| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 1994-2006 Sun Microsystems Inc. | |
| 2 // All Rights Reserved. | |
| 3 // | |
| 4 // Redistribution and use in source and binary forms, with or without | |
| 5 // modification, are permitted provided that the following conditions | |
| 6 // are met: | |
| 7 // | |
| 8 // - Redistributions of source code must retain the above copyright notice, | |
| 9 // this list of conditions and the following disclaimer. | |
| 10 // | |
| 11 // - Redistribution in binary form must reproduce the above copyright | |
| 12 // notice, this list of conditions and the following disclaimer in the | |
| 13 // documentation and/or other materials provided with the | |
| 14 // distribution. | |
| 15 // | |
| 16 // - Neither the name of Sun Microsystems or the names of contributors may | |
| 17 // be used to endorse or promote products derived from this software without | |
| 18 // specific prior written permission. | |
| 19 // | |
| 20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
| 23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | |
| 24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | |
| 25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | |
| 26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |
| 27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
| 28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | |
| 29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
| 30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | |
| 31 // OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 32 | |
| 33 // The original source code covered by the above license above has been | |
| 34 // modified significantly by Google Inc. | |
| 35 // Copyright 2010 the V8 project authors. All rights reserved. | |
| 36 | |
| 37 #include "v8.h" | |
| 38 | |
| 39 #if defined(V8_TARGET_ARCH_ARM) && defined(V8_ARM_VARIANT_THUMB) | |
| 40 | |
| 41 #include "arm/assembler-thumb2-inl.h" | |
| 42 #include "serialize.h" | |
| 43 | |
| 44 namespace v8 { | |
| 45 namespace internal { | |
| 46 | |
| 47 // Safe default is no features. | |
| 48 unsigned CpuFeatures::supported_ = 0; | |
| 49 unsigned CpuFeatures::enabled_ = 0; | |
| 50 unsigned CpuFeatures::found_by_runtime_probing_ = 0; | |
| 51 | |
| 52 void CpuFeatures::Probe() { | |
| 53 // If the compiler is allowed to use vfp then we can use vfp too in our | |
| 54 // code generation. | |
| 55 #if !defined(__arm__) | |
| 56 // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is enabled. | |
| 57 if (FLAG_enable_vfp3) { | |
| 58 supported_ |= 1u << VFP3; | |
| 59 } | |
| 60 // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled | |
| 61 if (FLAG_enable_armv7) { | |
| 62 supported_ |= 1u << ARMv7; | |
| 63 } | |
| 64 #else | |
| 65 if (Serializer::enabled()) { | |
| 66 supported_ |= OS::CpuFeaturesImpliedByPlatform(); | |
| 67 return; // No features if we might serialize. | |
| 68 } | |
| 69 | |
| 70 if (OS::ArmCpuHasFeature(VFP3)) { | |
| 71 // This implementation also sets the VFP flags if | |
| 72 // runtime detection of VFP returns true. | |
| 73 supported_ |= 1u << VFP3; | |
| 74 found_by_runtime_probing_ |= 1u << VFP3; | |
| 75 } | |
| 76 | |
| 77 if (OS::ArmCpuHasFeature(ARMv7)) { | |
| 78 supported_ |= 1u << ARMv7; | |
| 79 found_by_runtime_probing_ |= 1u << ARMv7; | |
| 80 } | |
| 81 #endif | |
| 82 } | |
| 83 | |
| 84 | |
| 85 // ----------------------------------------------------------------------------- | |
| 86 // Implementation of Register and CRegister | |
| 87 | |
| 88 Register no_reg = { -1 }; | |
| 89 | |
| 90 Register r0 = { 0 }; | |
| 91 Register r1 = { 1 }; | |
| 92 Register r2 = { 2 }; | |
| 93 Register r3 = { 3 }; | |
| 94 Register r4 = { 4 }; | |
| 95 Register r5 = { 5 }; | |
| 96 Register r6 = { 6 }; | |
| 97 Register r7 = { 7 }; | |
| 98 Register r8 = { 8 }; // Used as context register. | |
| 99 Register r9 = { 9 }; | |
| 100 Register r10 = { 10 }; // Used as roots register. | |
| 101 Register fp = { 11 }; | |
| 102 Register ip = { 12 }; | |
| 103 Register sp = { 13 }; | |
| 104 Register lr = { 14 }; | |
| 105 Register pc = { 15 }; | |
| 106 | |
| 107 | |
| 108 CRegister no_creg = { -1 }; | |
| 109 | |
| 110 CRegister cr0 = { 0 }; | |
| 111 CRegister cr1 = { 1 }; | |
| 112 CRegister cr2 = { 2 }; | |
| 113 CRegister cr3 = { 3 }; | |
| 114 CRegister cr4 = { 4 }; | |
| 115 CRegister cr5 = { 5 }; | |
| 116 CRegister cr6 = { 6 }; | |
| 117 CRegister cr7 = { 7 }; | |
| 118 CRegister cr8 = { 8 }; | |
| 119 CRegister cr9 = { 9 }; | |
| 120 CRegister cr10 = { 10 }; | |
| 121 CRegister cr11 = { 11 }; | |
| 122 CRegister cr12 = { 12 }; | |
| 123 CRegister cr13 = { 13 }; | |
| 124 CRegister cr14 = { 14 }; | |
| 125 CRegister cr15 = { 15 }; | |
| 126 | |
| 127 // Support for the VFP registers s0 to s31 (d0 to d15). | |
| 128 // Note that "sN:sM" is the same as "dN/2". | |
| 129 SwVfpRegister s0 = { 0 }; | |
| 130 SwVfpRegister s1 = { 1 }; | |
| 131 SwVfpRegister s2 = { 2 }; | |
| 132 SwVfpRegister s3 = { 3 }; | |
| 133 SwVfpRegister s4 = { 4 }; | |
| 134 SwVfpRegister s5 = { 5 }; | |
| 135 SwVfpRegister s6 = { 6 }; | |
| 136 SwVfpRegister s7 = { 7 }; | |
| 137 SwVfpRegister s8 = { 8 }; | |
| 138 SwVfpRegister s9 = { 9 }; | |
| 139 SwVfpRegister s10 = { 10 }; | |
| 140 SwVfpRegister s11 = { 11 }; | |
| 141 SwVfpRegister s12 = { 12 }; | |
| 142 SwVfpRegister s13 = { 13 }; | |
| 143 SwVfpRegister s14 = { 14 }; | |
| 144 SwVfpRegister s15 = { 15 }; | |
| 145 SwVfpRegister s16 = { 16 }; | |
| 146 SwVfpRegister s17 = { 17 }; | |
| 147 SwVfpRegister s18 = { 18 }; | |
| 148 SwVfpRegister s19 = { 19 }; | |
| 149 SwVfpRegister s20 = { 20 }; | |
| 150 SwVfpRegister s21 = { 21 }; | |
| 151 SwVfpRegister s22 = { 22 }; | |
| 152 SwVfpRegister s23 = { 23 }; | |
| 153 SwVfpRegister s24 = { 24 }; | |
| 154 SwVfpRegister s25 = { 25 }; | |
| 155 SwVfpRegister s26 = { 26 }; | |
| 156 SwVfpRegister s27 = { 27 }; | |
| 157 SwVfpRegister s28 = { 28 }; | |
| 158 SwVfpRegister s29 = { 29 }; | |
| 159 SwVfpRegister s30 = { 30 }; | |
| 160 SwVfpRegister s31 = { 31 }; | |
| 161 | |
| 162 DwVfpRegister d0 = { 0 }; | |
| 163 DwVfpRegister d1 = { 1 }; | |
| 164 DwVfpRegister d2 = { 2 }; | |
| 165 DwVfpRegister d3 = { 3 }; | |
| 166 DwVfpRegister d4 = { 4 }; | |
| 167 DwVfpRegister d5 = { 5 }; | |
| 168 DwVfpRegister d6 = { 6 }; | |
| 169 DwVfpRegister d7 = { 7 }; | |
| 170 DwVfpRegister d8 = { 8 }; | |
| 171 DwVfpRegister d9 = { 9 }; | |
| 172 DwVfpRegister d10 = { 10 }; | |
| 173 DwVfpRegister d11 = { 11 }; | |
| 174 DwVfpRegister d12 = { 12 }; | |
| 175 DwVfpRegister d13 = { 13 }; | |
| 176 DwVfpRegister d14 = { 14 }; | |
| 177 DwVfpRegister d15 = { 15 }; | |
| 178 | |
| 179 // ----------------------------------------------------------------------------- | |
| 180 // Implementation of RelocInfo | |
| 181 | |
| 182 const int RelocInfo::kApplyMask = 0; | |
| 183 | |
| 184 | |
| 185 void RelocInfo::PatchCode(byte* instructions, int instruction_count) { | |
| 186 // Patch the code at the current address with the supplied instructions. | |
| 187 Instr* pc = reinterpret_cast<Instr*>(pc_); | |
| 188 Instr* instr = reinterpret_cast<Instr*>(instructions); | |
| 189 for (int i = 0; i < instruction_count; i++) { | |
| 190 *(pc + i) = *(instr + i); | |
| 191 } | |
| 192 | |
| 193 // Indicate that code has changed. | |
| 194 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize); | |
| 195 } | |
| 196 | |
| 197 | |
| 198 // Patch the code at the current PC with a call to the target address. | |
| 199 // Additional guard instructions can be added if required. | |
| 200 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { | |
| 201 // Patch the code at the current address with a call to the target. | |
| 202 UNIMPLEMENTED(); | |
| 203 } | |
| 204 | |
| 205 | |
| 206 // ----------------------------------------------------------------------------- | |
| 207 // Implementation of Operand and MemOperand | |
| 208 // See assembler-thumb2-inl.h for inlined constructors | |
| 209 | |
| 210 Operand::Operand(Handle<Object> handle) { | |
| 211 rm_ = no_reg; | |
| 212 // Verify all Objects referred by code are NOT in new space. | |
| 213 Object* obj = *handle; | |
| 214 ASSERT(!Heap::InNewSpace(obj)); | |
| 215 if (obj->IsHeapObject()) { | |
| 216 imm32_ = reinterpret_cast<intptr_t>(handle.location()); | |
| 217 rmode_ = RelocInfo::EMBEDDED_OBJECT; | |
| 218 } else { | |
| 219 // no relocation needed | |
| 220 imm32_ = reinterpret_cast<intptr_t>(obj); | |
| 221 rmode_ = RelocInfo::NONE; | |
| 222 } | |
| 223 } | |
| 224 | |
| 225 | |
| 226 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { | |
| 227 ASSERT(is_uint5(shift_imm)); | |
| 228 ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it | |
| 229 rm_ = rm; | |
| 230 rs_ = no_reg; | |
| 231 shift_op_ = shift_op; | |
| 232 shift_imm_ = shift_imm & 31; | |
| 233 if (shift_op == RRX) { | |
| 234 // encoded as ROR with shift_imm == 0 | |
| 235 ASSERT(shift_imm == 0); | |
| 236 shift_op_ = ROR; | |
| 237 shift_imm_ = 0; | |
| 238 } | |
| 239 } | |
| 240 | |
| 241 | |
| 242 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { | |
| 243 ASSERT(shift_op != RRX); | |
| 244 rm_ = rm; | |
| 245 rs_ = no_reg; | |
| 246 shift_op_ = shift_op; | |
| 247 rs_ = rs; | |
| 248 } | |
| 249 | |
| 250 | |
| 251 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) { | |
| 252 rn_ = rn; | |
| 253 rm_ = no_reg; | |
| 254 offset_ = offset; | |
| 255 am_ = am; | |
| 256 } | |
| 257 | |
| 258 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) { | |
| 259 rn_ = rn; | |
| 260 rm_ = rm; | |
| 261 shift_op_ = LSL; | |
| 262 shift_imm_ = 0; | |
| 263 am_ = am; | |
| 264 } | |
| 265 | |
| 266 | |
| 267 MemOperand::MemOperand(Register rn, Register rm, | |
| 268 ShiftOp shift_op, int shift_imm, AddrMode am) { | |
| 269 ASSERT(is_uint5(shift_imm)); | |
| 270 rn_ = rn; | |
| 271 rm_ = rm; | |
| 272 shift_op_ = shift_op; | |
| 273 shift_imm_ = shift_imm & 31; | |
| 274 am_ = am; | |
| 275 } | |
| 276 | |
| 277 | |
| 278 // ----------------------------------------------------------------------------- | |
| 279 // Implementation of Assembler. | |
| 280 | |
| 281 // Instruction encoding bits. | |
| 282 enum { | |
| 283 H = 1 << 5, // halfword (or byte) | |
| 284 S6 = 1 << 6, // signed (or unsigned) | |
| 285 L = 1 << 20, // load (or store) | |
| 286 S = 1 << 20, // set condition code (or leave unchanged) | |
| 287 W = 1 << 21, // writeback base register (or leave unchanged) | |
| 288 A = 1 << 21, // accumulate in multiply instruction (or not) | |
| 289 B = 1 << 22, // unsigned byte (or word) | |
| 290 N = 1 << 22, // long (or short) | |
| 291 U = 1 << 23, // positive (or negative) offset/index | |
| 292 P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing) | |
| 293 I = 1 << 25, // immediate shifter operand (or not) | |
| 294 | |
| 295 B4 = 1 << 4, | |
| 296 B5 = 1 << 5, | |
| 297 B6 = 1 << 6, | |
| 298 B7 = 1 << 7, | |
| 299 B8 = 1 << 8, | |
| 300 B9 = 1 << 9, | |
| 301 B12 = 1 << 12, | |
| 302 B16 = 1 << 16, | |
| 303 B18 = 1 << 18, | |
| 304 B19 = 1 << 19, | |
| 305 B20 = 1 << 20, | |
| 306 B21 = 1 << 21, | |
| 307 B22 = 1 << 22, | |
| 308 B23 = 1 << 23, | |
| 309 B24 = 1 << 24, | |
| 310 B25 = 1 << 25, | |
| 311 B26 = 1 << 26, | |
| 312 B27 = 1 << 27, | |
| 313 | |
| 314 // Instruction bit masks. | |
| 315 RdMask = 15 << 12, // in str instruction | |
| 316 CondMask = 15 << 28, | |
| 317 CoprocessorMask = 15 << 8, | |
| 318 OpCodeMask = 15 << 21, // in data-processing instructions | |
| 319 Imm24Mask = (1 << 24) - 1, | |
| 320 Off12Mask = (1 << 12) - 1, | |
| 321 // Reserved condition. | |
| 322 nv = 15 << 28 | |
| 323 }; | |
| 324 | |
| 325 | |
| 326 // add(sp, sp, 4) instruction (aka Pop()) | |
| 327 static const Instr kPopInstruction = | |
| 328 al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; | |
| 329 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) | |
| 330 // register r is not encoded. | |
| 331 static const Instr kPushRegPattern = | |
| 332 al | B26 | 4 | NegPreIndex | sp.code() * B16; | |
| 333 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) | |
| 334 // register r is not encoded. | |
| 335 static const Instr kPopRegPattern = | |
| 336 al | B26 | L | 4 | PostIndex | sp.code() * B16; | |
| 337 // mov lr, pc | |
| 338 const Instr kMovLrPc = al | 13*B21 | pc.code() | lr.code() * B12; | |
| 339 // ldr pc, [pc, #XXX] | |
| 340 const Instr kLdrPCPattern = al | B26 | L | pc.code() * B16; | |
| 341 | |
| 342 // Spare buffer. | |
| 343 static const int kMinimalBufferSize = 4*KB; | |
| 344 static byte* spare_buffer_ = NULL; | |
| 345 | |
| 346 Assembler::Assembler(void* buffer, int buffer_size) { | |
| 347 if (buffer == NULL) { | |
| 348 // Do our own buffer management. | |
| 349 if (buffer_size <= kMinimalBufferSize) { | |
| 350 buffer_size = kMinimalBufferSize; | |
| 351 | |
| 352 if (spare_buffer_ != NULL) { | |
| 353 buffer = spare_buffer_; | |
| 354 spare_buffer_ = NULL; | |
| 355 } | |
| 356 } | |
| 357 if (buffer == NULL) { | |
| 358 buffer_ = NewArray<byte>(buffer_size); | |
| 359 } else { | |
| 360 buffer_ = static_cast<byte*>(buffer); | |
| 361 } | |
| 362 buffer_size_ = buffer_size; | |
| 363 own_buffer_ = true; | |
| 364 | |
| 365 } else { | |
| 366 // Use externally provided buffer instead. | |
| 367 ASSERT(buffer_size > 0); | |
| 368 buffer_ = static_cast<byte*>(buffer); | |
| 369 buffer_size_ = buffer_size; | |
| 370 own_buffer_ = false; | |
| 371 } | |
| 372 | |
| 373 // Setup buffer pointers. | |
| 374 ASSERT(buffer_ != NULL); | |
| 375 pc_ = buffer_; | |
| 376 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); | |
| 377 num_prinfo_ = 0; | |
| 378 next_buffer_check_ = 0; | |
| 379 no_const_pool_before_ = 0; | |
| 380 last_const_pool_end_ = 0; | |
| 381 last_bound_pos_ = 0; | |
| 382 current_statement_position_ = RelocInfo::kNoPosition; | |
| 383 current_position_ = RelocInfo::kNoPosition; | |
| 384 written_statement_position_ = current_statement_position_; | |
| 385 written_position_ = current_position_; | |
| 386 } | |
| 387 | |
| 388 | |
| 389 Assembler::~Assembler() { | |
| 390 if (own_buffer_) { | |
| 391 if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { | |
| 392 spare_buffer_ = buffer_; | |
| 393 } else { | |
| 394 DeleteArray(buffer_); | |
| 395 } | |
| 396 } | |
| 397 } | |
| 398 | |
| 399 | |
| 400 void Assembler::GetCode(CodeDesc* desc) { | |
| 401 // Emit constant pool if necessary. | |
| 402 CheckConstPool(true, false); | |
| 403 ASSERT(num_prinfo_ == 0); | |
| 404 | |
| 405 // Setup code descriptor. | |
| 406 desc->buffer = buffer_; | |
| 407 desc->buffer_size = buffer_size_; | |
| 408 desc->instr_size = pc_offset(); | |
| 409 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); | |
| 410 } | |
| 411 | |
| 412 | |
| 413 void Assembler::Align(int m) { | |
| 414 ASSERT(m >= 4 && IsPowerOf2(m)); | |
| 415 while ((pc_offset() & (m - 1)) != 0) { | |
| 416 nop(); | |
| 417 } | |
| 418 } | |
| 419 | |
| 420 | |
| 421 // Labels refer to positions in the (to be) generated code. | |
| 422 // There are bound, linked, and unused labels. | |
| 423 // | |
| 424 // Bound labels refer to known positions in the already | |
| 425 // generated code. pos() is the position the label refers to. | |
| 426 // | |
| 427 // Linked labels refer to unknown positions in the code | |
| 428 // to be generated; pos() is the position of the last | |
| 429 // instruction using the label. | |
| 430 | |
| 431 | |
| 432 // The link chain is terminated by a negative code position (must be aligned) | |
| 433 const int kEndOfChain = -4; | |
| 434 | |
| 435 | |
| 436 int Assembler::target_at(int pos) { | |
| 437 Instr instr = instr_at(pos); | |
| 438 if ((instr & ~Imm24Mask) == 0) { | |
| 439 // Emitted label constant, not part of a branch. | |
| 440 return instr - (Code::kHeaderSize - kHeapObjectTag); | |
| 441 } | |
| 442 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 | |
| 443 int imm26 = ((instr & Imm24Mask) << 8) >> 6; | |
| 444 if ((instr & CondMask) == nv && (instr & B24) != 0) | |
| 445 // blx uses bit 24 to encode bit 2 of imm26 | |
| 446 imm26 += 2; | |
| 447 | |
| 448 return pos + kPcLoadDelta + imm26; | |
| 449 } | |
| 450 | |
| 451 | |
| 452 void Assembler::target_at_put(int pos, int target_pos) { | |
| 453 Instr instr = instr_at(pos); | |
| 454 if ((instr & ~Imm24Mask) == 0) { | |
| 455 ASSERT(target_pos == kEndOfChain || target_pos >= 0); | |
| 456 // Emitted label constant, not part of a branch. | |
| 457 // Make label relative to Code* of generated Code object. | |
| 458 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag)); | |
| 459 return; | |
| 460 } | |
| 461 int imm26 = target_pos - (pos + kPcLoadDelta); | |
| 462 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 | |
| 463 if ((instr & CondMask) == nv) { | |
| 464 // blx uses bit 24 to encode bit 2 of imm26 | |
| 465 ASSERT((imm26 & 1) == 0); | |
| 466 instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24; | |
| 467 } else { | |
| 468 ASSERT((imm26 & 3) == 0); | |
| 469 instr &= ~Imm24Mask; | |
| 470 } | |
| 471 int imm24 = imm26 >> 2; | |
| 472 ASSERT(is_int24(imm24)); | |
| 473 instr_at_put(pos, instr | (imm24 & Imm24Mask)); | |
| 474 } | |
| 475 | |
| 476 | |
| 477 void Assembler::print(Label* L) { | |
| 478 if (L->is_unused()) { | |
| 479 PrintF("unused label\n"); | |
| 480 } else if (L->is_bound()) { | |
| 481 PrintF("bound label to %d\n", L->pos()); | |
| 482 } else if (L->is_linked()) { | |
| 483 Label l = *L; | |
| 484 PrintF("unbound label"); | |
| 485 while (l.is_linked()) { | |
| 486 PrintF("@ %d ", l.pos()); | |
| 487 Instr instr = instr_at(l.pos()); | |
| 488 if ((instr & ~Imm24Mask) == 0) { | |
| 489 PrintF("value\n"); | |
| 490 } else { | |
| 491 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx | |
| 492 int cond = instr & CondMask; | |
| 493 const char* b; | |
| 494 const char* c; | |
| 495 if (cond == nv) { | |
| 496 b = "blx"; | |
| 497 c = ""; | |
| 498 } else { | |
| 499 if ((instr & B24) != 0) | |
| 500 b = "bl"; | |
| 501 else | |
| 502 b = "b"; | |
| 503 | |
| 504 switch (cond) { | |
| 505 case eq: c = "eq"; break; | |
| 506 case ne: c = "ne"; break; | |
| 507 case hs: c = "hs"; break; | |
| 508 case lo: c = "lo"; break; | |
| 509 case mi: c = "mi"; break; | |
| 510 case pl: c = "pl"; break; | |
| 511 case vs: c = "vs"; break; | |
| 512 case vc: c = "vc"; break; | |
| 513 case hi: c = "hi"; break; | |
| 514 case ls: c = "ls"; break; | |
| 515 case ge: c = "ge"; break; | |
| 516 case lt: c = "lt"; break; | |
| 517 case gt: c = "gt"; break; | |
| 518 case le: c = "le"; break; | |
| 519 case al: c = ""; break; | |
| 520 default: | |
| 521 c = ""; | |
| 522 UNREACHABLE(); | |
| 523 } | |
| 524 } | |
| 525 PrintF("%s%s\n", b, c); | |
| 526 } | |
| 527 next(&l); | |
| 528 } | |
| 529 } else { | |
| 530 PrintF("label in inconsistent state (pos = %d)\n", L->pos_); | |
| 531 } | |
| 532 } | |
| 533 | |
| 534 | |
| 535 void Assembler::bind_to(Label* L, int pos) { | |
| 536 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position | |
| 537 while (L->is_linked()) { | |
| 538 int fixup_pos = L->pos(); | |
| 539 next(L); // call next before overwriting link with target at fixup_pos | |
| 540 target_at_put(fixup_pos, pos); | |
| 541 } | |
| 542 L->bind_to(pos); | |
| 543 | |
| 544 // Keep track of the last bound label so we don't eliminate any instructions | |
| 545 // before a bound label. | |
| 546 if (pos > last_bound_pos_) | |
| 547 last_bound_pos_ = pos; | |
| 548 } | |
| 549 | |
| 550 | |
| 551 void Assembler::link_to(Label* L, Label* appendix) { | |
| 552 if (appendix->is_linked()) { | |
| 553 if (L->is_linked()) { | |
| 554 // Append appendix to L's list. | |
| 555 int fixup_pos; | |
| 556 int link = L->pos(); | |
| 557 do { | |
| 558 fixup_pos = link; | |
| 559 link = target_at(fixup_pos); | |
| 560 } while (link > 0); | |
| 561 ASSERT(link == kEndOfChain); | |
| 562 target_at_put(fixup_pos, appendix->pos()); | |
| 563 } else { | |
| 564 // L is empty, simply use appendix. | |
| 565 *L = *appendix; | |
| 566 } | |
| 567 } | |
| 568 appendix->Unuse(); // appendix should not be used anymore | |
| 569 } | |
| 570 | |
| 571 | |
| 572 void Assembler::bind(Label* L) { | |
| 573 ASSERT(!L->is_bound()); // label can only be bound once | |
| 574 bind_to(L, pc_offset()); | |
| 575 } | |
| 576 | |
| 577 | |
| 578 void Assembler::next(Label* L) { | |
| 579 ASSERT(L->is_linked()); | |
| 580 int link = target_at(L->pos()); | |
| 581 if (link > 0) { | |
| 582 L->link_to(link); | |
| 583 } else { | |
| 584 ASSERT(link == kEndOfChain); | |
| 585 L->Unuse(); | |
| 586 } | |
| 587 } | |
| 588 | |
| 589 | |
| 590 // Low-level code emission routines depending on the addressing mode. | |
| 591 static bool fits_shifter(uint32_t imm32, | |
| 592 uint32_t* rotate_imm, | |
| 593 uint32_t* immed_8, | |
| 594 Instr* instr) { | |
| 595 // imm32 must be unsigned. | |
| 596 for (int rot = 0; rot < 16; rot++) { | |
| 597 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); | |
| 598 if ((imm8 <= 0xff)) { | |
| 599 *rotate_imm = rot; | |
| 600 *immed_8 = imm8; | |
| 601 return true; | |
| 602 } | |
| 603 } | |
| 604 // If the opcode is mov or mvn and if ~imm32 fits, change the opcode. | |
| 605 if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) { | |
| 606 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { | |
| 607 *instr ^= 0x2*B21; | |
| 608 return true; | |
| 609 } | |
| 610 } | |
| 611 return false; | |
| 612 } | |
| 613 | |
| 614 | |
| 615 // We have to use the temporary register for things that can be relocated even | |
| 616 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction | |
| 617 // space. There is no guarantee that the relocated location can be similarly | |
| 618 // encoded. | |
| 619 static bool MustUseIp(RelocInfo::Mode rmode) { | |
| 620 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { | |
| 621 #ifdef DEBUG | |
| 622 if (!Serializer::enabled()) { | |
| 623 Serializer::TooLateToEnableNow(); | |
| 624 } | |
| 625 #endif | |
| 626 return Serializer::enabled(); | |
| 627 } else if (rmode == RelocInfo::NONE) { | |
| 628 return false; | |
| 629 } | |
| 630 return true; | |
| 631 } | |
| 632 | |
| 633 | |
| 634 void Assembler::addrmod1(Instr instr, | |
| 635 Register rn, | |
| 636 Register rd, | |
| 637 const Operand& x) { | |
| 638 CheckBuffer(); | |
| 639 ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); | |
| 640 if (!x.rm_.is_valid()) { | |
| 641 // Immediate. | |
| 642 uint32_t rotate_imm; | |
| 643 uint32_t immed_8; | |
| 644 if (MustUseIp(x.rmode_) || | |
| 645 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { | |
| 646 // The immediate operand cannot be encoded as a shifter operand, so load | |
| 647 // it first to register ip and change the original instruction to use ip. | |
| 648 // However, if the original instruction is a 'mov rd, x' (not setting the | |
| 649 // condition code), then replace it with a 'ldr rd, [pc]'. | |
| 650 RecordRelocInfo(x.rmode_, x.imm32_); | |
| 651 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed | |
| 652 Condition cond = static_cast<Condition>(instr & CondMask); | |
| 653 if ((instr & ~CondMask) == 13*B21) { // mov, S not set | |
| 654 ldr(rd, MemOperand(pc, 0), cond); | |
| 655 } else { | |
| 656 ldr(ip, MemOperand(pc, 0), cond); | |
| 657 addrmod1(instr, rn, rd, Operand(ip)); | |
| 658 } | |
| 659 return; | |
| 660 } | |
| 661 instr |= I | rotate_imm*B8 | immed_8; | |
| 662 } else if (!x.rs_.is_valid()) { | |
| 663 // Immediate shift. | |
| 664 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); | |
| 665 } else { | |
| 666 // Register shift. | |
| 667 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); | |
| 668 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); | |
| 669 } | |
| 670 emit(instr | rn.code()*B16 | rd.code()*B12); | |
| 671 if (rn.is(pc) || x.rm_.is(pc)) | |
| 672 // Block constant pool emission for one instruction after reading pc. | |
| 673 BlockConstPoolBefore(pc_offset() + kInstrSize); | |
| 674 } | |
| 675 | |
| 676 | |
| 677 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { | |
| 678 ASSERT((instr & ~(CondMask | B | L)) == B26); | |
| 679 int am = x.am_; | |
| 680 if (!x.rm_.is_valid()) { | |
| 681 // Immediate offset. | |
| 682 int offset_12 = x.offset_; | |
| 683 if (offset_12 < 0) { | |
| 684 offset_12 = -offset_12; | |
| 685 am ^= U; | |
| 686 } | |
| 687 if (!is_uint12(offset_12)) { | |
| 688 // Immediate offset cannot be encoded, load it first to register ip | |
| 689 // rn (and rd in a load) should never be ip, or will be trashed. | |
| 690 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | |
| 691 mov(ip, Operand(x.offset_), LeaveCC, | |
| 692 static_cast<Condition>(instr & CondMask)); | |
| 693 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); | |
| 694 return; | |
| 695 } | |
| 696 ASSERT(offset_12 >= 0); // no masking needed | |
| 697 instr |= offset_12; | |
| 698 } else { | |
| 699 // Register offset (shift_imm_ and shift_op_ are 0) or scaled | |
| 700 // register offset the constructors make sure than both shift_imm_ | |
| 701 // and shift_op_ are initialized. | |
| 702 ASSERT(!x.rm_.is(pc)); | |
| 703 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); | |
| 704 } | |
| 705 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | |
| 706 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); | |
| 707 } | |
| 708 | |
| 709 | |
| 710 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { | |
| 711 ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); | |
| 712 ASSERT(x.rn_.is_valid()); | |
| 713 int am = x.am_; | |
| 714 if (!x.rm_.is_valid()) { | |
| 715 // Immediate offset. | |
| 716 int offset_8 = x.offset_; | |
| 717 if (offset_8 < 0) { | |
| 718 offset_8 = -offset_8; | |
| 719 am ^= U; | |
| 720 } | |
| 721 if (!is_uint8(offset_8)) { | |
| 722 // Immediate offset cannot be encoded, load it first to register ip | |
| 723 // rn (and rd in a load) should never be ip, or will be trashed. | |
| 724 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | |
| 725 mov(ip, Operand(x.offset_), LeaveCC, | |
| 726 static_cast<Condition>(instr & CondMask)); | |
| 727 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); | |
| 728 return; | |
| 729 } | |
| 730 ASSERT(offset_8 >= 0); // no masking needed | |
| 731 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); | |
| 732 } else if (x.shift_imm_ != 0) { | |
| 733 // Scaled register offset not supported, load index first | |
| 734 // rn (and rd in a load) should never be ip, or will be trashed. | |
| 735 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); | |
| 736 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, | |
| 737 static_cast<Condition>(instr & CondMask)); | |
| 738 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); | |
| 739 return; | |
| 740 } else { | |
| 741 // Register offset. | |
| 742 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback | |
| 743 instr |= x.rm_.code(); | |
| 744 } | |
| 745 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | |
| 746 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); | |
| 747 } | |
| 748 | |
| 749 | |
| 750 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { | |
| 751 ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); | |
| 752 ASSERT(rl != 0); | |
| 753 ASSERT(!rn.is(pc)); | |
| 754 emit(instr | rn.code()*B16 | rl); | |
| 755 } | |
| 756 | |
| 757 | |
| 758 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { | |
| 759 // Unindexed addressing is not encoded by this function. | |
| 760 ASSERT_EQ((B27 | B26), | |
| 761 (instr & ~(CondMask | CoprocessorMask | P | U | N | W | L))); | |
| 762 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); | |
| 763 int am = x.am_; | |
| 764 int offset_8 = x.offset_; | |
| 765 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset | |
| 766 offset_8 >>= 2; | |
| 767 if (offset_8 < 0) { | |
| 768 offset_8 = -offset_8; | |
| 769 am ^= U; | |
| 770 } | |
| 771 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte | |
| 772 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback | |
| 773 | |
| 774 // Post-indexed addressing requires W == 1; different than in addrmod2/3. | |
| 775 if ((am & P) == 0) | |
| 776 am |= W; | |
| 777 | |
| 778 ASSERT(offset_8 >= 0); // no masking needed | |
| 779 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); | |
| 780 } | |
| 781 | |
| 782 | |
| 783 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { | |
| 784 int target_pos; | |
| 785 if (L->is_bound()) { | |
| 786 target_pos = L->pos(); | |
| 787 } else { | |
| 788 if (L->is_linked()) { | |
| 789 target_pos = L->pos(); // L's link | |
| 790 } else { | |
| 791 target_pos = kEndOfChain; | |
| 792 } | |
| 793 L->link_to(pc_offset()); | |
| 794 } | |
| 795 | |
| 796 // Block the emission of the constant pool, since the branch instruction must | |
| 797 // be emitted at the pc offset recorded by the label. | |
| 798 BlockConstPoolBefore(pc_offset() + kInstrSize); | |
| 799 return target_pos - (pc_offset() + kPcLoadDelta); | |
| 800 } | |
| 801 | |
| 802 | |
| 803 void Assembler::label_at_put(Label* L, int at_offset) { | |
| 804 int target_pos; | |
| 805 if (L->is_bound()) { | |
| 806 target_pos = L->pos(); | |
| 807 } else { | |
| 808 if (L->is_linked()) { | |
| 809 target_pos = L->pos(); // L's link | |
| 810 } else { | |
| 811 target_pos = kEndOfChain; | |
| 812 } | |
| 813 L->link_to(at_offset); | |
| 814 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag)); | |
| 815 } | |
| 816 } | |
| 817 | |
| 818 | |
| 819 // Branch instructions. | |
| 820 void Assembler::b(int branch_offset, Condition cond) { | |
| 821 ASSERT((branch_offset & 3) == 0); | |
| 822 int imm24 = branch_offset >> 2; | |
| 823 ASSERT(is_int24(imm24)); | |
| 824 emit(cond | B27 | B25 | (imm24 & Imm24Mask)); | |
| 825 | |
| 826 if (cond == al) | |
| 827 // Dead code is a good location to emit the constant pool. | |
| 828 CheckConstPool(false, false); | |
| 829 } | |
| 830 | |
| 831 | |
| 832 void Assembler::bl(int branch_offset, Condition cond) { | |
| 833 ASSERT((branch_offset & 3) == 0); | |
| 834 int imm24 = branch_offset >> 2; | |
| 835 ASSERT(is_int24(imm24)); | |
| 836 emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); | |
| 837 } | |
| 838 | |
| 839 | |
| 840 void Assembler::blx(int branch_offset) { // v5 and above | |
| 841 WriteRecordedPositions(); | |
| 842 ASSERT((branch_offset & 1) == 0); | |
| 843 int h = ((branch_offset & 2) >> 1)*B24; | |
| 844 int imm24 = branch_offset >> 2; | |
| 845 ASSERT(is_int24(imm24)); | |
| 846 emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask)); | |
| 847 } | |
| 848 | |
| 849 | |
| 850 void Assembler::blx(Register target, Condition cond) { // v5 and above | |
| 851 WriteRecordedPositions(); | |
| 852 ASSERT(!target.is(pc)); | |
| 853 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code()); | |
| 854 } | |
| 855 | |
| 856 | |
| 857 void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t | |
| 858 WriteRecordedPositions(); | |
| 859 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged | |
| 860 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); | |
| 861 } | |
| 862 | |
| 863 | |
| 864 // Data-processing instructions. | |
| 865 | |
| 866 // UBFX <Rd>,<Rn>,#<lsb>,#<width - 1> | |
| 867 // Instruction details available in ARM DDI 0406A, A8-464. | |
| 868 // cond(31-28) | 01111(27-23)| 1(22) | 1(21) | widthm1(20-16) | | |
| 869 // Rd(15-12) | lsb(11-7) | 101(6-4) | Rn(3-0) | |
| 870 void Assembler::ubfx(Register dst, Register src1, const Operand& src2, | |
| 871 const Operand& src3, Condition cond) { | |
| 872 ASSERT(!src2.rm_.is_valid() && !src3.rm_.is_valid()); | |
| 873 ASSERT(static_cast<uint32_t>(src2.imm32_) <= 0x1f); | |
| 874 ASSERT(static_cast<uint32_t>(src3.imm32_) <= 0x1f); | |
| 875 emit(cond | 0x3F*B21 | src3.imm32_*B16 | | |
| 876 dst.code()*B12 | src2.imm32_*B7 | 0x5*B4 | src1.code()); | |
| 877 } | |
| 878 | |
| 879 | |
| 880 void Assembler::and_(Register dst, Register src1, const Operand& src2, | |
| 881 SBit s, Condition cond) { | |
| 882 addrmod1(cond | 0*B21 | s, src1, dst, src2); | |
| 883 } | |
| 884 | |
| 885 | |
| 886 void Assembler::eor(Register dst, Register src1, const Operand& src2, | |
| 887 SBit s, Condition cond) { | |
| 888 addrmod1(cond | 1*B21 | s, src1, dst, src2); | |
| 889 } | |
| 890 | |
| 891 | |
| 892 void Assembler::sub(Register dst, Register src1, const Operand& src2, | |
| 893 SBit s, Condition cond) { | |
| 894 addrmod1(cond | 2*B21 | s, src1, dst, src2); | |
| 895 } | |
| 896 | |
| 897 | |
| 898 void Assembler::rsb(Register dst, Register src1, const Operand& src2, | |
| 899 SBit s, Condition cond) { | |
| 900 addrmod1(cond | 3*B21 | s, src1, dst, src2); | |
| 901 } | |
| 902 | |
| 903 | |
| 904 void Assembler::add(Register dst, Register src1, const Operand& src2, | |
| 905 SBit s, Condition cond) { | |
| 906 addrmod1(cond | 4*B21 | s, src1, dst, src2); | |
| 907 | |
| 908 // Eliminate pattern: push(r), pop() | |
| 909 // str(src, MemOperand(sp, 4, NegPreIndex), al); | |
| 910 // add(sp, sp, Operand(kPointerSize)); | |
| 911 // Both instructions can be eliminated. | |
| 912 int pattern_size = 2 * kInstrSize; | |
| 913 if (FLAG_push_pop_elimination && | |
| 914 last_bound_pos_ <= (pc_offset() - pattern_size) && | |
| 915 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | |
| 916 // Pattern. | |
| 917 instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && | |
| 918 (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { | |
| 919 pc_ -= 2 * kInstrSize; | |
| 920 if (FLAG_print_push_pop_elimination) { | |
| 921 PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); | |
| 922 } | |
| 923 } | |
| 924 } | |
| 925 | |
| 926 | |
| 927 void Assembler::adc(Register dst, Register src1, const Operand& src2, | |
| 928 SBit s, Condition cond) { | |
| 929 addrmod1(cond | 5*B21 | s, src1, dst, src2); | |
| 930 } | |
| 931 | |
| 932 | |
| 933 void Assembler::sbc(Register dst, Register src1, const Operand& src2, | |
| 934 SBit s, Condition cond) { | |
| 935 addrmod1(cond | 6*B21 | s, src1, dst, src2); | |
| 936 } | |
| 937 | |
| 938 | |
| 939 void Assembler::rsc(Register dst, Register src1, const Operand& src2, | |
| 940 SBit s, Condition cond) { | |
| 941 addrmod1(cond | 7*B21 | s, src1, dst, src2); | |
| 942 } | |
| 943 | |
| 944 | |
| 945 void Assembler::tst(Register src1, const Operand& src2, Condition cond) { | |
| 946 addrmod1(cond | 8*B21 | S, src1, r0, src2); | |
| 947 } | |
| 948 | |
| 949 | |
| 950 void Assembler::teq(Register src1, const Operand& src2, Condition cond) { | |
| 951 addrmod1(cond | 9*B21 | S, src1, r0, src2); | |
| 952 } | |
| 953 | |
| 954 | |
| 955 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { | |
| 956 addrmod1(cond | 10*B21 | S, src1, r0, src2); | |
| 957 } | |
| 958 | |
| 959 | |
| 960 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { | |
| 961 addrmod1(cond | 11*B21 | S, src1, r0, src2); | |
| 962 } | |
| 963 | |
| 964 | |
| 965 void Assembler::orr(Register dst, Register src1, const Operand& src2, | |
| 966 SBit s, Condition cond) { | |
| 967 addrmod1(cond | 12*B21 | s, src1, dst, src2); | |
| 968 } | |
| 969 | |
| 970 | |
| 971 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { | |
| 972 if (dst.is(pc)) { | |
| 973 WriteRecordedPositions(); | |
| 974 } | |
| 975 addrmod1(cond | 13*B21 | s, r0, dst, src); | |
| 976 } | |
| 977 | |
| 978 | |
| 979 void Assembler::bic(Register dst, Register src1, const Operand& src2, | |
| 980 SBit s, Condition cond) { | |
| 981 addrmod1(cond | 14*B21 | s, src1, dst, src2); | |
| 982 } | |
| 983 | |
| 984 | |
| 985 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { | |
| 986 addrmod1(cond | 15*B21 | s, r0, dst, src); | |
| 987 } | |
| 988 | |
| 989 | |
| 990 // Multiply instructions. | |
| 991 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, | |
| 992 SBit s, Condition cond) { | |
| 993 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); | |
| 994 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | | |
| 995 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 996 } | |
| 997 | |
| 998 | |
| 999 void Assembler::mul(Register dst, Register src1, Register src2, | |
| 1000 SBit s, Condition cond) { | |
| 1001 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1002 // dst goes in bits 16-19 for this instruction! | |
| 1003 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1004 } | |
| 1005 | |
| 1006 | |
| 1007 void Assembler::smlal(Register dstL, | |
| 1008 Register dstH, | |
| 1009 Register src1, | |
| 1010 Register src2, | |
| 1011 SBit s, | |
| 1012 Condition cond) { | |
| 1013 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1014 ASSERT(!dstL.is(dstH)); | |
| 1015 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 | | |
| 1016 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1017 } | |
| 1018 | |
| 1019 | |
| 1020 void Assembler::smull(Register dstL, | |
| 1021 Register dstH, | |
| 1022 Register src1, | |
| 1023 Register src2, | |
| 1024 SBit s, | |
| 1025 Condition cond) { | |
| 1026 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1027 ASSERT(!dstL.is(dstH)); | |
| 1028 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 | | |
| 1029 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1030 } | |
| 1031 | |
| 1032 | |
| 1033 void Assembler::umlal(Register dstL, | |
| 1034 Register dstH, | |
| 1035 Register src1, | |
| 1036 Register src2, | |
| 1037 SBit s, | |
| 1038 Condition cond) { | |
| 1039 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1040 ASSERT(!dstL.is(dstH)); | |
| 1041 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 | | |
| 1042 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1043 } | |
| 1044 | |
| 1045 | |
| 1046 void Assembler::umull(Register dstL, | |
| 1047 Register dstH, | |
| 1048 Register src1, | |
| 1049 Register src2, | |
| 1050 SBit s, | |
| 1051 Condition cond) { | |
| 1052 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); | |
| 1053 ASSERT(!dstL.is(dstH)); | |
| 1054 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | | |
| 1055 src2.code()*B8 | B7 | B4 | src1.code()); | |
| 1056 } | |
| 1057 | |
| 1058 | |
| 1059 // Miscellaneous arithmetic instructions. | |
| 1060 void Assembler::clz(Register dst, Register src, Condition cond) { | |
| 1061 // v5 and above. | |
| 1062 ASSERT(!dst.is(pc) && !src.is(pc)); | |
| 1063 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | | |
| 1064 15*B8 | B4 | src.code()); | |
| 1065 } | |
| 1066 | |
| 1067 | |
| 1068 // Status register access instructions. | |
| 1069 void Assembler::mrs(Register dst, SRegister s, Condition cond) { | |
| 1070 ASSERT(!dst.is(pc)); | |
| 1071 emit(cond | B24 | s | 15*B16 | dst.code()*B12); | |
| 1072 } | |
| 1073 | |
| 1074 | |
| 1075 void Assembler::msr(SRegisterFieldMask fields, const Operand& src, | |
| 1076 Condition cond) { | |
| 1077 ASSERT(fields >= B16 && fields < B20); // at least one field set | |
| 1078 Instr instr; | |
| 1079 if (!src.rm_.is_valid()) { | |
| 1080 // Immediate. | |
| 1081 uint32_t rotate_imm; | |
| 1082 uint32_t immed_8; | |
| 1083 if (MustUseIp(src.rmode_) || | |
| 1084 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { | |
| 1085 // Immediate operand cannot be encoded, load it first to register ip. | |
| 1086 RecordRelocInfo(src.rmode_, src.imm32_); | |
| 1087 ldr(ip, MemOperand(pc, 0), cond); | |
| 1088 msr(fields, Operand(ip), cond); | |
| 1089 return; | |
| 1090 } | |
| 1091 instr = I | rotate_imm*B8 | immed_8; | |
| 1092 } else { | |
| 1093 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed | |
| 1094 instr = src.rm_.code(); | |
| 1095 } | |
| 1096 emit(cond | instr | B24 | B21 | fields | 15*B12); | |
| 1097 } | |
| 1098 | |
| 1099 | |
| 1100 // Load/Store instructions. | |
| 1101 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { | |
| 1102 if (dst.is(pc)) { | |
| 1103 WriteRecordedPositions(); | |
| 1104 } | |
| 1105 addrmod2(cond | B26 | L, dst, src); | |
| 1106 | |
| 1107 // Eliminate pattern: push(r), pop(r) | |
| 1108 // str(r, MemOperand(sp, 4, NegPreIndex), al) | |
| 1109 // ldr(r, MemOperand(sp, 4, PostIndex), al) | |
| 1110 // Both instructions can be eliminated. | |
| 1111 int pattern_size = 2 * kInstrSize; | |
| 1112 if (FLAG_push_pop_elimination && | |
| 1113 last_bound_pos_ <= (pc_offset() - pattern_size) && | |
| 1114 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | |
| 1115 // Pattern. | |
| 1116 instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) && | |
| 1117 instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) { | |
| 1118 pc_ -= 2 * kInstrSize; | |
| 1119 if (FLAG_print_push_pop_elimination) { | |
| 1120 PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); | |
| 1121 } | |
| 1122 } | |
| 1123 } | |
| 1124 | |
| 1125 | |
| 1126 void Assembler::str(Register src, const MemOperand& dst, Condition cond) { | |
| 1127 addrmod2(cond | B26, src, dst); | |
| 1128 | |
| 1129 // Eliminate pattern: pop(), push(r) | |
| 1130 // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al | |
| 1131 // -> str r, [sp, 0], al | |
| 1132 int pattern_size = 2 * kInstrSize; | |
| 1133 if (FLAG_push_pop_elimination && | |
| 1134 last_bound_pos_ <= (pc_offset() - pattern_size) && | |
| 1135 reloc_info_writer.last_pc() <= (pc_ - pattern_size) && | |
| 1136 // Pattern. | |
| 1137 instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && | |
| 1138 instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { | |
| 1139 pc_ -= 2 * kInstrSize; | |
| 1140 emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); | |
| 1141 if (FLAG_print_push_pop_elimination) { | |
| 1142 PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); | |
| 1143 } | |
| 1144 } | |
| 1145 } | |
| 1146 | |
| 1147 | |
| 1148 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { | |
| 1149 addrmod2(cond | B26 | B | L, dst, src); | |
| 1150 } | |
| 1151 | |
| 1152 | |
| 1153 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { | |
| 1154 addrmod2(cond | B26 | B, src, dst); | |
| 1155 } | |
| 1156 | |
| 1157 | |
| 1158 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { | |
| 1159 addrmod3(cond | L | B7 | H | B4, dst, src); | |
| 1160 } | |
| 1161 | |
| 1162 | |
| 1163 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { | |
| 1164 addrmod3(cond | B7 | H | B4, src, dst); | |
| 1165 } | |
| 1166 | |
| 1167 | |
| 1168 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { | |
| 1169 addrmod3(cond | L | B7 | S6 | B4, dst, src); | |
| 1170 } | |
| 1171 | |
| 1172 | |
| 1173 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { | |
| 1174 addrmod3(cond | L | B7 | S6 | H | B4, dst, src); | |
| 1175 } | |
| 1176 | |
| 1177 | |
| 1178 // Load/Store multiple instructions. | |
| 1179 void Assembler::ldm(BlockAddrMode am, | |
| 1180 Register base, | |
| 1181 RegList dst, | |
| 1182 Condition cond) { | |
| 1183 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable. | |
| 1184 ASSERT(base.is(sp) || (dst & sp.bit()) == 0); | |
| 1185 | |
| 1186 addrmod4(cond | B27 | am | L, base, dst); | |
| 1187 | |
| 1188 // Emit the constant pool after a function return implemented by ldm ..{..pc}. | |
| 1189 if (cond == al && (dst & pc.bit()) != 0) { | |
| 1190 // There is a slight chance that the ldm instruction was actually a call, | |
| 1191 // in which case it would be wrong to return into the constant pool; we | |
| 1192 // recognize this case by checking if the emission of the pool was blocked | |
| 1193 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is | |
| 1194 // the case, we emit a jump over the pool. | |
| 1195 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); | |
| 1196 } | |
| 1197 } | |
| 1198 | |
| 1199 | |
| 1200 void Assembler::stm(BlockAddrMode am, | |
| 1201 Register base, | |
| 1202 RegList src, | |
| 1203 Condition cond) { | |
| 1204 addrmod4(cond | B27 | am, base, src); | |
| 1205 } | |
| 1206 | |
| 1207 | |
| 1208 // Exception-generating instructions and debugging support. | |
| 1209 void Assembler::stop(const char* msg) { | |
| 1210 #if !defined(__arm__) | |
| 1211 // The simulator handles these special instructions and stops execution. | |
| 1212 emit(15 << 28 | ((intptr_t) msg)); | |
| 1213 #else | |
| 1214 // Just issue a simple break instruction for now. Alternatively we could use | |
| 1215 // the swi(0x9f0001) instruction on Linux. | |
| 1216 bkpt(0); | |
| 1217 #endif | |
| 1218 } | |
| 1219 | |
| 1220 | |
| 1221 void Assembler::bkpt(uint32_t imm16) { // v5 and above | |
| 1222 ASSERT(is_uint16(imm16)); | |
| 1223 emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); | |
| 1224 } | |
| 1225 | |
| 1226 | |
| 1227 void Assembler::swi(uint32_t imm24, Condition cond) { | |
| 1228 ASSERT(is_uint24(imm24)); | |
| 1229 emit(cond | 15*B24 | imm24); | |
| 1230 } | |
| 1231 | |
| 1232 | |
| 1233 // Coprocessor instructions. | |
| 1234 void Assembler::cdp(Coprocessor coproc, | |
| 1235 int opcode_1, | |
| 1236 CRegister crd, | |
| 1237 CRegister crn, | |
| 1238 CRegister crm, | |
| 1239 int opcode_2, | |
| 1240 Condition cond) { | |
| 1241 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); | |
| 1242 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | | |
| 1243 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); | |
| 1244 } | |
| 1245 | |
| 1246 | |
| 1247 void Assembler::cdp2(Coprocessor coproc, | |
| 1248 int opcode_1, | |
| 1249 CRegister crd, | |
| 1250 CRegister crn, | |
| 1251 CRegister crm, | |
| 1252 int opcode_2) { // v5 and above | |
| 1253 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv)); | |
| 1254 } | |
| 1255 | |
| 1256 | |
| 1257 void Assembler::mcr(Coprocessor coproc, | |
| 1258 int opcode_1, | |
| 1259 Register rd, | |
| 1260 CRegister crn, | |
| 1261 CRegister crm, | |
| 1262 int opcode_2, | |
| 1263 Condition cond) { | |
| 1264 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); | |
| 1265 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 | | |
| 1266 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); | |
| 1267 } | |
| 1268 | |
| 1269 | |
| 1270 void Assembler::mcr2(Coprocessor coproc, | |
| 1271 int opcode_1, | |
| 1272 Register rd, | |
| 1273 CRegister crn, | |
| 1274 CRegister crm, | |
| 1275 int opcode_2) { // v5 and above | |
| 1276 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); | |
| 1277 } | |
| 1278 | |
| 1279 | |
| 1280 void Assembler::mrc(Coprocessor coproc, | |
| 1281 int opcode_1, | |
| 1282 Register rd, | |
| 1283 CRegister crn, | |
| 1284 CRegister crm, | |
| 1285 int opcode_2, | |
| 1286 Condition cond) { | |
| 1287 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); | |
| 1288 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 | | |
| 1289 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); | |
| 1290 } | |
| 1291 | |
| 1292 | |
| 1293 void Assembler::mrc2(Coprocessor coproc, | |
| 1294 int opcode_1, | |
| 1295 Register rd, | |
| 1296 CRegister crn, | |
| 1297 CRegister crm, | |
| 1298 int opcode_2) { // v5 and above | |
| 1299 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); | |
| 1300 } | |
| 1301 | |
| 1302 | |
| 1303 void Assembler::ldc(Coprocessor coproc, | |
| 1304 CRegister crd, | |
| 1305 const MemOperand& src, | |
| 1306 LFlag l, | |
| 1307 Condition cond) { | |
| 1308 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); | |
| 1309 } | |
| 1310 | |
| 1311 | |
| 1312 void Assembler::ldc(Coprocessor coproc, | |
| 1313 CRegister crd, | |
| 1314 Register rn, | |
| 1315 int option, | |
| 1316 LFlag l, | |
| 1317 Condition cond) { | |
| 1318 // Unindexed addressing. | |
| 1319 ASSERT(is_uint8(option)); | |
| 1320 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | | |
| 1321 coproc*B8 | (option & 255)); | |
| 1322 } | |
| 1323 | |
| 1324 | |
| 1325 void Assembler::ldc2(Coprocessor coproc, | |
| 1326 CRegister crd, | |
| 1327 const MemOperand& src, | |
| 1328 LFlag l) { // v5 and above | |
| 1329 ldc(coproc, crd, src, l, static_cast<Condition>(nv)); | |
| 1330 } | |
| 1331 | |
| 1332 | |
| 1333 void Assembler::ldc2(Coprocessor coproc, | |
| 1334 CRegister crd, | |
| 1335 Register rn, | |
| 1336 int option, | |
| 1337 LFlag l) { // v5 and above | |
| 1338 ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); | |
| 1339 } | |
| 1340 | |
| 1341 | |
| 1342 void Assembler::stc(Coprocessor coproc, | |
| 1343 CRegister crd, | |
| 1344 const MemOperand& dst, | |
| 1345 LFlag l, | |
| 1346 Condition cond) { | |
| 1347 addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); | |
| 1348 } | |
| 1349 | |
| 1350 | |
| 1351 void Assembler::stc(Coprocessor coproc, | |
| 1352 CRegister crd, | |
| 1353 Register rn, | |
| 1354 int option, | |
| 1355 LFlag l, | |
| 1356 Condition cond) { | |
| 1357 // Unindexed addressing. | |
| 1358 ASSERT(is_uint8(option)); | |
| 1359 emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | | |
| 1360 coproc*B8 | (option & 255)); | |
| 1361 } | |
| 1362 | |
| 1363 | |
| 1364 void Assembler::stc2(Coprocessor | |
| 1365 coproc, CRegister crd, | |
| 1366 const MemOperand& dst, | |
| 1367 LFlag l) { // v5 and above | |
| 1368 stc(coproc, crd, dst, l, static_cast<Condition>(nv)); | |
| 1369 } | |
| 1370 | |
| 1371 | |
| 1372 void Assembler::stc2(Coprocessor coproc, | |
| 1373 CRegister crd, | |
| 1374 Register rn, | |
| 1375 int option, | |
| 1376 LFlag l) { // v5 and above | |
| 1377 stc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); | |
| 1378 } | |
| 1379 | |
| 1380 | |
| 1381 // Support for VFP. | |
| 1382 void Assembler::vldr(const DwVfpRegister dst, | |
| 1383 const Register base, | |
| 1384 int offset, | |
| 1385 const Condition cond) { | |
| 1386 // Ddst = MEM(Rbase + offset). | |
| 1387 // Instruction details available in ARM DDI 0406A, A8-628. | |
| 1388 // cond(31-28) | 1101(27-24)| 1001(23-20) | Rbase(19-16) | | |
| 1389 // Vdst(15-12) | 1011(11-8) | offset | |
| 1390 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1391 ASSERT(offset % 4 == 0); | |
| 1392 emit(cond | 0xD9*B20 | base.code()*B16 | dst.code()*B12 | | |
| 1393 0xB*B8 | ((offset / 4) & 255)); | |
| 1394 } | |
| 1395 | |
| 1396 | |
| 1397 void Assembler::vstr(const DwVfpRegister src, | |
| 1398 const Register base, | |
| 1399 int offset, | |
| 1400 const Condition cond) { | |
| 1401 // MEM(Rbase + offset) = Dsrc. | |
| 1402 // Instruction details available in ARM DDI 0406A, A8-786. | |
| 1403 // cond(31-28) | 1101(27-24)| 1000(23-20) | | Rbase(19-16) | | |
| 1404 // Vsrc(15-12) | 1011(11-8) | (offset/4) | |
| 1405 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1406 ASSERT(offset % 4 == 0); | |
| 1407 emit(cond | 0xD8*B20 | base.code()*B16 | src.code()*B12 | | |
| 1408 0xB*B8 | ((offset / 4) & 255)); | |
| 1409 } | |
| 1410 | |
| 1411 | |
| 1412 void Assembler::vmov(const DwVfpRegister dst, | |
| 1413 const Register src1, | |
| 1414 const Register src2, | |
| 1415 const Condition cond) { | |
| 1416 // Dm = <Rt,Rt2>. | |
| 1417 // Instruction details available in ARM DDI 0406A, A8-646. | |
| 1418 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | | |
| 1419 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm | |
| 1420 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1421 ASSERT(!src1.is(pc) && !src2.is(pc)); | |
| 1422 emit(cond | 0xC*B24 | B22 | src2.code()*B16 | | |
| 1423 src1.code()*B12 | 0xB*B8 | B4 | dst.code()); | |
| 1424 } | |
| 1425 | |
| 1426 | |
| 1427 void Assembler::vmov(const Register dst1, | |
| 1428 const Register dst2, | |
| 1429 const DwVfpRegister src, | |
| 1430 const Condition cond) { | |
| 1431 // <Rt,Rt2> = Dm. | |
| 1432 // Instruction details available in ARM DDI 0406A, A8-646. | |
| 1433 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) | | |
| 1434 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm | |
| 1435 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1436 ASSERT(!dst1.is(pc) && !dst2.is(pc)); | |
| 1437 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 | | |
| 1438 dst1.code()*B12 | 0xB*B8 | B4 | src.code()); | |
| 1439 } | |
| 1440 | |
| 1441 | |
| 1442 void Assembler::vmov(const SwVfpRegister dst, | |
| 1443 const Register src, | |
| 1444 const Condition cond) { | |
| 1445 // Sn = Rt. | |
| 1446 // Instruction details available in ARM DDI 0406A, A8-642. | |
| 1447 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) | | |
| 1448 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) | |
| 1449 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1450 ASSERT(!src.is(pc)); | |
| 1451 emit(cond | 0xE*B24 | (dst.code() >> 1)*B16 | | |
| 1452 src.code()*B12 | 0xA*B8 | (0x1 & dst.code())*B7 | B4); | |
| 1453 } | |
| 1454 | |
| 1455 | |
| 1456 void Assembler::vmov(const Register dst, | |
| 1457 const SwVfpRegister src, | |
| 1458 const Condition cond) { | |
| 1459 // Rt = Sn. | |
| 1460 // Instruction details available in ARM DDI 0406A, A8-642. | |
| 1461 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) | | |
| 1462 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) | |
| 1463 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1464 ASSERT(!dst.is(pc)); | |
| 1465 emit(cond | 0xE*B24 | B20 | (src.code() >> 1)*B16 | | |
| 1466 dst.code()*B12 | 0xA*B8 | (0x1 & src.code())*B7 | B4); | |
| 1467 } | |
| 1468 | |
| 1469 | |
| 1470 void Assembler::vcvt(const DwVfpRegister dst, | |
| 1471 const SwVfpRegister src, | |
| 1472 const Condition cond) { | |
| 1473 // Dd = Sm (integer in Sm converted to IEEE 64-bit doubles in Dd). | |
| 1474 // Instruction details available in ARM DDI 0406A, A8-576. | |
| 1475 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=000(18-16) | | |
| 1476 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=1 | 1(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1477 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1478 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B19 | | |
| 1479 dst.code()*B12 | 0x5*B9 | B8 | B7 | B6 | | |
| 1480 (0x1 & src.code())*B5 | (src.code() >> 1)); | |
| 1481 } | |
| 1482 | |
| 1483 | |
| 1484 void Assembler::vcvt(const SwVfpRegister dst, | |
| 1485 const DwVfpRegister src, | |
| 1486 const Condition cond) { | |
| 1487 // Sd = Dm (IEEE 64-bit doubles in Dm converted to 32 bit integer in Sd). | |
| 1488 // Instruction details available in ARM DDI 0406A, A8-576. | |
| 1489 // cond(31-28) | 11101(27-23)| D=?(22) | 11(21-20) | 1(19) | opc2=101(18-16)| | |
| 1490 // Vd(15-12) | 101(11-9) | sz(8)=1 | op(7)=? | 1(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1491 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1492 emit(cond | 0xE*B24 | B23 |(0x1 & dst.code())*B22 | | |
| 1493 0x3*B20 | B19 | 0x5*B16 | (dst.code() >> 1)*B12 | | |
| 1494 0x5*B9 | B8 | B7 | B6 | src.code()); | |
| 1495 } | |
| 1496 | |
| 1497 | |
| 1498 void Assembler::vadd(const DwVfpRegister dst, | |
| 1499 const DwVfpRegister src1, | |
| 1500 const DwVfpRegister src2, | |
| 1501 const Condition cond) { | |
| 1502 // Dd = vadd(Dn, Dm) double precision floating point addition. | |
| 1503 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | |
| 1504 // Instruction details available in ARM DDI 0406A, A8-536. | |
| 1505 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | | |
| 1506 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1507 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1508 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | | |
| 1509 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); | |
| 1510 } | |
| 1511 | |
| 1512 | |
| 1513 void Assembler::vsub(const DwVfpRegister dst, | |
| 1514 const DwVfpRegister src1, | |
| 1515 const DwVfpRegister src2, | |
| 1516 const Condition cond) { | |
| 1517 // Dd = vsub(Dn, Dm) double precision floating point subtraction. | |
| 1518 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | |
| 1519 // Instruction details available in ARM DDI 0406A, A8-784. | |
| 1520 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) | | |
| 1521 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1522 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1523 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 | | |
| 1524 dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); | |
| 1525 } | |
| 1526 | |
| 1527 | |
| 1528 void Assembler::vmul(const DwVfpRegister dst, | |
| 1529 const DwVfpRegister src1, | |
| 1530 const DwVfpRegister src2, | |
| 1531 const Condition cond) { | |
| 1532 // Dd = vmul(Dn, Dm) double precision floating point multiplication. | |
| 1533 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | |
| 1534 // Instruction details available in ARM DDI 0406A, A8-784. | |
| 1535 // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) | | |
| 1536 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1537 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1538 emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 | | |
| 1539 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); | |
| 1540 } | |
| 1541 | |
| 1542 | |
| 1543 void Assembler::vdiv(const DwVfpRegister dst, | |
| 1544 const DwVfpRegister src1, | |
| 1545 const DwVfpRegister src2, | |
| 1546 const Condition cond) { | |
| 1547 // Dd = vdiv(Dn, Dm) double precision floating point division. | |
| 1548 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. | |
| 1549 // Instruction details available in ARM DDI 0406A, A8-584. | |
| 1550 // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) | | |
| 1551 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0) | |
| 1552 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1553 emit(cond | 0xE*B24 | B23 | src1.code()*B16 | | |
| 1554 dst.code()*B12 | 0x5*B9 | B8 | src2.code()); | |
| 1555 } | |
| 1556 | |
| 1557 | |
| 1558 void Assembler::vcmp(const DwVfpRegister src1, | |
| 1559 const DwVfpRegister src2, | |
| 1560 const SBit s, | |
| 1561 const Condition cond) { | |
| 1562 // vcmp(Dd, Dm) double precision floating point comparison. | |
| 1563 // Instruction details available in ARM DDI 0406A, A8-570. | |
| 1564 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) | | |
| 1565 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=? | 1(6) | M(5)=? | 0(4) | Vm(3-0) | |
| 1566 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1567 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | | |
| 1568 src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code()); | |
| 1569 } | |
| 1570 | |
| 1571 | |
| 1572 void Assembler::vmrs(Register dst, Condition cond) { | |
| 1573 // Instruction details available in ARM DDI 0406A, A8-652. | |
| 1574 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | | |
| 1575 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) | |
| 1576 ASSERT(CpuFeatures::IsEnabled(VFP3)); | |
| 1577 emit(cond | 0xE*B24 | 0xF*B20 | B16 | | |
| 1578 dst.code()*B12 | 0xA*B8 | B4); | |
| 1579 } | |
| 1580 | |
| 1581 | |
| 1582 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) { | |
| 1583 uint32_t dummy1; | |
| 1584 uint32_t dummy2; | |
| 1585 return fits_shifter(imm32, &dummy1, &dummy2, NULL); | |
| 1586 } | |
| 1587 | |
| 1588 | |
| 1589 void Assembler::BlockConstPoolFor(int instructions) { | |
| 1590 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize); | |
| 1591 } | |
| 1592 | |
| 1593 | |
| 1594 // Debugging. | |
| 1595 void Assembler::RecordJSReturn() { | |
| 1596 WriteRecordedPositions(); | |
| 1597 CheckBuffer(); | |
| 1598 RecordRelocInfo(RelocInfo::JS_RETURN); | |
| 1599 } | |
| 1600 | |
| 1601 | |
| 1602 void Assembler::RecordComment(const char* msg) { | |
| 1603 if (FLAG_debug_code) { | |
| 1604 CheckBuffer(); | |
| 1605 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); | |
| 1606 } | |
| 1607 } | |
| 1608 | |
| 1609 | |
| 1610 void Assembler::RecordPosition(int pos) { | |
| 1611 if (pos == RelocInfo::kNoPosition) return; | |
| 1612 ASSERT(pos >= 0); | |
| 1613 current_position_ = pos; | |
| 1614 } | |
| 1615 | |
| 1616 | |
| 1617 void Assembler::RecordStatementPosition(int pos) { | |
| 1618 if (pos == RelocInfo::kNoPosition) return; | |
| 1619 ASSERT(pos >= 0); | |
| 1620 current_statement_position_ = pos; | |
| 1621 } | |
| 1622 | |
| 1623 | |
| 1624 void Assembler::WriteRecordedPositions() { | |
| 1625 // Write the statement position if it is different from what was written last | |
| 1626 // time. | |
| 1627 if (current_statement_position_ != written_statement_position_) { | |
| 1628 CheckBuffer(); | |
| 1629 RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); | |
| 1630 written_statement_position_ = current_statement_position_; | |
| 1631 } | |
| 1632 | |
| 1633 // Write the position if it is different from what was written last time and | |
| 1634 // also different from the written statement position. | |
| 1635 if (current_position_ != written_position_ && | |
| 1636 current_position_ != written_statement_position_) { | |
| 1637 CheckBuffer(); | |
| 1638 RecordRelocInfo(RelocInfo::POSITION, current_position_); | |
| 1639 written_position_ = current_position_; | |
| 1640 } | |
| 1641 } | |
| 1642 | |
| 1643 | |
| 1644 void Assembler::GrowBuffer() { | |
| 1645 if (!own_buffer_) FATAL("external code buffer is too small"); | |
| 1646 | |
| 1647 // Compute new buffer size. | |
| 1648 CodeDesc desc; // the new buffer | |
| 1649 if (buffer_size_ < 4*KB) { | |
| 1650 desc.buffer_size = 4*KB; | |
| 1651 } else if (buffer_size_ < 1*MB) { | |
| 1652 desc.buffer_size = 2*buffer_size_; | |
| 1653 } else { | |
| 1654 desc.buffer_size = buffer_size_ + 1*MB; | |
| 1655 } | |
| 1656 CHECK_GT(desc.buffer_size, 0); // no overflow | |
| 1657 | |
| 1658 // Setup new buffer. | |
| 1659 desc.buffer = NewArray<byte>(desc.buffer_size); | |
| 1660 | |
| 1661 desc.instr_size = pc_offset(); | |
| 1662 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); | |
| 1663 | |
| 1664 // Copy the data. | |
| 1665 int pc_delta = desc.buffer - buffer_; | |
| 1666 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); | |
| 1667 memmove(desc.buffer, buffer_, desc.instr_size); | |
| 1668 memmove(reloc_info_writer.pos() + rc_delta, | |
| 1669 reloc_info_writer.pos(), desc.reloc_size); | |
| 1670 | |
| 1671 // Switch buffers. | |
| 1672 DeleteArray(buffer_); | |
| 1673 buffer_ = desc.buffer; | |
| 1674 buffer_size_ = desc.buffer_size; | |
| 1675 pc_ += pc_delta; | |
| 1676 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, | |
| 1677 reloc_info_writer.last_pc() + pc_delta); | |
| 1678 | |
| 1679 // None of our relocation types are pc relative pointing outside the code | |
| 1680 // buffer nor pc absolute pointing inside the code buffer, so there is no need | |
| 1681 // to relocate any emitted relocation entries. | |
| 1682 | |
| 1683 // Relocate pending relocation entries. | |
| 1684 for (int i = 0; i < num_prinfo_; i++) { | |
| 1685 RelocInfo& rinfo = prinfo_[i]; | |
| 1686 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | |
| 1687 rinfo.rmode() != RelocInfo::POSITION); | |
| 1688 if (rinfo.rmode() != RelocInfo::JS_RETURN) { | |
| 1689 rinfo.set_pc(rinfo.pc() + pc_delta); | |
| 1690 } | |
| 1691 } | |
| 1692 } | |
| 1693 | |
| 1694 | |
| 1695 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { | |
| 1696 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants | |
| 1697 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::STATEMENT_POSITION) { | |
| 1698 // Adjust code for new modes. | |
| 1699 ASSERT(RelocInfo::IsJSReturn(rmode) | |
| 1700 || RelocInfo::IsComment(rmode) | |
| 1701 || RelocInfo::IsPosition(rmode)); | |
| 1702 // These modes do not need an entry in the constant pool. | |
| 1703 } else { | |
| 1704 ASSERT(num_prinfo_ < kMaxNumPRInfo); | |
| 1705 prinfo_[num_prinfo_++] = rinfo; | |
| 1706 // Make sure the constant pool is not emitted in place of the next | |
| 1707 // instruction for which we just recorded relocation info. | |
| 1708 BlockConstPoolBefore(pc_offset() + kInstrSize); | |
| 1709 } | |
| 1710 if (rinfo.rmode() != RelocInfo::NONE) { | |
| 1711 // Don't record external references unless the heap will be serialized. | |
| 1712 if (rmode == RelocInfo::EXTERNAL_REFERENCE) { | |
| 1713 #ifdef DEBUG | |
| 1714 if (!Serializer::enabled()) { | |
| 1715 Serializer::TooLateToEnableNow(); | |
| 1716 } | |
| 1717 #endif | |
| 1718 if (!Serializer::enabled() && !FLAG_debug_code) { | |
| 1719 return; | |
| 1720 } | |
| 1721 } | |
| 1722 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here | |
| 1723 reloc_info_writer.Write(&rinfo); | |
| 1724 } | |
| 1725 } | |
| 1726 | |
| 1727 | |
| 1728 void Assembler::CheckConstPool(bool force_emit, bool require_jump) { | |
| 1729 // Calculate the offset of the next check. It will be overwritten | |
| 1730 // when a const pool is generated or when const pools are being | |
| 1731 // blocked for a specific range. | |
| 1732 next_buffer_check_ = pc_offset() + kCheckConstInterval; | |
| 1733 | |
| 1734 // There is nothing to do if there are no pending relocation info entries. | |
| 1735 if (num_prinfo_ == 0) return; | |
| 1736 | |
| 1737 // We emit a constant pool at regular intervals of about kDistBetweenPools | |
| 1738 // or when requested by parameter force_emit (e.g. after each function). | |
| 1739 // We prefer not to emit a jump unless the max distance is reached or if we | |
| 1740 // are running low on slots, which can happen if a lot of constants are being | |
| 1741 // emitted (e.g. --debug-code and many static references). | |
| 1742 int dist = pc_offset() - last_const_pool_end_; | |
| 1743 if (!force_emit && dist < kMaxDistBetweenPools && | |
| 1744 (require_jump || dist < kDistBetweenPools) && | |
| 1745 // TODO(1236125): Cleanup the "magic" number below. We know that | |
| 1746 // the code generation will test every kCheckConstIntervalInst. | |
| 1747 // Thus we are safe as long as we generate less than 7 constant | |
| 1748 // entries per instruction. | |
| 1749 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { | |
| 1750 return; | |
| 1751 } | |
| 1752 | |
| 1753 // If we did not return by now, we need to emit the constant pool soon. | |
| 1754 | |
| 1755 // However, some small sequences of instructions must not be broken up by the | |
| 1756 // insertion of a constant pool; such sequences are protected by setting | |
| 1757 // no_const_pool_before_, which is checked here. Also, recursive calls to | |
| 1758 // CheckConstPool are blocked by no_const_pool_before_. | |
| 1759 if (pc_offset() < no_const_pool_before_) { | |
| 1760 // Emission is currently blocked; make sure we try again as soon as | |
| 1761 // possible. | |
| 1762 next_buffer_check_ = no_const_pool_before_; | |
| 1763 | |
| 1764 // Something is wrong if emission is forced and blocked at the same time. | |
| 1765 ASSERT(!force_emit); | |
| 1766 return; | |
| 1767 } | |
| 1768 | |
| 1769 int jump_instr = require_jump ? kInstrSize : 0; | |
| 1770 | |
| 1771 // Check that the code buffer is large enough before emitting the constant | |
| 1772 // pool and relocation information (include the jump over the pool and the | |
| 1773 // constant pool marker). | |
| 1774 int max_needed_space = | |
| 1775 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); | |
| 1776 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); | |
| 1777 | |
| 1778 // Block recursive calls to CheckConstPool. | |
| 1779 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + | |
| 1780 num_prinfo_*kInstrSize); | |
| 1781 // Don't bother to check for the emit calls below. | |
| 1782 next_buffer_check_ = no_const_pool_before_; | |
| 1783 | |
| 1784 // Emit jump over constant pool if necessary. | |
| 1785 Label after_pool; | |
| 1786 if (require_jump) b(&after_pool); | |
| 1787 | |
| 1788 RecordComment("[ Constant Pool"); | |
| 1789 | |
| 1790 // Put down constant pool marker "Undefined instruction" as specified by | |
| 1791 // A3.1 Instruction set encoding. | |
| 1792 emit(0x03000000 | num_prinfo_); | |
| 1793 | |
| 1794 // Emit constant pool entries. | |
| 1795 for (int i = 0; i < num_prinfo_; i++) { | |
| 1796 RelocInfo& rinfo = prinfo_[i]; | |
| 1797 ASSERT(rinfo.rmode() != RelocInfo::COMMENT && | |
| 1798 rinfo.rmode() != RelocInfo::POSITION && | |
| 1799 rinfo.rmode() != RelocInfo::STATEMENT_POSITION); | |
| 1800 Instr instr = instr_at(rinfo.pc()); | |
| 1801 | |
| 1802 // Instruction to patch must be a ldr/str [pc, #offset]. | |
| 1803 // P and U set, B and W clear, Rn == pc, offset12 still 0. | |
| 1804 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == | |
| 1805 (2*B25 | P | U | pc.code()*B16)); | |
| 1806 int delta = pc_ - rinfo.pc() - 8; | |
| 1807 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 | |
| 1808 if (delta < 0) { | |
| 1809 instr &= ~U; | |
| 1810 delta = -delta; | |
| 1811 } | |
| 1812 ASSERT(is_uint12(delta)); | |
| 1813 instr_at_put(rinfo.pc(), instr + delta); | |
| 1814 emit(rinfo.data()); | |
| 1815 } | |
| 1816 num_prinfo_ = 0; | |
| 1817 last_const_pool_end_ = pc_offset(); | |
| 1818 | |
| 1819 RecordComment("]"); | |
| 1820 | |
| 1821 if (after_pool.is_linked()) { | |
| 1822 bind(&after_pool); | |
| 1823 } | |
| 1824 | |
| 1825 // Since a constant pool was just emitted, move the check offset forward by | |
| 1826 // the standard interval. | |
| 1827 next_buffer_check_ = pc_offset() + kCheckConstInterval; | |
| 1828 } | |
| 1829 | |
| 1830 | |
| 1831 } } // namespace v8::internal | |
| 1832 | |
| 1833 #endif // V8_TARGET_ARCH_ARM && V8_ARM_VARIANT_THUMB | |
| OLD | NEW |