Chromium Code Reviews| OLD | NEW |
|---|---|
| 1 // Copyright 2009 the V8 project authors. All rights reserved. | 1 // Copyright 2009 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 308 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 319 unflattened_strings_length_ = 0; | 319 unflattened_strings_length_ = 0; |
| 320 #ifdef DEBUG | 320 #ifdef DEBUG |
| 321 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); | 321 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); |
| 322 allow_allocation(false); | 322 allow_allocation(false); |
| 323 | 323 |
| 324 if (FLAG_verify_heap) { | 324 if (FLAG_verify_heap) { |
| 325 Verify(); | 325 Verify(); |
| 326 } | 326 } |
| 327 | 327 |
| 328 if (FLAG_gc_verbose) Print(); | 328 if (FLAG_gc_verbose) Print(); |
| 329 | |
| 330 if (FLAG_print_rset) { | |
| 331 // Not all spaces have remembered set bits that we care about. | |
| 332 old_pointer_space_->PrintRSet(); | |
| 333 map_space_->PrintRSet(); | |
| 334 lo_space_->PrintRSet(); | |
| 335 } | |
| 336 #endif | 329 #endif |
| 337 | 330 |
| 338 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 331 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
| 339 ReportStatisticsBeforeGC(); | 332 ReportStatisticsBeforeGC(); |
| 340 #endif | 333 #endif |
| 341 } | 334 } |
| 342 | 335 |
| 343 int Heap::SizeOfObjects() { | 336 int Heap::SizeOfObjects() { |
| 344 int total = 0; | 337 int total = 0; |
| 345 AllSpaces spaces; | 338 AllSpaces spaces; |
| (...skipping 166 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 512 gc_performed = true; | 505 gc_performed = true; |
| 513 } | 506 } |
| 514 if (!(map_space->ReserveSpace(map_space_size))) { | 507 if (!(map_space->ReserveSpace(map_space_size))) { |
| 515 Heap::CollectGarbage(map_space_size, MAP_SPACE); | 508 Heap::CollectGarbage(map_space_size, MAP_SPACE); |
| 516 gc_performed = true; | 509 gc_performed = true; |
| 517 } | 510 } |
| 518 if (!(cell_space->ReserveSpace(cell_space_size))) { | 511 if (!(cell_space->ReserveSpace(cell_space_size))) { |
| 519 Heap::CollectGarbage(cell_space_size, CELL_SPACE); | 512 Heap::CollectGarbage(cell_space_size, CELL_SPACE); |
| 520 gc_performed = true; | 513 gc_performed = true; |
| 521 } | 514 } |
| 522 // We add a slack-factor of 2 in order to have space for the remembered | 515 // We add a slack-factor of 2 in order to have space for a series of |
| 523 // set and a series of large-object allocations that are only just larger | 516 // large-object allocations that are only just larger than the page size. |
| 524 // than the page size. | |
| 525 large_object_size *= 2; | 517 large_object_size *= 2; |
| 526 // The ReserveSpace method on the large object space checks how much | 518 // The ReserveSpace method on the large object space checks how much |
| 527 // we can expand the old generation. This includes expansion caused by | 519 // we can expand the old generation. This includes expansion caused by |
| 528 // allocation in the other spaces. | 520 // allocation in the other spaces. |
| 529 large_object_size += cell_space_size + map_space_size + code_space_size + | 521 large_object_size += cell_space_size + map_space_size + code_space_size + |
| 530 data_space_size + pointer_space_size; | 522 data_space_size + pointer_space_size; |
| 531 if (!(lo_space->ReserveSpace(large_object_size))) { | 523 if (!(lo_space->ReserveSpace(large_object_size))) { |
| 532 Heap::CollectGarbage(large_object_size, LO_SPACE); | 524 Heap::CollectGarbage(large_object_size, LO_SPACE); |
| 533 gc_performed = true; | 525 gc_performed = true; |
| 534 } | 526 } |
| (...skipping 30 matching lines...) Expand all Loading... | |
| 565 }; | 557 }; |
| 566 | 558 |
| 567 | 559 |
| 568 void Heap::ClearJSFunctionResultCaches() { | 560 void Heap::ClearJSFunctionResultCaches() { |
| 569 if (Bootstrapper::IsActive()) return; | 561 if (Bootstrapper::IsActive()) return; |
| 570 ClearThreadJSFunctionResultCachesVisitor visitor; | 562 ClearThreadJSFunctionResultCachesVisitor visitor; |
| 571 ThreadManager::IterateThreads(&visitor); | 563 ThreadManager::IterateThreads(&visitor); |
| 572 } | 564 } |
| 573 | 565 |
| 574 | 566 |
| 567 #ifdef DEBUG | |
| 568 | |
| 569 enum PageWatermarkValidity { | |
| 570 ALL_VALID, | |
| 571 ALL_INVALID | |
| 572 }; | |
| 573 | |
| 574 static void VerifyPageWatermarkValidity(PagedSpace* space, | |
| 575 PageWatermarkValidity validity) { | |
| 576 PageIterator it(space, PageIterator::PAGES_IN_USE); | |
| 577 bool expected_value = (validity == ALL_VALID); | |
| 578 while (it.has_next()) { | |
| 579 Page* page = it.next(); | |
| 580 ASSERT(page->IsWatermarkValid() == expected_value); | |
| 581 } | |
| 582 } | |
| 583 #endif | |
| 584 | |
| 585 | |
| 575 void Heap::PerformGarbageCollection(AllocationSpace space, | 586 void Heap::PerformGarbageCollection(AllocationSpace space, |
| 576 GarbageCollector collector, | 587 GarbageCollector collector, |
| 577 GCTracer* tracer) { | 588 GCTracer* tracer) { |
| 578 VerifySymbolTable(); | 589 VerifySymbolTable(); |
| 579 if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) { | 590 if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) { |
| 580 ASSERT(!allocation_allowed_); | 591 ASSERT(!allocation_allowed_); |
| 581 GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL); | 592 GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL); |
| 582 global_gc_prologue_callback_(); | 593 global_gc_prologue_callback_(); |
| 583 } | 594 } |
| 584 | 595 |
| (...skipping 224 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 809 } | 820 } |
| 810 | 821 |
| 811 | 822 |
| 812 void Heap::Scavenge() { | 823 void Heap::Scavenge() { |
| 813 #ifdef DEBUG | 824 #ifdef DEBUG |
| 814 if (FLAG_enable_slow_asserts) VerifyNonPointerSpacePointers(); | 825 if (FLAG_enable_slow_asserts) VerifyNonPointerSpacePointers(); |
| 815 #endif | 826 #endif |
| 816 | 827 |
| 817 gc_state_ = SCAVENGE; | 828 gc_state_ = SCAVENGE; |
| 818 | 829 |
| 830 Page::FlipMeaningOfInvalidatedWatermarkFlag(); | |
| 831 #ifdef DEBUG | |
| 832 VerifyPageWatermarkValidity(old_pointer_space_, ALL_VALID); | |
| 833 VerifyPageWatermarkValidity(map_space_, ALL_VALID); | |
| 834 #endif | |
| 835 | |
| 836 // We do not update an allocation watermark of the top page during linear | |
| 837 // allocation to avoid overhead. So to maintain the watermark invariant | |
| 838 // we have to manually cache the watermark and mark the top page as having an | |
| 839 // invalid watermark. This guarantees that dirty regions iteration will use a | |
| 840 // correct watermark even if a linear allocation happens. | |
| 841 old_pointer_space_->FlushTopPageWatermark(); | |
| 842 map_space_->FlushTopPageWatermark(); | |
| 843 | |
| 819 // Implements Cheney's copying algorithm | 844 // Implements Cheney's copying algorithm |
| 820 LOG(ResourceEvent("scavenge", "begin")); | 845 LOG(ResourceEvent("scavenge", "begin")); |
| 821 | 846 |
| 822 // Clear descriptor cache. | 847 // Clear descriptor cache. |
| 823 DescriptorLookupCache::Clear(); | 848 DescriptorLookupCache::Clear(); |
| 824 | 849 |
| 825 // Used for updating survived_since_last_expansion_ at function end. | 850 // Used for updating survived_since_last_expansion_ at function end. |
| 826 int survived_watermark = PromotedSpaceSize(); | 851 int survived_watermark = PromotedSpaceSize(); |
| 827 | 852 |
| 828 CheckNewSpaceExpansionCriteria(); | 853 CheckNewSpaceExpansionCriteria(); |
| (...skipping 22 matching lines...) Expand all Loading... | |
| 851 // objects are at least one pointer in size. | 876 // objects are at least one pointer in size. |
| 852 Address new_space_front = new_space_.ToSpaceLow(); | 877 Address new_space_front = new_space_.ToSpaceLow(); |
| 853 promotion_queue.Initialize(new_space_.ToSpaceHigh()); | 878 promotion_queue.Initialize(new_space_.ToSpaceHigh()); |
| 854 | 879 |
| 855 ScavengeVisitor scavenge_visitor; | 880 ScavengeVisitor scavenge_visitor; |
| 856 // Copy roots. | 881 // Copy roots. |
| 857 IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE); | 882 IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE); |
| 858 | 883 |
| 859 // Copy objects reachable from the old generation. By definition, | 884 // Copy objects reachable from the old generation. By definition, |
| 860 // there are no intergenerational pointers in code or data spaces. | 885 // there are no intergenerational pointers in code or data spaces. |
| 861 IterateRSet(old_pointer_space_, &ScavengePointer); | 886 IterateDirtyRegions(old_pointer_space_, |
| 862 IterateRSet(map_space_, &ScavengePointer); | 887 &IteratePointersInDirtyRegion, |
| 863 lo_space_->IterateRSet(&ScavengePointer); | 888 &ScavengePointer, |
| 889 WATERMARK_CAN_BE_INVALID); | |
| 890 | |
| 891 IterateDirtyRegions(map_space_, | |
| 892 &IteratePointersInDirtyMapsRegion, | |
| 893 &ScavengePointer, | |
| 894 WATERMARK_CAN_BE_INVALID); | |
| 895 | |
| 896 lo_space_->IterateDirtyRegions(&ScavengePointer); | |
| 864 | 897 |
| 865 // Copy objects reachable from cells by scavenging cell values directly. | 898 // Copy objects reachable from cells by scavenging cell values directly. |
| 866 HeapObjectIterator cell_iterator(cell_space_); | 899 HeapObjectIterator cell_iterator(cell_space_); |
| 867 for (HeapObject* cell = cell_iterator.next(); | 900 for (HeapObject* cell = cell_iterator.next(); |
| 868 cell != NULL; cell = cell_iterator.next()) { | 901 cell != NULL; cell = cell_iterator.next()) { |
| 869 if (cell->IsJSGlobalPropertyCell()) { | 902 if (cell->IsJSGlobalPropertyCell()) { |
| 870 Address value_address = | 903 Address value_address = |
| 871 reinterpret_cast<Address>(cell) + | 904 reinterpret_cast<Address>(cell) + |
| 872 (JSGlobalPropertyCell::kValueOffset - kHeapObjectTag); | 905 (JSGlobalPropertyCell::kValueOffset - kHeapObjectTag); |
| 873 scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address)); | 906 scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address)); |
| (...skipping 82 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 956 } | 989 } |
| 957 | 990 |
| 958 // Promote and process all the to-be-promoted objects. | 991 // Promote and process all the to-be-promoted objects. |
| 959 while (!promotion_queue.is_empty()) { | 992 while (!promotion_queue.is_empty()) { |
| 960 HeapObject* source; | 993 HeapObject* source; |
| 961 Map* map; | 994 Map* map; |
| 962 promotion_queue.remove(&source, &map); | 995 promotion_queue.remove(&source, &map); |
| 963 // Copy the from-space object to its new location (given by the | 996 // Copy the from-space object to its new location (given by the |
| 964 // forwarding address) and fix its map. | 997 // forwarding address) and fix its map. |
| 965 HeapObject* target = source->map_word().ToForwardingAddress(); | 998 HeapObject* target = source->map_word().ToForwardingAddress(); |
| 966 CopyBlock(reinterpret_cast<Object**>(target->address()), | 999 int size = source->SizeFromMap(map); |
| 967 reinterpret_cast<Object**>(source->address()), | 1000 CopyBlock(target->address(), source->address(), size); |
| 968 source->SizeFromMap(map)); | |
| 969 target->set_map(map); | 1001 target->set_map(map); |
| 970 | 1002 |
| 971 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 1003 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
| 972 // Update NewSpace stats if necessary. | 1004 // Update NewSpace stats if necessary. |
| 973 RecordCopiedObject(target); | 1005 RecordCopiedObject(target); |
| 974 #endif | 1006 #endif |
| 975 // Visit the newly copied object for pointers to new space. | 1007 // Visit the newly copied object for pointers to new space. |
| 976 target->Iterate(scavenge_visitor); | 1008 ASSERT(!target->IsMap()); |
| 977 UpdateRSet(target); | 1009 IterateAndMarkPointersToNewSpace(target->address(), |
| 1010 target->address() + size, | |
| 1011 &ScavengePointer); | |
| 978 } | 1012 } |
| 979 | 1013 |
| 980 // Take another spin if there are now unswept objects in new space | 1014 // Take another spin if there are now unswept objects in new space |
| 981 // (there are currently no more unswept promoted objects). | 1015 // (there are currently no more unswept promoted objects). |
| 982 } while (new_space_front < new_space_.top()); | 1016 } while (new_space_front < new_space_.top()); |
| 983 | 1017 |
| 984 return new_space_front; | 1018 return new_space_front; |
| 985 } | 1019 } |
| 986 | 1020 |
| 987 | 1021 |
| 988 void Heap::ClearRSetRange(Address start, int size_in_bytes) { | |
| 989 uint32_t start_bit; | |
| 990 Address start_word_address = | |
| 991 Page::ComputeRSetBitPosition(start, 0, &start_bit); | |
| 992 uint32_t end_bit; | |
| 993 Address end_word_address = | |
| 994 Page::ComputeRSetBitPosition(start + size_in_bytes - kIntSize, | |
| 995 0, | |
| 996 &end_bit); | |
| 997 | |
| 998 // We want to clear the bits in the starting word starting with the | |
| 999 // first bit, and in the ending word up to and including the last | |
| 1000 // bit. Build a pair of bitmasks to do that. | |
| 1001 uint32_t start_bitmask = start_bit - 1; | |
| 1002 uint32_t end_bitmask = ~((end_bit << 1) - 1); | |
| 1003 | |
| 1004 // If the start address and end address are the same, we mask that | |
| 1005 // word once, otherwise mask the starting and ending word | |
| 1006 // separately and all the ones in between. | |
| 1007 if (start_word_address == end_word_address) { | |
| 1008 Memory::uint32_at(start_word_address) &= (start_bitmask | end_bitmask); | |
| 1009 } else { | |
| 1010 Memory::uint32_at(start_word_address) &= start_bitmask; | |
| 1011 Memory::uint32_at(end_word_address) &= end_bitmask; | |
| 1012 start_word_address += kIntSize; | |
| 1013 memset(start_word_address, 0, end_word_address - start_word_address); | |
| 1014 } | |
| 1015 } | |
| 1016 | |
| 1017 | |
| 1018 class UpdateRSetVisitor: public ObjectVisitor { | |
| 1019 public: | |
| 1020 | |
| 1021 void VisitPointer(Object** p) { | |
| 1022 UpdateRSet(p); | |
| 1023 } | |
| 1024 | |
| 1025 void VisitPointers(Object** start, Object** end) { | |
| 1026 // Update a store into slots [start, end), used (a) to update remembered | |
| 1027 // set when promoting a young object to old space or (b) to rebuild | |
| 1028 // remembered sets after a mark-compact collection. | |
| 1029 for (Object** p = start; p < end; p++) UpdateRSet(p); | |
| 1030 } | |
| 1031 private: | |
| 1032 | |
| 1033 void UpdateRSet(Object** p) { | |
| 1034 // The remembered set should not be set. It should be clear for objects | |
| 1035 // newly copied to old space, and it is cleared before rebuilding in the | |
| 1036 // mark-compact collector. | |
| 1037 ASSERT(!Page::IsRSetSet(reinterpret_cast<Address>(p), 0)); | |
| 1038 if (Heap::InNewSpace(*p)) { | |
| 1039 Page::SetRSet(reinterpret_cast<Address>(p), 0); | |
| 1040 } | |
| 1041 } | |
| 1042 }; | |
| 1043 | |
| 1044 | |
| 1045 int Heap::UpdateRSet(HeapObject* obj) { | |
| 1046 ASSERT(!InNewSpace(obj)); | |
| 1047 // Special handling of fixed arrays to iterate the body based on the start | |
| 1048 // address and offset. Just iterating the pointers as in UpdateRSetVisitor | |
| 1049 // will not work because Page::SetRSet needs to have the start of the | |
| 1050 // object for large object pages. | |
| 1051 if (obj->IsFixedArray()) { | |
| 1052 FixedArray* array = FixedArray::cast(obj); | |
| 1053 int length = array->length(); | |
| 1054 for (int i = 0; i < length; i++) { | |
| 1055 int offset = FixedArray::kHeaderSize + i * kPointerSize; | |
| 1056 ASSERT(!Page::IsRSetSet(obj->address(), offset)); | |
| 1057 if (Heap::InNewSpace(array->get(i))) { | |
| 1058 Page::SetRSet(obj->address(), offset); | |
| 1059 } | |
| 1060 } | |
| 1061 } else if (!obj->IsCode()) { | |
| 1062 // Skip code object, we know it does not contain inter-generational | |
| 1063 // pointers. | |
| 1064 UpdateRSetVisitor v; | |
| 1065 obj->Iterate(&v); | |
| 1066 } | |
| 1067 return obj->Size(); | |
| 1068 } | |
| 1069 | |
| 1070 | |
| 1071 void Heap::RebuildRSets() { | |
| 1072 // By definition, we do not care about remembered set bits in code, | |
| 1073 // data, or cell spaces. | |
| 1074 map_space_->ClearRSet(); | |
| 1075 RebuildRSets(map_space_); | |
| 1076 | |
| 1077 old_pointer_space_->ClearRSet(); | |
| 1078 RebuildRSets(old_pointer_space_); | |
| 1079 | |
| 1080 Heap::lo_space_->ClearRSet(); | |
| 1081 RebuildRSets(lo_space_); | |
| 1082 } | |
| 1083 | |
| 1084 | |
| 1085 void Heap::RebuildRSets(PagedSpace* space) { | |
| 1086 HeapObjectIterator it(space); | |
| 1087 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) | |
| 1088 Heap::UpdateRSet(obj); | |
| 1089 } | |
| 1090 | |
| 1091 | |
| 1092 void Heap::RebuildRSets(LargeObjectSpace* space) { | |
| 1093 LargeObjectIterator it(space); | |
| 1094 for (HeapObject* obj = it.next(); obj != NULL; obj = it.next()) | |
| 1095 Heap::UpdateRSet(obj); | |
| 1096 } | |
| 1097 | |
| 1098 | |
| 1099 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 1022 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
| 1100 void Heap::RecordCopiedObject(HeapObject* obj) { | 1023 void Heap::RecordCopiedObject(HeapObject* obj) { |
| 1101 bool should_record = false; | 1024 bool should_record = false; |
| 1102 #ifdef DEBUG | 1025 #ifdef DEBUG |
| 1103 should_record = FLAG_heap_stats; | 1026 should_record = FLAG_heap_stats; |
| 1104 #endif | 1027 #endif |
| 1105 #ifdef ENABLE_LOGGING_AND_PROFILING | 1028 #ifdef ENABLE_LOGGING_AND_PROFILING |
| 1106 should_record = should_record || FLAG_log_gc; | 1029 should_record = should_record || FLAG_log_gc; |
| 1107 #endif | 1030 #endif |
| 1108 if (should_record) { | 1031 if (should_record) { |
| 1109 if (new_space_.Contains(obj)) { | 1032 if (new_space_.Contains(obj)) { |
| 1110 new_space_.RecordAllocation(obj); | 1033 new_space_.RecordAllocation(obj); |
| 1111 } else { | 1034 } else { |
| 1112 new_space_.RecordPromotion(obj); | 1035 new_space_.RecordPromotion(obj); |
| 1113 } | 1036 } |
| 1114 } | 1037 } |
| 1115 } | 1038 } |
| 1116 #endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 1039 #endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
| 1117 | 1040 |
| 1118 | 1041 |
| 1119 | 1042 |
| 1120 HeapObject* Heap::MigrateObject(HeapObject* source, | 1043 HeapObject* Heap::MigrateObject(HeapObject* source, |
| 1121 HeapObject* target, | 1044 HeapObject* target, |
| 1122 int size) { | 1045 int size) { |
| 1123 // Copy the content of source to target. | 1046 // Copy the content of source to target. |
| 1124 CopyBlock(reinterpret_cast<Object**>(target->address()), | 1047 CopyBlock(target->address(), source->address(), size); |
| 1125 reinterpret_cast<Object**>(source->address()), | |
| 1126 size); | |
| 1127 | 1048 |
| 1128 // Set the forwarding address. | 1049 // Set the forwarding address. |
| 1129 source->set_map_word(MapWord::FromForwardingAddress(target)); | 1050 source->set_map_word(MapWord::FromForwardingAddress(target)); |
| 1130 | 1051 |
| 1131 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) | 1052 #if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) |
| 1132 // Update NewSpace stats if necessary. | 1053 // Update NewSpace stats if necessary. |
| 1133 RecordCopiedObject(target); | 1054 RecordCopiedObject(target); |
| 1134 #endif | 1055 #endif |
| 1135 | 1056 |
| 1136 return target; | 1057 return target; |
| (...skipping 538 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1675 if (obj->IsFailure()) return false; | 1596 if (obj->IsFailure()) return false; |
| 1676 roots_[constant_symbol_table[i].index] = String::cast(obj); | 1597 roots_[constant_symbol_table[i].index] = String::cast(obj); |
| 1677 } | 1598 } |
| 1678 | 1599 |
| 1679 // Allocate the hidden symbol which is used to identify the hidden properties | 1600 // Allocate the hidden symbol which is used to identify the hidden properties |
| 1680 // in JSObjects. The hash code has a special value so that it will not match | 1601 // in JSObjects. The hash code has a special value so that it will not match |
| 1681 // the empty string when searching for the property. It cannot be part of the | 1602 // the empty string when searching for the property. It cannot be part of the |
| 1682 // loop above because it needs to be allocated manually with the special | 1603 // loop above because it needs to be allocated manually with the special |
| 1683 // hash code in place. The hash code for the hidden_symbol is zero to ensure | 1604 // hash code in place. The hash code for the hidden_symbol is zero to ensure |
| 1684 // that it will always be at the first entry in property descriptors. | 1605 // that it will always be at the first entry in property descriptors. |
| 1685 obj = AllocateSymbol(CStrVector(""), 0, String::kHashComputedMask); | 1606 obj = AllocateSymbol(CStrVector(""), 0, String::kZeroHash); |
| 1686 if (obj->IsFailure()) return false; | 1607 if (obj->IsFailure()) return false; |
| 1687 hidden_symbol_ = String::cast(obj); | 1608 hidden_symbol_ = String::cast(obj); |
| 1688 | 1609 |
| 1689 // Allocate the proxy for __proto__. | 1610 // Allocate the proxy for __proto__. |
| 1690 obj = AllocateProxy((Address) &Accessors::ObjectPrototype); | 1611 obj = AllocateProxy((Address) &Accessors::ObjectPrototype); |
| 1691 if (obj->IsFailure()) return false; | 1612 if (obj->IsFailure()) return false; |
| 1692 set_prototype_accessors(Proxy::cast(obj)); | 1613 set_prototype_accessors(Proxy::cast(obj)); |
| 1693 | 1614 |
| 1694 // Allocate the code_stubs dictionary. The initial size is set to avoid | 1615 // Allocate the code_stubs dictionary. The initial size is set to avoid |
| 1695 // expanding the dictionary during bootstrapping. | 1616 // expanding the dictionary during bootstrapping. |
| (...skipping 215 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 1911 share->set_formal_parameter_count(0); | 1832 share->set_formal_parameter_count(0); |
| 1912 share->set_instance_class_name(Object_symbol()); | 1833 share->set_instance_class_name(Object_symbol()); |
| 1913 share->set_function_data(undefined_value()); | 1834 share->set_function_data(undefined_value()); |
| 1914 share->set_script(undefined_value()); | 1835 share->set_script(undefined_value()); |
| 1915 share->set_start_position_and_type(0); | 1836 share->set_start_position_and_type(0); |
| 1916 share->set_debug_info(undefined_value()); | 1837 share->set_debug_info(undefined_value()); |
| 1917 share->set_inferred_name(empty_string()); | 1838 share->set_inferred_name(empty_string()); |
| 1918 share->set_compiler_hints(0); | 1839 share->set_compiler_hints(0); |
| 1919 share->set_this_property_assignments_count(0); | 1840 share->set_this_property_assignments_count(0); |
| 1920 share->set_this_property_assignments(undefined_value()); | 1841 share->set_this_property_assignments(undefined_value()); |
| 1842 share->set_num_literals(0); | |
| 1843 share->set_end_position(0); | |
| 1844 share->set_function_token_position(0); | |
| 1921 return result; | 1845 return result; |
| 1922 } | 1846 } |
| 1923 | 1847 |
| 1924 | 1848 |
| 1925 // Returns true for a character in a range. Both limits are inclusive. | 1849 // Returns true for a character in a range. Both limits are inclusive. |
| 1926 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) { | 1850 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) { |
| 1927 // This makes uses of the the unsigned wraparound. | 1851 // This makes uses of the the unsigned wraparound. |
| 1928 return character - from <= to - from; | 1852 return character - from <= to - from; |
| 1929 } | 1853 } |
| 1930 | 1854 |
| (...skipping 241 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 2172 } | 2096 } |
| 2173 if (pretenure == NOT_TENURED) { | 2097 if (pretenure == NOT_TENURED) { |
| 2174 return AllocateByteArray(length); | 2098 return AllocateByteArray(length); |
| 2175 } | 2099 } |
| 2176 int size = ByteArray::SizeFor(length); | 2100 int size = ByteArray::SizeFor(length); |
| 2177 Object* result = (size <= MaxObjectSizeInPagedSpace()) | 2101 Object* result = (size <= MaxObjectSizeInPagedSpace()) |
| 2178 ? old_data_space_->AllocateRaw(size) | 2102 ? old_data_space_->AllocateRaw(size) |
| 2179 : lo_space_->AllocateRaw(size); | 2103 : lo_space_->AllocateRaw(size); |
| 2180 if (result->IsFailure()) return result; | 2104 if (result->IsFailure()) return result; |
| 2181 | 2105 |
| 2182 reinterpret_cast<Array*>(result)->set_map(byte_array_map()); | 2106 reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map()); |
| 2183 reinterpret_cast<Array*>(result)->set_length(length); | 2107 reinterpret_cast<ByteArray*>(result)->set_length(length); |
| 2184 return result; | 2108 return result; |
| 2185 } | 2109 } |
| 2186 | 2110 |
| 2187 | 2111 |
| 2188 Object* Heap::AllocateByteArray(int length) { | 2112 Object* Heap::AllocateByteArray(int length) { |
| 2189 if (length < 0 || length > ByteArray::kMaxLength) { | 2113 if (length < 0 || length > ByteArray::kMaxLength) { |
| 2190 return Failure::OutOfMemoryException(); | 2114 return Failure::OutOfMemoryException(); |
| 2191 } | 2115 } |
| 2192 int size = ByteArray::SizeFor(length); | 2116 int size = ByteArray::SizeFor(length); |
| 2193 AllocationSpace space = | 2117 AllocationSpace space = |
| 2194 (size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : NEW_SPACE; | 2118 (size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : NEW_SPACE; |
| 2195 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE); | 2119 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE); |
| 2196 if (result->IsFailure()) return result; | 2120 if (result->IsFailure()) return result; |
| 2197 | 2121 |
| 2198 reinterpret_cast<Array*>(result)->set_map(byte_array_map()); | 2122 reinterpret_cast<ByteArray*>(result)->set_map(byte_array_map()); |
| 2199 reinterpret_cast<Array*>(result)->set_length(length); | 2123 reinterpret_cast<ByteArray*>(result)->set_length(length); |
| 2200 return result; | 2124 return result; |
| 2201 } | 2125 } |
| 2202 | 2126 |
| 2203 | 2127 |
| 2204 void Heap::CreateFillerObjectAt(Address addr, int size) { | 2128 void Heap::CreateFillerObjectAt(Address addr, int size) { |
| 2205 if (size == 0) return; | 2129 if (size == 0) return; |
| 2206 HeapObject* filler = HeapObject::FromAddress(addr); | 2130 HeapObject* filler = HeapObject::FromAddress(addr); |
| 2207 if (size == kPointerSize) { | 2131 if (size == kPointerSize) { |
| 2208 filler->set_map(one_pointer_filler_map()); | 2132 filler->set_map(one_pointer_filler_map()); |
| 2209 } else if (size == 2 * kPointerSize) { | 2133 } else if (size == 2 * kPointerSize) { |
| (...skipping 95 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 2305 result = lo_space_->AllocateRawCode(obj_size); | 2229 result = lo_space_->AllocateRawCode(obj_size); |
| 2306 } else { | 2230 } else { |
| 2307 result = code_space_->AllocateRaw(obj_size); | 2231 result = code_space_->AllocateRaw(obj_size); |
| 2308 } | 2232 } |
| 2309 | 2233 |
| 2310 if (result->IsFailure()) return result; | 2234 if (result->IsFailure()) return result; |
| 2311 | 2235 |
| 2312 // Copy code object. | 2236 // Copy code object. |
| 2313 Address old_addr = code->address(); | 2237 Address old_addr = code->address(); |
| 2314 Address new_addr = reinterpret_cast<HeapObject*>(result)->address(); | 2238 Address new_addr = reinterpret_cast<HeapObject*>(result)->address(); |
| 2315 CopyBlock(reinterpret_cast<Object**>(new_addr), | 2239 CopyBlock(new_addr, old_addr, obj_size); |
| 2316 reinterpret_cast<Object**>(old_addr), | |
| 2317 obj_size); | |
| 2318 // Relocate the copy. | 2240 // Relocate the copy. |
| 2319 Code* new_code = Code::cast(result); | 2241 Code* new_code = Code::cast(result); |
| 2320 ASSERT(!CodeRange::exists() || CodeRange::contains(code->address())); | 2242 ASSERT(!CodeRange::exists() || CodeRange::contains(code->address())); |
| 2321 new_code->Relocate(new_addr - old_addr); | 2243 new_code->Relocate(new_addr - old_addr); |
| 2322 return new_code; | 2244 return new_code; |
| 2323 } | 2245 } |
| 2324 | 2246 |
| 2325 | 2247 |
| 2326 Object* Heap::CopyCode(Code* code, Vector<byte> reloc_info) { | 2248 Object* Heap::CopyCode(Code* code, Vector<byte> reloc_info) { |
| 2327 int new_body_size = RoundUp(code->instruction_size() + reloc_info.length(), | 2249 int new_body_size = RoundUp(code->instruction_size() + reloc_info.length(), |
| (...skipping 125 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 2453 ASSERT(kArgumentsObjectSize == boilerplate->map()->instance_size()); | 2375 ASSERT(kArgumentsObjectSize == boilerplate->map()->instance_size()); |
| 2454 | 2376 |
| 2455 // Do the allocation. | 2377 // Do the allocation. |
| 2456 Object* result = | 2378 Object* result = |
| 2457 AllocateRaw(kArgumentsObjectSize, NEW_SPACE, OLD_POINTER_SPACE); | 2379 AllocateRaw(kArgumentsObjectSize, NEW_SPACE, OLD_POINTER_SPACE); |
| 2458 if (result->IsFailure()) return result; | 2380 if (result->IsFailure()) return result; |
| 2459 | 2381 |
| 2460 // Copy the content. The arguments boilerplate doesn't have any | 2382 // Copy the content. The arguments boilerplate doesn't have any |
| 2461 // fields that point to new space so it's safe to skip the write | 2383 // fields that point to new space so it's safe to skip the write |
| 2462 // barrier here. | 2384 // barrier here. |
| 2463 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(result)->address()), | 2385 CopyBlock(HeapObject::cast(result)->address(), |
| 2464 reinterpret_cast<Object**>(boilerplate->address()), | 2386 boilerplate->address(), |
| 2465 kArgumentsObjectSize); | 2387 kArgumentsObjectSize); |
| 2466 | 2388 |
| 2467 // Set the two properties. | 2389 // Set the two properties. |
| 2468 JSObject::cast(result)->InObjectPropertyAtPut(arguments_callee_index, | 2390 JSObject::cast(result)->InObjectPropertyAtPut(arguments_callee_index, |
| 2469 callee); | 2391 callee); |
| 2470 JSObject::cast(result)->InObjectPropertyAtPut(arguments_length_index, | 2392 JSObject::cast(result)->InObjectPropertyAtPut(arguments_length_index, |
| 2471 Smi::FromInt(length), | 2393 Smi::FromInt(length), |
| 2472 SKIP_WRITE_BARRIER); | 2394 SKIP_WRITE_BARRIER); |
| 2473 | 2395 |
| 2474 // Check the state of the object | 2396 // Check the state of the object |
| (...skipping 201 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 2676 Map* map = source->map(); | 2598 Map* map = source->map(); |
| 2677 int object_size = map->instance_size(); | 2599 int object_size = map->instance_size(); |
| 2678 Object* clone; | 2600 Object* clone; |
| 2679 | 2601 |
| 2680 // If we're forced to always allocate, we use the general allocation | 2602 // If we're forced to always allocate, we use the general allocation |
| 2681 // functions which may leave us with an object in old space. | 2603 // functions which may leave us with an object in old space. |
| 2682 if (always_allocate()) { | 2604 if (always_allocate()) { |
| 2683 clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE); | 2605 clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE); |
| 2684 if (clone->IsFailure()) return clone; | 2606 if (clone->IsFailure()) return clone; |
| 2685 Address clone_address = HeapObject::cast(clone)->address(); | 2607 Address clone_address = HeapObject::cast(clone)->address(); |
| 2686 CopyBlock(reinterpret_cast<Object**>(clone_address), | 2608 CopyBlock(clone_address, |
| 2687 reinterpret_cast<Object**>(source->address()), | 2609 source->address(), |
| 2688 object_size); | 2610 object_size); |
| 2689 // Update write barrier for all fields that lie beyond the header. | 2611 // Update write barrier for all fields that lie beyond the header. |
| 2690 RecordWrites(clone_address, | 2612 RecordWrites(clone_address, |
| 2691 JSObject::kHeaderSize, | 2613 JSObject::kHeaderSize, |
| 2692 (object_size - JSObject::kHeaderSize) / kPointerSize); | 2614 (object_size - JSObject::kHeaderSize) / kPointerSize); |
| 2693 } else { | 2615 } else { |
| 2694 clone = new_space_.AllocateRaw(object_size); | 2616 clone = new_space_.AllocateRaw(object_size); |
| 2695 if (clone->IsFailure()) return clone; | 2617 if (clone->IsFailure()) return clone; |
| 2696 ASSERT(Heap::InNewSpace(clone)); | 2618 ASSERT(Heap::InNewSpace(clone)); |
| 2697 // Since we know the clone is allocated in new space, we can copy | 2619 // Since we know the clone is allocated in new space, we can copy |
| 2698 // the contents without worrying about updating the write barrier. | 2620 // the contents without worrying about updating the write barrier. |
| 2699 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(clone)->address()), | 2621 CopyBlock(HeapObject::cast(clone)->address(), |
| 2700 reinterpret_cast<Object**>(source->address()), | 2622 source->address(), |
| 2701 object_size); | 2623 object_size); |
| 2702 } | 2624 } |
| 2703 | 2625 |
| 2704 FixedArray* elements = FixedArray::cast(source->elements()); | 2626 FixedArray* elements = FixedArray::cast(source->elements()); |
| 2705 FixedArray* properties = FixedArray::cast(source->properties()); | 2627 FixedArray* properties = FixedArray::cast(source->properties()); |
| 2706 // Update elements if necessary. | 2628 // Update elements if necessary. |
| 2707 if (elements->length() > 0) { | 2629 if (elements->length() > 0) { |
| 2708 Object* elem = CopyFixedArray(elements); | 2630 Object* elem = CopyFixedArray(elements); |
| 2709 if (elem->IsFailure()) return elem; | 2631 if (elem->IsFailure()) return elem; |
| 2710 JSObject::cast(clone)->set_elements(FixedArray::cast(elem)); | 2632 JSObject::cast(clone)->set_elements(FixedArray::cast(elem)); |
| (...skipping 250 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 2961 ASSERT_EQ(size, HeapObject::cast(result)->Size()); | 2883 ASSERT_EQ(size, HeapObject::cast(result)->Size()); |
| 2962 return result; | 2884 return result; |
| 2963 } | 2885 } |
| 2964 | 2886 |
| 2965 | 2887 |
| 2966 Object* Heap::AllocateEmptyFixedArray() { | 2888 Object* Heap::AllocateEmptyFixedArray() { |
| 2967 int size = FixedArray::SizeFor(0); | 2889 int size = FixedArray::SizeFor(0); |
| 2968 Object* result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); | 2890 Object* result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE); |
| 2969 if (result->IsFailure()) return result; | 2891 if (result->IsFailure()) return result; |
| 2970 // Initialize the object. | 2892 // Initialize the object. |
| 2971 reinterpret_cast<Array*>(result)->set_map(fixed_array_map()); | 2893 reinterpret_cast<FixedArray*>(result)->set_map(fixed_array_map()); |
| 2972 reinterpret_cast<Array*>(result)->set_length(0); | 2894 reinterpret_cast<FixedArray*>(result)->set_length(0); |
| 2973 return result; | 2895 return result; |
| 2974 } | 2896 } |
| 2975 | 2897 |
| 2976 | 2898 |
| 2977 Object* Heap::AllocateRawFixedArray(int length) { | 2899 Object* Heap::AllocateRawFixedArray(int length) { |
| 2978 if (length < 0 || length > FixedArray::kMaxLength) { | 2900 if (length < 0 || length > FixedArray::kMaxLength) { |
| 2979 return Failure::OutOfMemoryException(); | 2901 return Failure::OutOfMemoryException(); |
| 2980 } | 2902 } |
| 2981 // Use the general function if we're forced to always allocate. | 2903 // Use the general function if we're forced to always allocate. |
| 2982 if (always_allocate()) return AllocateFixedArray(length, TENURED); | 2904 if (always_allocate()) return AllocateFixedArray(length, TENURED); |
| 2983 // Allocate the raw data for a fixed array. | 2905 // Allocate the raw data for a fixed array. |
| 2984 int size = FixedArray::SizeFor(length); | 2906 int size = FixedArray::SizeFor(length); |
| 2985 return size <= kMaxObjectSizeInNewSpace | 2907 return size <= kMaxObjectSizeInNewSpace |
| 2986 ? new_space_.AllocateRaw(size) | 2908 ? new_space_.AllocateRaw(size) |
| 2987 : lo_space_->AllocateRawFixedArray(size); | 2909 : lo_space_->AllocateRawFixedArray(size); |
| 2988 } | 2910 } |
| 2989 | 2911 |
| 2990 | 2912 |
| 2991 Object* Heap::CopyFixedArray(FixedArray* src) { | 2913 Object* Heap::CopyFixedArray(FixedArray* src) { |
| 2992 int len = src->length(); | 2914 int len = src->length(); |
| 2993 Object* obj = AllocateRawFixedArray(len); | 2915 Object* obj = AllocateRawFixedArray(len); |
| 2994 if (obj->IsFailure()) return obj; | 2916 if (obj->IsFailure()) return obj; |
| 2995 if (Heap::InNewSpace(obj)) { | 2917 if (Heap::InNewSpace(obj)) { |
| 2996 HeapObject* dst = HeapObject::cast(obj); | 2918 HeapObject* dst = HeapObject::cast(obj); |
| 2997 CopyBlock(reinterpret_cast<Object**>(dst->address()), | 2919 CopyBlock(dst->address(), src->address(), FixedArray::SizeFor(len)); |
| 2998 reinterpret_cast<Object**>(src->address()), | |
| 2999 FixedArray::SizeFor(len)); | |
| 3000 return obj; | 2920 return obj; |
| 3001 } | 2921 } |
| 3002 HeapObject::cast(obj)->set_map(src->map()); | 2922 HeapObject::cast(obj)->set_map(src->map()); |
| 3003 FixedArray* result = FixedArray::cast(obj); | 2923 FixedArray* result = FixedArray::cast(obj); |
| 3004 result->set_length(len); | 2924 result->set_length(len); |
| 3005 | 2925 |
| 3006 // Copy the content | 2926 // Copy the content |
| 3007 AssertNoAllocation no_gc; | 2927 AssertNoAllocation no_gc; |
| 3008 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); | 2928 WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); |
| 3009 for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); | 2929 for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); |
| 3010 return result; | 2930 return result; |
| 3011 } | 2931 } |
| 3012 | 2932 |
| 3013 | 2933 |
| 3014 Object* Heap::AllocateFixedArray(int length) { | 2934 Object* Heap::AllocateFixedArray(int length) { |
| 3015 ASSERT(length >= 0); | 2935 ASSERT(length >= 0); |
| 3016 if (length == 0) return empty_fixed_array(); | 2936 if (length == 0) return empty_fixed_array(); |
| 3017 Object* result = AllocateRawFixedArray(length); | 2937 Object* result = AllocateRawFixedArray(length); |
| 3018 if (!result->IsFailure()) { | 2938 if (!result->IsFailure()) { |
| 3019 // Initialize header. | 2939 // Initialize header. |
| 3020 reinterpret_cast<Array*>(result)->set_map(fixed_array_map()); | 2940 FixedArray* array = reinterpret_cast<FixedArray*>(result); |
| 3021 FixedArray* array = FixedArray::cast(result); | 2941 array->set_map(fixed_array_map()); |
| 3022 array->set_length(length); | 2942 array->set_length(length); |
| 3023 // Initialize body. | 2943 // Initialize body. |
| 3024 ASSERT(!Heap::InNewSpace(undefined_value())); | 2944 ASSERT(!Heap::InNewSpace(undefined_value())); |
| 3025 MemsetPointer(array->data_start(), undefined_value(), length); | 2945 MemsetPointer(array->data_start(), undefined_value(), length); |
| 3026 } | 2946 } |
| 3027 return result; | 2947 return result; |
| 3028 } | 2948 } |
| 3029 | 2949 |
| 3030 | 2950 |
| 3031 Object* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) { | 2951 Object* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) { |
| 3032 if (length < 0 || length > FixedArray::kMaxLength) { | 2952 if (length < 0 || length > FixedArray::kMaxLength) { |
| 3033 return Failure::OutOfMemoryException(); | 2953 return Failure::OutOfMemoryException(); |
| 3034 } | 2954 } |
| 3035 | 2955 |
| 3036 AllocationSpace space = | 2956 AllocationSpace space = |
| 3037 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE; | 2957 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE; |
| 3038 int size = FixedArray::SizeFor(length); | 2958 int size = FixedArray::SizeFor(length); |
| 3039 if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) { | 2959 if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) { |
| 3040 // Too big for new space. | 2960 // Too big for new space. |
| 3041 space = LO_SPACE; | 2961 space = LO_SPACE; |
| 3042 } else if (space == OLD_POINTER_SPACE && | 2962 } else if (space == OLD_POINTER_SPACE && |
| 3043 size > MaxObjectSizeInPagedSpace()) { | 2963 size > MaxObjectSizeInPagedSpace()) { |
| 3044 // Too big for old pointer space. | 2964 // Too big for old pointer space. |
| 3045 space = LO_SPACE; | 2965 space = LO_SPACE; |
| 3046 } | 2966 } |
| 3047 | 2967 |
| 3048 // Specialize allocation for the space. | 2968 AllocationSpace retry_space = |
| 3049 Object* result = Failure::OutOfMemoryException(); | 2969 (size <= MaxObjectSizeInPagedSpace()) ? OLD_POINTER_SPACE : LO_SPACE; |
| 3050 if (space == NEW_SPACE) { | 2970 |
| 3051 // We cannot use Heap::AllocateRaw() because it will not properly | 2971 return AllocateRaw(size, space, retry_space); |
| 3052 // allocate extra remembered set bits if always_allocate() is true and | |
| 3053 // new space allocation fails. | |
| 3054 result = new_space_.AllocateRaw(size); | |
| 3055 if (result->IsFailure() && always_allocate()) { | |
| 3056 if (size <= MaxObjectSizeInPagedSpace()) { | |
| 3057 result = old_pointer_space_->AllocateRaw(size); | |
| 3058 } else { | |
| 3059 result = lo_space_->AllocateRawFixedArray(size); | |
| 3060 } | |
| 3061 } | |
| 3062 } else if (space == OLD_POINTER_SPACE) { | |
| 3063 result = old_pointer_space_->AllocateRaw(size); | |
| 3064 } else { | |
| 3065 ASSERT(space == LO_SPACE); | |
| 3066 result = lo_space_->AllocateRawFixedArray(size); | |
| 3067 } | |
| 3068 return result; | |
| 3069 } | 2972 } |
| 3070 | 2973 |
| 3071 | 2974 |
| 3072 static Object* AllocateFixedArrayWithFiller(int length, | 2975 static Object* AllocateFixedArrayWithFiller(int length, |
| 3073 PretenureFlag pretenure, | 2976 PretenureFlag pretenure, |
| 3074 Object* filler) { | 2977 Object* filler) { |
| 3075 ASSERT(length >= 0); | 2978 ASSERT(length >= 0); |
| 3076 ASSERT(Heap::empty_fixed_array()->IsFixedArray()); | 2979 ASSERT(Heap::empty_fixed_array()->IsFixedArray()); |
| 3077 if (length == 0) return Heap::empty_fixed_array(); | 2980 if (length == 0) return Heap::empty_fixed_array(); |
| 3078 | 2981 |
| (...skipping 27 matching lines...) Expand all Loading... | |
| 3106 | 3009 |
| 3107 reinterpret_cast<FixedArray*>(obj)->set_map(fixed_array_map()); | 3010 reinterpret_cast<FixedArray*>(obj)->set_map(fixed_array_map()); |
| 3108 FixedArray::cast(obj)->set_length(length); | 3011 FixedArray::cast(obj)->set_length(length); |
| 3109 return obj; | 3012 return obj; |
| 3110 } | 3013 } |
| 3111 | 3014 |
| 3112 | 3015 |
| 3113 Object* Heap::AllocateHashTable(int length, PretenureFlag pretenure) { | 3016 Object* Heap::AllocateHashTable(int length, PretenureFlag pretenure) { |
| 3114 Object* result = Heap::AllocateFixedArray(length, pretenure); | 3017 Object* result = Heap::AllocateFixedArray(length, pretenure); |
| 3115 if (result->IsFailure()) return result; | 3018 if (result->IsFailure()) return result; |
| 3116 reinterpret_cast<Array*>(result)->set_map(hash_table_map()); | 3019 reinterpret_cast<HeapObject*>(result)->set_map(hash_table_map()); |
| 3117 ASSERT(result->IsHashTable()); | 3020 ASSERT(result->IsHashTable()); |
| 3118 return result; | 3021 return result; |
| 3119 } | 3022 } |
| 3120 | 3023 |
| 3121 | 3024 |
| 3122 Object* Heap::AllocateGlobalContext() { | 3025 Object* Heap::AllocateGlobalContext() { |
| 3123 Object* result = Heap::AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS); | 3026 Object* result = Heap::AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS); |
| 3124 if (result->IsFailure()) return result; | 3027 if (result->IsFailure()) return result; |
| 3125 Context* context = reinterpret_cast<Context*>(result); | 3028 Context* context = reinterpret_cast<Context*>(result); |
| 3126 context->set_map(global_context_map()); | 3029 context->set_map(global_context_map()); |
| (...skipping 231 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 3358 return cell_space_->Contains(addr); | 3261 return cell_space_->Contains(addr); |
| 3359 case LO_SPACE: | 3262 case LO_SPACE: |
| 3360 return lo_space_->SlowContains(addr); | 3263 return lo_space_->SlowContains(addr); |
| 3361 } | 3264 } |
| 3362 | 3265 |
| 3363 return false; | 3266 return false; |
| 3364 } | 3267 } |
| 3365 | 3268 |
| 3366 | 3269 |
| 3367 #ifdef DEBUG | 3270 #ifdef DEBUG |
| 3271 static void DummyScavengePointer(HeapObject** p) { | |
| 3272 } | |
| 3273 | |
| 3274 | |
| 3275 static void VerifyPointersUnderWatermark( | |
| 3276 PagedSpace* space, | |
| 3277 DirtyRegionCallback visit_dirty_region) { | |
| 3278 PageIterator it(space, PageIterator::PAGES_IN_USE); | |
| 3279 | |
| 3280 while (it.has_next()) { | |
| 3281 Page* page = it.next(); | |
| 3282 Address start = page->ObjectAreaStart(); | |
| 3283 Address end = page->AllocationWatermark(); | |
| 3284 | |
| 3285 Heap::IterateDirtyRegions(Page::kAllRegionsDirtyMarks, | |
| 3286 start, | |
| 3287 end, | |
| 3288 visit_dirty_region, | |
| 3289 &DummyScavengePointer); | |
| 3290 } | |
| 3291 } | |
| 3292 | |
| 3293 | |
| 3294 static void VerifyPointersUnderWatermark(LargeObjectSpace* space) { | |
| 3295 LargeObjectIterator it(space); | |
| 3296 for (HeapObject* object = it.next(); object != NULL; object = it.next()) { | |
| 3297 if (object->IsFixedArray()) { | |
| 3298 Address slot_address = object->address(); | |
| 3299 Address end = object->address() + object->Size(); | |
| 3300 | |
| 3301 while (slot_address < end) { | |
| 3302 HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address); | |
| 3303 // When we are not in GC the Heap::InNewSpace() predicate | |
| 3304 // checks that pointers which satisfy predicate point into | |
| 3305 // the active semispace. | |
| 3306 Heap::InNewSpace(*slot); | |
| 3307 slot_address += kPointerSize; | |
| 3308 } | |
| 3309 } | |
| 3310 } | |
| 3311 } | |
| 3312 | |
| 3313 | |
| 3368 void Heap::Verify() { | 3314 void Heap::Verify() { |
| 3369 ASSERT(HasBeenSetup()); | 3315 ASSERT(HasBeenSetup()); |
| 3370 | 3316 |
| 3371 VerifyPointersVisitor visitor; | 3317 VerifyPointersVisitor visitor; |
| 3372 IterateRoots(&visitor, VISIT_ONLY_STRONG); | 3318 IterateRoots(&visitor, VISIT_ONLY_STRONG); |
| 3373 | 3319 |
| 3374 new_space_.Verify(); | 3320 new_space_.Verify(); |
| 3375 | 3321 |
| 3376 VerifyPointersAndRSetVisitor rset_visitor; | 3322 VerifyPointersAndDirtyRegionsVisitor dirty_regions_visitor; |
| 3377 old_pointer_space_->Verify(&rset_visitor); | 3323 old_pointer_space_->Verify(&dirty_regions_visitor); |
| 3378 map_space_->Verify(&rset_visitor); | 3324 map_space_->Verify(&dirty_regions_visitor); |
| 3379 | 3325 |
| 3380 VerifyPointersVisitor no_rset_visitor; | 3326 VerifyPointersUnderWatermark(old_pointer_space_, |
| 3381 old_data_space_->Verify(&no_rset_visitor); | 3327 &IteratePointersInDirtyRegion); |
| 3382 code_space_->Verify(&no_rset_visitor); | 3328 VerifyPointersUnderWatermark(map_space_, |
| 3383 cell_space_->Verify(&no_rset_visitor); | 3329 &IteratePointersInDirtyMapsRegion); |
| 3330 VerifyPointersUnderWatermark(lo_space_); | |
| 3331 | |
|
Vyacheslav Egorov (Chromium)
2010/05/21 11:12:26
Improved heap verification here. Now all regions a
| |
| 3332 VerifyPageWatermarkValidity(old_pointer_space_, ALL_INVALID); | |
| 3333 VerifyPageWatermarkValidity(map_space_, ALL_INVALID); | |
| 3334 | |
| 3335 VerifyPointersVisitor no_dirty_regions_visitor; | |
| 3336 old_data_space_->Verify(&no_dirty_regions_visitor); | |
| 3337 code_space_->Verify(&no_dirty_regions_visitor); | |
| 3338 cell_space_->Verify(&no_dirty_regions_visitor); | |
| 3384 | 3339 |
| 3385 lo_space_->Verify(); | 3340 lo_space_->Verify(); |
| 3386 } | 3341 } |
| 3387 #endif // DEBUG | 3342 #endif // DEBUG |
| 3388 | 3343 |
| 3389 | 3344 |
| 3390 Object* Heap::LookupSymbol(Vector<const char> string) { | 3345 Object* Heap::LookupSymbol(Vector<const char> string) { |
| 3391 Object* symbol = NULL; | 3346 Object* symbol = NULL; |
| 3392 Object* new_table = symbol_table()->LookupSymbol(string, &symbol); | 3347 Object* new_table = symbol_table()->LookupSymbol(string, &symbol); |
| 3393 if (new_table->IsFailure()) return new_table; | 3348 if (new_table->IsFailure()) return new_table; |
| (...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 3426 ASSERT(reinterpret_cast<Object*>(kFromSpaceZapValue)->IsHeapObject()); | 3381 ASSERT(reinterpret_cast<Object*>(kFromSpaceZapValue)->IsHeapObject()); |
| 3427 for (Address a = new_space_.FromSpaceLow(); | 3382 for (Address a = new_space_.FromSpaceLow(); |
| 3428 a < new_space_.FromSpaceHigh(); | 3383 a < new_space_.FromSpaceHigh(); |
| 3429 a += kPointerSize) { | 3384 a += kPointerSize) { |
| 3430 Memory::Address_at(a) = kFromSpaceZapValue; | 3385 Memory::Address_at(a) = kFromSpaceZapValue; |
| 3431 } | 3386 } |
| 3432 } | 3387 } |
| 3433 #endif // DEBUG | 3388 #endif // DEBUG |
| 3434 | 3389 |
| 3435 | 3390 |
| 3436 int Heap::IterateRSetRange(Address object_start, | 3391 bool Heap::IteratePointersInDirtyRegion(Address start, |
| 3437 Address object_end, | 3392 Address end, |
| 3438 Address rset_start, | 3393 ObjectSlotCallback copy_object_func) { |
| 3439 ObjectSlotCallback copy_object_func) { | 3394 Address slot_address = start; |
| 3440 Address object_address = object_start; | 3395 bool pointers_to_new_space_found = false; |
| 3441 Address rset_address = rset_start; | 3396 |
| 3442 int set_bits_count = 0; | 3397 while (slot_address < end) { |
| 3443 | 3398 Object** slot = reinterpret_cast<Object**>(slot_address); |
| 3444 // Loop over all the pointers in [object_start, object_end). | 3399 if (Heap::InNewSpace(*slot)) { |
| 3445 while (object_address < object_end) { | 3400 ASSERT((*slot)->IsHeapObject()); |
| 3446 uint32_t rset_word = Memory::uint32_at(rset_address); | 3401 copy_object_func(reinterpret_cast<HeapObject**>(slot)); |
| 3447 if (rset_word != 0) { | 3402 if (Heap::InNewSpace(*slot)) { |
| 3448 uint32_t result_rset = rset_word; | 3403 ASSERT((*slot)->IsHeapObject()); |
| 3449 for (uint32_t bitmask = 1; bitmask != 0; bitmask = bitmask << 1) { | 3404 pointers_to_new_space_found = true; |
| 3450 // Do not dereference pointers at or past object_end. | 3405 } |
| 3451 if ((rset_word & bitmask) != 0 && object_address < object_end) { | 3406 } |
| 3452 Object** object_p = reinterpret_cast<Object**>(object_address); | 3407 slot_address += kPointerSize; |
| 3453 if (Heap::InNewSpace(*object_p)) { | 3408 } |
| 3454 copy_object_func(reinterpret_cast<HeapObject**>(object_p)); | 3409 return pointers_to_new_space_found; |
| 3455 } | 3410 } |
| 3456 // If this pointer does not need to be remembered anymore, clear | 3411 |
| 3457 // the remembered set bit. | 3412 |
| 3458 if (!Heap::InNewSpace(*object_p)) result_rset &= ~bitmask; | 3413 // Compute start address of the first map following given addr. |
| 3459 set_bits_count++; | 3414 static inline Address MapStartAlign(Address addr) { |
| 3460 } | 3415 Address page = Page::FromAddress(addr)->ObjectAreaStart(); |
| 3461 object_address += kPointerSize; | 3416 return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize); |
| 3462 } | 3417 } |
| 3463 // Update the remembered set if it has changed. | 3418 |
| 3464 if (result_rset != rset_word) { | 3419 |
| 3465 Memory::uint32_at(rset_address) = result_rset; | 3420 // Compute end address of the first map preceding given addr. |
| 3466 } | 3421 static inline Address MapEndAlign(Address addr) { |
| 3467 } else { | 3422 Address page = Page::FromAllocationTop(addr)->ObjectAreaStart(); |
| 3468 // No bits in the word were set. This is the common case. | 3423 return page + ((addr - page) / Map::kSize * Map::kSize); |
| 3469 object_address += kPointerSize * kBitsPerInt; | 3424 } |
| 3470 } | 3425 |
| 3471 rset_address += kIntSize; | 3426 |
| 3472 } | 3427 static bool IteratePointersInDirtyMaps(Address start, |
| 3473 return set_bits_count; | 3428 Address end, |
| 3474 } | 3429 ObjectSlotCallback copy_object_func) { |
| 3475 | 3430 ASSERT(MapStartAlign(start) == start); |
| 3476 | 3431 ASSERT(MapEndAlign(end) == end); |
| 3477 void Heap::IterateRSet(PagedSpace* space, ObjectSlotCallback copy_object_func) { | 3432 |
| 3478 ASSERT(Page::is_rset_in_use()); | 3433 Address map_address = start; |
| 3479 ASSERT(space == old_pointer_space_ || space == map_space_); | 3434 bool pointers_to_new_space_found = false; |
| 3480 | 3435 |
| 3481 static void* paged_rset_histogram = StatsTable::CreateHistogram( | 3436 while (map_address < end) { |
| 3482 "V8.RSetPaged", | 3437 ASSERT(!Heap::InNewSpace(Memory::Object_at(map_address))); |
| 3483 0, | 3438 ASSERT(Memory::Object_at(map_address)->IsMap()); |
| 3484 Page::kObjectAreaSize / kPointerSize, | 3439 |
| 3485 30); | 3440 Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset; |
| 3441 Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset; | |
| 3442 | |
| 3443 if (Heap::IteratePointersInDirtyRegion(pointer_fields_start, | |
| 3444 pointer_fields_end, | |
| 3445 copy_object_func)) { | |
| 3446 pointers_to_new_space_found = true; | |
| 3447 } | |
| 3448 | |
| 3449 map_address += Map::kSize; | |
| 3450 } | |
| 3451 | |
| 3452 return pointers_to_new_space_found; | |
| 3453 } | |
| 3454 | |
| 3455 | |
| 3456 bool Heap::IteratePointersInDirtyMapsRegion( | |
| 3457 Address start, | |
| 3458 Address end, | |
| 3459 ObjectSlotCallback copy_object_func) { | |
| 3460 Address map_aligned_start = MapStartAlign(start); | |
| 3461 Address map_aligned_end = MapEndAlign(end); | |
| 3462 | |
| 3463 bool contains_pointers_to_new_space = false; | |
| 3464 | |
| 3465 if (map_aligned_start != start) { | |
| 3466 Address prev_map = map_aligned_start - Map::kSize; | |
| 3467 ASSERT(Memory::Object_at(prev_map)->IsMap()); | |
| 3468 | |
| 3469 Address pointer_fields_start = | |
| 3470 Max(start, prev_map + Map::kPointerFieldsBeginOffset); | |
| 3471 | |
| 3472 Address pointer_fields_end = | |
| 3473 Min(prev_map + Map::kCodeCacheOffset + kPointerSize, end); | |
| 3474 | |
| 3475 contains_pointers_to_new_space = | |
| 3476 IteratePointersInDirtyRegion(pointer_fields_start, | |
| 3477 pointer_fields_end, | |
| 3478 copy_object_func) | |
| 3479 || contains_pointers_to_new_space; | |
| 3480 } | |
| 3481 | |
| 3482 contains_pointers_to_new_space = | |
| 3483 IteratePointersInDirtyMaps(map_aligned_start, | |
| 3484 map_aligned_end, | |
| 3485 copy_object_func) | |
| 3486 || contains_pointers_to_new_space; | |
| 3487 | |
| 3488 if (map_aligned_end != end) { | |
| 3489 ASSERT(Memory::Object_at(map_aligned_end)->IsMap()); | |
| 3490 | |
| 3491 Address pointer_fields_start = map_aligned_end + Map::kPrototypeOffset; | |
| 3492 | |
| 3493 Address pointer_fields_end = | |
| 3494 Min(end, map_aligned_end + Map::kCodeCacheOffset + kPointerSize); | |
| 3495 | |
| 3496 contains_pointers_to_new_space = | |
| 3497 IteratePointersInDirtyRegion(pointer_fields_start, | |
| 3498 pointer_fields_end, | |
| 3499 copy_object_func) | |
| 3500 || contains_pointers_to_new_space; | |
| 3501 } | |
| 3502 | |
| 3503 return contains_pointers_to_new_space; | |
| 3504 } | |
| 3505 | |
| 3506 | |
| 3507 void Heap::IterateAndMarkPointersToNewSpace(Address start, | |
| 3508 Address end, | |
| 3509 ObjectSlotCallback callback) { | |
| 3510 Address slot_address = start; | |
| 3511 Page* page = Page::FromAddress(start); | |
| 3512 | |
| 3513 uint32_t marks = page->GetRegionMarks(); | |
| 3514 | |
| 3515 while (slot_address < end) { | |
| 3516 Object** slot = reinterpret_cast<Object**>(slot_address); | |
| 3517 if (Heap::InNewSpace(*slot)) { | |
| 3518 ASSERT((*slot)->IsHeapObject()); | |
| 3519 callback(reinterpret_cast<HeapObject**>(slot)); | |
| 3520 if (Heap::InNewSpace(*slot)) { | |
| 3521 ASSERT((*slot)->IsHeapObject()); | |
| 3522 marks |= page->GetRegionMaskForAddress(slot_address); | |
| 3523 } | |
| 3524 } | |
| 3525 slot_address += kPointerSize; | |
| 3526 } | |
| 3527 | |
| 3528 page->SetRegionMarks(marks); | |
| 3529 } | |
| 3530 | |
| 3531 | |
| 3532 uint32_t Heap::IterateDirtyRegions( | |
| 3533 uint32_t marks, | |
| 3534 Address area_start, | |
| 3535 Address area_end, | |
| 3536 DirtyRegionCallback visit_dirty_region, | |
| 3537 ObjectSlotCallback copy_object_func) { | |
| 3538 uint32_t newmarks = 0; | |
| 3539 uint32_t mask = 1; | |
| 3540 | |
| 3541 if (area_start >= area_end) { | |
| 3542 return newmarks; | |
| 3543 } | |
| 3544 | |
| 3545 Address region_start = area_start; | |
| 3546 | |
| 3547 // area_start does not necessarily coincide with start of the first region. | |
| 3548 // Thus to calculate the beginning of the next region we have to align | |
| 3549 // area_start by Page::kRegionSize. | |
| 3550 Address second_region = | |
| 3551 reinterpret_cast<Address>( | |
| 3552 reinterpret_cast<intptr_t>(area_start + Page::kRegionSize) & | |
| 3553 ~Page::kRegionAlignmentMask); | |
| 3554 | |
| 3555 // Next region might be beyond area_end. | |
| 3556 Address region_end = Min(second_region, area_end); | |
| 3557 | |
| 3558 if (marks & mask) { | |
| 3559 if (visit_dirty_region(region_start, region_end, copy_object_func)) { | |
| 3560 newmarks |= mask; | |
| 3561 } | |
| 3562 } | |
| 3563 mask <<= 1; | |
| 3564 | |
| 3565 // Iterate subsequent regions which fully lay inside [area_start, area_end[. | |
| 3566 region_start = region_end; | |
| 3567 region_end = region_start + Page::kRegionSize; | |
| 3568 | |
| 3569 while (region_end <= area_end) { | |
| 3570 if (marks & mask) { | |
| 3571 if (visit_dirty_region(region_start, region_end, copy_object_func)) { | |
| 3572 newmarks |= mask; | |
| 3573 } | |
| 3574 } | |
| 3575 | |
| 3576 region_start = region_end; | |
| 3577 region_end = region_start + Page::kRegionSize; | |
| 3578 | |
| 3579 mask <<= 1; | |
| 3580 } | |
| 3581 | |
| 3582 if (region_start != area_end) { | |
| 3583 // A small piece of area left uniterated because area_end does not coincide | |
| 3584 // with region end. Check whether region covering last part of area is | |
| 3585 // dirty. | |
| 3586 if (marks & mask) { | |
| 3587 if (visit_dirty_region(region_start, area_end, copy_object_func)) { | |
| 3588 newmarks |= mask; | |
| 3589 } | |
| 3590 } | |
| 3591 } | |
| 3592 | |
| 3593 return newmarks; | |
| 3594 } | |
| 3595 | |
| 3596 | |
| 3597 | |
| 3598 void Heap::IterateDirtyRegions( | |
| 3599 PagedSpace* space, | |
| 3600 DirtyRegionCallback visit_dirty_region, | |
| 3601 ObjectSlotCallback copy_object_func, | |
| 3602 ExpectedPageWatermarkState expected_page_watermark_state) { | |
| 3486 | 3603 |
| 3487 PageIterator it(space, PageIterator::PAGES_IN_USE); | 3604 PageIterator it(space, PageIterator::PAGES_IN_USE); |
| 3605 | |
| 3488 while (it.has_next()) { | 3606 while (it.has_next()) { |
| 3489 Page* page = it.next(); | 3607 Page* page = it.next(); |
| 3490 int count = IterateRSetRange(page->ObjectAreaStart(), page->AllocationTop(), | 3608 uint32_t marks = page->GetRegionMarks(); |
| 3491 page->RSetStart(), copy_object_func); | 3609 |
| 3492 if (paged_rset_histogram != NULL) { | 3610 if (marks != Page::kAllRegionsCleanMarks) { |
| 3493 StatsTable::AddHistogramSample(paged_rset_histogram, count); | 3611 Address start = page->ObjectAreaStart(); |
| 3494 } | 3612 |
| 3495 } | 3613 // Do not try to visit pointers beyond page allocation watermark. |
| 3496 } | 3614 // Page can contain garbage pointers there. |
| 3497 | 3615 Address end; |
| 3616 | |
| 3617 if ((expected_page_watermark_state == WATERMARK_SHOULD_BE_VALID) || | |
| 3618 page->IsWatermarkValid()) { | |
| 3619 end = page->AllocationWatermark(); | |
| 3620 } else { | |
| 3621 end = page->CachedAllocationWatermark(); | |
| 3622 } | |
| 3623 | |
| 3624 ASSERT(space == old_pointer_space_ || | |
| 3625 (space == map_space_ && | |
| 3626 ((page->ObjectAreaStart() - end) % Map::kSize == 0))); | |
| 3627 | |
| 3628 page->SetRegionMarks(IterateDirtyRegions(marks, | |
| 3629 start, | |
| 3630 end, | |
| 3631 visit_dirty_region, | |
| 3632 copy_object_func)); | |
| 3633 } | |
| 3634 | |
| 3635 // Mark page watermark as invalid to maintain watermark validity invariant. | |
| 3636 // See Page::FlipMeaningOfInvalidatedWatermarkFlag() for details. | |
| 3637 page->InvalidateWatermark(true); | |
| 3638 } | |
| 3639 } | |
| 3640 | |
| 3498 | 3641 |
| 3499 void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) { | 3642 void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) { |
| 3500 IterateStrongRoots(v, mode); | 3643 IterateStrongRoots(v, mode); |
| 3501 IterateWeakRoots(v, mode); | 3644 IterateWeakRoots(v, mode); |
| 3502 } | 3645 } |
| 3503 | 3646 |
| 3504 | 3647 |
| 3505 void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) { | 3648 void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) { |
| 3506 v->VisitPointer(reinterpret_cast<Object**>(&roots_[kSymbolTableRootIndex])); | 3649 v->VisitPointer(reinterpret_cast<Object**>(&roots_[kSymbolTableRootIndex])); |
| 3507 v->Synchronize("symbol_table"); | 3650 v->Synchronize("symbol_table"); |
| (...skipping 993 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
| 4501 void ExternalStringTable::TearDown() { | 4644 void ExternalStringTable::TearDown() { |
| 4502 new_space_strings_.Free(); | 4645 new_space_strings_.Free(); |
| 4503 old_space_strings_.Free(); | 4646 old_space_strings_.Free(); |
| 4504 } | 4647 } |
| 4505 | 4648 |
| 4506 | 4649 |
| 4507 List<Object*> ExternalStringTable::new_space_strings_; | 4650 List<Object*> ExternalStringTable::new_space_strings_; |
| 4508 List<Object*> ExternalStringTable::old_space_strings_; | 4651 List<Object*> ExternalStringTable::old_space_strings_; |
| 4509 | 4652 |
| 4510 } } // namespace v8::internal | 4653 } } // namespace v8::internal |
| OLD | NEW |