Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. | 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 23 matching lines...) Expand all Loading... | |
| 34 namespace v8 { | 34 namespace v8 { |
| 35 namespace internal { | 35 namespace internal { |
| 36 | 36 |
| 37 // For contiguous spaces, top should be in the space (or at the end) and limit | 37 // For contiguous spaces, top should be in the space (or at the end) and limit |
| 38 // should be the end of the space. | 38 // should be the end of the space. |
| 39 #define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \ | 39 #define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \ |
| 40 ASSERT((space).low() <= (info).top \ | 40 ASSERT((space).low() <= (info).top \ |
| 41 && (info).top <= (space).high() \ | 41 && (info).top <= (space).high() \ |
| 42 && (info).limit == (space).high()) | 42 && (info).limit == (space).high()) |
| 43 | 43 |
| 44 intptr_t Page::watermark_invalidated_mark_ = Page::WATERMARK_INVALIDATED; | |
| 44 | 45 |
| 45 // ---------------------------------------------------------------------------- | 46 // ---------------------------------------------------------------------------- |
| 46 // HeapObjectIterator | 47 // HeapObjectIterator |
| 47 | 48 |
| 48 HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { | 49 HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { |
| 49 Initialize(space->bottom(), space->top(), NULL); | 50 Initialize(space->bottom(), space->top(), NULL); |
| 50 } | 51 } |
| 51 | 52 |
| 52 | 53 |
| 53 HeapObjectIterator::HeapObjectIterator(PagedSpace* space, | 54 HeapObjectIterator::HeapObjectIterator(PagedSpace* space, |
| (...skipping 78 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 132 } | 133 } |
| 133 } | 134 } |
| 134 #endif | 135 #endif |
| 135 stop_page_ = space->last_page_; | 136 stop_page_ = space->last_page_; |
| 136 break; | 137 break; |
| 137 } | 138 } |
| 138 } | 139 } |
| 139 | 140 |
| 140 | 141 |
| 141 // ----------------------------------------------------------------------------- | 142 // ----------------------------------------------------------------------------- |
| 142 // Page | |
| 143 | |
| 144 #ifdef DEBUG | |
| 145 Page::RSetState Page::rset_state_ = Page::IN_USE; | |
| 146 #endif | |
| 147 | |
| 148 // ----------------------------------------------------------------------------- | |
| 149 // CodeRange | 143 // CodeRange |
| 150 | 144 |
| 151 List<CodeRange::FreeBlock> CodeRange::free_list_(0); | 145 List<CodeRange::FreeBlock> CodeRange::free_list_(0); |
| 152 List<CodeRange::FreeBlock> CodeRange::allocation_list_(0); | 146 List<CodeRange::FreeBlock> CodeRange::allocation_list_(0); |
| 153 int CodeRange::current_allocation_block_index_ = 0; | 147 int CodeRange::current_allocation_block_index_ = 0; |
| 154 VirtualMemory* CodeRange::code_range_ = NULL; | 148 VirtualMemory* CodeRange::code_range_ = NULL; |
| 155 | 149 |
| 156 | 150 |
| 157 bool CodeRange::Setup(const size_t requested) { | 151 bool CodeRange::Setup(const size_t requested) { |
| 158 ASSERT(code_range_ == NULL); | 152 ASSERT(code_range_ == NULL); |
| (...skipping 358 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 517 size_t chunk_size = chunks_[chunk_id].size(); | 511 size_t chunk_size = chunks_[chunk_id].size(); |
| 518 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize); | 512 Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize); |
| 519 ASSERT(pages_in_chunk <= | 513 ASSERT(pages_in_chunk <= |
| 520 ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize)); | 514 ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize)); |
| 521 #endif | 515 #endif |
| 522 | 516 |
| 523 Address page_addr = low; | 517 Address page_addr = low; |
| 524 for (int i = 0; i < pages_in_chunk; i++) { | 518 for (int i = 0; i < pages_in_chunk; i++) { |
| 525 Page* p = Page::FromAddress(page_addr); | 519 Page* p = Page::FromAddress(page_addr); |
| 526 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; | 520 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; |
| 521 p->InvalidateWatermark(true); | |
| 527 p->SetIsLargeObjectPage(false); | 522 p->SetIsLargeObjectPage(false); |
| 523 p->SetAllocationWatermark(p->ObjectAreaStart()); | |
| 524 p->SetCachedAllocationWatermark(p->ObjectAreaStart()); | |
| 528 page_addr += Page::kPageSize; | 525 page_addr += Page::kPageSize; |
| 529 } | 526 } |
| 530 | 527 |
| 531 // Set the next page of the last page to 0. | 528 // Set the next page of the last page to 0. |
| 532 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); | 529 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); |
| 533 last_page->opaque_header = OffsetFrom(0) | chunk_id; | 530 last_page->opaque_header = OffsetFrom(0) | chunk_id; |
| 534 | 531 |
| 535 return Page::FromAddress(low); | 532 return Page::FromAddress(low); |
| 536 } | 533 } |
| 537 | 534 |
| (...skipping 136 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 674 | 671 |
| 675 if (prev->is_valid()) { | 672 if (prev->is_valid()) { |
| 676 SetNextPage(prev, Page::FromAddress(page_addr)); | 673 SetNextPage(prev, Page::FromAddress(page_addr)); |
| 677 } | 674 } |
| 678 | 675 |
| 679 for (int i = 0; i < pages_in_chunk; i++) { | 676 for (int i = 0; i < pages_in_chunk; i++) { |
| 680 Page* p = Page::FromAddress(page_addr); | 677 Page* p = Page::FromAddress(page_addr); |
| 681 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; | 678 p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; |
| 682 page_addr += Page::kPageSize; | 679 page_addr += Page::kPageSize; |
| 683 | 680 |
| 681 p->InvalidateWatermark(true); | |
| 684 if (p->WasInUseBeforeMC()) { | 682 if (p->WasInUseBeforeMC()) { |
| 685 *last_page_in_use = p; | 683 *last_page_in_use = p; |
| 686 } | 684 } |
| 687 } | 685 } |
| 688 | 686 |
| 689 // Set the next page of the last page to 0. | 687 // Set the next page of the last page to 0. |
| 690 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); | 688 Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); |
| 691 last_page->opaque_header = OffsetFrom(0) | chunk_id; | 689 last_page->opaque_header = OffsetFrom(0) | chunk_id; |
| 692 | 690 |
| 693 if (last_page->WasInUseBeforeMC()) { | 691 if (last_page->WasInUseBeforeMC()) { |
| (...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 737 if (!first_page_->is_valid()) return false; | 735 if (!first_page_->is_valid()) return false; |
| 738 } | 736 } |
| 739 | 737 |
| 740 // We are sure that the first page is valid and that we have at least one | 738 // We are sure that the first page is valid and that we have at least one |
| 741 // page. | 739 // page. |
| 742 ASSERT(first_page_->is_valid()); | 740 ASSERT(first_page_->is_valid()); |
| 743 ASSERT(num_pages > 0); | 741 ASSERT(num_pages > 0); |
| 744 accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize); | 742 accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize); |
| 745 ASSERT(Capacity() <= max_capacity_); | 743 ASSERT(Capacity() <= max_capacity_); |
| 746 | 744 |
| 747 // Sequentially initialize remembered sets in the newly allocated | 745 // Sequentially clear region marks in the newly allocated |
| 748 // pages and cache the current last page in the space. | 746 // pages and cache the current last page in the space. |
| 749 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { | 747 for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { |
| 750 p->ClearRSet(); | 748 p->SetRegionMarks(Page::kAllRegionsCleanMarks); |
| 751 last_page_ = p; | 749 last_page_ = p; |
| 752 } | 750 } |
| 753 | 751 |
| 754 // Use first_page_ for allocation. | 752 // Use first_page_ for allocation. |
| 755 SetAllocationInfo(&allocation_info_, first_page_); | 753 SetAllocationInfo(&allocation_info_, first_page_); |
| 756 | 754 |
| 757 page_list_is_chunk_ordered_ = true; | 755 page_list_is_chunk_ordered_ = true; |
| 758 | 756 |
| 759 return true; | 757 return true; |
| 760 } | 758 } |
| (...skipping 26 matching lines...) Expand all Loading... | |
| 787 Page* page = first_page_; | 785 Page* page = first_page_; |
| 788 while (page->is_valid()) { | 786 while (page->is_valid()) { |
| 789 MemoryAllocator::UnprotectChunkFromPage(page); | 787 MemoryAllocator::UnprotectChunkFromPage(page); |
| 790 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page(); | 788 page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page(); |
| 791 } | 789 } |
| 792 } | 790 } |
| 793 | 791 |
| 794 #endif | 792 #endif |
| 795 | 793 |
| 796 | 794 |
| 797 void PagedSpace::ClearRSet() { | 795 void PagedSpace::MarkAllPagesClean() { |
| 798 PageIterator it(this, PageIterator::ALL_PAGES); | 796 PageIterator it(this, PageIterator::ALL_PAGES); |
| 799 while (it.has_next()) { | 797 while (it.has_next()) { |
| 800 it.next()->ClearRSet(); | 798 it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks); |
| 801 } | 799 } |
| 802 } | 800 } |
| 803 | 801 |
| 804 | 802 |
| 805 Object* PagedSpace::FindObject(Address addr) { | 803 Object* PagedSpace::FindObject(Address addr) { |
| 806 // Note: this function can only be called before or after mark-compact GC | 804 // Note: this function can only be called before or after mark-compact GC |
| 807 // because it accesses map pointers. | 805 // because it accesses map pointers. |
| 808 ASSERT(!MarkCompactCollector::in_use()); | 806 ASSERT(!MarkCompactCollector::in_use()); |
| 809 | 807 |
| 810 if (!Contains(addr)) return Failure::Exception(); | 808 if (!Contains(addr)) return Failure::Exception(); |
| (...skipping 82 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 893 ASSERT(current_page->next_page()->is_valid()); | 891 ASSERT(current_page->next_page()->is_valid()); |
| 894 // We do not add the top of page block for current page to the space's | 892 // We do not add the top of page block for current page to the space's |
| 895 // free list---the block may contain live objects so we cannot write | 893 // free list---the block may contain live objects so we cannot write |
| 896 // bookkeeping information to it. Instead, we will recover top of page | 894 // bookkeeping information to it. Instead, we will recover top of page |
| 897 // blocks when we move objects to their new locations. | 895 // blocks when we move objects to their new locations. |
| 898 // | 896 // |
| 899 // We do however write the allocation pointer to the page. The encoding | 897 // We do however write the allocation pointer to the page. The encoding |
| 900 // of forwarding addresses is as an offset in terms of live bytes, so we | 898 // of forwarding addresses is as an offset in terms of live bytes, so we |
| 901 // need quick access to the allocation top of each page to decode | 899 // need quick access to the allocation top of each page to decode |
| 902 // forwarding addresses. | 900 // forwarding addresses. |
| 903 current_page->mc_relocation_top = mc_forwarding_info_.top; | 901 current_page->SetAllocationWatermark(mc_forwarding_info_.top); |
| 902 current_page->next_page()->InvalidateWatermark(true); | |
| 904 SetAllocationInfo(&mc_forwarding_info_, current_page->next_page()); | 903 SetAllocationInfo(&mc_forwarding_info_, current_page->next_page()); |
| 905 return AllocateLinearly(&mc_forwarding_info_, size_in_bytes); | 904 return AllocateLinearly(&mc_forwarding_info_, size_in_bytes); |
| 906 } | 905 } |
| 907 | 906 |
| 908 | 907 |
| 909 bool PagedSpace::Expand(Page* last_page) { | 908 bool PagedSpace::Expand(Page* last_page) { |
| 910 ASSERT(max_capacity_ % Page::kObjectAreaSize == 0); | 909 ASSERT(max_capacity_ % Page::kObjectAreaSize == 0); |
| 911 ASSERT(Capacity() % Page::kObjectAreaSize == 0); | 910 ASSERT(Capacity() % Page::kObjectAreaSize == 0); |
| 912 | 911 |
| 913 if (Capacity() == max_capacity_) return false; | 912 if (Capacity() == max_capacity_) return false; |
| 914 | 913 |
| 915 ASSERT(Capacity() < max_capacity_); | 914 ASSERT(Capacity() < max_capacity_); |
| 916 // Last page must be valid and its next page is invalid. | 915 // Last page must be valid and its next page is invalid. |
| 917 ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid()); | 916 ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid()); |
| 918 | 917 |
| 919 int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize; | 918 int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize; |
| 920 if (available_pages <= 0) return false; | 919 if (available_pages <= 0) return false; |
| 921 | 920 |
| 922 int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk); | 921 int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk); |
| 923 Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this); | 922 Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this); |
| 924 if (!p->is_valid()) return false; | 923 if (!p->is_valid()) return false; |
| 925 | 924 |
| 926 accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize); | 925 accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize); |
| 927 ASSERT(Capacity() <= max_capacity_); | 926 ASSERT(Capacity() <= max_capacity_); |
| 928 | 927 |
| 929 MemoryAllocator::SetNextPage(last_page, p); | 928 MemoryAllocator::SetNextPage(last_page, p); |
| 930 | 929 |
| 931 // Sequentially clear remembered set of new pages and and cache the | 930 // Sequentially clear region marks of new pages and and cache the |
| 932 // new last page in the space. | 931 // new last page in the space. |
| 933 while (p->is_valid()) { | 932 while (p->is_valid()) { |
| 934 p->ClearRSet(); | 933 p->SetRegionMarks(Page::kAllRegionsCleanMarks); |
| 935 last_page_ = p; | 934 last_page_ = p; |
| 936 p = p->next_page(); | 935 p = p->next_page(); |
| 937 } | 936 } |
| 938 | 937 |
| 939 return true; | 938 return true; |
| 940 } | 939 } |
| 941 | 940 |
| 942 | 941 |
| 943 #ifdef DEBUG | 942 #ifdef DEBUG |
| 944 int PagedSpace::CountTotalPages() { | 943 int PagedSpace::CountTotalPages() { |
| (...skipping 78 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1023 Page* top_page = Page::FromAllocationTop(allocation_info_.top); | 1022 Page* top_page = Page::FromAllocationTop(allocation_info_.top); |
| 1024 ASSERT(MemoryAllocator::IsPageInSpace(top_page, this)); | 1023 ASSERT(MemoryAllocator::IsPageInSpace(top_page, this)); |
| 1025 | 1024 |
| 1026 // Loop over all the pages. | 1025 // Loop over all the pages. |
| 1027 bool above_allocation_top = false; | 1026 bool above_allocation_top = false; |
| 1028 Page* current_page = first_page_; | 1027 Page* current_page = first_page_; |
| 1029 while (current_page->is_valid()) { | 1028 while (current_page->is_valid()) { |
| 1030 if (above_allocation_top) { | 1029 if (above_allocation_top) { |
| 1031 // We don't care what's above the allocation top. | 1030 // We don't care what's above the allocation top. |
| 1032 } else { | 1031 } else { |
| 1033 // Unless this is the last page in the space containing allocated | |
| 1034 // objects, the allocation top should be at a constant offset from the | |
| 1035 // object area end. | |
| 1036 Address top = current_page->AllocationTop(); | 1032 Address top = current_page->AllocationTop(); |
| 1037 if (current_page == top_page) { | 1033 if (current_page == top_page) { |
| 1038 ASSERT(top == allocation_info_.top); | 1034 ASSERT(top == allocation_info_.top); |
| 1039 // The next page will be above the allocation top. | 1035 // The next page will be above the allocation top. |
| 1040 above_allocation_top = true; | 1036 above_allocation_top = true; |
| 1041 } else { | |
| 1042 ASSERT(top == PageAllocationLimit(current_page)); | |
| 1043 } | 1037 } |
| 1044 | 1038 |
| 1045 // It should be packed with objects from the bottom to the top. | 1039 // It should be packed with objects from the bottom to the top. |
| 1046 Address current = current_page->ObjectAreaStart(); | 1040 Address current = current_page->ObjectAreaStart(); |
| 1047 while (current < top) { | 1041 while (current < top) { |
| 1048 HeapObject* object = HeapObject::FromAddress(current); | 1042 HeapObject* object = HeapObject::FromAddress(current); |
| 1049 | 1043 |
| 1050 // The first word should be a map, and we expect all map pointers to | 1044 // The first word should be a map, and we expect all map pointers to |
| 1051 // be in map space. | 1045 // be in map space. |
| 1052 Map* map = object->map(); | 1046 Map* map = object->map(); |
| 1053 ASSERT(map->IsMap()); | 1047 ASSERT(map->IsMap()); |
| 1054 ASSERT(Heap::map_space()->Contains(map)); | 1048 ASSERT(Heap::map_space()->Contains(map)); |
| 1055 | 1049 |
| 1056 // Perform space-specific object verification. | 1050 // Perform space-specific object verification. |
| 1057 VerifyObject(object); | 1051 VerifyObject(object); |
| 1058 | 1052 |
| 1059 // The object itself should look OK. | 1053 // The object itself should look OK. |
| 1060 object->Verify(); | 1054 object->Verify(); |
| 1061 | 1055 |
| 1062 // All the interior pointers should be contained in the heap and | 1056 // All the interior pointers should be contained in the heap and |
| 1063 // have their remembered set bits set if required as determined | 1057 // have page regions covering intergenerational references should be |
| 1064 // by the visitor. | 1058 // marked dirty. |
| 1065 int size = object->Size(); | 1059 int size = object->Size(); |
| 1066 object->IterateBody(map->instance_type(), size, visitor); | 1060 object->IterateBody(map->instance_type(), size, visitor); |
| 1067 | 1061 |
| 1068 current += size; | 1062 current += size; |
| 1069 } | 1063 } |
| 1070 | 1064 |
| 1071 // The allocation pointer should not be in the middle of an object. | 1065 // The allocation pointer should not be in the middle of an object. |
| 1072 ASSERT(current == top); | 1066 ASSERT(current == top); |
| 1073 } | 1067 } |
| 1074 | 1068 |
| (...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1113 return false; | 1107 return false; |
| 1114 } | 1108 } |
| 1115 if (!from_space_.Setup(start + maximum_semispace_capacity, | 1109 if (!from_space_.Setup(start + maximum_semispace_capacity, |
| 1116 initial_semispace_capacity, | 1110 initial_semispace_capacity, |
| 1117 maximum_semispace_capacity)) { | 1111 maximum_semispace_capacity)) { |
| 1118 return false; | 1112 return false; |
| 1119 } | 1113 } |
| 1120 | 1114 |
| 1121 start_ = start; | 1115 start_ = start; |
| 1122 address_mask_ = ~(size - 1); | 1116 address_mask_ = ~(size - 1); |
| 1123 object_mask_ = address_mask_ | kHeapObjectTag; | 1117 object_mask_ = address_mask_ | kHeapObjectTagMask; |
| 1124 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; | 1118 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; |
|
Vyacheslav Egorov (Chromium)
2010/05/25 12:50:12
Change object_mask_ to match HasHeapObjectTag() im
| |
| 1125 | 1119 |
| 1126 allocation_info_.top = to_space_.low(); | 1120 allocation_info_.top = to_space_.low(); |
| 1127 allocation_info_.limit = to_space_.high(); | 1121 allocation_info_.limit = to_space_.high(); |
| 1128 mc_forwarding_info_.top = NULL; | 1122 mc_forwarding_info_.top = NULL; |
| 1129 mc_forwarding_info_.limit = NULL; | 1123 mc_forwarding_info_.limit = NULL; |
| 1130 | 1124 |
| 1131 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); | 1125 ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); |
| 1132 return true; | 1126 return true; |
| 1133 } | 1127 } |
| 1134 | 1128 |
| (...skipping 182 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1317 // otherwise. In the mark-compact collector, the memory region of the from | 1311 // otherwise. In the mark-compact collector, the memory region of the from |
| 1318 // space is used as the marking stack. It requires contiguous memory | 1312 // space is used as the marking stack. It requires contiguous memory |
| 1319 // addresses. | 1313 // addresses. |
| 1320 initial_capacity_ = initial_capacity; | 1314 initial_capacity_ = initial_capacity; |
| 1321 capacity_ = initial_capacity; | 1315 capacity_ = initial_capacity; |
| 1322 maximum_capacity_ = maximum_capacity; | 1316 maximum_capacity_ = maximum_capacity; |
| 1323 committed_ = false; | 1317 committed_ = false; |
| 1324 | 1318 |
| 1325 start_ = start; | 1319 start_ = start; |
| 1326 address_mask_ = ~(maximum_capacity - 1); | 1320 address_mask_ = ~(maximum_capacity - 1); |
| 1327 object_mask_ = address_mask_ | kHeapObjectTag; | 1321 object_mask_ = address_mask_ | kHeapObjectTagMask; |
| 1328 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; | 1322 object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; |
|
Vyacheslav Egorov (Chromium)
2010/05/25 12:50:12
Change object_mask_ to match HasHeapObjectTag() im
| |
| 1329 age_mark_ = start_; | 1323 age_mark_ = start_; |
| 1330 | 1324 |
| 1331 return Commit(); | 1325 return Commit(); |
| 1332 } | 1326 } |
| 1333 | 1327 |
| 1334 | 1328 |
| 1335 void SemiSpace::TearDown() { | 1329 void SemiSpace::TearDown() { |
| 1336 start_ = NULL; | 1330 start_ = NULL; |
| 1337 capacity_ = 0; | 1331 capacity_ = 0; |
| 1338 } | 1332 } |
| (...skipping 288 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1627 ASSERT(size_in_bytes > 0); | 1621 ASSERT(size_in_bytes > 0); |
| 1628 ASSERT(IsAligned(size_in_bytes, kPointerSize)); | 1622 ASSERT(IsAligned(size_in_bytes, kPointerSize)); |
| 1629 | 1623 |
| 1630 // We write a map and possibly size information to the block. If the block | 1624 // We write a map and possibly size information to the block. If the block |
| 1631 // is big enough to be a ByteArray with at least one extra word (the next | 1625 // is big enough to be a ByteArray with at least one extra word (the next |
| 1632 // pointer), we set its map to be the byte array map and its size to an | 1626 // pointer), we set its map to be the byte array map and its size to an |
| 1633 // appropriate array length for the desired size from HeapObject::Size(). | 1627 // appropriate array length for the desired size from HeapObject::Size(). |
| 1634 // If the block is too small (eg, one or two words), to hold both a size | 1628 // If the block is too small (eg, one or two words), to hold both a size |
| 1635 // field and a next pointer, we give it a filler map that gives it the | 1629 // field and a next pointer, we give it a filler map that gives it the |
| 1636 // correct size. | 1630 // correct size. |
| 1637 if (size_in_bytes > ByteArray::kAlignedSize) { | 1631 if (size_in_bytes > ByteArray::kHeaderSize) { |
| 1638 set_map(Heap::raw_unchecked_byte_array_map()); | 1632 set_map(Heap::raw_unchecked_byte_array_map()); |
| 1639 // Can't use ByteArray::cast because it fails during deserialization. | 1633 // Can't use ByteArray::cast because it fails during deserialization. |
| 1640 ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this); | 1634 ByteArray* this_as_byte_array = reinterpret_cast<ByteArray*>(this); |
| 1641 this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes)); | 1635 this_as_byte_array->set_length(ByteArray::LengthFor(size_in_bytes)); |
| 1642 } else if (size_in_bytes == kPointerSize) { | 1636 } else if (size_in_bytes == kPointerSize) { |
| 1643 set_map(Heap::raw_unchecked_one_pointer_filler_map()); | 1637 set_map(Heap::raw_unchecked_one_pointer_filler_map()); |
| 1644 } else if (size_in_bytes == 2 * kPointerSize) { | 1638 } else if (size_in_bytes == 2 * kPointerSize) { |
| 1645 set_map(Heap::raw_unchecked_two_pointer_filler_map()); | 1639 set_map(Heap::raw_unchecked_two_pointer_filler_map()); |
| 1646 } else { | 1640 } else { |
| 1647 UNREACHABLE(); | 1641 UNREACHABLE(); |
| (...skipping 252 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1900 ASSERT(Waste() == 0); | 1894 ASSERT(Waste() == 0); |
| 1901 ASSERT(AvailableFree() == 0); | 1895 ASSERT(AvailableFree() == 0); |
| 1902 | 1896 |
| 1903 // Build the free list for the space. | 1897 // Build the free list for the space. |
| 1904 int computed_size = 0; | 1898 int computed_size = 0; |
| 1905 PageIterator it(this, PageIterator::PAGES_USED_BY_MC); | 1899 PageIterator it(this, PageIterator::PAGES_USED_BY_MC); |
| 1906 while (it.has_next()) { | 1900 while (it.has_next()) { |
| 1907 Page* p = it.next(); | 1901 Page* p = it.next(); |
| 1908 // Space below the relocation pointer is allocated. | 1902 // Space below the relocation pointer is allocated. |
| 1909 computed_size += | 1903 computed_size += |
| 1910 static_cast<int>(p->mc_relocation_top - p->ObjectAreaStart()); | 1904 static_cast<int>(p->AllocationWatermark() - p->ObjectAreaStart()); |
| 1911 if (it.has_next()) { | 1905 if (it.has_next()) { |
| 1912 // Free the space at the top of the page. We cannot use | 1906 // Free the space at the top of the page. |
| 1913 // p->mc_relocation_top after the call to Free (because Free will clear | |
| 1914 // remembered set bits). | |
| 1915 int extra_size = | 1907 int extra_size = |
| 1916 static_cast<int>(p->ObjectAreaEnd() - p->mc_relocation_top); | 1908 static_cast<int>(p->ObjectAreaEnd() - p->AllocationWatermark()); |
| 1917 if (extra_size > 0) { | 1909 if (extra_size > 0) { |
| 1918 int wasted_bytes = free_list_.Free(p->mc_relocation_top, extra_size); | 1910 int wasted_bytes = free_list_.Free(p->AllocationWatermark(), |
| 1911 extra_size); | |
| 1919 // The bytes we have just "freed" to add to the free list were | 1912 // The bytes we have just "freed" to add to the free list were |
| 1920 // already accounted as available. | 1913 // already accounted as available. |
| 1921 accounting_stats_.WasteBytes(wasted_bytes); | 1914 accounting_stats_.WasteBytes(wasted_bytes); |
| 1922 } | 1915 } |
| 1923 } | 1916 } |
| 1924 } | 1917 } |
| 1925 | 1918 |
| 1926 // Make sure the computed size - based on the used portion of the pages in | 1919 // Make sure the computed size - based on the used portion of the pages in |
| 1927 // use - matches the size obtained while computing forwarding addresses. | 1920 // use - matches the size obtained while computing forwarding addresses. |
| 1928 ASSERT(computed_size == Size()); | 1921 ASSERT(computed_size == Size()); |
| (...skipping 27 matching lines...) Expand all Loading... | |
| 1956 MemoryAllocator::SetNextPage(prev, last->next_page()); | 1949 MemoryAllocator::SetNextPage(prev, last->next_page()); |
| 1957 } | 1950 } |
| 1958 | 1951 |
| 1959 // Attach it after the last page. | 1952 // Attach it after the last page. |
| 1960 MemoryAllocator::SetNextPage(last_page_, first); | 1953 MemoryAllocator::SetNextPage(last_page_, first); |
| 1961 last_page_ = last; | 1954 last_page_ = last; |
| 1962 MemoryAllocator::SetNextPage(last, NULL); | 1955 MemoryAllocator::SetNextPage(last, NULL); |
| 1963 | 1956 |
| 1964 // Clean them up. | 1957 // Clean them up. |
| 1965 do { | 1958 do { |
| 1966 first->ClearRSet(); | 1959 first->InvalidateWatermark(true); |
| 1960 first->SetAllocationWatermark(first->ObjectAreaStart()); | |
| 1961 first->SetCachedAllocationWatermark(first->ObjectAreaStart()); | |
| 1962 first->SetRegionMarks(Page::kAllRegionsCleanMarks); | |
| 1967 first = first->next_page(); | 1963 first = first->next_page(); |
| 1968 } while (first != NULL); | 1964 } while (first != NULL); |
| 1969 | 1965 |
| 1970 // Order of pages in this space might no longer be consistent with | 1966 // Order of pages in this space might no longer be consistent with |
| 1971 // order of pages in chunks. | 1967 // order of pages in chunks. |
| 1972 page_list_is_chunk_ordered_ = false; | 1968 page_list_is_chunk_ordered_ = false; |
| 1973 } | 1969 } |
| 1974 | 1970 |
| 1975 | 1971 |
| 1976 void PagedSpace::PrepareForMarkCompact(bool will_compact) { | 1972 void PagedSpace::PrepareForMarkCompact(bool will_compact) { |
| (...skipping 19 matching lines...) Expand all Loading... | |
| 1996 MemoryAllocator::RelinkPageListInChunkOrder(this, | 1992 MemoryAllocator::RelinkPageListInChunkOrder(this, |
| 1997 &first_page_, | 1993 &first_page_, |
| 1998 &last_page_, | 1994 &last_page_, |
| 1999 &new_last_in_use); | 1995 &new_last_in_use); |
| 2000 ASSERT(new_last_in_use->is_valid()); | 1996 ASSERT(new_last_in_use->is_valid()); |
| 2001 | 1997 |
| 2002 if (new_last_in_use != last_in_use) { | 1998 if (new_last_in_use != last_in_use) { |
| 2003 // Current allocation top points to a page which is now in the middle | 1999 // Current allocation top points to a page which is now in the middle |
| 2004 // of page list. We should move allocation top forward to the new last | 2000 // of page list. We should move allocation top forward to the new last |
| 2005 // used page so various object iterators will continue to work properly. | 2001 // used page so various object iterators will continue to work properly. |
| 2002 last_in_use->SetAllocationWatermark(last_in_use->AllocationTop()); | |
| 2006 | 2003 |
| 2007 int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) - | 2004 int size_in_bytes = static_cast<int>(PageAllocationLimit(last_in_use) - |
| 2008 last_in_use->AllocationTop()); | 2005 last_in_use->AllocationTop()); |
| 2009 | 2006 |
| 2010 if (size_in_bytes > 0) { | 2007 if (size_in_bytes > 0) { |
| 2011 // There is still some space left on this page. Create a fake | 2008 // There is still some space left on this page. Create a fake |
| 2012 // object which will occupy all free space on this page. | 2009 // object which will occupy all free space on this page. |
| 2013 // Otherwise iterators would not be able to scan this page | 2010 // Otherwise iterators would not be able to scan this page |
| 2014 // correctly. | 2011 // correctly. |
| 2015 | 2012 |
| (...skipping 12 matching lines...) Expand all Loading... | |
| 2028 PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE); | 2025 PageIterator pages_in_use_iterator(this, PageIterator::PAGES_IN_USE); |
| 2029 while (pages_in_use_iterator.has_next()) { | 2026 while (pages_in_use_iterator.has_next()) { |
| 2030 Page* p = pages_in_use_iterator.next(); | 2027 Page* p = pages_in_use_iterator.next(); |
| 2031 if (!p->WasInUseBeforeMC()) { | 2028 if (!p->WasInUseBeforeMC()) { |
| 2032 // Empty page is in the middle of a sequence of used pages. | 2029 // Empty page is in the middle of a sequence of used pages. |
| 2033 // Create a fake object which will occupy all free space on this page. | 2030 // Create a fake object which will occupy all free space on this page. |
| 2034 // Otherwise iterators would not be able to scan this page correctly. | 2031 // Otherwise iterators would not be able to scan this page correctly. |
| 2035 int size_in_bytes = static_cast<int>(PageAllocationLimit(p) - | 2032 int size_in_bytes = static_cast<int>(PageAllocationLimit(p) - |
| 2036 p->ObjectAreaStart()); | 2033 p->ObjectAreaStart()); |
| 2037 | 2034 |
| 2035 p->SetAllocationWatermark(p->ObjectAreaStart()); | |
| 2038 Heap::CreateFillerObjectAt(p->ObjectAreaStart(), size_in_bytes); | 2036 Heap::CreateFillerObjectAt(p->ObjectAreaStart(), size_in_bytes); |
| 2039 } | 2037 } |
| 2040 } | 2038 } |
| 2041 | 2039 |
| 2042 page_list_is_chunk_ordered_ = true; | 2040 page_list_is_chunk_ordered_ = true; |
| 2043 } | 2041 } |
| 2044 } | 2042 } |
| 2045 } | 2043 } |
| 2046 | 2044 |
| 2047 | 2045 |
| (...skipping 11 matching lines...) Expand all Loading... | |
| 2059 while (bytes_left_to_reserve > 0) { | 2057 while (bytes_left_to_reserve > 0) { |
| 2060 if (!reserved_page->next_page()->is_valid()) { | 2058 if (!reserved_page->next_page()->is_valid()) { |
| 2061 if (Heap::OldGenerationAllocationLimitReached()) return false; | 2059 if (Heap::OldGenerationAllocationLimitReached()) return false; |
| 2062 Expand(reserved_page); | 2060 Expand(reserved_page); |
| 2063 } | 2061 } |
| 2064 bytes_left_to_reserve -= Page::kPageSize; | 2062 bytes_left_to_reserve -= Page::kPageSize; |
| 2065 reserved_page = reserved_page->next_page(); | 2063 reserved_page = reserved_page->next_page(); |
| 2066 if (!reserved_page->is_valid()) return false; | 2064 if (!reserved_page->is_valid()) return false; |
| 2067 } | 2065 } |
| 2068 ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid()); | 2066 ASSERT(TopPageOf(allocation_info_)->next_page()->is_valid()); |
| 2067 TopPageOf(allocation_info_)->next_page()->InvalidateWatermark(true); | |
| 2069 SetAllocationInfo(&allocation_info_, | 2068 SetAllocationInfo(&allocation_info_, |
| 2070 TopPageOf(allocation_info_)->next_page()); | 2069 TopPageOf(allocation_info_)->next_page()); |
| 2071 return true; | 2070 return true; |
| 2072 } | 2071 } |
| 2073 | 2072 |
| 2074 | 2073 |
| 2075 // You have to call this last, since the implementation from PagedSpace | 2074 // You have to call this last, since the implementation from PagedSpace |
| 2076 // doesn't know that memory was 'promised' to large object space. | 2075 // doesn't know that memory was 'promised' to large object space. |
| 2077 bool LargeObjectSpace::ReserveSpace(int bytes) { | 2076 bool LargeObjectSpace::ReserveSpace(int bytes) { |
| 2078 return Heap::OldGenerationSpaceAvailable() >= bytes; | 2077 return Heap::OldGenerationSpaceAvailable() >= bytes; |
| (...skipping 14 matching lines...) Expand all Loading... | |
| 2093 } | 2092 } |
| 2094 | 2093 |
| 2095 // There is no next page in this space. Try free list allocation unless that | 2094 // There is no next page in this space. Try free list allocation unless that |
| 2096 // is currently forbidden. | 2095 // is currently forbidden. |
| 2097 if (!Heap::linear_allocation()) { | 2096 if (!Heap::linear_allocation()) { |
| 2098 int wasted_bytes; | 2097 int wasted_bytes; |
| 2099 Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes); | 2098 Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes); |
| 2100 accounting_stats_.WasteBytes(wasted_bytes); | 2099 accounting_stats_.WasteBytes(wasted_bytes); |
| 2101 if (!result->IsFailure()) { | 2100 if (!result->IsFailure()) { |
| 2102 accounting_stats_.AllocateBytes(size_in_bytes); | 2101 accounting_stats_.AllocateBytes(size_in_bytes); |
| 2103 return HeapObject::cast(result); | 2102 |
| 2103 HeapObject* obj = HeapObject::cast(result); | |
| 2104 Page* p = Page::FromAddress(obj->address()); | |
| 2105 | |
| 2106 if (obj->address() >= p->AllocationWatermark()) { | |
| 2107 p->SetAllocationWatermark(obj->address() + size_in_bytes); | |
| 2108 } | |
| 2109 | |
| 2110 return obj; | |
| 2104 } | 2111 } |
| 2105 } | 2112 } |
| 2106 | 2113 |
| 2107 // Free list allocation failed and there is no next page. Fail if we have | 2114 // Free list allocation failed and there is no next page. Fail if we have |
| 2108 // hit the old generation size limit that should cause a garbage | 2115 // hit the old generation size limit that should cause a garbage |
| 2109 // collection. | 2116 // collection. |
| 2110 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { | 2117 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { |
| 2111 return NULL; | 2118 return NULL; |
| 2112 } | 2119 } |
| 2113 | 2120 |
| 2114 // Try to expand the space and allocate in the new next page. | 2121 // Try to expand the space and allocate in the new next page. |
| 2115 ASSERT(!current_page->next_page()->is_valid()); | 2122 ASSERT(!current_page->next_page()->is_valid()); |
| 2116 if (Expand(current_page)) { | 2123 if (Expand(current_page)) { |
| 2117 return AllocateInNextPage(current_page, size_in_bytes); | 2124 return AllocateInNextPage(current_page, size_in_bytes); |
| 2118 } | 2125 } |
| 2119 | 2126 |
| 2120 // Finally, fail. | 2127 // Finally, fail. |
| 2121 return NULL; | 2128 return NULL; |
| 2122 } | 2129 } |
| 2123 | 2130 |
| 2124 | 2131 |
| 2125 void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { | 2132 void OldSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { |
| 2133 current_page->SetAllocationWatermark(allocation_info_.top); | |
| 2126 int free_size = | 2134 int free_size = |
| 2127 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); | 2135 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); |
| 2128 if (free_size > 0) { | 2136 if (free_size > 0) { |
| 2129 int wasted_bytes = free_list_.Free(allocation_info_.top, free_size); | 2137 int wasted_bytes = free_list_.Free(allocation_info_.top, free_size); |
| 2130 accounting_stats_.WasteBytes(wasted_bytes); | 2138 accounting_stats_.WasteBytes(wasted_bytes); |
| 2131 } | 2139 } |
| 2132 } | 2140 } |
| 2133 | 2141 |
| 2134 | 2142 |
| 2135 void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { | 2143 void FixedSpace::PutRestOfCurrentPageOnFreeList(Page* current_page) { |
| 2144 current_page->SetAllocationWatermark(allocation_info_.top); | |
| 2136 int free_size = | 2145 int free_size = |
| 2137 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); | 2146 static_cast<int>(current_page->ObjectAreaEnd() - allocation_info_.top); |
| 2138 // In the fixed space free list all the free list items have the right size. | 2147 // In the fixed space free list all the free list items have the right size. |
| 2139 // We use up the rest of the page while preserving this invariant. | 2148 // We use up the rest of the page while preserving this invariant. |
| 2140 while (free_size >= object_size_in_bytes_) { | 2149 while (free_size >= object_size_in_bytes_) { |
| 2141 free_list_.Free(allocation_info_.top); | 2150 free_list_.Free(allocation_info_.top); |
| 2142 allocation_info_.top += object_size_in_bytes_; | 2151 allocation_info_.top += object_size_in_bytes_; |
| 2143 free_size -= object_size_in_bytes_; | 2152 free_size -= object_size_in_bytes_; |
| 2144 accounting_stats_.WasteBytes(object_size_in_bytes_); | 2153 accounting_stats_.WasteBytes(object_size_in_bytes_); |
| 2145 } | 2154 } |
| 2146 } | 2155 } |
| 2147 | 2156 |
| 2148 | 2157 |
| 2149 // Add the block at the top of the page to the space's free list, set the | 2158 // Add the block at the top of the page to the space's free list, set the |
| 2150 // allocation info to the next page (assumed to be one), and allocate | 2159 // allocation info to the next page (assumed to be one), and allocate |
| 2151 // linearly there. | 2160 // linearly there. |
| 2152 HeapObject* OldSpace::AllocateInNextPage(Page* current_page, | 2161 HeapObject* OldSpace::AllocateInNextPage(Page* current_page, |
| 2153 int size_in_bytes) { | 2162 int size_in_bytes) { |
| 2154 ASSERT(current_page->next_page()->is_valid()); | 2163 ASSERT(current_page->next_page()->is_valid()); |
| 2164 current_page->next_page()->InvalidateWatermark(true); | |
| 2155 PutRestOfCurrentPageOnFreeList(current_page); | 2165 PutRestOfCurrentPageOnFreeList(current_page); |
| 2156 SetAllocationInfo(&allocation_info_, current_page->next_page()); | 2166 SetAllocationInfo(&allocation_info_, current_page->next_page()); |
| 2157 return AllocateLinearly(&allocation_info_, size_in_bytes); | 2167 return AllocateLinearly(&allocation_info_, size_in_bytes); |
| 2158 } | 2168 } |
| 2159 | 2169 |
| 2160 | 2170 |
| 2161 #ifdef DEBUG | 2171 #ifdef DEBUG |
| 2162 struct CommentStatistic { | 2172 struct CommentStatistic { |
| 2163 const char* comment; | 2173 const char* comment; |
| 2164 int size; | 2174 int size; |
| (...skipping 124 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 2289 } | 2299 } |
| 2290 } | 2300 } |
| 2291 } | 2301 } |
| 2292 | 2302 |
| 2293 | 2303 |
| 2294 void OldSpace::ReportStatistics() { | 2304 void OldSpace::ReportStatistics() { |
| 2295 int pct = Available() * 100 / Capacity(); | 2305 int pct = Available() * 100 / Capacity(); |
| 2296 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", | 2306 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", |
| 2297 Capacity(), Waste(), Available(), pct); | 2307 Capacity(), Waste(), Available(), pct); |
| 2298 | 2308 |
| 2299 // Report remembered set statistics. | |
| 2300 int rset_marked_pointers = 0; | |
| 2301 int rset_marked_arrays = 0; | |
| 2302 int rset_marked_array_elements = 0; | |
| 2303 int cross_gen_pointers = 0; | |
| 2304 int cross_gen_array_elements = 0; | |
| 2305 | |
| 2306 PageIterator page_it(this, PageIterator::PAGES_IN_USE); | |
| 2307 while (page_it.has_next()) { | |
| 2308 Page* p = page_it.next(); | |
| 2309 | |
| 2310 for (Address rset_addr = p->RSetStart(); | |
| 2311 rset_addr < p->RSetEnd(); | |
| 2312 rset_addr += kIntSize) { | |
| 2313 int rset = Memory::int_at(rset_addr); | |
| 2314 if (rset != 0) { | |
| 2315 // Bits were set | |
| 2316 int intoff = | |
| 2317 static_cast<int>(rset_addr - p->address() - Page::kRSetOffset); | |
| 2318 int bitoff = 0; | |
| 2319 for (; bitoff < kBitsPerInt; ++bitoff) { | |
| 2320 if ((rset & (1 << bitoff)) != 0) { | |
| 2321 int bitpos = intoff*kBitsPerByte + bitoff; | |
| 2322 Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits); | |
| 2323 Object** obj = reinterpret_cast<Object**>(slot); | |
| 2324 if (*obj == Heap::raw_unchecked_fixed_array_map()) { | |
| 2325 rset_marked_arrays++; | |
| 2326 FixedArray* fa = FixedArray::cast(HeapObject::FromAddress(slot)); | |
| 2327 | |
| 2328 rset_marked_array_elements += fa->length(); | |
| 2329 // Manually inline FixedArray::IterateBody | |
| 2330 Address elm_start = slot + FixedArray::kHeaderSize; | |
| 2331 Address elm_stop = elm_start + fa->length() * kPointerSize; | |
| 2332 for (Address elm_addr = elm_start; | |
| 2333 elm_addr < elm_stop; elm_addr += kPointerSize) { | |
| 2334 // Filter non-heap-object pointers | |
| 2335 Object** elm_p = reinterpret_cast<Object**>(elm_addr); | |
| 2336 if (Heap::InNewSpace(*elm_p)) | |
| 2337 cross_gen_array_elements++; | |
| 2338 } | |
| 2339 } else { | |
| 2340 rset_marked_pointers++; | |
| 2341 if (Heap::InNewSpace(*obj)) | |
| 2342 cross_gen_pointers++; | |
| 2343 } | |
| 2344 } | |
| 2345 } | |
| 2346 } | |
| 2347 } | |
| 2348 } | |
| 2349 | |
| 2350 pct = rset_marked_pointers == 0 ? | |
| 2351 0 : cross_gen_pointers * 100 / rset_marked_pointers; | |
| 2352 PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n", | |
| 2353 rset_marked_pointers, cross_gen_pointers, pct); | |
| 2354 PrintF(" rset_marked arrays %d, ", rset_marked_arrays); | |
| 2355 PrintF(" elements %d, ", rset_marked_array_elements); | |
| 2356 pct = rset_marked_array_elements == 0 ? 0 | |
| 2357 : cross_gen_array_elements * 100 / rset_marked_array_elements; | |
| 2358 PrintF(" pointers to new space %d (%%%d)\n", cross_gen_array_elements, pct); | |
| 2359 PrintF(" total rset-marked bits %d\n", | |
| 2360 (rset_marked_pointers + rset_marked_arrays)); | |
| 2361 pct = (rset_marked_pointers + rset_marked_array_elements) == 0 ? 0 | |
| 2362 : (cross_gen_pointers + cross_gen_array_elements) * 100 / | |
| 2363 (rset_marked_pointers + rset_marked_array_elements); | |
| 2364 PrintF(" total rset pointers %d, true cross generation ones %d (%%%d)\n", | |
| 2365 (rset_marked_pointers + rset_marked_array_elements), | |
| 2366 (cross_gen_pointers + cross_gen_array_elements), | |
| 2367 pct); | |
| 2368 | |
| 2369 ClearHistograms(); | 2309 ClearHistograms(); |
| 2370 HeapObjectIterator obj_it(this); | 2310 HeapObjectIterator obj_it(this); |
| 2371 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) | 2311 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) |
| 2372 CollectHistogramInfo(obj); | 2312 CollectHistogramInfo(obj); |
| 2373 ReportHistogram(true); | 2313 ReportHistogram(true); |
| 2374 } | 2314 } |
| 2375 | |
| 2376 | |
| 2377 // Dump the range of remembered set words between [start, end) corresponding | |
| 2378 // to the pointers starting at object_p. The allocation_top is an object | |
| 2379 // pointer which should not be read past. This is important for large object | |
| 2380 // pages, where some bits in the remembered set range do not correspond to | |
| 2381 // allocated addresses. | |
| 2382 static void PrintRSetRange(Address start, Address end, Object** object_p, | |
| 2383 Address allocation_top) { | |
| 2384 Address rset_address = start; | |
| 2385 | |
| 2386 // If the range starts on on odd numbered word (eg, for large object extra | |
| 2387 // remembered set ranges), print some spaces. | |
| 2388 if ((reinterpret_cast<uintptr_t>(start) / kIntSize) % 2 == 1) { | |
| 2389 PrintF(" "); | |
| 2390 } | |
| 2391 | |
| 2392 // Loop over all the words in the range. | |
| 2393 while (rset_address < end) { | |
| 2394 uint32_t rset_word = Memory::uint32_at(rset_address); | |
| 2395 int bit_position = 0; | |
| 2396 | |
| 2397 // Loop over all the bits in the word. | |
| 2398 while (bit_position < kBitsPerInt) { | |
| 2399 if (object_p == reinterpret_cast<Object**>(allocation_top)) { | |
| 2400 // Print a bar at the allocation pointer. | |
| 2401 PrintF("|"); | |
| 2402 } else if (object_p > reinterpret_cast<Object**>(allocation_top)) { | |
| 2403 // Do not dereference object_p past the allocation pointer. | |
| 2404 PrintF("#"); | |
| 2405 } else if ((rset_word & (1 << bit_position)) == 0) { | |
| 2406 // Print a dot for zero bits. | |
| 2407 PrintF("."); | |
| 2408 } else if (Heap::InNewSpace(*object_p)) { | |
| 2409 // Print an X for one bits for pointers to new space. | |
| 2410 PrintF("X"); | |
| 2411 } else { | |
| 2412 // Print a circle for one bits for pointers to old space. | |
| 2413 PrintF("o"); | |
| 2414 } | |
| 2415 | |
| 2416 // Print a space after every 8th bit except the last. | |
| 2417 if (bit_position % 8 == 7 && bit_position != (kBitsPerInt - 1)) { | |
| 2418 PrintF(" "); | |
| 2419 } | |
| 2420 | |
| 2421 // Advance to next bit. | |
| 2422 bit_position++; | |
| 2423 object_p++; | |
| 2424 } | |
| 2425 | |
| 2426 // Print a newline after every odd numbered word, otherwise a space. | |
| 2427 if ((reinterpret_cast<uintptr_t>(rset_address) / kIntSize) % 2 == 1) { | |
| 2428 PrintF("\n"); | |
| 2429 } else { | |
| 2430 PrintF(" "); | |
| 2431 } | |
| 2432 | |
| 2433 // Advance to next remembered set word. | |
| 2434 rset_address += kIntSize; | |
| 2435 } | |
| 2436 } | |
| 2437 | |
| 2438 | |
| 2439 void PagedSpace::DoPrintRSet(const char* space_name) { | |
| 2440 PageIterator it(this, PageIterator::PAGES_IN_USE); | |
| 2441 while (it.has_next()) { | |
| 2442 Page* p = it.next(); | |
| 2443 PrintF("%s page 0x%x:\n", space_name, p); | |
| 2444 PrintRSetRange(p->RSetStart(), p->RSetEnd(), | |
| 2445 reinterpret_cast<Object**>(p->ObjectAreaStart()), | |
| 2446 p->AllocationTop()); | |
| 2447 PrintF("\n"); | |
| 2448 } | |
| 2449 } | |
| 2450 | |
| 2451 | |
| 2452 void OldSpace::PrintRSet() { DoPrintRSet("old"); } | |
| 2453 #endif | 2315 #endif |
| 2454 | 2316 |
| 2455 // ----------------------------------------------------------------------------- | 2317 // ----------------------------------------------------------------------------- |
| 2456 // FixedSpace implementation | 2318 // FixedSpace implementation |
| 2457 | 2319 |
| 2458 void FixedSpace::PrepareForMarkCompact(bool will_compact) { | 2320 void FixedSpace::PrepareForMarkCompact(bool will_compact) { |
| 2459 // Call prepare of the super class. | 2321 // Call prepare of the super class. |
| 2460 PagedSpace::PrepareForMarkCompact(will_compact); | 2322 PagedSpace::PrepareForMarkCompact(will_compact); |
| 2461 | 2323 |
| 2462 if (will_compact) { | 2324 if (will_compact) { |
| (...skipping 29 matching lines...) Expand all Loading... | |
| 2492 // Update allocation_top of each page in use and compute waste. | 2354 // Update allocation_top of each page in use and compute waste. |
| 2493 int computed_size = 0; | 2355 int computed_size = 0; |
| 2494 PageIterator it(this, PageIterator::PAGES_USED_BY_MC); | 2356 PageIterator it(this, PageIterator::PAGES_USED_BY_MC); |
| 2495 while (it.has_next()) { | 2357 while (it.has_next()) { |
| 2496 Page* page = it.next(); | 2358 Page* page = it.next(); |
| 2497 Address page_top = page->AllocationTop(); | 2359 Address page_top = page->AllocationTop(); |
| 2498 computed_size += static_cast<int>(page_top - page->ObjectAreaStart()); | 2360 computed_size += static_cast<int>(page_top - page->ObjectAreaStart()); |
| 2499 if (it.has_next()) { | 2361 if (it.has_next()) { |
| 2500 accounting_stats_.WasteBytes( | 2362 accounting_stats_.WasteBytes( |
| 2501 static_cast<int>(page->ObjectAreaEnd() - page_top)); | 2363 static_cast<int>(page->ObjectAreaEnd() - page_top)); |
| 2364 page->SetAllocationWatermark(page_top); | |
| 2502 } | 2365 } |
| 2503 } | 2366 } |
| 2504 | 2367 |
| 2505 // Make sure the computed size - based on the used portion of the | 2368 // Make sure the computed size - based on the used portion of the |
| 2506 // pages in use - matches the size we adjust during allocation. | 2369 // pages in use - matches the size we adjust during allocation. |
| 2507 ASSERT(computed_size == Size()); | 2370 ASSERT(computed_size == Size()); |
| 2508 } | 2371 } |
| 2509 | 2372 |
| 2510 | 2373 |
| 2511 // Slow case for normal allocation. Try in order: (1) allocate in the next | 2374 // Slow case for normal allocation. Try in order: (1) allocate in the next |
| 2512 // page in the space, (2) allocate off the space's free list, (3) expand the | 2375 // page in the space, (2) allocate off the space's free list, (3) expand the |
| 2513 // space, (4) fail. | 2376 // space, (4) fail. |
| 2514 HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) { | 2377 HeapObject* FixedSpace::SlowAllocateRaw(int size_in_bytes) { |
| 2515 ASSERT_EQ(object_size_in_bytes_, size_in_bytes); | 2378 ASSERT_EQ(object_size_in_bytes_, size_in_bytes); |
| 2516 // Linear allocation in this space has failed. If there is another page | 2379 // Linear allocation in this space has failed. If there is another page |
| 2517 // in the space, move to that page and allocate there. This allocation | 2380 // in the space, move to that page and allocate there. This allocation |
| 2518 // should succeed. | 2381 // should succeed. |
| 2519 Page* current_page = TopPageOf(allocation_info_); | 2382 Page* current_page = TopPageOf(allocation_info_); |
| 2520 if (current_page->next_page()->is_valid()) { | 2383 if (current_page->next_page()->is_valid()) { |
| 2521 return AllocateInNextPage(current_page, size_in_bytes); | 2384 return AllocateInNextPage(current_page, size_in_bytes); |
| 2522 } | 2385 } |
| 2523 | 2386 |
| 2524 // There is no next page in this space. Try free list allocation unless | 2387 // There is no next page in this space. Try free list allocation unless |
| 2525 // that is currently forbidden. The fixed space free list implicitly assumes | 2388 // that is currently forbidden. The fixed space free list implicitly assumes |
| 2526 // that all free blocks are of the fixed size. | 2389 // that all free blocks are of the fixed size. |
| 2527 if (!Heap::linear_allocation()) { | 2390 if (!Heap::linear_allocation()) { |
| 2528 Object* result = free_list_.Allocate(); | 2391 Object* result = free_list_.Allocate(); |
| 2529 if (!result->IsFailure()) { | 2392 if (!result->IsFailure()) { |
| 2530 accounting_stats_.AllocateBytes(size_in_bytes); | 2393 accounting_stats_.AllocateBytes(size_in_bytes); |
| 2531 return HeapObject::cast(result); | 2394 HeapObject* obj = HeapObject::cast(result); |
| 2395 Page* p = Page::FromAddress(obj->address()); | |
| 2396 | |
| 2397 if (obj->address() >= p->AllocationWatermark()) { | |
| 2398 p->SetAllocationWatermark(obj->address() + size_in_bytes); | |
| 2399 } | |
| 2400 | |
| 2401 return obj; | |
| 2532 } | 2402 } |
| 2533 } | 2403 } |
| 2534 | 2404 |
| 2535 // Free list allocation failed and there is no next page. Fail if we have | 2405 // Free list allocation failed and there is no next page. Fail if we have |
| 2536 // hit the old generation size limit that should cause a garbage | 2406 // hit the old generation size limit that should cause a garbage |
| 2537 // collection. | 2407 // collection. |
| 2538 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { | 2408 if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { |
| 2539 return NULL; | 2409 return NULL; |
| 2540 } | 2410 } |
| 2541 | 2411 |
| 2542 // Try to expand the space and allocate in the new next page. | 2412 // Try to expand the space and allocate in the new next page. |
| 2543 ASSERT(!current_page->next_page()->is_valid()); | 2413 ASSERT(!current_page->next_page()->is_valid()); |
| 2544 if (Expand(current_page)) { | 2414 if (Expand(current_page)) { |
| 2545 return AllocateInNextPage(current_page, size_in_bytes); | 2415 return AllocateInNextPage(current_page, size_in_bytes); |
| 2546 } | 2416 } |
| 2547 | 2417 |
| 2548 // Finally, fail. | 2418 // Finally, fail. |
| 2549 return NULL; | 2419 return NULL; |
| 2550 } | 2420 } |
| 2551 | 2421 |
| 2552 | 2422 |
| 2553 // Move to the next page (there is assumed to be one) and allocate there. | 2423 // Move to the next page (there is assumed to be one) and allocate there. |
| 2554 // The top of page block is always wasted, because it is too small to hold a | 2424 // The top of page block is always wasted, because it is too small to hold a |
| 2555 // map. | 2425 // map. |
| 2556 HeapObject* FixedSpace::AllocateInNextPage(Page* current_page, | 2426 HeapObject* FixedSpace::AllocateInNextPage(Page* current_page, |
| 2557 int size_in_bytes) { | 2427 int size_in_bytes) { |
| 2558 ASSERT(current_page->next_page()->is_valid()); | 2428 ASSERT(current_page->next_page()->is_valid()); |
| 2559 ASSERT(allocation_info_.top == PageAllocationLimit(current_page)); | 2429 ASSERT(allocation_info_.top == PageAllocationLimit(current_page)); |
| 2560 ASSERT_EQ(object_size_in_bytes_, size_in_bytes); | 2430 ASSERT_EQ(object_size_in_bytes_, size_in_bytes); |
| 2431 current_page->next_page()->InvalidateWatermark(true); | |
| 2432 current_page->SetAllocationWatermark(allocation_info_.top); | |
| 2561 accounting_stats_.WasteBytes(page_extra_); | 2433 accounting_stats_.WasteBytes(page_extra_); |
| 2562 SetAllocationInfo(&allocation_info_, current_page->next_page()); | 2434 SetAllocationInfo(&allocation_info_, current_page->next_page()); |
| 2563 return AllocateLinearly(&allocation_info_, size_in_bytes); | 2435 return AllocateLinearly(&allocation_info_, size_in_bytes); |
| 2564 } | 2436 } |
| 2565 | 2437 |
| 2566 | 2438 |
| 2567 #ifdef DEBUG | 2439 #ifdef DEBUG |
| 2568 void FixedSpace::ReportStatistics() { | 2440 void FixedSpace::ReportStatistics() { |
| 2569 int pct = Available() * 100 / Capacity(); | 2441 int pct = Available() * 100 / Capacity(); |
| 2570 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", | 2442 PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", |
| 2571 Capacity(), Waste(), Available(), pct); | 2443 Capacity(), Waste(), Available(), pct); |
| 2572 | 2444 |
| 2573 // Report remembered set statistics. | |
| 2574 int rset_marked_pointers = 0; | |
| 2575 int cross_gen_pointers = 0; | |
| 2576 | |
| 2577 PageIterator page_it(this, PageIterator::PAGES_IN_USE); | |
| 2578 while (page_it.has_next()) { | |
| 2579 Page* p = page_it.next(); | |
| 2580 | |
| 2581 for (Address rset_addr = p->RSetStart(); | |
| 2582 rset_addr < p->RSetEnd(); | |
| 2583 rset_addr += kIntSize) { | |
| 2584 int rset = Memory::int_at(rset_addr); | |
| 2585 if (rset != 0) { | |
| 2586 // Bits were set | |
| 2587 int intoff = | |
| 2588 static_cast<int>(rset_addr - p->address() - Page::kRSetOffset); | |
| 2589 int bitoff = 0; | |
| 2590 for (; bitoff < kBitsPerInt; ++bitoff) { | |
| 2591 if ((rset & (1 << bitoff)) != 0) { | |
| 2592 int bitpos = intoff*kBitsPerByte + bitoff; | |
| 2593 Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits); | |
| 2594 Object** obj = reinterpret_cast<Object**>(slot); | |
| 2595 rset_marked_pointers++; | |
| 2596 if (Heap::InNewSpace(*obj)) | |
| 2597 cross_gen_pointers++; | |
| 2598 } | |
| 2599 } | |
| 2600 } | |
| 2601 } | |
| 2602 } | |
| 2603 | |
| 2604 pct = rset_marked_pointers == 0 ? | |
| 2605 0 : cross_gen_pointers * 100 / rset_marked_pointers; | |
| 2606 PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n", | |
| 2607 rset_marked_pointers, cross_gen_pointers, pct); | |
| 2608 | |
| 2609 ClearHistograms(); | 2445 ClearHistograms(); |
| 2610 HeapObjectIterator obj_it(this); | 2446 HeapObjectIterator obj_it(this); |
| 2611 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) | 2447 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) |
| 2612 CollectHistogramInfo(obj); | 2448 CollectHistogramInfo(obj); |
| 2613 ReportHistogram(false); | 2449 ReportHistogram(false); |
| 2614 } | 2450 } |
| 2615 | |
| 2616 | |
| 2617 void FixedSpace::PrintRSet() { DoPrintRSet(name_); } | |
| 2618 #endif | 2451 #endif |
| 2619 | 2452 |
| 2620 | 2453 |
| 2621 // ----------------------------------------------------------------------------- | 2454 // ----------------------------------------------------------------------------- |
| 2622 // MapSpace implementation | 2455 // MapSpace implementation |
| 2623 | 2456 |
| 2624 void MapSpace::PrepareForMarkCompact(bool will_compact) { | 2457 void MapSpace::PrepareForMarkCompact(bool will_compact) { |
| 2625 // Call prepare of the super class. | 2458 // Call prepare of the super class. |
| 2626 FixedSpace::PrepareForMarkCompact(will_compact); | 2459 FixedSpace::PrepareForMarkCompact(will_compact); |
| 2627 | 2460 |
| (...skipping 158 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 2786 if (chunk == NULL) { | 2619 if (chunk == NULL) { |
| 2787 return Failure::RetryAfterGC(requested_size, identity()); | 2620 return Failure::RetryAfterGC(requested_size, identity()); |
| 2788 } | 2621 } |
| 2789 | 2622 |
| 2790 size_ += static_cast<int>(chunk_size); | 2623 size_ += static_cast<int>(chunk_size); |
| 2791 page_count_++; | 2624 page_count_++; |
| 2792 chunk->set_next(first_chunk_); | 2625 chunk->set_next(first_chunk_); |
| 2793 chunk->set_size(chunk_size); | 2626 chunk->set_size(chunk_size); |
| 2794 first_chunk_ = chunk; | 2627 first_chunk_ = chunk; |
| 2795 | 2628 |
| 2796 // Set the object address and size in the page header and clear its | 2629 // Initialize page header. |
| 2797 // remembered set. | |
| 2798 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize)); | 2630 Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize)); |
| 2799 Address object_address = page->ObjectAreaStart(); | 2631 Address object_address = page->ObjectAreaStart(); |
| 2800 // Clear the low order bit of the second word in the page to flag it as a | 2632 // Clear the low order bit of the second word in the page to flag it as a |
| 2801 // large object page. If the chunk_size happened to be written there, its | 2633 // large object page. If the chunk_size happened to be written there, its |
| 2802 // low order bit should already be clear. | 2634 // low order bit should already be clear. |
| 2803 ASSERT((chunk_size & 0x1) == 0); | 2635 ASSERT((chunk_size & 0x1) == 0); |
| 2804 page->SetIsLargeObjectPage(true); | 2636 page->SetIsLargeObjectPage(true); |
| 2805 page->ClearRSet(); | 2637 page->SetRegionMarks(Page::kAllRegionsCleanMarks); |
| 2806 int extra_bytes = requested_size - object_size; | |
| 2807 if (extra_bytes > 0) { | |
| 2808 // The extra memory for the remembered set should be cleared. | |
| 2809 memset(object_address + object_size, 0, extra_bytes); | |
| 2810 } | |
| 2811 | |
| 2812 return HeapObject::FromAddress(object_address); | 2638 return HeapObject::FromAddress(object_address); |
| 2813 } | 2639 } |
| 2814 | 2640 |
| 2815 | 2641 |
| 2816 Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) { | 2642 Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) { |
| 2817 ASSERT(0 < size_in_bytes); | 2643 ASSERT(0 < size_in_bytes); |
| 2818 return AllocateRawInternal(size_in_bytes, | 2644 return AllocateRawInternal(size_in_bytes, |
| 2819 size_in_bytes, | 2645 size_in_bytes, |
| 2820 EXECUTABLE); | 2646 EXECUTABLE); |
| 2821 } | 2647 } |
| 2822 | 2648 |
| 2823 | 2649 |
| 2824 Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) { | 2650 Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) { |
| 2825 ASSERT(0 < size_in_bytes); | 2651 ASSERT(0 < size_in_bytes); |
| 2826 int extra_rset_bytes = ExtraRSetBytesFor(size_in_bytes); | 2652 return AllocateRawInternal(size_in_bytes, |
| 2827 return AllocateRawInternal(size_in_bytes + extra_rset_bytes, | |
| 2828 size_in_bytes, | 2653 size_in_bytes, |
| 2829 NOT_EXECUTABLE); | 2654 NOT_EXECUTABLE); |
| 2830 } | 2655 } |
| 2831 | 2656 |
| 2832 | 2657 |
| 2833 Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) { | 2658 Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) { |
| 2834 ASSERT(0 < size_in_bytes); | 2659 ASSERT(0 < size_in_bytes); |
| 2835 return AllocateRawInternal(size_in_bytes, | 2660 return AllocateRawInternal(size_in_bytes, |
| 2836 size_in_bytes, | 2661 size_in_bytes, |
| 2837 NOT_EXECUTABLE); | 2662 NOT_EXECUTABLE); |
| 2838 } | 2663 } |
| 2839 | 2664 |
| 2840 | 2665 |
| 2841 // GC support | 2666 // GC support |
| 2842 Object* LargeObjectSpace::FindObject(Address a) { | 2667 Object* LargeObjectSpace::FindObject(Address a) { |
| 2843 for (LargeObjectChunk* chunk = first_chunk_; | 2668 for (LargeObjectChunk* chunk = first_chunk_; |
| 2844 chunk != NULL; | 2669 chunk != NULL; |
| 2845 chunk = chunk->next()) { | 2670 chunk = chunk->next()) { |
| 2846 Address chunk_address = chunk->address(); | 2671 Address chunk_address = chunk->address(); |
| 2847 if (chunk_address <= a && a < chunk_address + chunk->size()) { | 2672 if (chunk_address <= a && a < chunk_address + chunk->size()) { |
| 2848 return chunk->GetObject(); | 2673 return chunk->GetObject(); |
| 2849 } | 2674 } |
| 2850 } | 2675 } |
| 2851 return Failure::Exception(); | 2676 return Failure::Exception(); |
| 2852 } | 2677 } |
| 2853 | 2678 |
| 2854 | 2679 void LargeObjectSpace::IterateDirtyRegions(ObjectSlotCallback copy_object) { |
| 2855 void LargeObjectSpace::ClearRSet() { | |
| 2856 ASSERT(Page::is_rset_in_use()); | |
| 2857 | |
| 2858 LargeObjectIterator it(this); | |
| 2859 for (HeapObject* object = it.next(); object != NULL; object = it.next()) { | |
| 2860 // We only have code, sequential strings, or fixed arrays in large | |
| 2861 // object space, and only fixed arrays need remembered set support. | |
| 2862 if (object->IsFixedArray()) { | |
| 2863 // Clear the normal remembered set region of the page; | |
| 2864 Page* page = Page::FromAddress(object->address()); | |
| 2865 page->ClearRSet(); | |
| 2866 | |
| 2867 // Clear the extra remembered set. | |
| 2868 int size = object->Size(); | |
| 2869 int extra_rset_bytes = ExtraRSetBytesFor(size); | |
| 2870 memset(object->address() + size, 0, extra_rset_bytes); | |
| 2871 } | |
| 2872 } | |
| 2873 } | |
| 2874 | |
| 2875 | |
| 2876 void LargeObjectSpace::IterateRSet(ObjectSlotCallback copy_object_func) { | |
| 2877 ASSERT(Page::is_rset_in_use()); | |
| 2878 | |
| 2879 static void* lo_rset_histogram = StatsTable::CreateHistogram( | |
| 2880 "V8.RSetLO", | |
| 2881 0, | |
| 2882 // Keeping this histogram's buckets the same as the paged space histogram. | |
| 2883 Page::kObjectAreaSize / kPointerSize, | |
| 2884 30); | |
| 2885 | |
| 2886 LargeObjectIterator it(this); | 2680 LargeObjectIterator it(this); |
| 2887 for (HeapObject* object = it.next(); object != NULL; object = it.next()) { | 2681 for (HeapObject* object = it.next(); object != NULL; object = it.next()) { |
| 2888 // We only have code, sequential strings, or fixed arrays in large | 2682 // We only have code, sequential strings, or fixed arrays in large |
| 2889 // object space, and only fixed arrays can possibly contain pointers to | 2683 // object space, and only fixed arrays can possibly contain pointers to |
| 2890 // the young generation. | 2684 // the young generation. |
| 2891 if (object->IsFixedArray()) { | 2685 if (object->IsFixedArray()) { |
| 2892 // Iterate the normal page remembered set range. | |
| 2893 Page* page = Page::FromAddress(object->address()); | 2686 Page* page = Page::FromAddress(object->address()); |
| 2894 Address object_end = object->address() + object->Size(); | 2687 uint32_t marks = page->GetRegionMarks(); |
| 2895 int count = Heap::IterateRSetRange(page->ObjectAreaStart(), | 2688 uint32_t newmarks = Page::kAllRegionsCleanMarks; |
| 2896 Min(page->ObjectAreaEnd(), object_end), | |
| 2897 page->RSetStart(), | |
| 2898 copy_object_func); | |
| 2899 | 2689 |
| 2900 // Iterate the extra array elements. | 2690 if (marks != Page::kAllRegionsCleanMarks) { |
| 2901 if (object_end > page->ObjectAreaEnd()) { | 2691 // For a large page a single dirty mark corresponds to several |
| 2902 count += Heap::IterateRSetRange(page->ObjectAreaEnd(), object_end, | 2692 // regions (modulo 32). So we treat a large page as a sequence of |
| 2903 object_end, copy_object_func); | 2693 // normal pages of size Page::kPageSize having same dirty marks |
| 2904 } | 2694 // and subsequently iterate dirty regions on each of these pages. |
| 2905 if (lo_rset_histogram != NULL) { | 2695 Address start = object->address(); |
| 2906 StatsTable::AddHistogramSample(lo_rset_histogram, count); | 2696 Address end = page->ObjectAreaEnd(); |
| 2697 Address object_end = start + object->Size(); | |
| 2698 | |
| 2699 // Iterate regions of the first normal page covering object. | |
| 2700 uint32_t first_region_number = page->GetRegionNumberForAddress(start); | |
| 2701 newmarks |= | |
| 2702 Heap::IterateDirtyRegions(marks >> first_region_number, | |
| 2703 start, | |
| 2704 end, | |
| 2705 &Heap::IteratePointersInDirtyRegion, | |
| 2706 copy_object) << first_region_number; | |
| 2707 | |
| 2708 start = end; | |
| 2709 end = start + Page::kPageSize; | |
| 2710 while (end <= object_end) { | |
| 2711 // Iterate next 32 regions. | |
| 2712 newmarks |= | |
| 2713 Heap::IterateDirtyRegions(marks, | |
| 2714 start, | |
| 2715 end, | |
| 2716 &Heap::IteratePointersInDirtyRegion, | |
| 2717 copy_object); | |
| 2718 start = end; | |
| 2719 end = start + Page::kPageSize; | |
| 2720 } | |
| 2721 | |
| 2722 if (start != object_end) { | |
| 2723 // Iterate the last piece of an object which is less than | |
| 2724 // Page::kPageSize. | |
| 2725 newmarks |= | |
| 2726 Heap::IterateDirtyRegions(marks, | |
| 2727 start, | |
| 2728 object_end, | |
| 2729 &Heap::IteratePointersInDirtyRegion, | |
| 2730 copy_object); | |
| 2731 } | |
| 2732 | |
| 2733 page->SetRegionMarks(newmarks); | |
| 2907 } | 2734 } |
| 2908 } | 2735 } |
| 2909 } | 2736 } |
| 2910 } | 2737 } |
| 2911 | 2738 |
| 2912 | 2739 |
| 2913 void LargeObjectSpace::FreeUnmarkedObjects() { | 2740 void LargeObjectSpace::FreeUnmarkedObjects() { |
| 2914 LargeObjectChunk* previous = NULL; | 2741 LargeObjectChunk* previous = NULL; |
| 2915 LargeObjectChunk* current = first_chunk_; | 2742 LargeObjectChunk* current = first_chunk_; |
| 2916 while (current != NULL) { | 2743 while (current != NULL) { |
| (...skipping 71 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 2988 | 2815 |
| 2989 // Byte arrays and strings don't have interior pointers. | 2816 // Byte arrays and strings don't have interior pointers. |
| 2990 if (object->IsCode()) { | 2817 if (object->IsCode()) { |
| 2991 VerifyPointersVisitor code_visitor; | 2818 VerifyPointersVisitor code_visitor; |
| 2992 object->IterateBody(map->instance_type(), | 2819 object->IterateBody(map->instance_type(), |
| 2993 object->Size(), | 2820 object->Size(), |
| 2994 &code_visitor); | 2821 &code_visitor); |
| 2995 } else if (object->IsFixedArray()) { | 2822 } else if (object->IsFixedArray()) { |
| 2996 // We loop over fixed arrays ourselves, rather then using the visitor, | 2823 // We loop over fixed arrays ourselves, rather then using the visitor, |
| 2997 // because the visitor doesn't support the start/offset iteration | 2824 // because the visitor doesn't support the start/offset iteration |
| 2998 // needed for IsRSetSet. | 2825 // needed for IsRegionDirty. |
| 2999 FixedArray* array = FixedArray::cast(object); | 2826 FixedArray* array = FixedArray::cast(object); |
| 3000 for (int j = 0; j < array->length(); j++) { | 2827 for (int j = 0; j < array->length(); j++) { |
| 3001 Object* element = array->get(j); | 2828 Object* element = array->get(j); |
| 3002 if (element->IsHeapObject()) { | 2829 if (element->IsHeapObject()) { |
| 3003 HeapObject* element_object = HeapObject::cast(element); | 2830 HeapObject* element_object = HeapObject::cast(element); |
| 3004 ASSERT(Heap::Contains(element_object)); | 2831 ASSERT(Heap::Contains(element_object)); |
| 3005 ASSERT(element_object->map()->IsMap()); | 2832 ASSERT(element_object->map()->IsMap()); |
| 3006 if (Heap::InNewSpace(element_object)) { | 2833 if (Heap::InNewSpace(element_object)) { |
| 3007 ASSERT(Page::IsRSetSet(object->address(), | 2834 Address array_addr = object->address(); |
| 3008 FixedArray::kHeaderSize + j * kPointerSize)); | 2835 Address element_addr = array_addr + FixedArray::kHeaderSize + |
| 2836 j * kPointerSize; | |
| 2837 | |
| 2838 ASSERT(Page::FromAddress(array_addr)->IsRegionDirty(element_addr)); | |
| 3009 } | 2839 } |
| 3010 } | 2840 } |
| 3011 } | 2841 } |
| 3012 } | 2842 } |
| 3013 } | 2843 } |
| 3014 } | 2844 } |
| 3015 | 2845 |
| 3016 | 2846 |
| 3017 void LargeObjectSpace::Print() { | 2847 void LargeObjectSpace::Print() { |
| 3018 LargeObjectIterator it(this); | 2848 LargeObjectIterator it(this); |
| (...skipping 20 matching lines...) Expand all Loading... | |
| 3039 | 2869 |
| 3040 void LargeObjectSpace::CollectCodeStatistics() { | 2870 void LargeObjectSpace::CollectCodeStatistics() { |
| 3041 LargeObjectIterator obj_it(this); | 2871 LargeObjectIterator obj_it(this); |
| 3042 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) { | 2872 for (HeapObject* obj = obj_it.next(); obj != NULL; obj = obj_it.next()) { |
| 3043 if (obj->IsCode()) { | 2873 if (obj->IsCode()) { |
| 3044 Code* code = Code::cast(obj); | 2874 Code* code = Code::cast(obj); |
| 3045 code_kind_statistics[code->kind()] += code->Size(); | 2875 code_kind_statistics[code->kind()] += code->Size(); |
| 3046 } | 2876 } |
| 3047 } | 2877 } |
| 3048 } | 2878 } |
| 3049 | |
| 3050 | |
| 3051 void LargeObjectSpace::PrintRSet() { | |
| 3052 LargeObjectIterator it(this); | |
| 3053 for (HeapObject* object = it.next(); object != NULL; object = it.next()) { | |
| 3054 if (object->IsFixedArray()) { | |
| 3055 Page* page = Page::FromAddress(object->address()); | |
| 3056 | |
| 3057 Address allocation_top = object->address() + object->Size(); | |
| 3058 PrintF("large page 0x%x:\n", page); | |
| 3059 PrintRSetRange(page->RSetStart(), page->RSetEnd(), | |
| 3060 reinterpret_cast<Object**>(object->address()), | |
| 3061 allocation_top); | |
| 3062 int extra_array_bytes = object->Size() - Page::kObjectAreaSize; | |
| 3063 int extra_rset_bits = RoundUp(extra_array_bytes / kPointerSize, | |
| 3064 kBitsPerInt); | |
| 3065 PrintF("------------------------------------------------------------" | |
| 3066 "-----------\n"); | |
| 3067 PrintRSetRange(allocation_top, | |
| 3068 allocation_top + extra_rset_bits / kBitsPerByte, | |
| 3069 reinterpret_cast<Object**>(object->address() | |
| 3070 + Page::kObjectAreaSize), | |
| 3071 allocation_top); | |
| 3072 PrintF("\n"); | |
| 3073 } | |
| 3074 } | |
| 3075 } | |
| 3076 #endif // DEBUG | 2879 #endif // DEBUG |
| 3077 | 2880 |
| 3078 } } // namespace v8::internal | 2881 } } // namespace v8::internal |
| OLD | NEW |