Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(528)

Unified Diff: third_party/WebKit/WebCore/platform/graphics/transforms/TransformationMatrix.cpp

Issue 21184: WebKit merge 40722:40785 (part 1) (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 11 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: third_party/WebKit/WebCore/platform/graphics/transforms/TransformationMatrix.cpp
===================================================================
--- third_party/WebKit/WebCore/platform/graphics/transforms/TransformationMatrix.cpp (revision 9391)
+++ third_party/WebKit/WebCore/platform/graphics/transforms/TransformationMatrix.cpp (working copy)
@@ -1,205 +1,1025 @@
-/*
- * Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include "config.h"
-#include "TransformationMatrix.h"
-
-#include "FloatRect.h"
-#include "FloatQuad.h"
-#include "IntRect.h"
-
-#include <wtf/MathExtras.h>
-
-namespace WebCore {
-
-static void affineTransformDecompose(const TransformationMatrix& matrix, double sr[9])
-{
- TransformationMatrix m(matrix);
-
- // Compute scaling factors
- double sx = sqrt(m.a() * m.a() + m.b() * m.b());
- double sy = sqrt(m.c() * m.c() + m.d() * m.d());
-
- /* Compute cross product of transformed unit vectors. If negative,
- one axis was flipped. */
-
- if (m.a() * m.d() - m.c() * m.b() < 0.0) {
- // Flip axis with minimum unit vector dot product
-
- if (m.a() < m.d())
- sx = -sx;
- else
- sy = -sy;
- }
-
- // Remove scale from matrix
-
- m.scale(1.0 / sx, 1.0 / sy);
-
- // Compute rotation
-
- double angle = atan2(m.b(), m.a());
-
- // Remove rotation from matrix
-
- m.rotate(rad2deg(-angle));
-
- // Return results
-
- sr[0] = sx; sr[1] = sy; sr[2] = angle;
- sr[3] = m.a(); sr[4] = m.b();
- sr[5] = m.c(); sr[6] = m.d();
- sr[7] = m.e(); sr[8] = m.f();
-}
-
-static void affineTransformCompose(TransformationMatrix& m, const double sr[9])
-{
- m.setA(sr[3]);
- m.setB(sr[4]);
- m.setC(sr[5]);
- m.setD(sr[6]);
- m.setE(sr[7]);
- m.setF(sr[8]);
- m.rotate(rad2deg(sr[2]));
- m.scale(sr[0], sr[1]);
-}
-
-bool TransformationMatrix::isInvertible() const
-{
- return det() != 0.0;
-}
-
-TransformationMatrix& TransformationMatrix::multiply(const TransformationMatrix& other)
-{
- return (*this) *= other;
-}
-
-TransformationMatrix& TransformationMatrix::scale(double s)
-{
- return scale(s, s);
-}
-
-TransformationMatrix& TransformationMatrix::scaleNonUniform(double sx, double sy)
-{
- return scale(sx, sy);
-}
-
-TransformationMatrix& TransformationMatrix::rotateFromVector(double x, double y)
-{
- return rotate(rad2deg(atan2(y, x)));
-}
-
-TransformationMatrix& TransformationMatrix::flipX()
-{
- return scale(-1.0f, 1.0f);
-}
-
-TransformationMatrix& TransformationMatrix::flipY()
-{
- return scale(1.0f, -1.0f);
-}
-
-TransformationMatrix& TransformationMatrix::skew(double angleX, double angleY)
-{
- return shear(tan(deg2rad(angleX)), tan(deg2rad(angleY)));
-}
-
-TransformationMatrix& TransformationMatrix::skewX(double angle)
-{
- return shear(tan(deg2rad(angle)), 0.0f);
-}
-
-TransformationMatrix& TransformationMatrix::skewY(double angle)
-{
- return shear(0.0f, tan(deg2rad(angle)));
-}
-
-TransformationMatrix makeMapBetweenRects(const FloatRect& source, const FloatRect& dest)
-{
- TransformationMatrix transform;
- transform.translate(dest.x() - source.x(), dest.y() - source.y());
- transform.scale(dest.width() / source.width(), dest.height() / source.height());
- return transform;
-}
-
-IntPoint TransformationMatrix::mapPoint(const IntPoint& point) const
-{
- double x2, y2;
- map(point.x(), point.y(), &x2, &y2);
-
- // Round the point.
- return IntPoint(lround(x2), lround(y2));
-}
-
-FloatPoint TransformationMatrix::mapPoint(const FloatPoint& point) const
-{
- double x2, y2;
- map(point.x(), point.y(), &x2, &y2);
-
- return FloatPoint(static_cast<float>(x2), static_cast<float>(y2));
-}
-
-FloatQuad TransformationMatrix::mapQuad(const FloatQuad& quad) const
-{
- // FIXME: avoid 4 seperate library calls. Point mapping really needs
- // to be platform-independent code.
- return FloatQuad(mapPoint(quad.p1()),
- mapPoint(quad.p2()),
- mapPoint(quad.p3()),
- mapPoint(quad.p4()));
-}
-
-void TransformationMatrix::blend(const TransformationMatrix& from, double progress)
-{
- double srA[9], srB[9];
-
- affineTransformDecompose(from, srA);
- affineTransformDecompose(*this, srB);
-
- // If x-axis of one is flipped, and y-axis of the other, convert to an unflipped rotation.
- if ((srA[0] < 0.0 && srB[1] < 0.0) || (srA[1] < 0.0 && srB[0] < 0.0)) {
- srA[0] = -srA[0];
- srA[1] = -srA[1];
- srA[2] += srA[2] < 0 ? piDouble : -piDouble;
- }
-
- // Don't rotate the long way around.
- srA[2] = fmod(srA[2], 2.0 * piDouble);
- srB[2] = fmod(srB[2], 2.0 * piDouble);
-
- if (fabs(srA[2] - srB[2]) > piDouble) {
- if (srA[2] > srB[2])
- srA[2] -= piDouble * 2.0;
- else
- srB[2] -= piDouble * 2.0;
- }
-
- for (int i = 0; i < 9; i++)
- srA[i] = srA[i] + progress * (srB[i] - srA[i]);
-
- affineTransformCompose(*this, srA);
-}
-
-}
+/*
+ * Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "config.h"
+#include "TransformationMatrix.h"
+
+#include "FloatPoint3D.h"
+#include "FloatRect.h"
+#include "FloatQuad.h"
+#include "IntRect.h"
+
+#include <wtf/MathExtras.h>
+
+namespace WebCore {
+
+//
+// Supporting Math Functions
+//
+// This is a set of function from various places (attributed inline) to do things like
+// inversion and decomposition of a 4x4 matrix. They are used throughout the code
+//
+
+//
+// Adapted from Matrix Inversion by Richard Carling, Graphics Gems <http://tog.acm.org/GraphicsGems/index.html>.
+
+// EULA: The Graphics Gems code is copyright-protected. In other words, you cannot claim the text of the code
+// as your own and resell it. Using the code is permitted in any program, product, or library, non-commercial
+// or commercial. Giving credit is not required, though is a nice gesture. The code comes as-is, and if there
+// are any flaws or problems with any Gems code, nobody involved with Gems - authors, editors, publishers, or
+// webmasters - are to be held responsible. Basically, don't be a jerk, and remember that anything free comes
+// with no guarantee.
+
+typedef double Vector4[4];
+typedef double Vector3[3];
+
+const double SMALL_NUMBER = 1.e-8;
+
+// inverse(original_matrix, inverse_matrix)
+//
+// calculate the inverse of a 4x4 matrix
+//
+// -1
+// A = ___1__ adjoint A
+// det A
+
+// double = determinant2x2(double a, double b, double c, double d)
+//
+// calculate the determinant of a 2x2 matrix.
+
+static double determinant2x2(double a, double b, double c, double d)
+{
+ return a * d - b * c;
+}
+
+// double = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3)
+//
+// Calculate the determinant of a 3x3 matrix
+// in the form
+//
+// | a1, b1, c1 |
+// | a2, b2, c2 |
+// | a3, b3, c3 |
+
+static double determinant3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3)
+{
+ return a1 * determinant2x2(b2, b3, c2, c3)
+ - b1 * determinant2x2(a2, a3, c2, c3)
+ + c1 * determinant2x2(a2, a3, b2, b3);
+}
+
+// double = determinant4x4(matrix)
+//
+// calculate the determinant of a 4x4 matrix.
+
+static double determinant4x4(const TransformationMatrix::Matrix4& m)
+{
+ // Assign to individual variable names to aid selecting
+ // correct elements
+
+ double a1 = m[0][0];
+ double b1 = m[0][1];
+ double c1 = m[0][2];
+ double d1 = m[0][3];
+
+ double a2 = m[1][0];
+ double b2 = m[1][1];
+ double c2 = m[1][2];
+ double d2 = m[1][3];
+
+ double a3 = m[2][0];
+ double b3 = m[2][1];
+ double c3 = m[2][2];
+ double d3 = m[2][3];
+
+ double a4 = m[3][0];
+ double b4 = m[3][1];
+ double c4 = m[3][2];
+ double d4 = m[3][3];
+
+ return a1 * determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4)
+ - b1 * determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4)
+ + c1 * determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4)
+ - d1 * determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
+}
+
+// adjoint( original_matrix, inverse_matrix )
+//
+// calculate the adjoint of a 4x4 matrix
+//
+// Let a denote the minor determinant of matrix A obtained by
+// ij
+//
+// deleting the ith row and jth column from A.
+//
+// i+j
+// Let b = (-1) a
+// ij ji
+//
+// The matrix B = (b ) is the adjoint of A
+// ij
+
+static void adjoint(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result)
+{
+ // Assign to individual variable names to aid
+ // selecting correct values
+ double a1 = matrix[0][0];
+ double b1 = matrix[0][1];
+ double c1 = matrix[0][2];
+ double d1 = matrix[0][3];
+
+ double a2 = matrix[1][0];
+ double b2 = matrix[1][1];
+ double c2 = matrix[1][2];
+ double d2 = matrix[1][3];
+
+ double a3 = matrix[2][0];
+ double b3 = matrix[2][1];
+ double c3 = matrix[2][2];
+ double d3 = matrix[2][3];
+
+ double a4 = matrix[3][0];
+ double b4 = matrix[3][1];
+ double c4 = matrix[3][2];
+ double d4 = matrix[3][3];
+
+ // Row column labeling reversed since we transpose rows & columns
+ result[0][0] = determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4);
+ result[1][0] = - determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4);
+ result[2][0] = determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4);
+ result[3][0] = - determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
+
+ result[0][1] = - determinant3x3(b1, b3, b4, c1, c3, c4, d1, d3, d4);
+ result[1][1] = determinant3x3(a1, a3, a4, c1, c3, c4, d1, d3, d4);
+ result[2][1] = - determinant3x3(a1, a3, a4, b1, b3, b4, d1, d3, d4);
+ result[3][1] = determinant3x3(a1, a3, a4, b1, b3, b4, c1, c3, c4);
+
+ result[0][2] = determinant3x3(b1, b2, b4, c1, c2, c4, d1, d2, d4);
+ result[1][2] = - determinant3x3(a1, a2, a4, c1, c2, c4, d1, d2, d4);
+ result[2][2] = determinant3x3(a1, a2, a4, b1, b2, b4, d1, d2, d4);
+ result[3][2] = - determinant3x3(a1, a2, a4, b1, b2, b4, c1, c2, c4);
+
+ result[0][3] = - determinant3x3(b1, b2, b3, c1, c2, c3, d1, d2, d3);
+ result[1][3] = determinant3x3(a1, a2, a3, c1, c2, c3, d1, d2, d3);
+ result[2][3] = - determinant3x3(a1, a2, a3, b1, b2, b3, d1, d2, d3);
+ result[3][3] = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3);
+}
+
+// Returns false if the matrix is not invertible
+static bool inverse(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result)
+{
+ // Calculate the adjoint matrix
+ adjoint(matrix, result);
+
+ // Calculate the 4x4 determinant
+ // If the determinant is zero,
+ // then the inverse matrix is not unique.
+ double det = determinant4x4(matrix);
+
+ if (fabs(det) < SMALL_NUMBER)
+ return false;
+
+ // Scale the adjoint matrix to get the inverse
+
+ for (int i = 0; i < 4; i++)
+ for (int j = 0; j < 4; j++)
+ result[i][j] = result[i][j] / det;
+
+ return true;
+}
+
+// End of code adapted from Matrix Inversion by Richard Carling
+
+// Perform a decomposition on the passed matrix, return false if unsuccessful
+// From Graphics Gems: unmatrix.c
+
+// Transpose rotation portion of matrix a, return b
+static void transposeMatrix4(const TransformationMatrix::Matrix4& a, TransformationMatrix::Matrix4& b)
+{
+ for (int i = 0; i < 4; i++)
+ for (int j = 0; j < 4; j++)
+ b[i][j] = a[j][i];
+}
+
+// Multiply a homogeneous point by a matrix and return the transformed point
+static void v4MulPointByMatrix(const Vector4 p, const TransformationMatrix::Matrix4& m, Vector4 result)
+{
+ result[0] = (p[0] * m[0][0]) + (p[1] * m[1][0]) +
+ (p[2] * m[2][0]) + (p[3] * m[3][0]);
+ result[1] = (p[0] * m[0][1]) + (p[1] * m[1][1]) +
+ (p[2] * m[2][1]) + (p[3] * m[3][1]);
+ result[2] = (p[0] * m[0][2]) + (p[1] * m[1][2]) +
+ (p[2] * m[2][2]) + (p[3] * m[3][2]);
+ result[3] = (p[0] * m[0][3]) + (p[1] * m[1][3]) +
+ (p[2] * m[2][3]) + (p[3] * m[3][3]);
+}
+
+static double v3Length(Vector3 a)
+{
+ return sqrt((a[0] * a[0]) + (a[1] * a[1]) + (a[2] * a[2]));
+}
+
+static void v3Scale(Vector3 v, double desiredLength)
+{
+ double len = v3Length(v);
+ if (len != 0) {
+ double l = desiredLength / len;
+ v[0] *= l;
+ v[1] *= l;
+ v[2] *= l;
+ }
+}
+
+static double v3Dot(const Vector3 a, const Vector3 b)
+{
+ return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
+}
+
+// Make a linear combination of two vectors and return the result.
+// result = (a * ascl) + (b * bscl)
+static void v3Combine(const Vector3 a, const Vector3 b, Vector3 result, double ascl, double bscl)
+{
+ result[0] = (ascl * a[0]) + (bscl * b[0]);
+ result[1] = (ascl * a[1]) + (bscl * b[1]);
+ result[2] = (ascl * a[2]) + (bscl * b[2]);
+}
+
+// Return the cross product result = a cross b */
+static void v3Cross(const Vector3 a, const Vector3 b, Vector3 result)
+{
+ result[0] = (a[1] * b[2]) - (a[2] * b[1]);
+ result[1] = (a[2] * b[0]) - (a[0] * b[2]);
+ result[2] = (a[0] * b[1]) - (a[1] * b[0]);
+}
+
+static bool decompose(const TransformationMatrix::Matrix4& mat, TransformationMatrix::DecomposedType& result)
+{
+ TransformationMatrix::Matrix4 localMatrix;
+ memcpy(localMatrix, mat, sizeof(TransformationMatrix::Matrix4));
+
+ // Normalize the matrix.
+ if (localMatrix[3][3] == 0)
+ return false;
+
+ int i, j;
+ for (i = 0; i < 4; i++)
+ for (j = 0; j < 4; j++)
+ localMatrix[i][j] /= localMatrix[3][3];
+
+ // perspectiveMatrix is used to solve for perspective, but it also provides
+ // an easy way to test for singularity of the upper 3x3 component.
+ TransformationMatrix::Matrix4 perspectiveMatrix;
+ memcpy(perspectiveMatrix, localMatrix, sizeof(TransformationMatrix::Matrix4));
+ for (i = 0; i < 3; i++)
+ perspectiveMatrix[i][3] = 0;
+ perspectiveMatrix[3][3] = 1;
+
+ if (determinant4x4(perspectiveMatrix) == 0)
+ return false;
+
+ // First, isolate perspective. This is the messiest.
+ if (localMatrix[0][3] != 0 || localMatrix[1][3] != 0 || localMatrix[2][3] != 0) {
+ // rightHandSide is the right hand side of the equation.
+ Vector4 rightHandSide;
+ rightHandSide[0] = localMatrix[0][3];
+ rightHandSide[1] = localMatrix[1][3];
+ rightHandSide[2] = localMatrix[2][3];
+ rightHandSide[3] = localMatrix[3][3];
+
+ // Solve the equation by inverting perspectiveMatrix and multiplying
+ // rightHandSide by the inverse. (This is the easiest way, not
+ // necessarily the best.)
+ TransformationMatrix::Matrix4 inversePerspectiveMatrix, transposedInversePerspectiveMatrix;
+ inverse(perspectiveMatrix, inversePerspectiveMatrix);
+ transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
+
+ Vector4 perspectivePoint;
+ v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
+
+ result.perspectiveX = perspectivePoint[0];
+ result.perspectiveY = perspectivePoint[1];
+ result.perspectiveZ = perspectivePoint[2];
+ result.perspectiveW = perspectivePoint[3];
+
+ // Clear the perspective partition
+ localMatrix[0][3] = localMatrix[1][3] = localMatrix[2][3] = 0;
+ localMatrix[3][3] = 1;
+ } else {
+ // No perspective.
+ result.perspectiveX = result.perspectiveY = result.perspectiveZ = 0;
+ result.perspectiveW = 1;
+ }
+
+ // Next take care of translation (easy).
+ result.translateX = localMatrix[3][0];
+ localMatrix[3][0] = 0;
+ result.translateY = localMatrix[3][1];
+ localMatrix[3][1] = 0;
+ result.translateZ = localMatrix[3][2];
+ localMatrix[3][2] = 0;
+
+ // Vector4 type and functions need to be added to the common set.
+ Vector3 row[3], pdum3;
+
+ // Now get scale and shear.
+ for (i = 0; i < 3; i++) {
+ row[i][0] = localMatrix[i][0];
+ row[i][1] = localMatrix[i][1];
+ row[i][2] = localMatrix[i][2];
+ }
+
+ // Compute X scale factor and normalize first row.
+ result.scaleX = v3Length(row[0]);
+ v3Scale(row[0], 1.0);
+
+ // Compute XY shear factor and make 2nd row orthogonal to 1st.
+ result.skewXY = v3Dot(row[0], row[1]);
+ v3Combine(row[1], row[0], row[1], 1.0, -result.skewXY);
+
+ // Now, compute Y scale and normalize 2nd row.
+ result.scaleY = v3Length(row[1]);
+ v3Scale(row[1], 1.0);
+ result.skewXY /= result.scaleY;
+
+ // Compute XZ and YZ shears, orthogonalize 3rd row.
+ result.skewXZ = v3Dot(row[0], row[2]);
+ v3Combine(row[2], row[0], row[2], 1.0, -result.skewXZ);
+ result.skewYZ = v3Dot(row[1], row[2]);
+ v3Combine(row[2], row[1], row[2], 1.0, -result.skewYZ);
+
+ // Next, get Z scale and normalize 3rd row.
+ result.scaleZ = v3Length(row[2]);
+ v3Scale(row[2], 1.0);
+ result.skewXZ /= result.scaleZ;
+ result.skewYZ /= result.scaleZ;
+
+ // At this point, the matrix (in rows[]) is orthonormal.
+ // Check for a coordinate system flip. If the determinant
+ // is -1, then negate the matrix and the scaling factors.
+ v3Cross(row[1], row[2], pdum3);
+ if (v3Dot(row[0], pdum3) < 0) {
+ for (i = 0; i < 3; i++) {
+ result.scaleX *= -1;
+ row[i][0] *= -1;
+ row[i][1] *= -1;
+ row[i][2] *= -1;
+ }
+ }
+
+ // Now, get the rotations out, as described in the gem.
+
+ // FIXME - Add the ability to return either quaternions (which are
+ // easier to recompose with) or Euler angles (rx, ry, rz), which
+ // are easier for authors to deal with. The latter will only be useful
+ // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
+ // will leave the Euler angle code here for now.
+
+ // ret.rotateY = asin(-row[0][2]);
+ // if (cos(ret.rotateY) != 0) {
+ // ret.rotateX = atan2(row[1][2], row[2][2]);
+ // ret.rotateZ = atan2(row[0][1], row[0][0]);
+ // } else {
+ // ret.rotateX = atan2(-row[2][0], row[1][1]);
+ // ret.rotateZ = 0;
+ // }
+
+ double s, t, x, y, z, w;
+
+ t = row[0][0] + row[1][1] + row[2][2] + 1.0;
+
+ if (t > 1e-4) {
+ s = 0.5 / sqrt(t);
+ w = 0.25 / s;
+ x = (row[2][1] - row[1][2]) * s;
+ y = (row[0][2] - row[2][0]) * s;
+ z = (row[1][0] - row[0][1]) * s;
+ } else if (row[0][0] > row[1][1] && row[0][0] > row[2][2]) {
+ s = sqrt (1.0 + row[0][0] - row[1][1] - row[2][2]) * 2.0; // S=4*qx
+ x = 0.25 * s;
+ y = (row[0][1] + row[1][0]) / s;
+ z = (row[0][2] + row[2][0]) / s;
+ w = (row[2][1] - row[1][2]) / s;
+ } else if (row[1][1] > row[2][2]) {
+ s = sqrt (1.0 + row[1][1] - row[0][0] - row[2][2]) * 2.0; // S=4*qy
+ x = (row[0][1] + row[1][0]) / s;
+ y = 0.25 * s;
+ z = (row[1][2] + row[2][1]) / s;
+ w = (row[0][2] - row[2][0]) / s;
+ } else {
+ s = sqrt(1.0 + row[2][2] - row[0][0] - row[1][1]) * 2.0; // S=4*qz
+ x = (row[0][2] + row[2][0]) / s;
+ y = (row[1][2] + row[2][1]) / s;
+ z = 0.25 * s;
+ w = (row[1][0] - row[0][1]) / s;
+ }
+
+ result.quaternionX = x;
+ result.quaternionY = y;
+ result.quaternionZ = z;
+ result.quaternionW = w;
+
+ return true;
+}
+
+// Perform a spherical linear interpolation between the two
+// passed quaternions with 0 <= t <= 1
+static void slerp(double qa[4], const double qb[4], double t)
+{
+ double ax, ay, az, aw;
+ double bx, by, bz, bw;
+ double cx, cy, cz, cw;
+ double angle;
+ double th, invth, scale, invscale;
+
+ ax = qa[0]; ay = qa[1]; az = qa[2]; aw = qa[3];
+ bx = qb[0]; by = qb[1]; bz = qb[2]; bw = qb[3];
+
+ angle = ax * bx + ay * by + az * bz + aw * bw;
+
+ if (angle < 0.0) {
+ ax = -ax; ay = -ay;
+ az = -az; aw = -aw;
+ angle = -angle;
+ }
+
+ if (angle + 1.0 > .05) {
+ if (1.0 - angle >= .05) {
+ th = acos (angle);
+ invth = 1.0 / sin (th);
+ scale = sin (th * (1.0 - t)) * invth;
+ invscale = sin (th * t) * invth;
+ } else {
+ scale = 1.0 - t;
+ invscale = t;
+ }
+ } else {
+ bx = -ay;
+ by = ax;
+ bz = -aw;
+ bw = az;
+ scale = sin(piDouble * (.5 - t));
+ invscale = sin (piDouble * t);
+ }
+
+ cx = ax * scale + bx * invscale;
+ cy = ay * scale + by * invscale;
+ cz = az * scale + bz * invscale;
+ cw = aw * scale + bw * invscale;
+
+ qa[0] = cx; qa[1] = cy; qa[2] = cz; qa[3] = cw;
+}
+
+// End of Supporting Math Functions
+
+TransformationMatrix& TransformationMatrix::scale(double s)
+{
+ return scaleNonUniform(s, s);
+}
+
+TransformationMatrix& TransformationMatrix::rotateFromVector(double x, double y)
+{
+ return rotate(rad2deg(atan2(y, x)));
+}
+
+TransformationMatrix& TransformationMatrix::flipX()
+{
+ return scaleNonUniform(-1.0f, 1.0f);
+}
+
+TransformationMatrix& TransformationMatrix::flipY()
+{
+ return scaleNonUniform(1.0f, -1.0f);
+}
+
+TransformationMatrix makeMapBetweenRects(const FloatRect& source, const FloatRect& dest)
+{
+ TransformationMatrix transform;
+ transform.translate(dest.x() - source.x(), dest.y() - source.y());
+ transform.scaleNonUniform(dest.width() / source.width(), dest.height() / source.height());
+ return transform;
+}
+
+FloatPoint TransformationMatrix::projectPoint(const FloatPoint& p) const
+{
+ // This is basically raytracing. We have a point in the destination
+ // plane with z=0, and we cast a ray parallel to the z-axis from that
+ // point to find the z-position at which it intersects the z=0 plane
+ // with the transform applied. Once we have that point we apply the
+ // inverse transform to find the corresponding point in the source
+ // space.
+ //
+ // Given a plane with normal Pn, and a ray starting at point R0 and
+ // with direction defined by the vector Rd, we can find the
+ // intersection point as a distance d from R0 in units of Rd by:
+ //
+ // d = -dot (Pn', R0) / dot (Pn', Rd)
+
+ double x = p.x();
+ double y = p.y();
+ double z = -(m13() * x + m23() * y + m43()) / m33();
+
+ double outX = x * m11() + y * m21() + z * m31() + m41();
+ double outY = x * m12() + y * m22() + z * m32() + m42();
+
+ double w = x * m14() + y * m24() + z * m34() + m44();
+ if (w != 1 && w != 0) {
+ outX /= w;
+ outY /= w;
+ }
+
+ return FloatPoint(static_cast<float>(outX), static_cast<float>(outY));
+}
+
+FloatPoint TransformationMatrix::mapPoint(const FloatPoint& p) const
+{
+ double x, y;
+ multVecMatrix(p.x(), p.y(), x, y);
+ return FloatPoint(static_cast<float>(x), static_cast<float>(y));
+}
+
+FloatPoint3D TransformationMatrix::mapPoint(const FloatPoint3D& p) const
+{
+ double x, y, z;
+ multVecMatrix(p.x(), p.y(), p.z(), x, y, z);
+ return FloatPoint3D(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z));
+}
+
+IntPoint TransformationMatrix::mapPoint(const IntPoint& point) const
+{
+ double x, y;
+ multVecMatrix(point.x(), point.y(), x, y);
+
+ // Round the point.
+ return IntPoint(lround(x), lround(y));
+}
+
+IntRect TransformationMatrix::mapRect(const IntRect &rect) const
+{
+ return enclosingIntRect(mapRect(FloatRect(rect)));
+}
+
+FloatRect TransformationMatrix::mapRect(const FloatRect& r) const
+{
+ FloatQuad resultQuad = mapQuad(FloatQuad(r));
+ return resultQuad.boundingBox();
+}
+
+FloatQuad TransformationMatrix::mapQuad(const FloatQuad& q) const
+{
+ FloatQuad result;
+ result.setP1(mapPoint(q.p1()));
+ result.setP2(mapPoint(q.p2()));
+ result.setP3(mapPoint(q.p3()));
+ result.setP4(mapPoint(q.p4()));
+ return result;
+}
+
+TransformationMatrix& TransformationMatrix::scaleNonUniform(double sx, double sy)
+{
+ TransformationMatrix mat;
+ mat.m_matrix[0][0] = sx;
+ mat.m_matrix[1][1] = sy;
+
+ multLeft(mat);
+ return *this;
+}
+
+TransformationMatrix& TransformationMatrix::scale3d(double sx, double sy, double sz)
+{
+ TransformationMatrix mat;
+ mat.m_matrix[0][0] = sx;
+ mat.m_matrix[1][1] = sy;
+ mat.m_matrix[2][2] = sz;
+
+ multLeft(mat);
+ return *this;
+}
+
+TransformationMatrix& TransformationMatrix::rotate3d(double x, double y, double z, double angle)
+{
+ // angles are in degrees. Switch to radians
+ angle = deg2rad(angle);
+
+ angle /= 2.0f;
+ double sinA = sin(angle);
+ double cosA = cos(angle);
+ double sinA2 = sinA * sinA;
+
+ // normalize
+ double length = sqrt(x * x + y * y + z * z);
+ if (length == 0) {
+ // bad vector, just use something reasonable
+ x = 0;
+ y = 0;
+ z = 1;
+ } else if (length != 1) {
+ x /= length;
+ y /= length;
+ z /= length;
+ }
+
+ TransformationMatrix mat;
+
+ // optimize case where axis is along major axis
+ if (x == 1.0f && y == 0.0f && z == 0.0f) {
+ mat.m_matrix[0][0] = 1.0f;
+ mat.m_matrix[0][1] = 0.0f;
+ mat.m_matrix[0][2] = 0.0f;
+ mat.m_matrix[1][0] = 0.0f;
+ mat.m_matrix[1][1] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[1][2] = 2.0f * sinA * cosA;
+ mat.m_matrix[2][0] = 0.0f;
+ mat.m_matrix[2][1] = -2.0f * sinA * cosA;
+ mat.m_matrix[2][2] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
+ mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
+ mat.m_matrix[3][3] = 1.0f;
+ } else if (x == 0.0f && y == 1.0f && z == 0.0f) {
+ mat.m_matrix[0][0] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[0][1] = 0.0f;
+ mat.m_matrix[0][2] = -2.0f * sinA * cosA;
+ mat.m_matrix[1][0] = 0.0f;
+ mat.m_matrix[1][1] = 1.0f;
+ mat.m_matrix[1][2] = 0.0f;
+ mat.m_matrix[2][0] = 2.0f * sinA * cosA;
+ mat.m_matrix[2][1] = 0.0f;
+ mat.m_matrix[2][2] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
+ mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
+ mat.m_matrix[3][3] = 1.0f;
+ } else if (x == 0.0f && y == 0.0f && z == 1.0f) {
+ mat.m_matrix[0][0] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[0][1] = 2.0f * sinA * cosA;
+ mat.m_matrix[0][2] = 0.0f;
+ mat.m_matrix[1][0] = -2.0f * sinA * cosA;
+ mat.m_matrix[1][1] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[1][2] = 0.0f;
+ mat.m_matrix[2][0] = 0.0f;
+ mat.m_matrix[2][1] = 0.0f;
+ mat.m_matrix[2][2] = 1.0f;
+ mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
+ mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
+ mat.m_matrix[3][3] = 1.0f;
+ } else {
+ double x2 = x*x;
+ double y2 = y*y;
+ double z2 = z*z;
+
+ mat.m_matrix[0][0] = 1.0f - 2.0f * (y2 + z2) * sinA2;
+ mat.m_matrix[0][1] = 2.0f * (x * y * sinA2 + z * sinA * cosA);
+ mat.m_matrix[0][2] = 2.0f * (x * z * sinA2 - y * sinA * cosA);
+ mat.m_matrix[1][0] = 2.0f * (y * x * sinA2 - z * sinA * cosA);
+ mat.m_matrix[1][1] = 1.0f - 2.0f * (z2 + x2) * sinA2;
+ mat.m_matrix[1][2] = 2.0f * (y * z * sinA2 + x * sinA * cosA);
+ mat.m_matrix[2][0] = 2.0f * (z * x * sinA2 + y * sinA * cosA);
+ mat.m_matrix[2][1] = 2.0f * (z * y * sinA2 - x * sinA * cosA);
+ mat.m_matrix[2][2] = 1.0f - 2.0f * (x2 + y2) * sinA2;
+ mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
+ mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
+ mat.m_matrix[3][3] = 1.0f;
+ }
+ multLeft(mat);
+ return *this;
+}
+
+TransformationMatrix& TransformationMatrix::rotate3d(double rx, double ry, double rz)
+{
+ // angles are in degrees. Switch to radians
+ rx = deg2rad(rx);
+ ry = deg2rad(ry);
+ rz = deg2rad(rz);
+
+ TransformationMatrix mat;
+
+ rz /= 2.0f;
+ double sinA = sin(rz);
+ double cosA = cos(rz);
+ double sinA2 = sinA * sinA;
+
+ mat.m_matrix[0][0] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[0][1] = 2.0f * sinA * cosA;
+ mat.m_matrix[0][2] = 0.0f;
+ mat.m_matrix[1][0] = -2.0f * sinA * cosA;
+ mat.m_matrix[1][1] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[1][2] = 0.0f;
+ mat.m_matrix[2][0] = 0.0f;
+ mat.m_matrix[2][1] = 0.0f;
+ mat.m_matrix[2][2] = 1.0f;
+ mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
+ mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
+ mat.m_matrix[3][3] = 1.0f;
+
+ TransformationMatrix rmat(mat);
+
+ ry /= 2.0f;
+ sinA = sin(ry);
+ cosA = cos(ry);
+ sinA2 = sinA * sinA;
+
+ mat.m_matrix[0][0] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[0][1] = 0.0f;
+ mat.m_matrix[0][2] = -2.0f * sinA * cosA;
+ mat.m_matrix[1][0] = 0.0f;
+ mat.m_matrix[1][1] = 1.0f;
+ mat.m_matrix[1][2] = 0.0f;
+ mat.m_matrix[2][0] = 2.0f * sinA * cosA;
+ mat.m_matrix[2][1] = 0.0f;
+ mat.m_matrix[2][2] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
+ mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
+ mat.m_matrix[3][3] = 1.0f;
+
+ rmat.multLeft(mat);
+
+ rx /= 2.0f;
+ sinA = sin(rx);
+ cosA = cos(rx);
+ sinA2 = sinA * sinA;
+
+ mat.m_matrix[0][0] = 1.0f;
+ mat.m_matrix[0][1] = 0.0f;
+ mat.m_matrix[0][2] = 0.0f;
+ mat.m_matrix[1][0] = 0.0f;
+ mat.m_matrix[1][1] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[1][2] = 2.0f * sinA * cosA;
+ mat.m_matrix[2][0] = 0.0f;
+ mat.m_matrix[2][1] = -2.0f * sinA * cosA;
+ mat.m_matrix[2][2] = 1.0f - 2.0f * sinA2;
+ mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
+ mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
+ mat.m_matrix[3][3] = 1.0f;
+
+ rmat.multLeft(mat);
+
+ multLeft(rmat);
+ return *this;
+}
+
+TransformationMatrix& TransformationMatrix::translate(double tx, double ty)
+{
+ TransformationMatrix mat;
+ mat.m_matrix[3][0] = tx;
+ mat.m_matrix[3][1] = ty;
+
+ multLeft(mat);
+ return *this;
+}
+
+TransformationMatrix& TransformationMatrix::translate3d(double tx, double ty, double tz)
+{
+ TransformationMatrix mat;
+ mat.m_matrix[3][0] = tx;
+ mat.m_matrix[3][1] = ty;
+ mat.m_matrix[3][2] = tz;
+
+ multLeft(mat);
+ return *this;
+}
+
+TransformationMatrix& TransformationMatrix::skew(double sx, double sy)
+{
+ // angles are in degrees. Switch to radians
+ sx = deg2rad(sx);
+ sy = deg2rad(sy);
+
+ TransformationMatrix mat;
+ mat.m_matrix[0][1] = tan(sy); // note that the y shear goes in the first row
+ mat.m_matrix[1][0] = tan(sx); // and the x shear in the second row
+
+ multLeft(mat);
+ return *this;
+}
+
+TransformationMatrix& TransformationMatrix::applyPerspective(double p)
+{
+ TransformationMatrix mat;
+ if (p != 0)
+ mat.m_matrix[2][3] = -1/p;
+
+ multLeft(mat);
+ return *this;
+}
+
+//
+// *this = mat * *this
+//
+TransformationMatrix& TransformationMatrix::multLeft(const TransformationMatrix& mat)
+{
+ Matrix4 tmp;
+
+ tmp[0][0] = (mat.m_matrix[0][0] * m_matrix[0][0] + mat.m_matrix[0][1] * m_matrix[1][0]
+ + mat.m_matrix[0][2] * m_matrix[2][0] + mat.m_matrix[0][3] * m_matrix[3][0]);
+ tmp[0][1] = (mat.m_matrix[0][0] * m_matrix[0][1] + mat.m_matrix[0][1] * m_matrix[1][1]
+ + mat.m_matrix[0][2] * m_matrix[2][1] + mat.m_matrix[0][3] * m_matrix[3][1]);
+ tmp[0][2] = (mat.m_matrix[0][0] * m_matrix[0][2] + mat.m_matrix[0][1] * m_matrix[1][2]
+ + mat.m_matrix[0][2] * m_matrix[2][2] + mat.m_matrix[0][3] * m_matrix[3][2]);
+ tmp[0][3] = (mat.m_matrix[0][0] * m_matrix[0][3] + mat.m_matrix[0][1] * m_matrix[1][3]
+ + mat.m_matrix[0][2] * m_matrix[2][3] + mat.m_matrix[0][3] * m_matrix[3][3]);
+
+ tmp[1][0] = (mat.m_matrix[1][0] * m_matrix[0][0] + mat.m_matrix[1][1] * m_matrix[1][0]
+ + mat.m_matrix[1][2] * m_matrix[2][0] + mat.m_matrix[1][3] * m_matrix[3][0]);
+ tmp[1][1] = (mat.m_matrix[1][0] * m_matrix[0][1] + mat.m_matrix[1][1] * m_matrix[1][1]
+ + mat.m_matrix[1][2] * m_matrix[2][1] + mat.m_matrix[1][3] * m_matrix[3][1]);
+ tmp[1][2] = (mat.m_matrix[1][0] * m_matrix[0][2] + mat.m_matrix[1][1] * m_matrix[1][2]
+ + mat.m_matrix[1][2] * m_matrix[2][2] + mat.m_matrix[1][3] * m_matrix[3][2]);
+ tmp[1][3] = (mat.m_matrix[1][0] * m_matrix[0][3] + mat.m_matrix[1][1] * m_matrix[1][3]
+ + mat.m_matrix[1][2] * m_matrix[2][3] + mat.m_matrix[1][3] * m_matrix[3][3]);
+
+ tmp[2][0] = (mat.m_matrix[2][0] * m_matrix[0][0] + mat.m_matrix[2][1] * m_matrix[1][0]
+ + mat.m_matrix[2][2] * m_matrix[2][0] + mat.m_matrix[2][3] * m_matrix[3][0]);
+ tmp[2][1] = (mat.m_matrix[2][0] * m_matrix[0][1] + mat.m_matrix[2][1] * m_matrix[1][1]
+ + mat.m_matrix[2][2] * m_matrix[2][1] + mat.m_matrix[2][3] * m_matrix[3][1]);
+ tmp[2][2] = (mat.m_matrix[2][0] * m_matrix[0][2] + mat.m_matrix[2][1] * m_matrix[1][2]
+ + mat.m_matrix[2][2] * m_matrix[2][2] + mat.m_matrix[2][3] * m_matrix[3][2]);
+ tmp[2][3] = (mat.m_matrix[2][0] * m_matrix[0][3] + mat.m_matrix[2][1] * m_matrix[1][3]
+ + mat.m_matrix[2][2] * m_matrix[2][3] + mat.m_matrix[2][3] * m_matrix[3][3]);
+
+ tmp[3][0] = (mat.m_matrix[3][0] * m_matrix[0][0] + mat.m_matrix[3][1] * m_matrix[1][0]
+ + mat.m_matrix[3][2] * m_matrix[2][0] + mat.m_matrix[3][3] * m_matrix[3][0]);
+ tmp[3][1] = (mat.m_matrix[3][0] * m_matrix[0][1] + mat.m_matrix[3][1] * m_matrix[1][1]
+ + mat.m_matrix[3][2] * m_matrix[2][1] + mat.m_matrix[3][3] * m_matrix[3][1]);
+ tmp[3][2] = (mat.m_matrix[3][0] * m_matrix[0][2] + mat.m_matrix[3][1] * m_matrix[1][2]
+ + mat.m_matrix[3][2] * m_matrix[2][2] + mat.m_matrix[3][3] * m_matrix[3][2]);
+ tmp[3][3] = (mat.m_matrix[3][0] * m_matrix[0][3] + mat.m_matrix[3][1] * m_matrix[1][3]
+ + mat.m_matrix[3][2] * m_matrix[2][3] + mat.m_matrix[3][3] * m_matrix[3][3]);
+
+ setMatrix(tmp);
+ return *this;
+}
+
+void TransformationMatrix::multVecMatrix(double x, double y, double& resultX, double& resultY) const
+{
+ resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0];
+ resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1];
+ double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3];
+ if (w != 1 && w != 0) {
+ resultX /= w;
+ resultY /= w;
+ }
+}
+
+void TransformationMatrix::multVecMatrix(double x, double y, double z, double& resultX, double& resultY, double& resultZ) const
+{
+ resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
+ resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
+ resultZ = m_matrix[3][2] + x * m_matrix[0][2] + y * m_matrix[1][2] + z * m_matrix[2][2];
+ double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3] + z * m_matrix[2][3];
+ if (w != 1 && w != 0) {
+ resultX /= w;
+ resultY /= w;
+ resultZ /= w;
+ }
+}
+
+bool TransformationMatrix::isInvertible() const
+{
+ double det = WebCore::determinant4x4(m_matrix);
+
+ if (fabs(det) < SMALL_NUMBER)
+ return false;
+
+ return true;
+}
+
+TransformationMatrix TransformationMatrix::inverse() const
+{
+ TransformationMatrix invMat;
+
+ bool inverted = WebCore::inverse(m_matrix, invMat.m_matrix);
+ if (!inverted)
+ return TransformationMatrix();
+
+ return invMat;
+}
+
+static inline void blendFloat(double& from, double to, double progress)
+{
+ if (from != to)
+ from = from + (to - from) * progress;
+}
+
+void TransformationMatrix::blend(const TransformationMatrix& from, double progress)
+{
+ if (from.isIdentity() && isIdentity())
+ return;
+
+ // decompose
+ DecomposedType fromDecomp;
+ DecomposedType toDecomp;
+ from.decompose(fromDecomp);
+ decompose(toDecomp);
+
+ // interpolate
+ blendFloat(fromDecomp.scaleX, toDecomp.scaleX, progress);
+ blendFloat(fromDecomp.scaleY, toDecomp.scaleY, progress);
+ blendFloat(fromDecomp.scaleZ, toDecomp.scaleZ, progress);
+ blendFloat(fromDecomp.skewXY, toDecomp.skewXY, progress);
+ blendFloat(fromDecomp.skewXZ, toDecomp.skewXZ, progress);
+ blendFloat(fromDecomp.skewYZ, toDecomp.skewYZ, progress);
+ blendFloat(fromDecomp.translateX, toDecomp.translateX, progress);
+ blendFloat(fromDecomp.translateY, toDecomp.translateY, progress);
+ blendFloat(fromDecomp.translateZ, toDecomp.translateZ, progress);
+ blendFloat(fromDecomp.perspectiveX, toDecomp.perspectiveX, progress);
+ blendFloat(fromDecomp.perspectiveY, toDecomp.perspectiveY, progress);
+ blendFloat(fromDecomp.perspectiveZ, toDecomp.perspectiveZ, progress);
+ blendFloat(fromDecomp.perspectiveW, toDecomp.perspectiveW, progress);
+
+ slerp(&fromDecomp.quaternionX, &toDecomp.quaternionX, progress);
+
+ // recompose
+ recompose(fromDecomp);
+}
+
+bool TransformationMatrix::decompose(DecomposedType& decomp) const
+{
+ if (isIdentity()) {
+ memset(&decomp, 0, sizeof(decomp));
+ decomp.perspectiveW = 1;
+ decomp.scaleX = 1;
+ decomp.scaleY = 1;
+ decomp.scaleZ = 1;
+ }
+
+ if (!WebCore::decompose(m_matrix, decomp))
+ return false;
+ return true;
+}
+
+void TransformationMatrix::recompose(const DecomposedType& decomp)
+{
+ makeIdentity();
+
+ // first apply perspective
+ m_matrix[0][3] = (float) decomp.perspectiveX;
+ m_matrix[1][3] = (float) decomp.perspectiveY;
+ m_matrix[2][3] = (float) decomp.perspectiveZ;
+ m_matrix[3][3] = (float) decomp.perspectiveW;
+
+ // now translate
+ translate3d((float) decomp.translateX, (float) decomp.translateY, (float) decomp.translateZ);
+
+ // apply rotation
+ double xx = decomp.quaternionX * decomp.quaternionX;
+ double xy = decomp.quaternionX * decomp.quaternionY;
+ double xz = decomp.quaternionX * decomp.quaternionZ;
+ double xw = decomp.quaternionX * decomp.quaternionW;
+ double yy = decomp.quaternionY * decomp.quaternionY;
+ double yz = decomp.quaternionY * decomp.quaternionZ;
+ double yw = decomp.quaternionY * decomp.quaternionW;
+ double zz = decomp.quaternionZ * decomp.quaternionZ;
+ double zw = decomp.quaternionZ * decomp.quaternionW;
+
+ // Construct a composite rotation matrix from the quaternion values
+ TransformationMatrix rotationMatrix(1 - 2 * (yy + zz), 2 * (xy - zw), 2 * (xz + yw), 0,
+ 2 * (xy + zw), 1 - 2 * (xx + zz), 2 * (yz - xw), 0,
+ 2 * (xz - yw), 2 * (yz + xw), 1 - 2 * (xx + yy), 0,
+ 0, 0, 0, 1);
+
+ multLeft(rotationMatrix);
+
+ // now apply skew
+ if (decomp.skewYZ) {
+ TransformationMatrix tmp;
+ tmp.setM32((float) decomp.skewYZ);
+ multLeft(tmp);
+ }
+
+ if (decomp.skewXZ) {
+ TransformationMatrix tmp;
+ tmp.setM31((float) decomp.skewXZ);
+ multLeft(tmp);
+ }
+
+ if (decomp.skewXY) {
+ TransformationMatrix tmp;
+ tmp.setM21((float) decomp.skewXY);
+ multLeft(tmp);
+ }
+
+ // finally, apply scale
+ scale3d((float) decomp.scaleX, (float) decomp.scaleY, (float) decomp.scaleZ);
+}
+
+}

Powered by Google App Engine
This is Rietveld 408576698