- |
- // We want to clear the bits in the starting word starting with the |
- // first bit, and in the ending word up to and including the last |
- // bit. Build a pair of bitmasks to do that. |
- uint32_t start_bitmask = start_bit - 1; |
- uint32_t end_bitmask = ~((end_bit << 1) - 1); |
- |
- // If the start address and end address are the same, we mask that |
- // word once, otherwise mask the starting and ending word |
- // separately and all the ones in between. |
- if (start_word_address == end_word_address) { |
- Memory::uint32_at(start_word_address) &= (start_bitmask | end_bitmask); |
- } else { |
- Memory::uint32_at(start_word_address) &= start_bitmask; |
- Memory::uint32_at(end_word_address) &= end_bitmask; |
- start_word_address += kIntSize; |
- memset(start_word_address, 0, end_word_address - start_word_address); |
- } |
-} |
- |
- |
-class UpdateRSetVisitor: public ObjectVisitor { |
- public: |
- |
- void VisitPointer(Object** p) { |
- UpdateRSet(p); |
- } |
- |
- void VisitPointers(Object** start, Object** end) { |
- // Update a store into slots [start, end), used (a) to update remembered |
- // set when promoting a young object to old space or (b) to rebuild |
- // remembered sets after a mark-compact collection. |
- for (Object** p = start; p < end; p++) UpdateRSet(p); |
- } |
- private: |
- |
- void UpdateRSet(Object** p) { |
- // The remembered set should not be set. It should be clear for objects |
- // newly copied to old space, and it is cleared before rebuilding in the |
- // mark-compact collector. |
- ASSERT(!Page::IsRSetSet(reinterpret_cast<Address>(p), 0)); |
- if (Heap::InNewSpace(*p)) { |
- Page::SetRSet(reinterpret_cast<Address>(p), 0); |
- } |
- } |
-}; |
- |
- |
-int Heap::UpdateRSet(HeapObject* obj) { |
- ASSERT(!InNewSpace(obj)); |
- // Special handling of fixed arrays to iterate the body based on the start |
- // address and offset. Just iterating the pointers as in UpdateRSetVisitor |
- // will not work because Page::SetRSet needs to have the start of the |
- // object for large object pages. |
- if (obj->IsFixedArray()) { |
- FixedArray* array = FixedArray::cast(obj); |
- int length = array->length(); |
- for (int i = 0; i < length; i++) { |
- int offset = FixedArray::kHeaderSize + i * kPointerSize; |
- ASSERT(!Page::IsRSetSet(obj->address(), offset)); |
- if (Heap::InNewSpace(array->get(i))) { |
- Page::SetRSet(obj->address(), offset); |
- } |
- } |
- } else if (!obj->IsCode()) { |
- // Skip code object, we know it does not contain inter-generational |
- // pointers. |
- UpdateRSetVisitor v; |
- obj->Iterate(&v); |
- } |
- return obj->Size(); |
-} |
- |
- |
-void Heap::RebuildRSets() { |
- // By definition, we do not care about remembered set bits in code, |
- // data, or cell spaces. |
- map_space_->ClearRSet(); |
- RebuildRSets(map_space_); |
- |
- old_pointer_space_->ClearRSet(); |
- RebuildRSets(old_pointer_space_); |
- |
- Heap::lo_space_->ClearRSet(); |
- RebuildRSets(lo_space_); |
-} |
- |
- |
-void Heap::RebuildRSets(PagedSpace* space) { |
- HeapObjectIterator it(space); |
- for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) |
- Heap::UpdateRSet(obj); |
-} |
- |
- |
-void Heap::RebuildRSets(LargeObjectSpace* space) { |
- LargeObjectIterator it(space); |
- for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) |
- Heap::UpdateRSet(obj); |
-} |
- |
- |
#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
void Heap::RecordCopiedObject(HeapObject* obj) { |
bool should_record = false; |
@@ -1121,9 +1044,7 @@ HeapObject* Heap::MigrateObject(HeapObject* source, |
HeapObject* target, |
int size) { |
// Copy the content of source to target. |
- CopyBlock(reinterpret_cast<Object**>(target->address()), |
- reinterpret_cast<Object**>(source->address()), |
- size); |
+ CopyBlock(target->address(), source->address(), size); |
// Set the forwarding address. |
source->set_map_word(MapWord::FromForwardingAddress(target)); |
@@ -1178,21 +1099,30 @@ void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) { |
if (object_size > MaxObjectSizeInPagedSpace()) { |
result = lo_space_->AllocateRawFixedArray(object_size); |
if (!result->IsFailure()) { |
- // Save the from-space object pointer and its map pointer at the |
- // top of the to space to be swept and copied later. Write the |
- // forwarding address over the map word of the from-space |
- // object. |
HeapObject* target = HeapObject::cast(result); |
- promotion_queue.insert(object, first_word.ToMap()); |
- object->set_map_word(MapWord::FromForwardingAddress(target)); |
- // Give the space allocated for the result a proper map by |
- // treating it as a free list node (not linked into the free |
- // list). |
- FreeListNode* node = FreeListNode::FromAddress(target->address()); |
- node->set_size(object_size); |
+ if (object->IsFixedArray()) { |
+ // Save the from-space object pointer and its map pointer at the |
+ // top of the to space to be swept and copied later. Write the |
+ // forwarding address over the map word of the from-space |
+ // object. |
+ promotion_queue.insert(object, first_word.ToMap()); |
+ object->set_map_word(MapWord::FromForwardingAddress(target)); |
+ |
+ // Give the space allocated for the result a proper map by |
+ // treating it as a free list node (not linked into the free |
+ // list). |
+ FreeListNode* node = FreeListNode::FromAddress(target->address()); |
+ node->set_size(object_size); |
+ |
+ *p = target; |
+ } else { |
+ // In large object space only fixed arrays might possibly contain |
+ // intergenerational references. |
+ // All other objects can be copied immediately and not revisited. |
+ *p = MigrateObject(object, target, object_size); |
+ } |
- *p = target; |
tracer()->increment_promoted_objects_size(object_size); |
return; |
} |
@@ -1682,7 +1612,7 @@ bool Heap::CreateInitialObjects() { |
// loop above because it needs to be allocated manually with the special |
// hash code in place. The hash code for the hidden_symbol is zero to ensure |
// that it will always be at the first entry in property descriptors. |
- obj = AllocateSymbol(CStrVector(""), 0, String::kHashComputedMask); |
+ obj = AllocateSymbol(CStrVector(""), 0, String::kZeroHash); |
if (obj->IsFailure()) return false; |
hidden_symbol_ = String::cast(obj); |
@@ -1918,6 +1848,9 @@ Object* Heap::AllocateSharedFunctionInfo(Object* name) { |
share->set_compiler_hints(0); |
share->set_this_property_assignments_count(0); |
share->set_this_property_assignments(undefined_value()); |
+ share->set_num_literals(0); |
+ share->set_end_position(0); |
+ share->set_function_token_position(0); |
return result; |
} |
@@ -2179,8 +2112,8 @@ Object* Heap::AllocateByteArray(int length, PretenureFlag pretenure) { |
: lo_space_->AllocateRaw(size); |
if (result->IsFailure()) return result; |
- reinterpret_cast<Array*>(result)->set_map(byte_array_map()); |
- reinterpret_cast<Array*>(result)->set_length(length); |
+ reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map()); |
+ reinterpret_cast<ByteArray*>(result)->set_length(length); |
return result; |
} |
@@ -2195,8 +2128,8 @@ Object* Heap::AllocateByteArray(int length) { |
Object* result = AllocateRaw(size, space, OLD_DATA_SPACE); |
if (result->IsFailure()) return result; |
- reinterpret_cast<Array*>(result)->set_map(byte_array_map()); |
- reinterpret_cast<Array*>(result)->set_length(length); |
+ reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map()); |
+ reinterpret_cast<ByteArray*>(result)->set_length(length); |
return result; |
} |
@@ -2312,9 +2245,7 @@ Object* Heap::CopyCode(Code* code) { |
// Copy code object. |
Address old_addr = code->address(); |
Address new_addr = reinterpret_cast<HeapObject*>(result)->address(); |
- CopyBlock(reinterpret_cast<Object**>(new_addr), |
- reinterpret_cast<Object**>(old_addr), |
- obj_size); |
+ CopyBlock(new_addr, old_addr, obj_size); |
// Relocate the copy. |
Code* new_code = Code::cast(result); |
ASSERT(!CodeRange::exists() || CodeRange::contains(code->address())); |
@@ -2460,8 +2391,8 @@ Object* Heap::AllocateArgumentsObject(Object* callee, int length) { |
// Copy the content. The arguments boilerplate doesn't have any |
// fields that point to new space so it's safe to skip the write |
// barrier here. |
- CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(result)->address()), |
- reinterpret_cast<Object**>(boilerplate->address()), |
+ CopyBlock(HeapObject::cast(result)->address(), |
+ boilerplate->address(), |
kArgumentsObjectSize); |
// Set the two properties. |
@@ -2683,8 +2614,8 @@ Object* Heap::CopyJSObject(JSObject* source) { |
clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE); |
if (clone->IsFailure()) return clone; |
Address clone_address = HeapObject::cast(clone)->address(); |
- CopyBlock(reinterpret_cast<Object**>(clone_address), |
- reinterpret_cast<Object**>(source->address()), |
+ CopyBlock(clone_address, |
+ source->address(), |
object_size); |
// Update write barrier for all fields that lie beyond the header. |
RecordWrites(clone_address, |
@@ -2696,8 +2627,8 @@ Object* Heap::CopyJSObject(JSObject* source) { |
ASSERT(Heap::InNewSpace(clone)); |
// Since we know the clone is allocated in new space, we can copy |
// the contents without worrying about updating the write barrier. |
- CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(clone)->address()), |
- reinterpret_cast<Object**>(source->address()), |
+ CopyBlock(HeapObject::cast(clone)->address(), |
+ source->address(), |
object_size); |
} |
@@ -2968,8 +2899,8 @@ Object* Heap::AllocateEmptyFixedArray() { |
Object* result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); |
if (result->IsFailure()) return result; |
// Initialize the object. |
- reinterpret_cast<Array*>(result)->set_map(fixed_array_map()); |
- reinterpret_cast<Array*>(result)->set_length(0); |
+ reinterpret_cast<FixedArray*>(result)->set_map(fixed_array_map()); |
+ reinterpret_cast<FixedArray*>(result)->set_length(0); |
return result; |
} |
@@ -2994,9 +2925,7 @@ Object* Heap::CopyFixedArray(FixedArray* src) { |
if (obj->IsFailure()) return obj; |
if (Heap::InNewSpace(obj)) { |
HeapObject* dst = HeapObject::cast(obj); |
- CopyBlock(reinterpret_cast<Object**>(dst->address()), |
- reinterpret_cast<Object**>(src->address()), |
- FixedArray::SizeFor(len)); |
+ CopyBlock(dst->address(), src->address(), FixedArray::SizeFor(len)); |
return obj; |
} |
HeapObject::cast(obj)->set_map(src->map()); |
@@ -3017,8 +2946,8 @@ Object* Heap::AllocateFixedArray(int length) { |
Object* result = AllocateRawFixedArray(length); |
if (!result->IsFailure()) { |
// Initialize header. |
- reinterpret_cast<Array*>(result)->set_map(fixed_array_map()); |
- FixedArray* array = FixedArray::cast(result); |
+ FixedArray* array = reinterpret_cast<FixedArray*>(result); |
+ array->set_map(fixed_array_map()); |
array->set_length(length); |
// Initialize body. |
ASSERT(!Heap::InNewSpace(undefined_value())); |
@@ -3045,27 +2974,10 @@ Object* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) { |
space = LO_SPACE; |
} |
- // Specialize allocation for the space. |
- Object* result = Failure::OutOfMemoryException(); |
- if (space == NEW_SPACE) { |
- // We cannot use Heap::AllocateRaw() because it will not properly |
- // allocate extra remembered set bits if always_allocate() is true and |
- // new space allocation fails. |
- result = new_space_.AllocateRaw(size); |
- if (result->IsFailure() && always_allocate()) { |
- if (size <= MaxObjectSizeInPagedSpace()) { |
- result = old_pointer_space_->AllocateRaw(size); |
- } else { |
- result = lo_space_->AllocateRawFixedArray(size); |
- } |
- } |
- } else if (space == OLD_POINTER_SPACE) { |
- result = old_pointer_space_->AllocateRaw(size); |
- } else { |
- ASSERT(space == LO_SPACE); |
- result = lo_space_->AllocateRawFixedArray(size); |
- } |
- return result; |
+ AllocationSpace retry_space = |
+ (size <= MaxObjectSizeInPagedSpace()) ? OLD_POINTER_SPACE : LO_SPACE; |
+ |
+ return AllocateRaw(size, space, retry_space); |
} |
@@ -3113,7 +3025,7 @@ Object* Heap::AllocateUninitializedFixedArray(int length) { |
Object* Heap::AllocateHashTable(int length, PretenureFlag pretenure) { |
Object* result = Heap::AllocateFixedArray(length, pretenure); |
if (result->IsFailure()) return result; |
- reinterpret_cast<Array*>(result)->set_map(hash_table_map()); |
+ reinterpret_cast<HeapObject*>(result)->set_map(hash_table_map()); |
ASSERT(result->IsHashTable()); |
return result; |
} |
@@ -3365,6 +3277,49 @@ bool Heap::InSpace(Address addr, AllocationSpace space) { |
#ifdef DEBUG |
+static void DummyScavengePointer(HeapObject** p) { |
+} |
+ |
+ |
+static void VerifyPointersUnderWatermark( |
+ PagedSpace* space, |
+ DirtyRegionCallback visit_dirty_region) { |
+ PageIterator it(space, PageIterator::PAGES_IN_USE); |
+ |
+ while (it.has_next()) { |
+ Page* page = it.next(); |
+ Address start = page->ObjectAreaStart(); |
+ Address end = page->AllocationWatermark(); |
+ |
+ Heap::IterateDirtyRegions(Page::kAllRegionsDirtyMarks, |
+ start, |
+ end, |
+ visit_dirty_region, |
+ &DummyScavengePointer); |
+ } |
+} |
+ |
+ |
+static void VerifyPointersUnderWatermark(LargeObjectSpace* space) { |
+ LargeObjectIterator it(space); |
+ for (HeapObject* object = it.next(); object != NULL; object = it.next()) { |
+ if (object->IsFixedArray()) { |
+ Address slot_address = object->address(); |
+ Address end = object->address() + object->Size(); |
+ |
+ while (slot_address < end) { |
+ HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address); |
+ // When we are not in GC the Heap::InNewSpace() predicate |
+ // checks that pointers which satisfy predicate point into |
+ // the active semispace. |
+ Heap::InNewSpace(*slot); |
+ slot_address += kPointerSize; |
+ } |
+ } |
+ } |
+} |
+ |
+ |
void Heap::Verify() { |
ASSERT(HasBeenSetup()); |
@@ -3373,14 +3328,23 @@ void Heap::Verify() { |
new_space_.Verify(); |
- VerifyPointersAndRSetVisitor rset_visitor; |
- old_pointer_space_->Verify(&rset_visitor); |
- map_space_->Verify(&rset_visitor); |
+ VerifyPointersAndDirtyRegionsVisitor dirty_regions_visitor; |
+ old_pointer_space_->Verify(&dirty_regions_visitor); |
+ map_space_->Verify(&dirty_regions_visitor); |
- VerifyPointersVisitor no_rset_visitor; |
- old_data_space_->Verify(&no_rset_visitor); |
- code_space_->Verify(&no_rset_visitor); |
- cell_space_->Verify(&no_rset_visitor); |
+ VerifyPointersUnderWatermark(old_pointer_space_, |
+ &IteratePointersInDirtyRegion); |
+ VerifyPointersUnderWatermark(map_space_, |
+ &IteratePointersInDirtyMapsRegion); |
+ VerifyPointersUnderWatermark(lo_space_); |
+ |
+ VerifyPageWatermarkValidity(old_pointer_space_, ALL_INVALID); |
+ VerifyPageWatermarkValidity(map_space_, ALL_INVALID); |
+ |
+ VerifyPointersVisitor no_dirty_regions_visitor; |
+ old_data_space_->Verify(&no_dirty_regions_visitor); |
+ code_space_->Verify(&no_dirty_regions_visitor); |
+ cell_space_->Verify(&no_dirty_regions_visitor); |
lo_space_->Verify(); |
} |
@@ -3433,65 +3397,253 @@ void Heap::ZapFromSpace() { |
#endif // DEBUG |
-int Heap::IterateRSetRange(Address object_start, |
- Address object_end, |
- Address rset_start, |
- ObjectSlotCallback copy_object_func) { |
- Address object_address = object_start; |
- Address rset_address = rset_start; |
- int set_bits_count = 0; |
- |
- // Loop over all the pointers in [object_start, object_end). |
- while (object_address < object_end) { |
- uint32_t rset_word = Memory::uint32_at(rset_address); |
- if (rset_word != 0) { |
- uint32_t result_rset = rset_word; |
- for (uint32_t bitmask = 1; bitmask != 0; bitmask = bitmask << 1) { |
- // Do not dereference pointers at or past object_end. |
- if ((rset_word & bitmask) != 0 && object_address < object_end) { |
- Object** object_p = reinterpret_cast<Object**>(object_address); |
- if (Heap::InNewSpace(*object_p)) { |
- copy_object_func(reinterpret_cast<HeapObject**>(object_p)); |
- } |
- // If this pointer does not need to be remembered anymore, clear |
- // the remembered set bit. |
- if (!Heap::InNewSpace(*object_p)) result_rset &= ~bitmask; |
- set_bits_count++; |
- } |
- object_address += kPointerSize; |
+bool Heap::IteratePointersInDirtyRegion(Address start, |
+ Address end, |
+ ObjectSlotCallback copy_object_func) { |
+ Address slot_address = start; |
+ bool pointers_to_new_space_found = false; |
+ |
+ while (slot_address < end) { |
+ Object** slot = reinterpret_cast<Object**>(slot_address); |
+ if (Heap::InNewSpace(*slot)) { |
+ ASSERT((*slot)->IsHeapObject()); |
+ copy_object_func(reinterpret_cast<HeapObject**>(slot)); |
+ if (Heap::InNewSpace(*slot)) { |
+ ASSERT((*slot)->IsHeapObject()); |
+ pointers_to_new_space_found = true; |
} |
- // Update the remembered set if it has changed. |
- if (result_rset != rset_word) { |
- Memory::uint32_at(rset_address) = result_rset; |
+ } |
+ slot_address += kPointerSize; |
+ } |
+ return pointers_to_new_space_found; |
+} |
+ |
+ |
+// Compute start address of the first map following given addr. |
+static inline Address MapStartAlign(Address addr) { |
+ Address page = Page::FromAddress(addr)->ObjectAreaStart(); |
+ return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize); |
+} |
+ |
+ |
+// Compute end address of the first map preceding given addr. |
+static inline Address MapEndAlign(Address addr) { |
+ Address page = Page::FromAllocationTop(addr)->ObjectAreaStart(); |
+ return page + ((addr - page) / Map::kSize * Map::kSize); |
+} |
+ |
+ |
+static bool IteratePointersInDirtyMaps(Address start, |
+ Address end, |
+ ObjectSlotCallback copy_object_func) { |
+ ASSERT(MapStartAlign(start) == start); |
+ ASSERT(MapEndAlign(end) == end); |
+ |
+ Address map_address = start; |
+ bool pointers_to_new_space_found = false; |
+ |
+ while (map_address < end) { |
+ ASSERT(!Heap::InNewSpace(Memory::Object_at(map_address))); |
+ ASSERT(Memory::Object_at(map_address)->IsMap()); |
+ |
+ Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset; |
+ Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset; |
+ |
+ if (Heap::IteratePointersInDirtyRegion(pointer_fields_start, |
+ pointer_fields_end, |
+ copy_object_func)) { |
+ pointers_to_new_space_found = true; |
+ } |
+ |
+ map_address += Map::kSize; |
+ } |
+ |
+ return pointers_to_new_space_found; |
+} |
+ |
+ |
+bool Heap::IteratePointersInDirtyMapsRegion( |
+ Address start, |
+ Address end, |
+ ObjectSlotCallback copy_object_func) { |
+ Address map_aligned_start = MapStartAlign(start); |
+ Address map_aligned_end = MapEndAlign(end); |
+ |
+ bool contains_pointers_to_new_space = false; |
+ |
+ if (map_aligned_start != start) { |
+ Address prev_map = map_aligned_start - Map::kSize; |
+ ASSERT(Memory::Object_at(prev_map)->IsMap()); |
+ |
+ Address pointer_fields_start = |
+ Max(start, prev_map + Map::kPointerFieldsBeginOffset); |
+ |
+ Address pointer_fields_end = |
+ Min(prev_map + Map::kCodeCacheOffset + kPointerSize, end); |
+ |
+ contains_pointers_to_new_space = |
+ IteratePointersInDirtyRegion(pointer_fields_start, |
+ pointer_fields_end, |
+ copy_object_func) |
+ || contains_pointers_to_new_space; |
+ } |
+ |
+ contains_pointers_to_new_space = |
+ IteratePointersInDirtyMaps(map_aligned_start, |
+ map_aligned_end, |
+ copy_object_func) |
+ || contains_pointers_to_new_space; |
+ |
+ if (map_aligned_end != end) { |
+ ASSERT(Memory::Object_at(map_aligned_end)->IsMap()); |
+ |
+ Address pointer_fields_start = map_aligned_end + Map::kPrototypeOffset; |
+ |
+ Address pointer_fields_end = |
+ Min(end, map_aligned_end + Map::kCodeCacheOffset + kPointerSize); |
+ |
+ contains_pointers_to_new_space = |
+ IteratePointersInDirtyRegion(pointer_fields_start, |
+ pointer_fields_end, |
+ copy_object_func) |
+ || contains_pointers_to_new_space; |
+ } |
+ |
+ return contains_pointers_to_new_space; |
+} |
+ |
+ |
+void Heap::IterateAndMarkPointersToNewSpace(Address start, |
+ Address end, |
+ ObjectSlotCallback callback) { |
+ Address slot_address = start; |
+ Page* page = Page::FromAddress(start); |
+ |
+ uint32_t marks = page->GetRegionMarks(); |
+ |
+ while (slot_address < end) { |
+ Object** slot = reinterpret_cast<Object**>(slot_address); |
+ if (Heap::InNewSpace(*slot)) { |
+ ASSERT((*slot)->IsHeapObject()); |
+ callback(reinterpret_cast<HeapObject**>(slot)); |
+ if (Heap::InNewSpace(*slot)) { |
+ ASSERT((*slot)->IsHeapObject()); |
+ marks |= page->GetRegionMaskForAddress(slot_address); |
+ } |
+ } |
+ slot_address += kPointerSize; |
+ } |
+ |
+ page->SetRegionMarks(marks); |
+} |
+ |
+ |
+uint32_t Heap::IterateDirtyRegions( |
+ uint32_t marks, |
+ Address area_start, |
+ Address area_end, |
+ DirtyRegionCallback visit_dirty_region, |
+ ObjectSlotCallback copy_object_func) { |
+ uint32_t newmarks = 0; |
+ uint32_t mask = 1; |
+ |
+ if (area_start >= area_end) { |
+ return newmarks; |
+ } |
+ |
+ Address region_start = area_start; |
+ |
+ // area_start does not necessarily coincide with start of the first region. |
+ // Thus to calculate the beginning of the next region we have to align |
+ // area_start by Page::kRegionSize. |
+ Address second_region = |
+ reinterpret_cast<Address>( |
+ reinterpret_cast<intptr_t>(area_start + Page::kRegionSize) & |
+ ~Page::kRegionAlignmentMask); |
+ |
+ // Next region might be beyond area_end. |
+ Address region_end = Min(second_region, area_end); |
+ |
+ if (marks & mask) { |
+ if (visit_dirty_region(region_start, region_end, copy_object_func)) { |
+ newmarks |= mask; |
+ } |
+ } |
+ mask <<= 1; |
+ |
+ // Iterate subsequent regions which fully lay inside [area_start, area_end[. |
+ region_start = region_end; |
+ region_end = region_start + Page::kRegionSize; |
+ |
+ while (region_end <= area_end) { |
+ if (marks & mask) { |
+ if (visit_dirty_region(region_start, region_end, copy_object_func)) { |
+ newmarks |= mask; |
+ } |
+ } |
+ |
+ region_start = region_end; |
+ region_end = region_start + Page::kRegionSize; |
+ |
+ mask <<= 1; |
+ } |
+ |
+ if (region_start != area_end) { |
+ // A small piece of area left uniterated because area_end does not coincide |
+ // with region end. Check whether region covering last part of area is |
+ // dirty. |
+ if (marks & mask) { |
+ if (visit_dirty_region(region_start, area_end, copy_object_func)) { |
+ newmarks |= mask; |
} |
- } else { |
- // No bits in the word were set. This is the common case. |
- object_address += kPointerSize * kBitsPerInt; |
} |
- rset_address += kIntSize; |
} |
- return set_bits_count; |
+ |
+ return newmarks; |
} |
-void Heap::IterateRSet(PagedSpace* space, ObjectSlotCallback copy_object_func) { |
- ASSERT(Page::is_rset_in_use()); |
- ASSERT(space == old_pointer_space_ || space == map_space_); |
- static void* paged_rset_histogram = StatsTable::CreateHistogram( |
- "V8.RSetPaged", |
- 0, |
- Page::kObjectAreaSize / kPointerSize, |
- 30); |
+void Heap::IterateDirtyRegions( |
+ PagedSpace* space, |
+ DirtyRegionCallback visit_dirty_region, |
+ ObjectSlotCallback copy_object_func, |
+ ExpectedPageWatermarkState expected_page_watermark_state) { |
PageIterator it(space, PageIterator::PAGES_IN_USE); |
+ |
while (it.has_next()) { |
Page* page = it.next(); |
- int count = IterateRSetRange(page->ObjectAreaStart(), page->AllocationTop(), |
- page->RSetStart(), copy_object_func); |
- if (paged_rset_histogram != NULL) { |
- StatsTable::AddHistogramSample(paged_rset_histogram, count); |
+ uint32_t marks = page->GetRegionMarks(); |
+ |
+ if (marks != Page::kAllRegionsCleanMarks) { |
+ Address start = page->ObjectAreaStart(); |
+ |
+ // Do not try to visit pointers beyond page allocation watermark. |
+ // Page can contain garbage pointers there. |
+ Address end; |
+ |
+ if ((expected_page_watermark_state == WATERMARK_SHOULD_BE_VALID) || |
+ page->IsWatermarkValid()) { |
+ end = page->AllocationWatermark(); |
+ } else { |
+ end = page->CachedAllocationWatermark(); |
+ } |
+ |
+ ASSERT(space == old_pointer_space_ || |
+ (space == map_space_ && |
+ ((page->ObjectAreaStart() - end) % Map::kSize == 0))); |
+ |
+ page->SetRegionMarks(IterateDirtyRegions(marks, |
+ start, |
+ end, |
+ visit_dirty_region, |
+ copy_object_func)); |
} |
+ |
+ // Mark page watermark as invalid to maintain watermark validity invariant. |
+ // See Page::FlipMeaningOfInvalidatedWatermarkFlag() for details. |
+ page->InvalidateWatermark(true); |
} |
} |