| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. | |
| 2 // All Rights Reserved. | |
| 3 // | |
| 4 // Redistribution and use in source and binary forms, with or without | |
| 5 // modification, are permitted provided that the following conditions | |
| 6 // are met: | |
| 7 // | |
| 8 // - Redistributions of source code must retain the above copyright notice, | |
| 9 // this list of conditions and the following disclaimer. | |
| 10 // | |
| 11 // - Redistribution in binary form must reproduce the above copyright | |
| 12 // notice, this list of conditions and the following disclaimer in the | |
| 13 // documentation and/or other materials provided with the | |
| 14 // distribution. | |
| 15 // | |
| 16 // - Neither the name of Sun Microsystems or the names of contributors may | |
| 17 // be used to endorse or promote products derived from this software without | |
| 18 // specific prior written permission. | |
| 19 // | |
| 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
| 23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
| 24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
| 25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
| 26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
| 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
| 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | |
| 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
| 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | |
| 31 // OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 32 | |
| 33 // The original source code covered by the above license above has been | |
| 34 // modified significantly by Google Inc. | |
| 35 // Copyright 2010 the V8 project authors. All rights reserved. | |
| 36 | |
| 37 #include "v8.h" | |
| 38 | |
| 39 #include "arm/assembler-thumb2-inl.h" | |
| 40 #include "serialize.h" | |
| 41 | |
| 42 namespace v8 { | |
| 43 namespace internal { | |
| 44 | |
| 45 // Safe default is no features. | |
| 46 unsigned CpuFeatures::supported_ = 0; | |
| 47 unsigned CpuFeatures::enabled_ = 0; | |
| 48 unsigned CpuFeatures::found_by_runtime_probing_ = 0; | |
| 49 | |
| 50 void CpuFeatures::Probe() { | |
| 51 // If the compiler is allowed to use vfp then we can use vfp too in our | |
| 52 // code generation. | |
| 53 #if !defined(__arm__) | |
| 54 // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is enabled. | |
| 55 if (FLAG_enable_vfp3) { | |
| 56 supported_ |= 1u << VFP3; | |
| 57 } | |
| 58 // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled | |
| 59 if (FLAG_enable_armv7) { | |
| 60 supported_ |= 1u << ARMv7; | |
| 61 } | |
| 62 #else | |
| 63 if (Serializer::enabled()) { | |
| 64 supported_ |= OS::CpuFeaturesImpliedByPlatform(); | |
| 65 return; // No features if we might serialize. | |
| 66 } | |
| 67 | |
| 68 if (OS::ArmCpuHasFeature(VFP3)) { | |
| 69 // This implementation also sets the VFP flags if | |
| 70 // runtime detection of VFP returns true. | |
| 71 supported_ |= 1u << VFP3; | |
| 72 found_by_runtime_probing_ |= 1u << VFP3; | |
| 73 } | |
| 74 | |
| 75 if (OS::ArmCpuHasFeature(ARMv7)) { | |
| 76 supported_ |= 1u << ARMv7; | |
| 77 found_by_runtime_probing_ |= 1u << ARMv7; | |
| 78 } | |
| 79 #endif | |
| 80 } | |
| 81 | |
| 82 | |
| 83 // ----------------------------------------------------------------------------- | |
| 84 // Implementation of Register and CRegister | |
| 85 | |
| 86 Register no_reg = { -1 }; | |
| 87 | |
| 88 Register r0 = { 0 }; | |
| 89 Register r1 = { 1 }; | |
| 90 Register r2 = { 2 }; | |
| 91 Register r3 = { 3 }; | |
| 92 Register r4 = { 4 }; | |
| 93 Register r5 = { 5 }; | |
| 94 Register r6 = { 6 }; | |
| 95 Register r7 = { 7 }; | |
| 96 Register r8 = { 8 }; // Used as context register. | |
| 97 Register r9 = { 9 }; | |
| 98 Register r10 = { 10 }; // Used as roots register. | |
| 99 Register fp = { 11 }; | |
| 100 Register ip = { 12 }; | |
| 101 Register sp = { 13 }; | |
| 102 Register lr = { 14 }; | |
| 103 Register pc = { 15 }; | |
| 104 | |
| 105 | |
| 106 CRegister no_creg = { -1 }; | |
| 107 | |
| 108 CRegister cr0 = { 0 }; | |
| 109 CRegister cr1 = { 1 }; | |
| 110 CRegister cr2 = { 2 }; | |
| 111 CRegister cr3 = { 3 }; | |
| 112 CRegister cr4 = { 4 }; | |
| 113 CRegister cr5 = { 5 }; | |
| 114 CRegister cr6 = { 6 }; | |
| 115 CRegister cr7 = { 7 }; | |
| 116 CRegister cr8 = { 8 }; | |
| 117 CRegister cr9 = { 9 }; | |
| 118 CRegister cr10 = { 10 }; | |
| 119 CRegister cr11 = { 11 }; | |
| 120 CRegister cr12 = { 12 }; | |
| 121 CRegister cr13 = { 13 }; | |
| 122 CRegister cr14 = { 14 }; | |
| 123 CRegister cr15 = { 15 }; | |
| 124 | |
| 125 // Support for the VFP registers s0 to s31 (d0 to d15). | |
| 126 // Note that "sN:sM" is the same as "dN/2". | |
| 127 SwVfpRegister s0 = { 0 }; | |
| 128 SwVfpRegister s1 = { 1 }; | |
| 129 SwVfpRegister s2 = { 2 }; | |
| 130 SwVfpRegister s3 = { 3 }; | |
| 131 SwVfpRegister s4 = { 4 }; | |
| 132 SwVfpRegister s5 = { 5 }; | |
| 133 SwVfpRegister s6 = { 6 }; | |
| 134 SwVfpRegister s7 = { 7 }; | |
| 135 SwVfpRegister s8 = { 8 }; | |
| 136 SwVfpRegister s9 = { 9 }; | |
| 137 SwVfpRegister s10 = { 10 }; | |
| 138 SwVfpRegister s11 = { 11 }; | |
| 139 SwVfpRegister s12 = { 12 }; | |
| 140 SwVfpRegister s13 = { 13 }; | |
| 141 SwVfpRegister s14 = { 14 }; | |
| 142 SwVfpRegister s15 = { 15 }; | |
| 143 SwVfpRegister s16 = { 16 }; | |
| 144 SwVfpRegister s17 = { 17 }; | |
| 145 SwVfpRegister s18 = { 18 }; | |
| 146 SwVfpRegister s19 = { 19 }; | |
| 147 SwVfpRegister s20 = { 20 }; | |
| 148 SwVfpRegister s21 = { 21 }; | |
| 149 SwVfpRegister s22 = { 22 }; | |
| 150 SwVfpRegister s23 = { 23 }; | |
| 151 SwVfpRegister s24 = { 24 }; | |
| 152 SwVfpRegister s25 = { 25 }; | |
| 153 SwVfpRegister s26 = { 26 }; | |
| 154 SwVfpRegister s27 = { 27 }; | |
| 155 SwVfpRegister s28 = { 28 }; | |
| 156 SwVfpRegister s29 = { 29 }; | |
| 157 SwVfpRegister s30 = { 30 }; | |
| 158 SwVfpRegister s31 = { 31 }; | |
| 159 | |
| 160 DwVfpRegister d0 = { 0 }; | |
| 161 DwVfpRegister d1 = { 1 }; | |
| 162 DwVfpRegister d2 = { 2 }; | |
| 163 DwVfpRegister d3 = { 3 }; | |
| 164 DwVfpRegister d4 = { 4 }; | |
| 165 DwVfpRegister d5 = { 5 }; | |
| 166 DwVfpRegister d6 = { 6 }; | |
| 167 DwVfpRegister d7 = { 7 }; | |
| 168 DwVfpRegister d8 = { 8 }; | |
| 169 DwVfpRegister d9 = { 9 }; | |
| 170 DwVfpRegister d10 = { 10 }; | |
| 171 DwVfpRegister d11 = { 11 }; | |
| 172 DwVfpRegister d12 = { 12 }; | |
| 173 DwVfpRegister d13 = { 13 }; | |
| 174 DwVfpRegister d14 = { 14 }; | |
| 175 DwVfpRegister d15 = { 15 }; | |
| 176 | |
| 177 // ----------------------------------------------------------------------------- | |
| 178 // Implementation of RelocInfo | |
| 179 | |
| 180 const int RelocInfo::kApplyMask = 0; | |
| 181 | |
| 182 | |
| 183 void RelocInfo::PatchCode(byte* instructions, int instruction_count) { | |
| 184 // Patch the code at the current address with the supplied instructions. | |
| 185 Instr* pc = reinterpret_cast<Instr*>(pc_); | |
| 186 Instr* instr = reinterpret_cast<Instr*>(instructions); | |
| 187 for (int i = 0; i < instruction_count; i++) { | |
| 188 *(pc + i) = *(instr + i); | |
| 189 } | |
| 190 | |
| 191 // Indicate that code has changed. | |
| 192 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); | |
| 193 } | |
| 194 | |
| 195 | |
| 196 // Patch the code at the current PC with a call to the target address. | |
| 197 // Additional guard instructions can be added if required. | |
| 198 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { | |
| 199 // Patch the code at the current address with a call to the target. | |
| 200 UNIMPLEMENTED(); | |
| 201 } | |
| 202 | |
| 203 | |
| 204 // ----------------------------------------------------------------------------- | |
| 205 // Implementation of Operand and MemOperand | |
| 206 // See assembler-thumb2-inl.h for inlined constructors | |
| 207 | |
| 208 Operand::Operand(Handle<Object> handle) { | |
| 209 rm_ = no_reg; | |
| 210 // Verify all Objects referred by code are NOT in new space. | |
| 211 Object* obj = *handle; | |
| 212 ASSERT(!Heap::InNewSpace(obj)); | |
| 213 if (obj->IsHeapObject()) { | |
| 214 imm32_ = reinterpret_cast<intptr_t>(handle.location()); | |
| 215 rmode_ = RelocInfo::EMBEDDED_OBJECT; | |
| 216 } else { | |
| 217 // no relocation needed | |
| 218 imm32_ = reinterpret_cast<intptr_t>(obj); | |
| 219 rmode_ = RelocInfo::NONE; | |
| 220 } | |
| 221 } | |
| 222 | |
| 223 | |
| 224 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { | |
| 225 ASSERT(is_uint5(shift_imm)); | |
| 226 ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it | |
| 227 rm_ = rm; | |
| 228 rs_ = no_reg; | |
| 229 shift_op_ = shift_op; | |
| 230 shift_imm_ = shift_imm & 31; | |
| 231 if (shift_op == RRX) { | |
| 232 // encoded as ROR with shift_imm == 0 | |
| 233 ASSERT(shift_imm == 0); | |
| 234 shift_op_ = ROR; | |
| 235 shift_imm_ = 0; | |
| 236 } | |
| 237 } | |
| 238 | |
| 239 | |
| 240 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { | |
| 241 ASSERT(shift_op != RRX); | |
| 242 rm_ = rm; | |
| 243 rs_ = no_reg; | |
| 244 shift_op_ = shift_op; | |
| 245 rs_ = rs; | |
| 246 } | |
| 247 | |
| 248 | |
| 249 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) { | |
| 250 rn_ = rn; | |
| 251 rm_ = no_reg; | |
| 252 offset_ = offset; | |
| 253 am_ = am; | |
| 254 } | |
| 255 | |
| 256 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) { | |
| 257 rn_ = rn; | |
| 258 rm_ = rm; | |
| 259 shift_op_ = LSL; | |
| 260 shift_imm_ = 0; | |
| 261 am_ = am; | |
| 262 } | |
| 263 | |
| 264 | |
| 265 MemOperand::MemOperand(Register rn, Register rm, | |
| 266 ShiftOp shift_op, int shift_imm, AddrMode am) { | |
| 267 ASSERT(is_uint5(shift_imm)); | |
| 268 rn_ = rn; | |
| 269 rm_ = rm; | |
| 270 shift_op_ = shift_op; | |
| 271 shift_imm_ = shift_imm & 31; | |
| 272 am_ = am; | |
| 273 } | |
| 274 | |
| 275 | |
| 276 // ----------------------------------------------------------------------------- | |
| 277 // Implementation of Assembler. | |
| 278 | |
| 279 // Instruction encoding bits. | |
| 280 enum { | |
| 281 H = 1 << 5, // halfword (or byte) | |
| 282 S6 = 1 << 6, // signed (or unsigned) | |
| 283 L = 1 << 20, // load (or store) | |
| 284 S = 1 << 20, // set condition code (or leave unchanged) | |
| 285 W = 1 << 21, // writeback base register (or leave unchanged) | |
| 286 A = 1 << 21, // accumulate in multiply instruction (or not) | |
| 287 B = 1 << 22, // unsigned byte (or word) | |
| 288 N = 1 << 22, // long (or short) | |
| 289 U = 1 << 23, // positive (or negative) offset/index | |
| 290 P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing) | |
| 291 I = 1 << 25, // immediate shifter operand (or not) | |
| 292 | |
| 293 B4 = 1 << 4, | |
| 294 B5 = 1 << 5, | |
| 295 B6 = 1 << 6, | |
| 296 B7 = 1 << 7, | |
| 297 B8 = 1 << 8, | |
| 298 B9 = 1 << 9, | |
| 299 B12 = 1 << 12, | |
| 300 B16 = 1 << 16, | |
| 301 B18 = 1 << 18, | |
| 302 B19 = 1 << 19, | |
| 303 B20 = 1 << 20, | |
| 304 B21 = 1 << 21, | |
| 305 B22 = 1 << 22, | |
| 306 B23 = 1 << 23, | |
| 307 B24 = 1 << 24, | |
| 308 B25 = 1 << 25, | |
| 309 B26 = 1 << 26, | |
| 310 B27 = 1 << 27, | |
| 311 | |
| 312 // Instruction bit masks. | |
| 313 RdMask = 15 << 12, // in str instruction | |
| 314 CondMask = 15 << 28, | |
| 315 CoprocessorMask = 15 << 8, | |
| 316 OpCodeMask = 15 << 21, // in data-processing instructions | |
| 317 Imm24Mask = (1 << 24) - 1, | |
| 318 Off12Mask = (1 << 12) - 1, | |
| 319 // Reserved condition. | |
| 320 nv = 15 << 28 | |
| 321 }; | |
| 322 | |
| 323 | |
| 324 // add(sp, sp, 4) instruction (aka Pop()) | |
| 325 static const Instr kPopInstruction = | |
| 326 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; | |
| 327 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) | |
| 328 // register r is not encoded. | |
| 329 static const Instr kPushRegPattern = | |
| 330 al | B26 | 4 | NegPreIndex | sp.code() * B16; | |
| 331 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) | |
| 332 // register r is not encoded. | |
| 333 static const Instr kPopRegPattern = | |
| 334 al | B26 | L | 4 | PostIndex | sp.code() * B16; | |
| 335 // mov lr, pc | |
| 336 const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12; | |
| 337 // ldr pc, [pc, #XXX] | |
| 338 const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16; | |
| 339 | |
| 340 // Spare buffer. | |
| 341 static const int kMinimalBufferSize = 4*KB; | |
| 342 static byte* spare_buffer_ = NULL; | |
| 343 | |
| 344 Assembler::Assembler(void* buffer, int buffer_size) { | |
| 345 if (buffer == NULL) { | |
| 346 // Do our own buffer management. | |
| 347 if (buffer_size <= kMinimalBufferSize) { | |
| 348 buffer_size = kMinimalBufferSize; | |
| 349 | |
| 350 if (spare_buffer_ != NULL) { | |
| 351 buffer = spare_buffer_; | |
| 352 spare_buffer_ = NULL; | |
| 353 } | |
| 354 } | |
| 355 if (buffer == NULL) { | |
| 356 buffer_ = NewArray<byte>(buffer_size); | |
| 357 } else { | |
| 358 buffer_ = static_cast<byte*>(buffer); | |
| 359 } | |
| 360 buffer_size_ = buffer_size; | |
| 361 own_buffer_ = true; | |
| 362 | |
| 363 } else { | |
| 364 // Use externally provided buffer instead. | |
| 365 ASSERT(buffer_size > 0); | |
| 366 buffer_ = static_cast<byte*>(buffer); | |
| 367 buffer_size_ = buffer_size; | |
| 368 own_buffer_ = false; | |
| 369 } | |
| 370 | |
| 371 // Setup buffer pointers. | |
| 372 ASSERT(buffer_ != NULL); | |
| 373 pc_ = buffer_; | |
| 374 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); | |
| 375 num_prinfo_ = 0; | |
| 376 next_buffer_check_ = 0; | |
| 377 no_const_pool_before_ = 0; | |
| 378 last_const_pool_end_ = 0; | |
| 379 last_bound_pos_ = 0; | |
| 380 current_statement_position_ = RelocInfo::kNoPosition; | |
| 381 current_position_ = RelocInfo::kNoPosition; | |
| 382 written_statement_position_ = current_statement_position_; | |
| 383 written_position_ = current_position_; | |
| 384 } | |
| 385 | |
| 386 | |
| 387 Assembler::~Assembler() { | |
| 388 if (own_buffer_) { | |
| 389 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { | |
| 390 spare_buffer_ = buffer_; | |
| 391 } else { | |
| 392 DeleteArray(buffer_); | |
| 393 } | |
| 394 } | |
| 395 } | |
| 396 | |
| 397 | |
| 398 void Assembler::GetCode(CodeDesc* desc) { | |
| 399 // Emit constant pool if necessary. | |
| 400 CheckConstPool(true, false); | |
| 401 ASSERT(num_prinfo_ == 0); | |
| 402 | |
| 403 // Setup code descriptor. | |
| 404 desc->buffer = buffer_; | |
| 405 desc->buffer_size = buffer_size_; | |
| 406 desc->instr_size = pc_offset(); | |
| 407 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); | |
| 408 } | |
| 409 | |
| 410 | |
| 411 void Assembler::Align(int m) { | |
| 412 ASSERT(m >= 4 && IsPowerOf2(m)); | |
| 413 while ((pc_offset() & (m - 1)) != 0) { | |
| 414 nop(); | |
| 415 } | |
| 416 } | |
| 417 | |
| 418 | |
| 419 // Labels refer to positions in the (to be) generated code. | |
| 420 // There are bound, linked, and unused labels. | |
| 421 // | |
| 422 // Bound labels refer to known positions in the already | |
| 423 // generated code. pos() is the position the label refers to. | |
| 424 // | |
| 425 // Linked labels refer to unknown positions in the code | |
| 426 // to be generated; pos() is the position of the last | |
| 427 // instruction using the label. | |
| 428 | |
| 429 | |
| 430 // The link chain is terminated by a negative code position (must be aligned) | |
| 431 const int kEndOfChain = -4; | |
| 432 | |
| 433 | |
| 434 int Assembler::target_at(int pos) { | |
| 435 Instr instr = instr_at(pos); | |
| 436 if ((instr & ~Imm24Mask) == 0) { | |
| 437 // Emitted label constant, not part of a branch. | |
| 438 return instr - (Code::kHeaderSize - kHeapObjectTag); | |
| 439 } | |
| 440 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 | |
| 441 int imm26 = ((instr & Imm24Mask) << 8) >> 6; | |
| 442 if ((instr & CondMask) == nv && (instr & B24) != 0) | |
| 443 // blx uses bit 24 to encode bit 2 of imm26 | |
| 444 imm26 += 2; | |
| 445 | |
| 446 return pos + kPcLoadDelta + imm26; | |
| 447 } | |
| 448 | |
| 449 | |
| 450 void Assembler::target_at_put(int pos, int target_pos) { | |
| 451 Instr instr = instr_at(pos); | |
| 452 if ((instr & ~Imm24Mask) == 0) { | |
| 453 ASSERT(target_pos == kEndOfChain || target_pos >= 0); | |
| 454 // Emitted label constant, not part of a branch. | |
| 455 // Make label relative to Code* of generated Code object. | |
| 456 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); | |
| 457 return; | |
| 458 } | |
| 459 int imm26 = target_pos - (pos + kPcLoadDelta); | |
| 460 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 | |
| 461 if ((instr & CondMask) == nv) { | |
| 462 // blx uses bit 24 to encode bit 2 of imm26 | |
| 463 ASSERT((imm26 & 1) == 0); | |
| 464 instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24; | |
| 465 } else { | |
| 466 ASSERT((imm26 & 3) == 0); | |
| 467 instr &= ~Imm24Mask; | |
| 468 } | |
| 469 int imm24 = imm26 >> 2; | |
| 470 ASSERT(is_int24(imm24)); | |
| 471 instr_at_put(pos, instr | (imm24 & Imm24Mask)); | |
| 472 } | |
| 473 | |
| 474 | |
| 475 void Assembler::print(Label* L) { | |
| 476 if (L->is_unused()) { | |
| 477 PrintF("unused label\n"); | |
| 478 } else if (L->is_bound()) { | |
| 479 PrintF("bound label to %d\n", L->pos()); | |
| 480 } else if (L->is_linked()) { | |
| 481 Label l = *L; | |
| 482 PrintF("unbound label"); | |
| 483 while (l.is_linked()) { | |
| 484 PrintF("@ %d ", l.pos()); | |
| 485 Instr instr = instr_at(l.pos()); | |
| 486 if ((instr & ~Imm24Mask) == 0) { | |
| 487 PrintF("value\n"); | |
| 488 } else { | |
| 489 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx | |
| 490 int cond = instr & CondMask; | |
| 491 const char* b; | |
| 492 const char* c; | |
| 493 if (cond == nv) { | |
| 494 b = "blx"; | |
| 495 c = ""; | |
| 496 } else { | |
| 497 if ((instr & B24) != 0) | |
| 498 b = "bl"; | |
| 499 else | |
| 500 b = "b"; | |
| 501 | |
| 502 switch (cond) { | |
| 503 case eq: c = "eq"; break; | |
| 504 case ne: c = "ne"; break; | |
| 505 case hs: c = "hs"; break; | |
| 506 case lo: c = "lo"; break; | |
| 507 case mi: c = "mi"; break; | |
| 508 case pl: c = "pl"; break; | |
| 509 case vs: c = "vs"; break; | |
| 510 case vc: c = "vc"; break; | |
| 511 case hi: c = "hi"; break; | |
| 512 case ls: c = "ls"; break; | |
| 513 case ge: c = "ge"; break; | |
| 514 case lt: c = "lt"; break; | |
| 515 case gt: c = "gt"; break; | |
| 516 case le: c = "le"; break; | |
| 517 case al: c = ""; break; | |
| 518 default: | |
| 519 c = ""; | |
| 520 UNREACHABLE(); | |
| 521 } | |
| 522 } | |
| 523 PrintF("%s%s\n", b, c); | |
| 524 } | |
| 525 next(&l); | |
| 526 } | |
| 527 } else { | |
| 528 PrintF("label in inconsistent state (pos = %d)\n", L->pos_); | |
| 529 } | |
| 530 } | |
| 531 | |
| 532 | |
| 533 void Assembler::bind_to(Label* L, int pos) { | |
| 534 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position | |
| 535 while (L->is_linked()) { | |
| 536 int fixup_pos = L->pos(); | |
| 537 next(L); // call next before overwriting link with target at fixup_pos | |
| 538 target_at_put(fixup_pos, pos); | |
| 539 } | |
| 540 L->bind_to(pos); | |
| 541 | |
| 542 // Keep track of the last bound label so we don't eliminate any instructions | |
| 543 // before a bound label. | |
| 544 if (pos > last_bound_pos_) | |
| 545 last_bound_pos_ = pos; | |
| 546 } | |
| 547 | |
| 548 | |
| 549 void Assembler::link_to(Label* L, Label* appendix) { | |
| 550 if (appendix->is_linked()) { | |
| 551 if (L->is_linked()) { | |
| 552 // Append appendix to L's list. | |
| 553 int fixup_pos; | |
| 554 int link = L->pos(); | |
| 555 do { | |
| 556 fixup_pos = link; | |
| 557 link = target_at(fixup_pos); | |
| 558 } while (link > 0); | |
| 559 ASSERT(link == kEndOfChain); | |
| 560 target_at_put(fixup_pos, appendix->pos()); | |
| 561 } else { | |
| 562 // L is empty, simply use appendix. | |
| 563 *L = *appendix; | |
| 564 } | |
| 565 } | |
| 566 appendix->Unuse(); // appendix should not be used anymore | |
| 567 } | |
| 568 | |
| 569 | |
| 570 void Assembler::bind(Label* L) { | |
| 571 ASSERT(!L->is_bound()); // label can only be bound once | |
| 572 bind_to(L, pc_offset()); | |
| 573 } | |
| 574 | |
| 575 | |
| 576 void Assembler::next(Label* L) { | |
| 577 ASSERT(L->is_linked()); | |
| 578 int link = target_at(L->pos()); | |
| 579 if (link > 0) { | |
| 580 L->link_to(link); | |
| 581 } else { | |
| 582 ASSERT(link == kEndOfChain); | |
| 583 L->Unuse(); | |
| 584 } | |
| 585 } | |
| 586 | |
| 587 | |
| 588 // Low-level code emission routines depending on the addressing mode. | |
| 589 static bool fits_shifter(uint32_t imm32, | |
| 590 uint32_t* rotate_imm, | |
| 591 uint32_t* immed_8, | |
| 592 Instr* instr) { | |
| 593 // imm32 must be unsigned. | |
| 594 for (int rot = 0; rot < 16; rot++) { | |
| 595 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); | |
| 596 if ((imm8 <= 0xff)) { | |
| 597 *rotate_imm = rot; | |
| 598 *immed_8 = imm8; | |
| 599 return true; | |
| 600 } | |
| 601 } | |
| 602 // If the opcode is mov or mvn and if ~imm32 fits, change the opcode. | |
| 603 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) { | |
| 604 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { | |
| 605 *instr ^= 0x2*B21; | |
| 606 return true; | |
| 607 } | |
| 608 } | |
| 609 return false; | |
| 610 } | |
| 611 | |
| 612 | |
| 613 // We have to use the temporary register for things that can be relocated even | |
| 614 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction | |
| 615 // space. There is no guarantee that the relocated location can be similarly | |
| 616 // encoded. | |
| 617 static bool MustUseIp(RelocInfo::Mode rmode) { | |
| 618 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { | |
| 619 #ifdef DEBUG | |
| 620 if (!Serializer::enabled()) { | |
| 621 Serializer::TooLateToEnableNow(); | |
| 622 } | |
| 623 #endif | |
| 624 return Serializer::enabled(); | |
| 625 } else if (rmode == RelocInfo::NONE) { | |
| 626 return false; | |
| 627 } | |
| 628 return true; | |
| 629 } | |
| 630 | |
| 631 | |
| 632 void Assembler::addrmod1(Instr instr, | |
| 633 Register rn, | |
| 634 Register rd, | |
| 635 const Operand& x) { | |
| 636 CheckBuffer(); | |
| 637 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); | |
| 638 if (!x.rm_.is_valid()) { | |
| 639 // Immediate. | |
| 640 uint32_t rotate_imm; | |
| 641 uint32_t immed_8; | |
| 642 if (MustUseIp(x.rmode_) || | |
| 643 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { | |
| 644 // The immediate operand cannot be encoded as a shifter operand, so load | |
| 645 // it first to register ip and change the original instruction to use ip. | |
| 646 // However, if the original instruction is a 'mov rd, x' (not setting the | |
| 647 // condition code), then replace it with a 'ldr rd, [pc]'. | |
| 648 RecordRelocInfo(x.rmode_, x.imm32_); | |
| 649 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed | |
| 650 Condition cond = static_cast<Condition>(instr & CondMask); | |
| 651 if ((instr & ~CondMask) == 13*B21) { // mov, S not set | |
| 652 ldr(rd, MemOperand(pc, 0), cond); | |
| 653 } else { | |
| 654 ldr(ip, MemOperand(pc, 0), cond); | |
| 655 addrmod1(instr, rn, rd, Operand(ip)); | |
| 656 } | |
| 657 return; | |
| 658 } | |
| 659 instr |= I | rotate_imm*B8 | immed_8; | |
| 660 } else if (!x.rs_.is_valid()) { | |
| 661 // Immediate shift. | |
| 662 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); | |
| 663 } else { | |
| 664 // Register shift. | |
| 665 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); | |
| 666 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); | |
| 667 } | |
| 668 emit(instr | rn.code()*B16 | rd.code()*B12); | |
| 669 if (rn.is(pc) || x.rm_.is(pc)) | |
| 670 // Block constant pool emission for one instruction after reading pc. | |
| 671 BlockConstPoolBefore(pc_offset() + kInstrSize); | |
| 672 } | |
| 673 | |
| 674 | |
| 675 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { | |
| 676 ASSERT((instr & ~(CondMask | B | L)) == B26); | |
| 677 int am = x.am_; | |
| 678 if (!x.rm_.is_valid()) { | |
| 679 // Immediate offset. | |
| 680 int offset_12 = x.offset_; | |
| 681 if (offset_12 < 0) { | |
| 682 offset_12 = -offset_12; | |
| 683 am ^= U; | |
| 684 } | |
| 685 if (!is_uint12(offset_12)) { | |
| 686 // Immediate offset cannot be encoded, load it first to register ip | |
| 687 // rn (and rd in a load) should never be ip, or will be trashed. | |
| 688 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | |
| 689 mov(ip, Operand(x.offset_), LeaveCC, | |
| 690 static_cast<Condition>(instr & CondMask)); | |
| 691 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); | |
| 692 return; | |
| 693 } | |
| 694 ASSERT(offset_12 >= 0); // no masking needed | |
| 695 instr |= offset_12; | |
| 696 } else { | |
| 697 // Register offset (shift_imm_ and shift_op_ are 0) or scaled | |
| 698 // register offset the constructors make sure than both shift_imm_ | |
| 699 // and shift_op_ are initialized. | |
| 700 ASSERT(!x.rm_.is(pc)); | |
| 701 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); | |
| 702 } | |
| 703 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | |
| 704 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); | |
| 705 } | |
| 706 | |
| 707 | |
| 708 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { | |
| 709 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); | |
| 710 ASSERT(x.rn_.is_valid()); | |
| 711 int am = x.am_; | |
| 712 if (!x.rm_.is_valid()) { | |
| 713 // Immediate offset. | |
| 714 int offset_8 = x.offset_; | |
| 715 if (offset_8 < 0) { | |
| 716 offset_8 = -offset_8; | |
| 717 am ^= U; | |
| 718 } | |
| 719 if (!is_uint8(offset_8)) { | |
| 720 // Immediate offset cannot be encoded, load it first to register ip | |
| 721 // rn (and rd in a load) should never be ip, or will be trashed. | |
| 722 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | |
| 723 mov(ip, Operand(x.offset_), LeaveCC, | |
| 724 static_cast<Condition>(instr & CondMask)); | |
| 725 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); | |
| 726 return; | |
| 727 } | |
| 728 ASSERT(offset_8 >= 0); // no masking needed | |
| 729 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); | |
| 730 } else if (x.shift_imm_ != 0) { | |
| 731 // Scaled register offset not supported, load index first | |
| 732 // rn (and rd in a load) should never be ip, or will be trashed. | |
| 733 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | |
| 734 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, | |
| 735 static_cast<Condition>(instr & CondMask)); | |
| 736 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); | |
| 737 return; | |
| 738 } else { | |
| 739 // Register offset. | |
| 740 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback | |
| 741 instr |= x.rm_.code(); | |
| 742 } | |
| 743 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | |
| 744 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); | |
| 745 } | |
| 746 | |
| 747 | |
| 748 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { | |
| 749 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); | |
| 750 ASSERT(rl != 0); | |
| 751 ASSERT(!rn.is(pc)); | |
| 752 emit(instr | rn.code()*B16 | rl); | |
| 753 } | |
| 754 | |
| 755 | |
| 756 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { | |
| 757 // Unindexed addressing is not encoded by this function. | |
| 758 ASSERT_EQ((B27 | B26), | |
| 759 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L))); | |
| 760 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); | |
| 761 int am = x.am_; | |
| 762 int offset_8 = x.offset_; | |
| 763 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset | |
| 764 offset_8 >>= 2; | |
| 765 if (offset_8 < 0) { | |
| 766 offset_8 = -offset_8; | |
| 767 am ^= U; | |
| 768 } | |
| 769 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte | |
| 770 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | |
| 771 | |
| 772 // Post-indexed addressing requires W == 1; different than in addrmod2/3. | |
| 773 if ((am & P) == 0) | |
| 774 am |= W; | |
| 775 | |
| 776 ASSERT(offset_8 >= 0); // no masking needed | |
| 777 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); | |
| 778 } | |
| 779 | |
| 780 | |
| 781 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { | |
| 782 int target_pos; | |
| 783 if (L->is_bound()) { | |
| 784 target_pos = L->pos(); | |
| 785 } else { | |
| 786 if (L->is_linked()) { | |
| 787 target_pos = L->pos(); // L's link | |
| 788 } else { | |
| 789 target_pos = kEndOfChain; | |
| 790 } | |
| 791 L->link_to(pc_offset()); | |
| 792 } | |
| 793 | |
| 794 // Block the emission of the constant pool, since the branch instruction must | |
| 795 // be emitted at the pc offset recorded by the label. | |
| 796 BlockConstPoolBefore(pc_offset() + kInstrSize); | |
| 797 return target_pos - (pc_offset() + kPcLoadDelta); | |
| 798 } | |
| 799 | |
| 800 | |
| 801 void Assembler::label_at_put(Label* L, int at_offset) { | |
| 802 int target_pos; | |
| 803 if (L->is_bound()) { | |
| 804 target_pos = L->pos(); | |
| 805 } else { | |
| 806 if (L->is_linked()) { | |
| 807 target_pos = L->pos(); // L's link | |
| 808 } else { | |
| 809 target_pos = kEndOfChain; | |
| 810 } | |
| 811 L->link_to(at_offset); | |
| 812 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); | |
| 813 } | |
| 814 } | |
| 815 | |
| 816 | |
| 817 // Branch instructions. | |
| 818 void Assembler::b(int branch_offset, Condition cond) { | |
| 819 ASSERT((branch_offset & 3) == 0); | |
| 820 int imm24 = branch_offset >> 2; | |
| 821 ASSERT(is_int24(imm24)); | |
| 822 emit(cond | B27 | B25 | (imm24 & Imm24Mask)); | |
| 823 | |
| 824 if (cond == al) | |
| 825 // Dead code is a good location to emit the constant pool. | |
| 826 CheckConstPool(false, false); | |
| 827 } | |
| 828 | |
| 829 | |
| 830 void Assembler::bl(int branch_offset, Condition cond) { | |
| 831 ASSERT((branch_offset & 3) == 0); | |
| 832 int imm24 = branch_offset >> 2; | |
| 833 ASSERT(is_int24(imm24)); | |
| 834 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); | |
| 835 } | |
| 836 | |
| 837 | |
| 838 void Assembler::blx(int branch_offset) { // v5 and above | |
| 839 WriteRecordedPositions(); | |
| 840 ASSERT((branch_offset & 1) == 0); | |
| 841 int h = ((branch_offset & 2) >> 1)*B24; | |
| 842 int imm24 = branch_offset >> 2; | |
| 843 ASSERT(is_int24(imm24)); | |
| 844 emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask)); | |
| 845 } | |
| 846 | |
| 847 | |
| 848 void Assembler::blx(Register target, Condition cond) { // v5 and above | |
| 849 WriteRecordedPositions(); | |
| 850 ASSERT(!target.is(pc)); | |
| 851 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code()); | |
| 852 } | |
| 853 | |
| 854 | |
| 855 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t | |
| 856 WriteRecordedPositions(); | |
| 857 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged | |
| 858 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); | |
| 859 } | |
| 860 | |
| 861 | |
| 862 // Data-processing instructions. | |
| 863 | |
| 864 // UBFX <Rd>,<Rn>,#<lsb>,#<width - 1> | |
| 865 // Instruction details available in ARM DDI 0406A, A8-464. | |
| 866 // cond(31-28) | 01111(27-23)| 1(22) | 1(21) | widthm1(20-16) | | |
| 867 // Rd(15-12) | lsb(11-7) | 101(6-4) | Rn(3-0) | |
| 868 void Assembler::ubfx(Register dst, Register src1, const Operand& src2, | |
| 869 const Operand& src3, Condition cond) { | |
| 870 ASSERT(!src2.rm_.is_valid() && !src3.rm_.is_valid()); | |
| 871 ASSERT(static_cast<uint32_t>(src2.imm32_) <= 0x1f); | |
| 872 ASSERT(static_cast<uint32_t>(src3.imm32_) <= 0x1f); | |
| 873 emit(cond | 0x3F*B21 | src3.imm32_*B16 | | |
| 874 dst.code()*B12 | src2.imm32_*B7 | 0x5*B4 | src1.code()); | |
| 875 } | |
| 876 | |
| 877 | |
| 878 void Assembler::and_(Register dst, Register src1, const Operand& src2, | |
| 879 SBit s, Condition cond) { | |
| 880 addrmod1(cond | 0*B21 | s, src1, dst, src2); | |
| 881 } | |
| 882 | |
| 883 | |
| 884 void Assembler::eor(Register dst, Register src1, const Operand& src2, | |
| 885 SBit s, Condition cond) { | |
| 886 addrmod1(cond | 1*B21 | s, src1, dst, src2); | |
| 887 } | |
| 888 | |
| 889 | |
| 890 void Assembler::sub(Register dst, Register src1, const Operand& src2, | |
| 891 SBit s, Condition cond) { | |
| 892 addrmod1(cond | 2*B21 | s, src1, dst, src2); | |
| 893 } | |
| 894 | |
| 895 | |
| 896 void Assembler::rsb(Register dst, Register src1, const Operand& src2, | |
| 897 SBit s, Condition cond) { | |
| 898 addrmod1(cond | 3*B21 | s, src1, dst, src2); | |
| 899 } | |
| 900 | |
| 901 | |
| 902 void Assembler::add(Register dst, Register src1, const Operand& src2, | |
| 903 SBit s, Condition cond) { | |
| 904 addrmod1(cond | 4*B21 | s, src1, dst, src2); | |
| 905 | |
| 906 // Eliminate pattern: push(r), pop() | |
| 907 // str(src, MemOperand(sp, 4, NegPreIndex), al); | |
| 908 // add(sp, sp, Operand(kPointerSize)); | |
| 909 // Both instructions can be eliminated. | |
| 910 int pattern_size = 2 * kInstrSize; | |
| 911 if (FLAG_push_pop_elimination && | |
| 912 last_bound_pos_ <= (pc_offset() - pattern_size) && | |
| 913 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | |
| 914 // Pattern. | |
| 915 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && | |
| 916 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { | |
| 917 pc_ -= 2 * kInstrSize; | |
| 918 if (FLAG_print_push_pop_elimination) { | |
| 919 PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); | |
| 920 } | |
| 921 } | |
| 922 } | |
| 923 | |
| 924 | |
| 925 void Assembler::adc(Register dst, Register src1, const Operand& src2, | |
| 926 SBit s, Condition cond) { | |
| 927 addrmod1(cond | 5*B21 | s, src1, dst, src2); | |
| 928 } | |
| 929 | |
| 930 | |
| 931 void Assembler::sbc(Register dst, Register src1, const Operand& src2, | |
| 932 SBit s, Condition cond) { | |
| 933 addrmod1(cond | 6*B21 | s, src1, dst, src2); | |
| 934 } | |
| 935 | |
| 936 | |
| 937 void Assembler::rsc(Register dst, Register src1, const Operand& src2, | |
| 938 SBit s, Condition cond) { | |
| 939 addrmod1(cond | 7*B21 | s, src1, dst, src2); | |
| 940 } | |
| 941 | |
| 942 | |
| 943 void Assembler::tst(Register src1, const Operand& src2, Condition cond) { | |
| 944 addrmod1(cond | 8*B21 | S, src1, r0, src2); | |
| 945 } | |
| 946 | |
| 947 | |
| 948 void Assembler::teq(Register src1, const Operand& src2, Condition cond) { | |
| 949 addrmod1(cond | 9*B21 | S, src1, r0, src2); | |
| 950 } | |
| 951 | |
| 952 | |
| 953 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { | |
| 954 addrmod1(cond | 10*B21 | S, src1, r0, src2); | |
| 955 } | |
| 956 | |
| 957 | |
| 958 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { | |
| 959 addrmod1(cond | 11*B21 | S, src1, r0, src2); | |
| 960 } | |
| 961 | |
| 962 | |
| 963 void Assembler::orr(Register dst, Register src1, const Operand& src2, | |
| 964 SBit s, Condition cond) { | |
| 965 addrmod1(cond | 12*B21 | s, src1, dst, src2); | |
| 966 } | |
| 967 | |
| 968 | |
| 969 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { | |
| 970 if (dst.is(pc)) { | |
| 971 WriteRecordedPositions(); | |
| 972 } | |
| 973 addrmod1(cond | 13*B21 | s, r0, dst, src); | |
| 974 } | |
| 975 | |
| 976 | |
| 977 void Assembler::bic(Register dst, Register src1, const Operand& src2, | |
| 978 SBit s, Condition cond) { | |
| 979 addrmod1(cond | 14*B21 | s, src1, dst, src2); | |
| 980 } | |
| 981 | |
| 982 | |
| 983 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { | |
| 984 addrmod1(cond | 15*B21 | s, r0, dst, src); | |
| 985 } | |
| 986 | |
| 987 | |
| 988 // Multiply instructions. | |
| 989 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, | |
| 990 SBit s, Condition cond) { | |
| 991 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); | |
| 992 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | | |
| 993 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 994 } | |
| 995 | |
| 996 | |
| 997 void Assembler::mul(Register dst, Register src1, Register src2, | |
| 998 SBit s, Condition cond) { | |
| 999 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1000 // dst goes in bits 16-19 for this instruction! | |
| 1001 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1002 } | |
| 1003 | |
| 1004 | |
| 1005 void Assembler::smlal(Register dstL, | |
| 1006 Register dstH, | |
| 1007 Register src1, | |
| 1008 Register src2, | |
| 1009 SBit s, | |
| 1010 Condition cond) { | |
| 1011 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1012 ASSERT(!dstL.is(dstH)); | |
| 1013 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 | | |
| 1014 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1015 } | |
| 1016 | |
| 1017 | |
| 1018 void Assembler::smull(Register dstL, | |
| 1019 Register dstH, | |
| 1020 Register src1, | |
| 1021 Register src2, | |
| 1022 SBit s, | |
| 1023 Condition cond) { | |
| 1024 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1025 ASSERT(!dstL.is(dstH)); | |
| 1026 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 | | |
| 1027 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1028 } | |
| 1029 | |
| 1030 | |
| 1031 void Assembler::umlal(Register dstL, | |
| 1032 Register dstH, | |
| 1033 Register src1, | |
| 1034 Register src2, | |
| 1035 SBit s, | |
| 1036 Condition cond) { | |
| 1037 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1038 ASSERT(!dstL.is(dstH)); | |
| 1039 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 | | |
| 1040 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1041 } | |
| 1042 | |
| 1043 | |
| 1044 void Assembler::umull(Register dstL, | |
| 1045 Register dstH, | |
| 1046 Register src1, | |
| 1047 Register src2, | |
| 1048 SBit s, | |
| 1049 Condition cond) { | |
| 1050 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1051 ASSERT(!dstL.is(dstH)); | |
| 1052 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | | |
| 1053 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1054 } | |
| 1055 | |
| 1056 | |
| 1057 // Miscellaneous arithmetic instructions. | |
| 1058 void Assembler::clz(Register dst, Register src, Condition cond) { | |
| 1059 // v5 and above. | |
| 1060 ASSERT(!dst.is(pc) && !src.is(pc)); | |
| 1061 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | | |
| 1062 15*B8 | B4 | src.code()); | |
| 1063 } | |
| 1064 | |
| 1065 | |
| 1066 // Status register access instructions. | |
| 1067 void Assembler::mrs(Register dst, SRegister s, Condition cond) { | |
| 1068 ASSERT(!dst.is(pc)); | |
| 1069 emit(cond | B24 | s | 15*B16 | dst.code()*B12); | |
| 1070 } | |
| 1071 | |
| 1072 | |
| 1073 void Assembler::msr(SRegisterFieldMask fields, const Operand& src, | |
| 1074 Condition cond) { | |
| 1075 ASSERT(fields >= B16 && fields < B20); // at least one field set | |
| 1076 Instr instr; | |
| 1077 if (!src.rm_.is_valid()) { | |
| 1078 // Immediate. | |
| 1079 uint32_t rotate_imm; | |
| 1080 uint32_t immed_8; | |
| 1081 if (MustUseIp(src.rmode_) || | |
| 1082 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { | |
| 1083 // Immediate operand cannot be encoded, load it first to register ip. | |
| 1084 RecordRelocInfo(src.rmode_, src.imm32_); | |
| 1085 ldr(ip, MemOperand(pc, 0), cond); | |
| 1086 msr(fields, Operand(ip), cond); | |
| 1087 return; | |
| 1088 } | |
| 1089 instr = I | rotate_imm*B8 | immed_8; | |
| 1090 } else { | |
| 1091 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed | |
| 1092 instr = src.rm_.code(); | |
| 1093 } | |
| 1094 emit(cond | instr | B24 | B21 | fields | 15*B12); | |
| 1095 } | |
| 1096 | |
| 1097 | |
| 1098 // Load/Store instructions. | |
| 1099 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { | |
| 1100 if (dst.is(pc)) { | |
| 1101 WriteRecordedPositions(); | |
| 1102 } | |
| 1103 addrmod2(cond | B26 | L, dst, src); | |
| 1104 | |
| 1105 // Eliminate pattern: push(r), pop(r) | |
| 1106 // str(r, MemOperand(sp, 4, NegPreIndex), al) | |
| 1107 // ldr(r, MemOperand(sp, 4, PostIndex), al) | |
| 1108 // Both instructions can be eliminated. | |
| 1109 int pattern_size = 2 * kInstrSize; | |
| 1110 if (FLAG_push_pop_elimination && | |
| 1111 last_bound_pos_ <= (pc_offset() - pattern_size) && | |
| 1112 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | |
| 1113 // Pattern. | |
| 1114 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) && | |
| 1115 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) { | |
| 1116 pc_ -= 2 * kInstrSize; | |
| 1117 if (FLAG_print_push_pop_elimination) { | |
| 1118 PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); | |
| 1119 } | |
| 1120 } | |
| 1121 } | |
| 1122 | |
| 1123 | |
| 1124 void Assembler::str(Register src, const MemOperand& dst, Condition cond) { | |
| 1125 addrmod2(cond | B26, src, dst); | |
| 1126 | |
| 1127 // Eliminate pattern: pop(), push(r) | |
| 1128 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al | |
| 1129 // -> str r, [sp, 0], al | |
| 1130 int pattern_size = 2 * kInstrSize; | |
| 1131 if (FLAG_push_pop_elimination && | |
| 1132 last_bound_pos_ <= (pc_offset() - pattern_size) && | |
| 1133 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | |
| 1134 // Pattern. | |
| 1135 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && | |
| 1136 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { | |
| 1137 pc_ -= 2 * kInstrSize; | |
| 1138 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); | |
| 1139 if (FLAG_print_push_pop_elimination) { | |
| 1140 PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); | |
| 1141 } | |
| 1142 } | |
| 1143 } | |
| 1144 | |
| 1145 | |
| 1146 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { | |
| 1147 addrmod2(cond | B26 | B | L, dst, src); | |
| 1148 } | |
| 1149 | |
| 1150 | |
| 1151 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { | |
| 1152 addrmod2(cond | B26 | B, src, dst); | |
| 1153 } | |
| 1154 | |
| 1155 | |
| 1156 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { | |
| 1157 addrmod3(cond | L | B7 | H | B4, dst, src); | |
| 1158 } | |
| 1159 | |
| 1160 | |
| 1161 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { | |
| 1162 addrmod3(cond | B7 | H | B4, src, dst); | |
| 1163 } | |
| 1164 | |
| 1165 | |
| 1166 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { | |
| 1167 addrmod3(cond | L | B7 | S6 | B4, dst, src); | |
| 1168 } | |
| 1169 | |
| 1170 | |
| 1171 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { | |
| 1172 addrmod3(cond | L | B7 | S6 | H | B4, dst, src); | |
| 1173 } | |
| 1174 | |
| 1175 | |
| 1176 // Load/Store multiple instructions. | |
| 1177 void Assembler::ldm(BlockAddrMode am, | |
| 1178 Register base, | |
| 1179 RegList dst, | |
| 1180 Condition cond) { | |
| 1181 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable. | |
| 1182 ASSERT(base.is(sp) || (dst & sp.bit()) == 0); | |
| 1183 | |
| 1184 addrmod4(cond | B27 | am | L, base, dst); | |
| 1185 | |
| 1186 // Emit the constant pool after a function return implemented by ldm ..{..pc}. | |
| 1187 if (cond == al && (dst & pc.bit()) != 0) { | |
| 1188 // There is a slight chance that the ldm instruction was actually a call, | |
| 1189 // in which case it would be wrong to return into the constant pool; we | |
| 1190 // recognize this case by checking if the emission of the pool was blocked | |
| 1191 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is | |
| 1192 // the case, we emit a jump over the pool. | |
| 1193 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); | |
| 1194 } | |
| 1195 } | |
| 1196 | |
| 1197 | |
| 1198 void Assembler::stm(BlockAddrMode am, | |
| 1199 Register base, | |
| 1200 RegList src, | |
| 1201 Condition cond) { | |
| 1202 addrmod4(cond | B27 | am, base, src); | |
| 1203 } | |
| 1204 | |
| 1205 | |
| 1206 // Semaphore instructions. | |
| 1207 void Assembler::swp(Register dst, Register src, Register base, Condition cond) { | |
| 1208 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); | |
| 1209 ASSERT(!dst.is(base) && !src.is(base)); | |
| 1210 emit(cond | P | base.code()*B16 | dst.code()*B12 | | |
| 1211 B7 | B4 | src.code()); | |
| 1212 } | |
| 1213 | |
| 1214 | |
| 1215 void Assembler::swpb(Register dst, | |
| 1216 Register src, | |
| 1217 Register base, | |
| 1218 Condition cond) { | |
| 1219 ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); | |
| 1220 ASSERT(!dst.is(base) && !src.is(base)); | |
| 1221 emit(cond | P | B | base.code()*B16 | dst.code()*B12 | | |
| 1222 B7 | B4 | src.code()); | |
| 1223 } | |
| 1224 | |
| 1225 | |
| 1226 // Exception-generating instructions and debugging support. | |
| 1227 void Assembler::stop(const char* msg) { | |
| 1228 #if !defined(__arm__) | |
| 1229 // The simulator handles these special instructions and stops execution. | |
| 1230 emit(15 << 28 | ((intptr_t) msg)); | |
| 1231 #else | |
| 1232 // Just issue a simple break instruction for now. Alternatively we could use | |
| 1233 // the swi(0x9f0001) instruction on Linux. | |
| 1234 bkpt(0); | |
| 1235 #endif | |
| 1236 } | |
| 1237 | |
| 1238 | |
| 1239 void Assembler::bkpt(uint32_t imm16) { // v5 and above | |
| 1240 ASSERT(is_uint16(imm16)); | |
| 1241 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); | |
| 1242 } | |
| 1243 | |
| 1244 | |
| 1245 void Assembler::swi(uint32_t imm24, Condition cond) { | |
| 1246 ASSERT(is_uint24(imm24)); | |
| 1247 emit(cond | 15*B24 | imm24); | |
| 1248 } | |
| 1249 | |
| 1250 | |
| 1251 // Coprocessor instructions. | |
| 1252 void Assembler::cdp(Coprocessor coproc, | |
| 1253 int opcode_1, | |
| 1254 CRegister crd, | |
| 1255 CRegister crn, | |
| 1256 CRegister crm, | |
| 1257 int opcode_2, | |
| 1258 Condition cond) { | |
| 1259 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); | |
| 1260 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | | |
| 1261 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); | |
| 1262 } | |
| 1263 | |
| 1264 | |
| 1265 void Assembler::cdp2(Coprocessor coproc, | |
| 1266 int opcode_1, | |
| 1267 CRegister crd, | |
| 1268 CRegister crn, | |
| 1269 CRegister crm, | |
| 1270 int opcode_2) { // v5 and above | |
| 1271 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv)); | |
| 1272 } | |
| 1273 | |
| 1274 | |
| 1275 void Assembler::mcr(Coprocessor coproc, | |
| 1276 int opcode_1, | |
| 1277 Register rd, | |
| 1278 CRegister crn, | |
| 1279 CRegister crm, | |
| 1280 int opcode_2, | |
| 1281 Condition cond) { | |
| 1282 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); | |
| 1283 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 | | |
| 1284 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); | |
| 1285 } | |
| 1286 | |
| 1287 | |
| 1288 void Assembler::mcr2(Coprocessor coproc, | |
| 1289 int opcode_1, | |
| 1290 Register rd, | |
| 1291 CRegister crn, | |
| 1292 CRegister crm, | |
| 1293 int opcode_2) { // v5 and above | |
| 1294 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); | |
| 1295 } | |
| 1296 | |
| 1297 | |
| 1298 void Assembler::mrc(Coprocessor coproc, | |
| 1299 int opcode_1, | |
| 1300 Register rd, | |
| 1301 CRegister crn, | |
| 1302 CRegister crm, | |
| 1303 int opcode_2, | |
| 1304 Condition cond) { | |
| 1305 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); | |
| 1306 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 | | |
| 1307 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); | |
| 1308 } | |
| 1309 | |
| 1310 | |
| 1311 void Assembler::mrc2(Coprocessor coproc, | |
| 1312 int opcode_1, | |
| 1313 Register rd, | |
| 1314 CRegister crn, | |
| 1315 CRegister crm, | |
| 1316 int opcode_2) { // v5 and above | |
| 1317 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); | |
| 1318 } | |
| 1319 | |
| 1320 | |
| 1321 void Assembler::ldc(Coprocessor coproc, | |
| 1322 CRegister crd, | |
| 1323 const MemOperand& src, | |
| 1324 LFlag l, | |
| 1325 Condition cond) { | |
| 1326 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); | |
| 1327 } | |
| 1328 | |
| 1329 | |
| 1330 void Assembler::ldc(Coprocessor coproc, | |
| 1331 CRegister crd, | |
| 1332 Register rn, | |
| 1333 int option, | |
| 1334 LFlag l, | |
| 1335 Condition cond) { | |
| 1336 // Unindexed addressing. | |
| 1337 ASSERT(is_uint8(option)); | |
| 1338 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | | |
| 1339 coproc*B8 | (option & 255)); | |
| 1340 } | |
| 1341 | |
| 1342 | |
| 1343 void Assembler::ldc2(Coprocessor coproc, | |
| 1344 CRegister crd, | |
| 1345 const MemOperand& src, | |
| 1346 LFlag l) { // v5 and above | |
| 1347 ldc(coproc, crd, src, l, static_cast<Condition>(nv)); | |
| 1348 } | |
| 1349 | |
| 1350 | |
| 1351 void Assembler::ldc2(Coprocessor coproc, | |
| 1352 CRegister crd, | |
| 1353 Register rn, | |
| 1354 int option, | |
| 1355 LFlag l) { // v5 and above | |
| 1356 ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); | |
| 1357 } | |
| 1358 | |
| 1359 | |
| 1360 void Assembler::stc(Coprocessor coproc, | |
| 1361 CRegister crd, | |
| 1362 const MemOperand& dst, | |
| 1363 LFlag l, | |
| 1364 Condition cond) { | |
| 1365 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); | |
| 1366 } | |
| 1367 | |
| 1368 | |
| 1369 void Assembler::stc(Coprocessor coproc, | |
| 1370 CRegister crd, | |
| 1371 Register rn, | |
| 1372 int option, | |
| 1373 LFlag l, | |
| 1374 Condition cond) { | |
| 1375 // Unindexed addressing. | |
| 1376 ASSERT(is_uint8(option)); | |
| 1377 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | | |
| 1378 coproc*B8 | (option & 255)); | |
| 1379 } | |
| 1380 | |
| 1381 | |
| 1382 void Assembler::stc2(Coprocessor | |
| 1383 coproc, CRegister crd, | |
| 1384 const MemOperand& dst, | |
| 1385 LFlag l) { // v5 and above | |
| 1386 stc(coproc, crd, dst, l, static_cast<Condition>(nv)); | |
| 1387 } | |
| 1388 | |
| 1389 | |
| 1390 void Assembler::stc2(Coprocessor coproc, | |
| 1391 CRegister crd, | |
| 1392 Register rn, | |
| 1393 int option, | |
| 1394 LFlag l) { // v5 and above | |
| 1395 stc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); | |
| 1396 } | |
| 1397 | |
| 1398 | |
| 1399 // Support for VFP. | |
| 1400 void Assembler::vldr(const DwVfpRegister dst, | |
| 1401 const Register base, | |
| 1402 int offset, | |
| 1403 const Condition cond) { | |
| 1404 // Ddst = MEM(Rbase + offset). | |
| 1405 // Instruction details available in ARM DDI 0406A, A8-628. | |
| 1406 // cond(31-28) | 1101(27-24)| 1001(23-20) | Rbase(19-16) | | |
| 1407 // Vdst(15-12) | 1011(11-8) | offset | |
| 1408 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1409 ASSERT(offset % 4 == 0); | |
| 1410 emit(cond | 0xD9*B20 | base.code()*B16 | dst.code()*B12 | | |
| 1411 0xB*B8 | ((offset / 4) & 255)); | |
| 1412 } | |
| 1413 | |
| 1414 | |
| 1415 void Assembler::vstr(const DwVfpRegister src, | |
| 1416 const Register base, | |
| 1417 int offset, | |
| 1418 const Condition cond) { | |
| 1419 // MEM(Rbase + offset) = Dsrc. | |
| 1420 // Instruction details available in ARM DDI 0406A, A8-786. | |
| 1421 // cond(31-28) | 1101(27-24)| 1000(23-20) | | Rbase(19-16) | | |
| 1422 // Vsrc(15-12) | 1011(11-8) | (offset/4) | |
| 1423 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1424 ASSERT(offset % 4 == 0); | |
| 1425 emit(cond | 0xD8*B20 | base.code()*B16 | src.code()*B12 | | |
| 1426 0xB*B8 | ((offset / 4) & 255)); | |
| 1427 } | |
| 1428 | |
| 1429 | |
| 1430 void Assembler::vmov(const DwVfpRegister dst, | |
| 1431 const Register src1, | |
| 1432 const Register src2, | |
| 1433 const Condition cond) { | |
| 1434 // Dm = <Rt,Rt2>. | |
| 1435 // Instruction details available in ARM DDI 0406A, A8-646. | |
| 1436 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | | |
| 1437 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm | |
| 1438 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1439 ASSERT(!src1.is(pc) && !src2.is(pc)); | |
| 1440 emit(cond | 0xC*B24 | B22 | src2.code()*B16 | | |
| 1441 src1.code()*B12 | 0xB*B8 | B4 | dst.code()); | |
| 1442 } | |
| 1443 | |
| 1444 | |
| 1445 void Assembler::vmov(const Register dst1, | |
| 1446 const Register dst2, | |
| 1447 const DwVfpRegister src, | |
| 1448 const Condition cond) { | |
| 1449 // <Rt,Rt2> = Dm. | |
| 1450 // Instruction details available in ARM DDI 0406A, A8-646. | |
| 1451 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) | | |
| 1452 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm | |
| 1453 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1454 ASSERT(!dst1.is(pc) && !dst2.is(pc)); | |
| 1455 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 | | |
| 1456 dst1.code()*B12 | 0xB*B8 | B4 | src.code()); | |
| 1457 } | |
| 1458 | |
| 1459 | |
| 1460 void Assembler::vmov(const SwVfpRegister dst, | |
| 1461 const Register src, | |
| 1462 const Condition cond) { | |
| 1463 // Sn = Rt. | |
| 1464 // Instruction details available in ARM DDI 0406A, A8-642. | |
| 1465 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) | | |
| 1466 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) | |
| 1467 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1468 ASSERT(!src.is(pc)); | |
| 1469 emit(cond | 0xE*B24 | (dst.code() >> 1)*B16 | | |
| 1470 src.code()*B12 | 0xA*B8 | (0x1 & dst.code())*B7 | B4); | |
| 1471 } | |
| 1472 | |
| 1473 | |
| 1474 void Assembler::vmov(const Register dst, | |
| 1475 const SwVfpRegister src, | |
| 1476 const Condition cond) { | |
| 1477 // Rt = Sn. | |
| 1478 // Instruction details available in ARM DDI 0406A, A8-642. | |
| 1479 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) | | |
| 1480 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) | |
| 1481 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1482 ASSERT(!dst.is(pc)); | |
| 1483 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 | | |
| 1484 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4); | |
| 1485 } | |
| 1486 | |
| 1487 | |
| 1488 void Assembler::vcvt(const DwVfpRegister dst, | |
| 1489 const SwVfpRegister src, | |
| 1490 const Condition cond) { | |
| 1491 // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd). | |
| 1492 // Instruction details available in ARM DDI 0406A, A8-576. | |
| 1493 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=000(18-16) | | |
| 1494 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1495 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1496 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 | | |
| 1497 dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 | | |
| 1498 (0x1 & src.code())*B5 | (src.code() >> 1)); | |
| 1499 } | |
| 1500 | |
| 1501 | |
| 1502 void Assembler::vcvt(const SwVfpRegister dst, | |
| 1503 const DwVfpRegister src, | |
| 1504 const Condition cond) { | |
| 1505 // Sd = Dm (IEEE 64-bit doubles in Dm converted to 32 bit integer in Sd). | |
| 1506 // Instruction details available in ARM DDI 0406A, A8-576. | |
| 1507 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=101(18-16)| | |
| 1508 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=? | 1(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1509 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1510 emit(cond | 0xE*B24 | B23 |(0x1 & dst.code())*B22 | | |
| 1511 0x3*B20 | B19 | 0x5*B16 | (dst.code() >> 1)*B12 | | |
| 1512 0x5*B9 | B8 | B7 | B6 | src.code()); | |
| 1513 } | |
| 1514 | |
| 1515 | |
| 1516 void Assembler::vadd(const DwVfpRegister dst, | |
| 1517 const DwVfpRegister src1, | |
| 1518 const DwVfpRegister src2, | |
| 1519 const Condition cond) { | |
| 1520 // Dd = vadd(Dn, Dm) double precision floating point addition. | |
| 1521 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | |
| 1522 // Instruction details available in ARM DDI 0406A, A8-536. | |
| 1523 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | | |
| 1524 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1525 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1526 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | | |
| 1527 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); | |
| 1528 } | |
| 1529 | |
| 1530 | |
| 1531 void Assembler::vsub(const DwVfpRegister dst, | |
| 1532 const DwVfpRegister src1, | |
| 1533 const DwVfpRegister src2, | |
| 1534 const Condition cond) { | |
| 1535 // Dd = vsub(Dn, Dm) double precision floating point subtraction. | |
| 1536 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | |
| 1537 // Instruction details available in ARM DDI 0406A, A8-784. | |
| 1538 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | | |
| 1539 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1540 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1541 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | | |
| 1542 dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); | |
| 1543 } | |
| 1544 | |
| 1545 | |
| 1546 void Assembler::vmul(const DwVfpRegister dst, | |
| 1547 const DwVfpRegister src1, | |
| 1548 const DwVfpRegister src2, | |
| 1549 const Condition cond) { | |
| 1550 // Dd = vmul(Dn, Dm) double precision floating point multiplication. | |
| 1551 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | |
| 1552 // Instruction details available in ARM DDI 0406A, A8-784. | |
| 1553 // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) | | |
| 1554 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1555 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1556 emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 | | |
| 1557 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); | |
| 1558 } | |
| 1559 | |
| 1560 | |
| 1561 void Assembler::vdiv(const DwVfpRegister dst, | |
| 1562 const DwVfpRegister src1, | |
| 1563 const DwVfpRegister src2, | |
| 1564 const Condition cond) { | |
| 1565 // Dd = vdiv(Dn, Dm) double precision floating point division. | |
| 1566 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | |
| 1567 // Instruction details available in ARM DDI 0406A, A8-584. | |
| 1568 // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) | | |
| 1569 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1570 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1571 emit(cond | 0xE*B24 | B23 | src1.code()*B16 | | |
| 1572 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); | |
| 1573 } | |
| 1574 | |
| 1575 | |
| 1576 void Assembler::vcmp(const DwVfpRegister src1, | |
| 1577 const DwVfpRegister src2, | |
| 1578 const SBit s, | |
| 1579 const Condition cond) { | |
| 1580 // vcmp(Dd, Dm) double precision floating point comparison. | |
| 1581 // Instruction details available in ARM DDI 0406A, A8-570. | |
| 1582 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) | | |
| 1583 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=? | 1(6) | M(5)=? | 0(4) | Vm(3-0) | |
| 1584 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1585 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | | |
| 1586 src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); | |
| 1587 } | |
| 1588 | |
| 1589 | |
| 1590 void Assembler::vmrs(Register dst, Condition cond) { | |
| 1591 // Instruction details available in ARM DDI 0406A, A8-652. | |
| 1592 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | | |
| 1593 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) | |
| 1594 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1595 emit(cond | 0xE*B24 | 0xF*B20 | B16 | | |
| 1596 dst.code()*B12 | 0xA*B8 | B4); | |
| 1597 } | |
| 1598 | |
| 1599 | |
| 1600 // Pseudo instructions. | |
| 1601 void Assembler::lea(Register dst, | |
| 1602 const MemOperand& x, | |
| 1603 SBit s, | |
| 1604 Condition cond) { | |
| 1605 int am = x.am_; | |
| 1606 if (!x.rm_.is_valid()) { | |
| 1607 // Immediate offset. | |
| 1608 if ((am & P) == 0) // post indexing | |
| 1609 mov(dst, Operand(x.rn_), s, cond); | |
| 1610 else if ((am & U) == 0) // negative indexing | |
| 1611 sub(dst, x.rn_, Operand(x.offset_), s, cond); | |
| 1612 else | |
| 1613 add(dst, x.rn_, Operand(x.offset_), s, cond); | |
| 1614 } else { | |
| 1615 // Register offset (shift_imm_ and shift_op_ are 0) or scaled | |
| 1616 // register offset the constructors make sure than both shift_imm_ | |
| 1617 // and shift_op_ are initialized. | |
| 1618 ASSERT(!x.rm_.is(pc)); | |
| 1619 if ((am & P) == 0) // post indexing | |
| 1620 mov(dst, Operand(x.rn_), s, cond); | |
| 1621 else if ((am & U) == 0) // negative indexing | |
| 1622 sub(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond); | |
| 1623 else | |
| 1624 add(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond); | |
| 1625 } | |
| 1626 } | |
| 1627 | |
| 1628 | |
| 1629 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) { | |
| 1630 uint32_t dummy1; | |
| 1631 uint32_t dummy2; | |
| 1632 return fits_shifter(imm32, &dummy1, &dummy2, NULL); | |
| 1633 } | |
| 1634 | |
| 1635 | |
| 1636 void Assembler::BlockConstPoolFor(int instructions) { | |
| 1637 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize); | |
| 1638 } | |
| 1639 | |
| 1640 | |
| 1641 // Debugging. | |
| 1642 void Assembler::RecordJSReturn() { | |
| 1643 WriteRecordedPositions(); | |
| 1644 CheckBuffer(); | |
| 1645 RecordRelocInfo(RelocInfo::JS_RETURN); | |
| 1646 } | |
| 1647 | |
| 1648 | |
| 1649 void Assembler::RecordComment(const char* msg) { | |
| 1650 if (FLAG_debug_code) { | |
| 1651 CheckBuffer(); | |
| 1652 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); | |
| 1653 } | |
| 1654 } | |
| 1655 | |
| 1656 | |
| 1657 void Assembler::RecordPosition(int pos) { | |
| 1658 if (pos == RelocInfo::kNoPosition) return; | |
| 1659 ASSERT(pos >= 0); | |
| 1660 current_position_ = pos; | |
| 1661 } | |
| 1662 | |
| 1663 | |
| 1664 void Assembler::RecordStatementPosition(int pos) { | |
| 1665 if (pos == RelocInfo::kNoPosition) return; | |
| 1666 ASSERT(pos >= 0); | |
| 1667 current_statement_position_ = pos; | |
| 1668 } | |
| 1669 | |
| 1670 | |
| 1671 void Assembler::WriteRecordedPositions() { | |
| 1672 // Write the statement position if it is different from what was written last | |
| 1673 // time. | |
| 1674 if (current_statement_position_ != written_statement_position_) { | |
| 1675 CheckBuffer(); | |
| 1676 RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); | |
| 1677 written_statement_position_ = current_statement_position_; | |
| 1678 } | |
| 1679 | |
| 1680 // Write the position if it is different from what was written last time and | |
| 1681 // also different from the written statement position. | |
| 1682 if (current_position_ != written_position_ && | |
| 1683 current_position_ != written_statement_position_) { | |
| 1684 CheckBuffer(); | |
| 1685 RecordRelocInfo(RelocInfo::POSITION, current_position_); | |
| 1686 written_position_ = current_position_; | |
| 1687 } | |
| 1688 } | |
| 1689 | |
| 1690 | |
| 1691 void Assembler::GrowBuffer() { | |
| 1692 if (!own_buffer_) FATAL("external code buffer is too small"); | |
| 1693 | |
| 1694 // Compute new buffer size. | |
| 1695 CodeDesc desc; // the new buffer | |
| 1696 if (buffer_size_ < 4*KB) { | |
| 1697 desc.buffer_size = 4*KB; | |
| 1698 } else if (buffer_size_ < 1*MB) { | |
| 1699 desc.buffer_size = 2*buffer_size_; | |
| 1700 } else { | |
| 1701 desc.buffer_size = buffer_size_ + 1*MB; | |
| 1702 } | |
| 1703 CHECK_GT(desc.buffer_size, 0); // no overflow | |
| 1704 | |
| 1705 // Setup new buffer. | |
| 1706 desc.buffer = NewArray<byte>(desc.buffer_size); | |
| 1707 | |
| 1708 desc.instr_size = pc_offset(); | |
| 1709 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); | |
| 1710 | |
| 1711 // Copy the data. | |
| 1712 int pc_delta = desc.buffer - buffer_; | |
| 1713 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); | |
| 1714 memmove(desc.buffer, buffer_, desc.instr_size); | |
| 1715 memmove(reloc_info_writer.pos() + rc_delta, | |
| 1716 reloc_info_writer.pos(), desc.reloc_size); | |
| 1717 | |
| 1718 // Switch buffers. | |
| 1719 DeleteArray(buffer_); | |
| 1720 buffer_ = desc.buffer; | |
| 1721 buffer_size_ = desc.buffer_size; | |
| 1722 pc_ += pc_delta; | |
| 1723 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, | |
| 1724 reloc_info_writer.last_pc() + pc_delta); | |
| 1725 | |
| 1726 // None of our relocation types are pc relative pointing outside the code | |
| 1727 // buffer nor pc absolute pointing inside the code buffer, so there is no need | |
| 1728 // to relocate any emitted relocation entries. | |
| 1729 | |
| 1730 // Relocate pending relocation entries. | |
| 1731 for (int i = 0; i < num_prinfo_; i++) { | |
| 1732 RelocInfo& rinfo = prinfo_[i]; | |
| 1733 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | |
| 1734 rinfo.rmode() != RelocInfo::POSITION); | |
| 1735 if (rinfo.rmode() != RelocInfo::JS_RETURN) { | |
| 1736 rinfo.set_pc(rinfo.pc() + pc_delta); | |
| 1737 } | |
| 1738 } | |
| 1739 } | |
| 1740 | |
| 1741 | |
| 1742 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { | |
| 1743 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants | |
| 1744 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { | |
| 1745 // Adjust code for new modes. | |
| 1746 ASSERT(RelocInfo::IsJSReturn(rmode) | |
| 1747 || RelocInfo::IsComment(rmode) | |
| 1748 || RelocInfo::IsPosition(rmode)); | |
| 1749 // These modes do not need an entry in the constant pool. | |
| 1750 } else { | |
| 1751 ASSERT(num_prinfo_ < kMaxNumPRInfo); | |
| 1752 prinfo_[num_prinfo_++] = rinfo; | |
| 1753 // Make sure the constant pool is not emitted in place of the next | |
| 1754 // instruction for which we just recorded relocation info. | |
| 1755 BlockConstPoolBefore(pc_offset() + kInstrSize); | |
| 1756 } | |
| 1757 if (rinfo.rmode() != RelocInfo::NONE) { | |
| 1758 // Don't record external references unless the heap will be serialized. | |
| 1759 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { | |
| 1760 #ifdef DEBUG | |
| 1761 if (!Serializer::enabled()) { | |
| 1762 Serializer::TooLateToEnableNow(); | |
| 1763 } | |
| 1764 #endif | |
| 1765 if (!Serializer::enabled() && !FLAG_debug_code) { | |
| 1766 return; | |
| 1767 } | |
| 1768 } | |
| 1769 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here | |
| 1770 reloc_info_writer.Write(&rinfo); | |
| 1771 } | |
| 1772 } | |
| 1773 | |
| 1774 | |
| 1775 void Assembler::CheckConstPool(bool force_emit, bool require_jump) { | |
| 1776 // Calculate the offset of the next check. It will be overwritten | |
| 1777 // when a const pool is generated or when const pools are being | |
| 1778 // blocked for a specific range. | |
| 1779 next_buffer_check_ = pc_offset() + kCheckConstInterval; | |
| 1780 | |
| 1781 // There is nothing to do if there are no pending relocation info entries. | |
| 1782 if (num_prinfo_ == 0) return; | |
| 1783 | |
| 1784 // We emit a constant pool at regular intervals of about kDistBetweenPools | |
| 1785 // or when requested by parameter force_emit (e.g. after each function). | |
| 1786 // We prefer not to emit a jump unless the max distance is reached or if we | |
| 1787 // are running low on slots, which can happen if a lot of constants are being | |
| 1788 // emitted (e.g. --debug-code and many static references). | |
| 1789 int dist = pc_offset() - last_const_pool_end_; | |
| 1790 if (!force_emit && dist < kMaxDistBetweenPools && | |
| 1791 (require_jump || dist < kDistBetweenPools) && | |
| 1792 // TODO(1236125): Cleanup the "magic" number below. We know that | |
| 1793 // the code generation will test every kCheckConstIntervalInst. | |
| 1794 // Thus we are safe as long as we generate less than 7 constant | |
| 1795 // entries per instruction. | |
| 1796 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { | |
| 1797 return; | |
| 1798 } | |
| 1799 | |
| 1800 // If we did not return by now, we need to emit the constant pool soon. | |
| 1801 | |
| 1802 // However, some small sequences of instructions must not be broken up by the | |
| 1803 // insertion of a constant pool; such sequences are protected by setting | |
| 1804 // no_const_pool_before_, which is checked here. Also, recursive calls to | |
| 1805 // CheckConstPool are blocked by no_const_pool_before_. | |
| 1806 if (pc_offset() < no_const_pool_before_) { | |
| 1807 // Emission is currently blocked; make sure we try again as soon as | |
| 1808 // possible. | |
| 1809 next_buffer_check_ = no_const_pool_before_; | |
| 1810 | |
| 1811 // Something is wrong if emission is forced and blocked at the same time. | |
| 1812 ASSERT(!force_emit); | |
| 1813 return; | |
| 1814 } | |
| 1815 | |
| 1816 int jump_instr = require_jump ? kInstrSize : 0; | |
| 1817 | |
| 1818 // Check that the code buffer is large enough before emitting the constant | |
| 1819 // pool and relocation information (include the jump over the pool and the | |
| 1820 // constant pool marker). | |
| 1821 int max_needed_space = | |
| 1822 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); | |
| 1823 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); | |
| 1824 | |
| 1825 // Block recursive calls to CheckConstPool. | |
| 1826 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + | |
| 1827 num_prinfo_*kInstrSize); | |
| 1828 // Don't bother to check for the emit calls below. | |
| 1829 next_buffer_check_ = no_const_pool_before_; | |
| 1830 | |
| 1831 // Emit jump over constant pool if necessary. | |
| 1832 Label after_pool; | |
| 1833 if (require_jump) b(&after_pool); | |
| 1834 | |
| 1835 RecordComment("[ Constant Pool"); | |
| 1836 | |
| 1837 // Put down constant pool marker "Undefined instruction" as specified by | |
| 1838 // A3.1 Instruction set encoding. | |
| 1839 emit(0x03000000 | num_prinfo_); | |
| 1840 | |
| 1841 // Emit constant pool entries. | |
| 1842 for (int i = 0; i < num_prinfo_; i++) { | |
| 1843 RelocInfo& rinfo = prinfo_[i]; | |
| 1844 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | |
| 1845 rinfo.rmode() != RelocInfo::POSITION && | |
| 1846 rinfo.rmode() != RelocInfo::STATEMENT_POSITION); | |
| 1847 Instr instr = instr_at(rinfo.pc()); | |
| 1848 | |
| 1849 // Instruction to patch must be a ldr/str [pc, #offset]. | |
| 1850 // P and U set, B and W clear, Rn == pc, offset12 still 0. | |
| 1851 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == | |
| 1852 (2*B25 | P | U | pc.code()*B16)); | |
| 1853 int delta = pc_ - rinfo.pc() - 8; | |
| 1854 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 | |
| 1855 if (delta < 0) { | |
| 1856 instr &= ~U; | |
| 1857 delta = -delta; | |
| 1858 } | |
| 1859 ASSERT(is_uint12(delta)); | |
| 1860 instr_at_put(rinfo.pc(), instr + delta); | |
| 1861 emit(rinfo.data()); | |
| 1862 } | |
| 1863 num_prinfo_ = 0; | |
| 1864 last_const_pool_end_ = pc_offset(); | |
| 1865 | |
| 1866 RecordComment("]"); | |
| 1867 | |
| 1868 if (after_pool.is_linked()) { | |
| 1869 bind(&after_pool); | |
| 1870 } | |
| 1871 | |
| 1872 // Since a constant pool was just emitted, move the check offset forward by | |
| 1873 // the standard interval. | |
| 1874 next_buffer_check_ = pc_offset() + kCheckConstInterval; | |
| 1875 } | |
| 1876 | |
| 1877 | |
| 1878 } } // namespace v8::internal | |
| OLD | NEW |