| Index: src/spaces-inl.h
|
| diff --git a/src/spaces-inl.h b/src/spaces-inl.h
|
| index 66894c4f1c1a9511b3414aa73ca1c7c2fa167a56..d14243eceb11751fd261e82fb2cfa1e4acde9b8c 100644
|
| --- a/src/spaces-inl.h
|
| +++ b/src/spaces-inl.h
|
| @@ -66,99 +66,173 @@ Address Page::AllocationTop() {
|
| }
|
|
|
|
|
| -void Page::ClearRSet() {
|
| - // This method can be called in all rset states.
|
| - memset(RSetStart(), 0, kRSetEndOffset - kRSetStartOffset);
|
| -}
|
| -
|
| -
|
| -// Given a 32-bit address, separate its bits into:
|
| -// | page address | words (6) | bit offset (5) | pointer alignment (2) |
|
| -// The address of the rset word containing the bit for this word is computed as:
|
| -// page_address + words * 4
|
| -// For a 64-bit address, if it is:
|
| -// | page address | words(5) | bit offset(5) | pointer alignment (3) |
|
| -// The address of the rset word containing the bit for this word is computed as:
|
| -// page_address + words * 4 + kRSetOffset.
|
| -// The rset is accessed as 32-bit words, and bit offsets in a 32-bit word,
|
| -// even on the X64 architecture.
|
| -
|
| -Address Page::ComputeRSetBitPosition(Address address, int offset,
|
| - uint32_t* bitmask) {
|
| - ASSERT(Page::is_rset_in_use());
|
| -
|
| - Page* page = Page::FromAddress(address);
|
| - uint32_t bit_offset = ArithmeticShiftRight(page->Offset(address) + offset,
|
| - kPointerSizeLog2);
|
| - *bitmask = 1 << (bit_offset % kBitsPerInt);
|
| -
|
| - Address rset_address =
|
| - page->address() + kRSetOffset + (bit_offset / kBitsPerInt) * kIntSize;
|
| - // The remembered set address is either in the normal remembered set range
|
| - // of a page or else we have a large object page.
|
| - ASSERT((page->RSetStart() <= rset_address && rset_address < page->RSetEnd())
|
| - || page->IsLargeObjectPage());
|
| -
|
| - if (rset_address >= page->RSetEnd()) {
|
| - // We have a large object page, and the remembered set address is actually
|
| - // past the end of the object.
|
| -
|
| - // The first part of the remembered set is still located at the start of
|
| - // the page, but anything after kRSetEndOffset must be relocated to after
|
| - // the large object, i.e. after
|
| - // (page->ObjectAreaStart() + object size)
|
| - // We do that by adding the difference between the normal RSet's end and
|
| - // the object's end.
|
| - ASSERT(HeapObject::FromAddress(address)->IsFixedArray());
|
| - int fixedarray_length =
|
| - FixedArray::SizeFor(Memory::int_at(page->ObjectAreaStart()
|
| - + Array::kLengthOffset));
|
| - rset_address += kObjectStartOffset - kRSetEndOffset + fixedarray_length;
|
| +Address Page::AllocationWatermark() {
|
| + PagedSpace* owner = MemoryAllocator::PageOwner(this);
|
| + if (this == owner->AllocationTopPage()) {
|
| + return owner->top();
|
| }
|
| - return rset_address;
|
| + return address() + AllocationWatermarkOffset();
|
| }
|
|
|
|
|
| -void Page::SetRSet(Address address, int offset) {
|
| - uint32_t bitmask = 0;
|
| - Address rset_address = ComputeRSetBitPosition(address, offset, &bitmask);
|
| - Memory::uint32_at(rset_address) |= bitmask;
|
| +uint32_t Page::AllocationWatermarkOffset() {
|
| + return static_cast<uint32_t>((flags_ & kAllocationWatermarkOffsetMask) >>
|
| + kAllocationWatermarkOffsetShift);
|
| +}
|
| +
|
|
|
| - ASSERT(IsRSetSet(address, offset));
|
| +void Page::SetAllocationWatermark(Address allocation_watermark) {
|
| + if ((Heap::gc_state() == Heap::SCAVENGE) && IsWatermarkValid()) {
|
| + // When iterating intergenerational references during scavenge
|
| + // we might decide to promote an encountered young object.
|
| + // We will allocate a space for such an object and put it
|
| + // into the promotion queue to process it later.
|
| + // If space for object was allocated somewhere beyond allocation
|
| + // watermark this might cause garbage pointers to appear under allocation
|
| + // watermark. To avoid visiting them during dirty regions iteration
|
| + // which might be still in progress we store a valid allocation watermark
|
| + // value and mark this page as having an invalid watermark.
|
| + SetCachedAllocationWatermark(AllocationWatermark());
|
| + InvalidateWatermark(true);
|
| + }
|
| +
|
| + flags_ = (flags_ & kFlagsMask) |
|
| + Offset(allocation_watermark) << kAllocationWatermarkOffsetShift;
|
| + ASSERT(AllocationWatermarkOffset()
|
| + == static_cast<uint32_t>(Offset(allocation_watermark)));
|
| }
|
|
|
|
|
| -// Clears the corresponding remembered set bit for a given address.
|
| -void Page::UnsetRSet(Address address, int offset) {
|
| - uint32_t bitmask = 0;
|
| - Address rset_address = ComputeRSetBitPosition(address, offset, &bitmask);
|
| - Memory::uint32_at(rset_address) &= ~bitmask;
|
| +void Page::SetCachedAllocationWatermark(Address allocation_watermark) {
|
| + mc_first_forwarded = allocation_watermark;
|
| +}
|
| +
|
| +
|
| +Address Page::CachedAllocationWatermark() {
|
| + return mc_first_forwarded;
|
| +}
|
| +
|
| +
|
| +uint32_t Page::GetRegionMarks() {
|
| + return dirty_regions_;
|
| +}
|
| +
|
|
|
| - ASSERT(!IsRSetSet(address, offset));
|
| +void Page::SetRegionMarks(uint32_t marks) {
|
| + dirty_regions_ = marks;
|
| }
|
|
|
|
|
| -bool Page::IsRSetSet(Address address, int offset) {
|
| +int Page::GetRegionNumberForAddress(Address addr) {
|
| + // Each page is divided into 256 byte regions. Each region has a corresponding
|
| + // dirty mark bit in the page header. Region can contain intergenerational
|
| + // references iff its dirty mark is set.
|
| + // A normal 8K page contains exactly 32 regions so all region marks fit
|
| + // into 32-bit integer field. To calculate a region number we just divide
|
| + // offset inside page by region size.
|
| + // A large page can contain more then 32 regions. But we want to avoid
|
| + // additional write barrier code for distinguishing between large and normal
|
| + // pages so we just ignore the fact that addr points into a large page and
|
| + // calculate region number as if addr pointed into a normal 8K page. This way
|
| + // we get a region number modulo 32 so for large pages several regions might
|
| + // be mapped to a single dirty mark.
|
| + ASSERT_PAGE_ALIGNED(this->address());
|
| + STATIC_ASSERT((kPageAlignmentMask >> kRegionSizeLog2) < kBitsPerInt);
|
| +
|
| + // We are using masking with kPageAlignmentMask instead of Page::Offset()
|
| + // to get an offset to the beginning of 8K page containing addr not to the
|
| + // beginning of actual page which can be bigger then 8K.
|
| + intptr_t offset_inside_normal_page = OffsetFrom(addr) & kPageAlignmentMask;
|
| + return static_cast<int>(offset_inside_normal_page >> kRegionSizeLog2);
|
| +}
|
| +
|
| +
|
| +uint32_t Page::GetRegionMaskForAddress(Address addr) {
|
| + return 1 << GetRegionNumberForAddress(addr);
|
| +}
|
| +
|
| +
|
| +void Page::MarkRegionDirty(Address address) {
|
| + SetRegionMarks(GetRegionMarks() | GetRegionMaskForAddress(address));
|
| +}
|
| +
|
| +
|
| +bool Page::IsRegionDirty(Address address) {
|
| + return GetRegionMarks() & GetRegionMaskForAddress(address);
|
| +}
|
| +
|
| +
|
| +void Page::ClearRegionMarks(Address start, Address end, bool reaches_limit) {
|
| + int rstart = GetRegionNumberForAddress(start);
|
| + int rend = GetRegionNumberForAddress(end);
|
| +
|
| + if (reaches_limit) {
|
| + end += 1;
|
| + }
|
| +
|
| + if ((rend - rstart) == 0) {
|
| + return;
|
| + }
|
| +
|
| uint32_t bitmask = 0;
|
| - Address rset_address = ComputeRSetBitPosition(address, offset, &bitmask);
|
| - return (Memory::uint32_at(rset_address) & bitmask) != 0;
|
| +
|
| + if ((OffsetFrom(start) & kRegionAlignmentMask) == 0
|
| + || (start == ObjectAreaStart())) {
|
| + // First region is fully covered
|
| + bitmask = 1 << rstart;
|
| + }
|
| +
|
| + while (++rstart < rend) {
|
| + bitmask |= 1 << rstart;
|
| + }
|
| +
|
| + if (bitmask) {
|
| + SetRegionMarks(GetRegionMarks() & ~bitmask);
|
| + }
|
| +}
|
| +
|
| +
|
| +void Page::FlipMeaningOfInvalidatedWatermarkFlag() {
|
| + watermark_invalidated_mark_ ^= WATERMARK_INVALIDATED;
|
| +}
|
| +
|
| +
|
| +bool Page::IsWatermarkValid() {
|
| + return (flags_ & WATERMARK_INVALIDATED) != watermark_invalidated_mark_;
|
| +}
|
| +
|
| +
|
| +void Page::InvalidateWatermark(bool value) {
|
| + if (value) {
|
| + flags_ = (flags_ & ~WATERMARK_INVALIDATED) | watermark_invalidated_mark_;
|
| + } else {
|
| + flags_ = (flags_ & ~WATERMARK_INVALIDATED) |
|
| + (watermark_invalidated_mark_ ^ WATERMARK_INVALIDATED);
|
| + }
|
| +
|
| + ASSERT(IsWatermarkValid() == !value);
|
| }
|
|
|
|
|
| bool Page::GetPageFlag(PageFlag flag) {
|
| - return (flags & flag) != 0;
|
| + return (flags_ & flag) != 0;
|
| }
|
|
|
|
|
| void Page::SetPageFlag(PageFlag flag, bool value) {
|
| if (value) {
|
| - flags |= flag;
|
| + flags_ |= flag;
|
| } else {
|
| - flags &= ~flag;
|
| + flags_ &= ~flag;
|
| }
|
| }
|
|
|
|
|
| +void Page::ClearPageFlags() {
|
| + flags_ = 0;
|
| +}
|
| +
|
| +
|
| bool Page::WasInUseBeforeMC() {
|
| return GetPageFlag(WAS_IN_USE_BEFORE_MC);
|
| }
|
| @@ -343,14 +417,6 @@ HeapObject* LargeObjectChunk::GetObject() {
|
| // -----------------------------------------------------------------------------
|
| // LargeObjectSpace
|
|
|
| -int LargeObjectSpace::ExtraRSetBytesFor(int object_size) {
|
| - int extra_rset_bits =
|
| - RoundUp((object_size - Page::kObjectAreaSize) / kPointerSize,
|
| - kBitsPerInt);
|
| - return extra_rset_bits / kBitsPerByte;
|
| -}
|
| -
|
| -
|
| Object* NewSpace::AllocateRawInternal(int size_in_bytes,
|
| AllocationInfo* alloc_info) {
|
| Address new_top = alloc_info->top + size_in_bytes;
|
|
|