Index: tools/traceline/traceline/sidestep/mini_disassembler.cc |
diff --git a/tools/traceline/traceline/sidestep/mini_disassembler.cc b/tools/traceline/traceline/sidestep/mini_disassembler.cc |
new file mode 100755 |
index 0000000000000000000000000000000000000000..a603ebe637acdba06525b0bdb038bab785fdaa03 |
--- /dev/null |
+++ b/tools/traceline/traceline/sidestep/mini_disassembler.cc |
@@ -0,0 +1,416 @@ |
+// Copyright 2008, Google Inc. |
+// All rights reserved. |
+// |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following disclaimer |
+// in the documentation and/or other materials provided with the |
+// distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived from |
+// this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ |
+// Implementation of MiniDisassembler. |
+ |
+#include "sidestep/mini_disassembler.h" |
+ |
+namespace sidestep { |
+ |
+MiniDisassembler::MiniDisassembler(bool operand_default_is_32_bits, |
+ bool address_default_is_32_bits) |
+ : operand_default_is_32_bits_(operand_default_is_32_bits), |
+ address_default_is_32_bits_(address_default_is_32_bits) { |
+ Initialize(); |
+} |
+ |
+MiniDisassembler::MiniDisassembler() |
+ : operand_default_is_32_bits_(true), |
+ address_default_is_32_bits_(true) { |
+ Initialize(); |
+} |
+ |
+InstructionType MiniDisassembler::Disassemble( |
+ unsigned char* start_byte, |
+ unsigned int* instruction_bytes) { |
+ // Clean up any state from previous invocations. |
+ Initialize(); |
+ |
+ // Start by processing any prefixes. |
+ unsigned char* current_byte = start_byte; |
+ unsigned int size = 0; |
+ InstructionType instruction_type = ProcessPrefixes(current_byte, &size); |
+ |
+ if (IT_UNKNOWN == instruction_type) |
+ return instruction_type; |
+ |
+ current_byte += size; |
+ size = 0; |
+ |
+ // Invariant: We have stripped all prefixes, and the operand_is_32_bits_ |
+ // and address_is_32_bits_ flags are correctly set. |
+ |
+ instruction_type = ProcessOpcode(current_byte, 0, &size); |
+ |
+ // Check for error processing instruction |
+ if ((IT_UNKNOWN == instruction_type_) || (IT_UNUSED == instruction_type_)) { |
+ return IT_UNKNOWN; |
+ } |
+ |
+ current_byte += size; |
+ |
+ // Invariant: operand_bytes_ indicates the total size of operands |
+ // specified by the opcode and/or ModR/M byte and/or SIB byte. |
+ // pCurrentByte points to the first byte after the ModR/M byte, or after |
+ // the SIB byte if it is present (i.e. the first byte of any operands |
+ // encoded in the instruction). |
+ |
+ // We get the total length of any prefixes, the opcode, and the ModR/M and |
+ // SIB bytes if present, by taking the difference of the original starting |
+ // address and the current byte (which points to the first byte of the |
+ // operands if present, or to the first byte of the next instruction if |
+ // they are not). Adding the count of bytes in the operands encoded in |
+ // the instruction gives us the full length of the instruction in bytes. |
+ *instruction_bytes += operand_bytes_ + (current_byte - start_byte); |
+ |
+ // Return the instruction type, which was set by ProcessOpcode(). |
+ return instruction_type_; |
+} |
+ |
+void MiniDisassembler::Initialize() { |
+ operand_is_32_bits_ = operand_default_is_32_bits_; |
+ address_is_32_bits_ = address_default_is_32_bits_; |
+ operand_bytes_ = 0; |
+ have_modrm_ = false; |
+ should_decode_modrm_ = false; |
+ instruction_type_ = IT_UNKNOWN; |
+ got_f2_prefix_ = false; |
+ got_f3_prefix_ = false; |
+ got_66_prefix_ = false; |
+} |
+ |
+InstructionType MiniDisassembler::ProcessPrefixes(unsigned char* start_byte, |
+ unsigned int* size) { |
+ InstructionType instruction_type = IT_GENERIC; |
+ const Opcode& opcode = s_ia32_opcode_map_[0].table_[*start_byte]; |
+ |
+ switch (opcode.type_) { |
+ case IT_PREFIX_ADDRESS: |
+ address_is_32_bits_ = !address_default_is_32_bits_; |
+ goto nochangeoperand; |
+ case IT_PREFIX_OPERAND: |
+ operand_is_32_bits_ = !operand_default_is_32_bits_; |
+ nochangeoperand: |
+ case IT_PREFIX: |
+ |
+ if (0xF2 == (*start_byte)) |
+ got_f2_prefix_ = true; |
+ else if (0xF3 == (*start_byte)) |
+ got_f3_prefix_ = true; |
+ else if (0x66 == (*start_byte)) |
+ got_66_prefix_ = true; |
+ |
+ instruction_type = opcode.type_; |
+ (*size)++; |
+ // we got a prefix, so add one and check next byte |
+ ProcessPrefixes(start_byte + 1, size); |
+ default: |
+ break; // not a prefix byte |
+ } |
+ |
+ return instruction_type; |
+} |
+ |
+InstructionType MiniDisassembler::ProcessOpcode(unsigned char* start_byte, |
+ unsigned int table_index, |
+ unsigned int* size) { |
+ const OpcodeTable& table = s_ia32_opcode_map_[table_index]; // Get our table |
+ unsigned char current_byte = (*start_byte) >> table.shift_; |
+ current_byte = current_byte & table.mask_; // Mask out the bits we will use |
+ |
+ // Check whether the byte we have is inside the table we have. |
+ if (current_byte < table.min_lim_ || current_byte > table.max_lim_) { |
+ instruction_type_ = IT_UNKNOWN; |
+ return instruction_type_; |
+ } |
+ |
+ const Opcode& opcode = table.table_[current_byte]; |
+ if (IT_UNUSED == opcode.type_) { |
+ // This instruction is not used by the IA-32 ISA, so we indicate |
+ // this to the user. Probably means that we were pointed to |
+ // a byte in memory that was not the start of an instruction. |
+ instruction_type_ = IT_UNUSED; |
+ return instruction_type_; |
+ } else if (IT_REFERENCE == opcode.type_) { |
+ // We are looking at an opcode that has more bytes (or is continued |
+ // in the ModR/M byte). Recursively find the opcode definition in |
+ // the table for the opcode's next byte. |
+ (*size)++; |
+ ProcessOpcode(start_byte + 1, opcode.table_index_, size); |
+ return instruction_type_; |
+ } |
+ |
+ const SpecificOpcode* specific_opcode = reinterpret_cast< |
+ const SpecificOpcode*>(&opcode); |
+ if (opcode.is_prefix_dependent_) { |
+ if (got_f2_prefix_ && opcode.opcode_if_f2_prefix_.mnemonic_ != 0) { |
+ specific_opcode = &opcode.opcode_if_f2_prefix_; |
+ } else if (got_f3_prefix_ && opcode.opcode_if_f3_prefix_.mnemonic_ != 0) { |
+ specific_opcode = &opcode.opcode_if_f3_prefix_; |
+ } else if (got_66_prefix_ && opcode.opcode_if_66_prefix_.mnemonic_ != 0) { |
+ specific_opcode = &opcode.opcode_if_66_prefix_; |
+ } |
+ } |
+ |
+ // Inv: The opcode type is known. |
+ instruction_type_ = specific_opcode->type_; |
+ |
+ // Let's process the operand types to see if we have any immediate |
+ // operands, and/or a ModR/M byte. |
+ |
+ ProcessOperand(specific_opcode->flag_dest_); |
+ ProcessOperand(specific_opcode->flag_source_); |
+ ProcessOperand(specific_opcode->flag_aux_); |
+ |
+ // Inv: We have processed the opcode and incremented operand_bytes_ |
+ // by the number of bytes of any operands specified by the opcode |
+ // that are stored in the instruction (not registers etc.). Now |
+ // we need to return the total number of bytes for the opcode and |
+ // for the ModR/M or SIB bytes if they are present. |
+ |
+ if (table.mask_ != 0xff) { |
+ if (have_modrm_) { |
+ // we're looking at a ModR/M byte so we're not going to |
+ // count that into the opcode size |
+ ProcessModrm(start_byte, size); |
+ return IT_GENERIC; |
+ } else { |
+ // need to count the ModR/M byte even if it's just being |
+ // used for opcode extension |
+ (*size)++; |
+ return IT_GENERIC; |
+ } |
+ } else { |
+ if (have_modrm_) { |
+ // The ModR/M byte is the next byte. |
+ (*size)++; |
+ ProcessModrm(start_byte + 1, size); |
+ return IT_GENERIC; |
+ } else { |
+ (*size)++; |
+ return IT_GENERIC; |
+ } |
+ } |
+} |
+ |
+bool MiniDisassembler::ProcessOperand(int flag_operand) { |
+ bool succeeded = true; |
+ if (AM_NOT_USED == flag_operand) |
+ return succeeded; |
+ |
+ // Decide what to do based on the addressing mode. |
+ switch (flag_operand & AM_MASK) { |
+ // No ModR/M byte indicated by these addressing modes, and no |
+ // additional (e.g. immediate) parameters. |
+ case AM_A: // Direct address |
+ case AM_F: // EFLAGS register |
+ case AM_X: // Memory addressed by the DS:SI register pair |
+ case AM_Y: // Memory addressed by the ES:DI register pair |
+ case AM_IMPLICIT: // Parameter is implicit, occupies no space in |
+ // instruction |
+ break; |
+ |
+ // There is a ModR/M byte but it does not necessarily need |
+ // to be decoded. |
+ case AM_C: // reg field of ModR/M selects a control register |
+ case AM_D: // reg field of ModR/M selects a debug register |
+ case AM_G: // reg field of ModR/M selects a general register |
+ case AM_P: // reg field of ModR/M selects an MMX register |
+ case AM_R: // mod field of ModR/M may refer only to a general register |
+ case AM_S: // reg field of ModR/M selects a segment register |
+ case AM_T: // reg field of ModR/M selects a test register |
+ case AM_V: // reg field of ModR/M selects a 128-bit XMM register |
+ have_modrm_ = true; |
+ break; |
+ |
+ // In these addressing modes, there is a ModR/M byte and it needs to be |
+ // decoded. No other (e.g. immediate) params than indicated in ModR/M. |
+ case AM_E: // Operand is either a general-purpose register or memory, |
+ // specified by ModR/M byte |
+ case AM_M: // ModR/M byte will refer only to memory |
+ case AM_Q: // Operand is either an MMX register or memory (complex |
+ // evaluation), specified by ModR/M byte |
+ case AM_W: // Operand is either a 128-bit XMM register or memory (complex |
+ // eval), specified by ModR/M byte |
+ have_modrm_ = true; |
+ should_decode_modrm_ = true; |
+ break; |
+ |
+ // These addressing modes specify an immediate or an offset value |
+ // directly, so we need to look at the operand type to see how many |
+ // bytes. |
+ case AM_I: // Immediate data. |
+ case AM_J: // Jump to offset. |
+ case AM_O: // Operand is at offset. |
+ switch (flag_operand & OT_MASK) { |
+ case OT_B: // Byte regardless of operand-size attribute. |
+ operand_bytes_ += OS_BYTE; |
+ break; |
+ case OT_C: // Byte or word, depending on operand-size attribute. |
+ if (operand_is_32_bits_) |
+ operand_bytes_ += OS_WORD; |
+ else |
+ operand_bytes_ += OS_BYTE; |
+ break; |
+ case OT_D: // Doubleword, regardless of operand-size attribute. |
+ operand_bytes_ += OS_DOUBLE_WORD; |
+ break; |
+ case OT_DQ: // Double-quadword, regardless of operand-size attribute. |
+ operand_bytes_ += OS_DOUBLE_QUAD_WORD; |
+ break; |
+ case OT_P: // 32-bit or 48-bit pointer, depending on operand-size |
+ // attribute. |
+ if (operand_is_32_bits_) |
+ operand_bytes_ += OS_48_BIT_POINTER; |
+ else |
+ operand_bytes_ += OS_32_BIT_POINTER; |
+ break; |
+ case OT_PS: // 128-bit packed single-precision floating-point data. |
+ operand_bytes_ += OS_128_BIT_PACKED_SINGLE_PRECISION_FLOATING; |
+ break; |
+ case OT_Q: // Quadword, regardless of operand-size attribute. |
+ operand_bytes_ += OS_QUAD_WORD; |
+ break; |
+ case OT_S: // 6-byte pseudo-descriptor. |
+ operand_bytes_ += OS_PSEUDO_DESCRIPTOR; |
+ break; |
+ case OT_SD: // Scalar Double-Precision Floating-Point Value |
+ case OT_PD: // Unaligned packed double-precision floating point value |
+ operand_bytes_ += OS_DOUBLE_PRECISION_FLOATING; |
+ break; |
+ case OT_SS: |
+ // Scalar element of a 128-bit packed single-precision |
+ // floating data. |
+ // We simply return enItUnknown since we don't have to support |
+ // floating point |
+ succeeded = false; |
+ break; |
+ case OT_V: // Word or doubleword, depending on operand-size attribute. |
+ if (operand_is_32_bits_) |
+ operand_bytes_ += OS_DOUBLE_WORD; |
+ else |
+ operand_bytes_ += OS_WORD; |
+ break; |
+ case OT_W: // Word, regardless of operand-size attribute. |
+ operand_bytes_ += OS_WORD; |
+ break; |
+ |
+ // Can safely ignore these. |
+ case OT_A: // Two one-word operands in memory or two double-word |
+ // operands in memory |
+ case OT_PI: // Quadword MMX technology register (e.g. mm0) |
+ case OT_SI: // Doubleword integer register (e.g., eax) |
+ break; |
+ |
+ default: |
+ break; |
+ } |
+ break; |
+ |
+ default: |
+ break; |
+ } |
+ |
+ return succeeded; |
+} |
+ |
+bool MiniDisassembler::ProcessModrm(unsigned char* start_byte, |
+ unsigned int* size) { |
+ // If we don't need to decode, we just return the size of the ModR/M |
+ // byte (there is never a SIB byte in this case). |
+ if (!should_decode_modrm_) { |
+ (*size)++; |
+ return true; |
+ } |
+ |
+ // We never care about the reg field, only the combination of the mod |
+ // and r/m fields, so let's start by packing those fields together into |
+ // 5 bits. |
+ unsigned char modrm = (*start_byte); |
+ unsigned char mod = modrm & 0xC0; // mask out top two bits to get mod field |
+ modrm = modrm & 0x07; // mask out bottom 3 bits to get r/m field |
+ mod = mod >> 3; // shift the mod field to the right place |
+ modrm = mod | modrm; // combine the r/m and mod fields as discussed |
+ mod = mod >> 3; // shift the mod field to bits 2..0 |
+ |
+ // Invariant: modrm contains the mod field in bits 4..3 and the r/m field |
+ // in bits 2..0, and mod contains the mod field in bits 2..0 |
+ |
+ const ModrmEntry* modrm_entry = 0; |
+ if (address_is_32_bits_) |
+ modrm_entry = &s_ia32_modrm_map_[modrm]; |
+ else |
+ modrm_entry = &s_ia16_modrm_map_[modrm]; |
+ |
+ // Invariant: modrm_entry points to information that we need to decode |
+ // the ModR/M byte. |
+ |
+ // Add to the count of operand bytes, if the ModR/M byte indicates |
+ // that some operands are encoded in the instruction. |
+ if (modrm_entry->is_encoded_in_instruction_) |
+ operand_bytes_ += modrm_entry->operand_size_; |
+ |
+ // Process the SIB byte if necessary, and return the count |
+ // of ModR/M and SIB bytes. |
+ if (modrm_entry->use_sib_byte_) { |
+ (*size)++; |
+ return ProcessSib(start_byte + 1, mod, size); |
+ } else { |
+ (*size)++; |
+ return true; |
+ } |
+} |
+ |
+bool MiniDisassembler::ProcessSib(unsigned char* start_byte, |
+ unsigned char mod, |
+ unsigned int* size) { |
+ // get the mod field from the 2..0 bits of the SIB byte |
+ unsigned char sib_base = (*start_byte) & 0x07; |
+ if (0x05 == sib_base) { |
+ switch (mod) { |
+ case 0x00: // mod == 00 |
+ case 0x02: // mod == 10 |
+ operand_bytes_ += OS_DOUBLE_WORD; |
+ break; |
+ case 0x01: // mod == 01 |
+ operand_bytes_ += OS_BYTE; |
+ break; |
+ case 0x03: // mod == 11 |
+ // According to the IA-32 docs, there does not seem to be a disp |
+ // value for this value of mod |
+ default: |
+ break; |
+ } |
+ } |
+ |
+ (*size)++; |
+ return true; |
+} |
+ |
+}; // namespace sidestep |