| Index: src/ia32/codegen-ia32.h
|
| ===================================================================
|
| --- src/ia32/codegen-ia32.h (revision 2768)
|
| +++ src/ia32/codegen-ia32.h (working copy)
|
| @@ -1,664 +1,664 @@
|
| -// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
| -// Redistribution and use in source and binary forms, with or without
|
| -// modification, are permitted provided that the following conditions are
|
| -// met:
|
| -//
|
| -// * Redistributions of source code must retain the above copyright
|
| -// notice, this list of conditions and the following disclaimer.
|
| -// * Redistributions in binary form must reproduce the above
|
| -// copyright notice, this list of conditions and the following
|
| -// disclaimer in the documentation and/or other materials provided
|
| -// with the distribution.
|
| -// * Neither the name of Google Inc. nor the names of its
|
| -// contributors may be used to endorse or promote products derived
|
| -// from this software without specific prior written permission.
|
| -//
|
| -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| -
|
| -#ifndef V8_IA32_CODEGEN_IA32_H_
|
| -#define V8_IA32_CODEGEN_IA32_H_
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -// Forward declarations
|
| -class DeferredCode;
|
| -class RegisterAllocator;
|
| -class RegisterFile;
|
| -
|
| -enum InitState { CONST_INIT, NOT_CONST_INIT };
|
| -enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// Reference support
|
| -
|
| -// A reference is a C++ stack-allocated object that keeps an ECMA
|
| -// reference on the execution stack while in scope. For variables
|
| -// the reference is empty, indicating that it isn't necessary to
|
| -// store state on the stack for keeping track of references to those.
|
| -// For properties, we keep either one (named) or two (indexed) values
|
| -// on the execution stack to represent the reference.
|
| -
|
| -class Reference BASE_EMBEDDED {
|
| - public:
|
| - // The values of the types is important, see size().
|
| - enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
|
| - Reference(CodeGenerator* cgen, Expression* expression);
|
| - ~Reference();
|
| -
|
| - Expression* expression() const { return expression_; }
|
| - Type type() const { return type_; }
|
| - void set_type(Type value) {
|
| - ASSERT(type_ == ILLEGAL);
|
| - type_ = value;
|
| - }
|
| -
|
| - // The size the reference takes up on the stack.
|
| - int size() const { return (type_ == ILLEGAL) ? 0 : type_; }
|
| -
|
| - bool is_illegal() const { return type_ == ILLEGAL; }
|
| - bool is_slot() const { return type_ == SLOT; }
|
| - bool is_property() const { return type_ == NAMED || type_ == KEYED; }
|
| -
|
| - // Return the name. Only valid for named property references.
|
| - Handle<String> GetName();
|
| -
|
| - // Generate code to push the value of the reference on top of the
|
| - // expression stack. The reference is expected to be already on top of
|
| - // the expression stack, and it is left in place with its value above it.
|
| - void GetValue(TypeofState typeof_state);
|
| -
|
| - // Like GetValue except that the slot is expected to be written to before
|
| - // being read from again. Thae value of the reference may be invalidated,
|
| - // causing subsequent attempts to read it to fail.
|
| - void TakeValue(TypeofState typeof_state);
|
| -
|
| - // Generate code to store the value on top of the expression stack in the
|
| - // reference. The reference is expected to be immediately below the value
|
| - // on the expression stack. The stored value is left in place (with the
|
| - // reference intact below it) to support chained assignments.
|
| - void SetValue(InitState init_state);
|
| -
|
| - private:
|
| - CodeGenerator* cgen_;
|
| - Expression* expression_;
|
| - Type type_;
|
| -};
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// Control destinations.
|
| -
|
| -// A control destination encapsulates a pair of jump targets and a
|
| -// flag indicating which one is the preferred fall-through. The
|
| -// preferred fall-through must be unbound, the other may be already
|
| -// bound (ie, a backward target).
|
| -//
|
| -// The true and false targets may be jumped to unconditionally or
|
| -// control may split conditionally. Unconditional jumping and
|
| -// splitting should be emitted in tail position (as the last thing
|
| -// when compiling an expression) because they can cause either label
|
| -// to be bound or the non-fall through to be jumped to leaving an
|
| -// invalid virtual frame.
|
| -//
|
| -// The labels in the control destination can be extracted and
|
| -// manipulated normally without affecting the state of the
|
| -// destination.
|
| -
|
| -class ControlDestination BASE_EMBEDDED {
|
| - public:
|
| - ControlDestination(JumpTarget* true_target,
|
| - JumpTarget* false_target,
|
| - bool true_is_fall_through)
|
| - : true_target_(true_target),
|
| - false_target_(false_target),
|
| - true_is_fall_through_(true_is_fall_through),
|
| - is_used_(false) {
|
| - ASSERT(true_is_fall_through ? !true_target->is_bound()
|
| - : !false_target->is_bound());
|
| - }
|
| -
|
| - // Accessors for the jump targets. Directly jumping or branching to
|
| - // or binding the targets will not update the destination's state.
|
| - JumpTarget* true_target() const { return true_target_; }
|
| - JumpTarget* false_target() const { return false_target_; }
|
| -
|
| - // True if the the destination has been jumped to unconditionally or
|
| - // control has been split to both targets. This predicate does not
|
| - // test whether the targets have been extracted and manipulated as
|
| - // raw jump targets.
|
| - bool is_used() const { return is_used_; }
|
| -
|
| - // True if the destination is used and the true target (respectively
|
| - // false target) was the fall through. If the target is backward,
|
| - // "fall through" included jumping unconditionally to it.
|
| - bool true_was_fall_through() const {
|
| - return is_used_ && true_is_fall_through_;
|
| - }
|
| -
|
| - bool false_was_fall_through() const {
|
| - return is_used_ && !true_is_fall_through_;
|
| - }
|
| -
|
| - // Emit a branch to one of the true or false targets, and bind the
|
| - // other target. Because this binds the fall-through target, it
|
| - // should be emitted in tail position (as the last thing when
|
| - // compiling an expression).
|
| - void Split(Condition cc) {
|
| - ASSERT(!is_used_);
|
| - if (true_is_fall_through_) {
|
| - false_target_->Branch(NegateCondition(cc));
|
| - true_target_->Bind();
|
| - } else {
|
| - true_target_->Branch(cc);
|
| - false_target_->Bind();
|
| - }
|
| - is_used_ = true;
|
| - }
|
| -
|
| - // Emit an unconditional jump in tail position, to the true target
|
| - // (if the argument is true) or the false target. The "jump" will
|
| - // actually bind the jump target if it is forward, jump to it if it
|
| - // is backward.
|
| - void Goto(bool where) {
|
| - ASSERT(!is_used_);
|
| - JumpTarget* target = where ? true_target_ : false_target_;
|
| - if (target->is_bound()) {
|
| - target->Jump();
|
| - } else {
|
| - target->Bind();
|
| - }
|
| - is_used_ = true;
|
| - true_is_fall_through_ = where;
|
| - }
|
| -
|
| - // Mark this jump target as used as if Goto had been called, but
|
| - // without generating a jump or binding a label (the control effect
|
| - // should have already happened). This is used when the left
|
| - // subexpression of the short-circuit boolean operators are
|
| - // compiled.
|
| - void Use(bool where) {
|
| - ASSERT(!is_used_);
|
| - ASSERT((where ? true_target_ : false_target_)->is_bound());
|
| - is_used_ = true;
|
| - true_is_fall_through_ = where;
|
| - }
|
| -
|
| - // Swap the true and false targets but keep the same actual label as
|
| - // the fall through. This is used when compiling negated
|
| - // expressions, where we want to swap the targets but preserve the
|
| - // state.
|
| - void Invert() {
|
| - JumpTarget* temp_target = true_target_;
|
| - true_target_ = false_target_;
|
| - false_target_ = temp_target;
|
| -
|
| - true_is_fall_through_ = !true_is_fall_through_;
|
| - }
|
| -
|
| - private:
|
| - // True and false jump targets.
|
| - JumpTarget* true_target_;
|
| - JumpTarget* false_target_;
|
| -
|
| - // Before using the destination: true if the true target is the
|
| - // preferred fall through, false if the false target is. After
|
| - // using the destination: true if the true target was actually used
|
| - // as the fall through, false if the false target was.
|
| - bool true_is_fall_through_;
|
| -
|
| - // True if the Split or Goto functions have been called.
|
| - bool is_used_;
|
| -};
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// Code generation state
|
| -
|
| -// The state is passed down the AST by the code generator (and back up, in
|
| -// the form of the state of the jump target pair). It is threaded through
|
| -// the call stack. Constructing a state implicitly pushes it on the owning
|
| -// code generator's stack of states, and destroying one implicitly pops it.
|
| -//
|
| -// The code generator state is only used for expressions, so statements have
|
| -// the initial state.
|
| -
|
| -class CodeGenState BASE_EMBEDDED {
|
| - public:
|
| - // Create an initial code generator state. Destroying the initial state
|
| - // leaves the code generator with a NULL state.
|
| - explicit CodeGenState(CodeGenerator* owner);
|
| -
|
| - // Create a code generator state based on a code generator's current
|
| - // state. The new state may or may not be inside a typeof, and has its
|
| - // own control destination.
|
| - CodeGenState(CodeGenerator* owner,
|
| - TypeofState typeof_state,
|
| - ControlDestination* destination);
|
| -
|
| - // Destroy a code generator state and restore the owning code generator's
|
| - // previous state.
|
| - ~CodeGenState();
|
| -
|
| - // Accessors for the state.
|
| - TypeofState typeof_state() const { return typeof_state_; }
|
| - ControlDestination* destination() const { return destination_; }
|
| -
|
| - private:
|
| - // The owning code generator.
|
| - CodeGenerator* owner_;
|
| -
|
| - // A flag indicating whether we are compiling the immediate subexpression
|
| - // of a typeof expression.
|
| - TypeofState typeof_state_;
|
| -
|
| - // A control destination in case the expression has a control-flow
|
| - // effect.
|
| - ControlDestination* destination_;
|
| -
|
| - // The previous state of the owning code generator, restored when
|
| - // this state is destroyed.
|
| - CodeGenState* previous_;
|
| -};
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// Arguments allocation mode
|
| -
|
| -enum ArgumentsAllocationMode {
|
| - NO_ARGUMENTS_ALLOCATION,
|
| - EAGER_ARGUMENTS_ALLOCATION,
|
| - LAZY_ARGUMENTS_ALLOCATION
|
| -};
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// CodeGenerator
|
| -
|
| -class CodeGenerator: public AstVisitor {
|
| - public:
|
| - // Takes a function literal, generates code for it. This function should only
|
| - // be called by compiler.cc.
|
| - static Handle<Code> MakeCode(FunctionLiteral* fun,
|
| - Handle<Script> script,
|
| - bool is_eval);
|
| -
|
| -#ifdef ENABLE_LOGGING_AND_PROFILING
|
| - static bool ShouldGenerateLog(Expression* type);
|
| -#endif
|
| -
|
| - static void SetFunctionInfo(Handle<JSFunction> fun,
|
| - FunctionLiteral* lit,
|
| - bool is_toplevel,
|
| - Handle<Script> script);
|
| -
|
| - // Accessors
|
| - MacroAssembler* masm() { return masm_; }
|
| -
|
| - VirtualFrame* frame() const { return frame_; }
|
| -
|
| - bool has_valid_frame() const { return frame_ != NULL; }
|
| -
|
| - // Set the virtual frame to be new_frame, with non-frame register
|
| - // reference counts given by non_frame_registers. The non-frame
|
| - // register reference counts of the old frame are returned in
|
| - // non_frame_registers.
|
| - void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
|
| -
|
| - void DeleteFrame();
|
| -
|
| - RegisterAllocator* allocator() const { return allocator_; }
|
| -
|
| - CodeGenState* state() { return state_; }
|
| - void set_state(CodeGenState* state) { state_ = state; }
|
| -
|
| - void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
|
| -
|
| - bool in_spilled_code() const { return in_spilled_code_; }
|
| - void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; }
|
| -
|
| - private:
|
| - // Construction/Destruction
|
| - CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval);
|
| - virtual ~CodeGenerator() { delete masm_; }
|
| -
|
| - // Accessors
|
| - Scope* scope() const { return scope_; }
|
| - bool is_eval() { return is_eval_; }
|
| -
|
| - // Generating deferred code.
|
| - void ProcessDeferred();
|
| -
|
| - // State
|
| - TypeofState typeof_state() const { return state_->typeof_state(); }
|
| - ControlDestination* destination() const { return state_->destination(); }
|
| -
|
| - // Track loop nesting level.
|
| - int loop_nesting() const { return loop_nesting_; }
|
| - void IncrementLoopNesting() { loop_nesting_++; }
|
| - void DecrementLoopNesting() { loop_nesting_--; }
|
| -
|
| - // Node visitors.
|
| - void VisitStatements(ZoneList<Statement*>* statements);
|
| -
|
| -#define DEF_VISIT(type) \
|
| - void Visit##type(type* node);
|
| - AST_NODE_LIST(DEF_VISIT)
|
| -#undef DEF_VISIT
|
| -
|
| - // Visit a statement and then spill the virtual frame if control flow can
|
| - // reach the end of the statement (ie, it does not exit via break,
|
| - // continue, return, or throw). This function is used temporarily while
|
| - // the code generator is being transformed.
|
| - void VisitAndSpill(Statement* statement);
|
| -
|
| - // Visit a list of statements and then spill the virtual frame if control
|
| - // flow can reach the end of the list.
|
| - void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
|
| -
|
| - // Main code generation function
|
| - void GenCode(FunctionLiteral* fun);
|
| -
|
| - // Generate the return sequence code. Should be called no more than
|
| - // once per compiled function, immediately after binding the return
|
| - // target (which can not be done more than once).
|
| - void GenerateReturnSequence(Result* return_value);
|
| -
|
| - // Returns the arguments allocation mode.
|
| - ArgumentsAllocationMode ArgumentsMode() const;
|
| -
|
| - // Store the arguments object and allocate it if necessary.
|
| - Result StoreArgumentsObject(bool initial);
|
| -
|
| - // The following are used by class Reference.
|
| - void LoadReference(Reference* ref);
|
| - void UnloadReference(Reference* ref);
|
| -
|
| - Operand ContextOperand(Register context, int index) const {
|
| - return Operand(context, Context::SlotOffset(index));
|
| - }
|
| -
|
| - Operand SlotOperand(Slot* slot, Register tmp);
|
| -
|
| - Operand ContextSlotOperandCheckExtensions(Slot* slot,
|
| - Result tmp,
|
| - JumpTarget* slow);
|
| -
|
| - // Expressions
|
| - Operand GlobalObject() const {
|
| - return ContextOperand(esi, Context::GLOBAL_INDEX);
|
| - }
|
| -
|
| - void LoadCondition(Expression* x,
|
| - TypeofState typeof_state,
|
| - ControlDestination* destination,
|
| - bool force_control);
|
| - void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF);
|
| - void LoadGlobal();
|
| - void LoadGlobalReceiver();
|
| -
|
| - // Generate code to push the value of an expression on top of the frame
|
| - // and then spill the frame fully to memory. This function is used
|
| - // temporarily while the code generator is being transformed.
|
| - void LoadAndSpill(Expression* expression,
|
| - TypeofState typeof_state = NOT_INSIDE_TYPEOF);
|
| -
|
| - // Read a value from a slot and leave it on top of the expression stack.
|
| - void LoadFromSlot(Slot* slot, TypeofState typeof_state);
|
| - void LoadFromSlotCheckForArguments(Slot* slot, TypeofState typeof_state);
|
| - Result LoadFromGlobalSlotCheckExtensions(Slot* slot,
|
| - TypeofState typeof_state,
|
| - JumpTarget* slow);
|
| -
|
| - // Store the value on top of the expression stack into a slot, leaving the
|
| - // value in place.
|
| - void StoreToSlot(Slot* slot, InitState init_state);
|
| -
|
| - // Special code for typeof expressions: Unfortunately, we must
|
| - // be careful when loading the expression in 'typeof'
|
| - // expressions. We are not allowed to throw reference errors for
|
| - // non-existing properties of the global object, so we must make it
|
| - // look like an explicit property access, instead of an access
|
| - // through the context chain.
|
| - void LoadTypeofExpression(Expression* x);
|
| -
|
| - // Translate the value on top of the frame into control flow to the
|
| - // control destination.
|
| - void ToBoolean(ControlDestination* destination);
|
| -
|
| - void GenericBinaryOperation(
|
| - Token::Value op,
|
| - SmiAnalysis* type,
|
| - OverwriteMode overwrite_mode);
|
| -
|
| - // If possible, combine two constant smi values using op to produce
|
| - // a smi result, and push it on the virtual frame, all at compile time.
|
| - // Returns true if it succeeds. Otherwise it has no effect.
|
| - bool FoldConstantSmis(Token::Value op, int left, int right);
|
| -
|
| - // Emit code to perform a binary operation on a constant
|
| - // smi and a likely smi. Consumes the Result *operand.
|
| - void ConstantSmiBinaryOperation(Token::Value op,
|
| - Result* operand,
|
| - Handle<Object> constant_operand,
|
| - SmiAnalysis* type,
|
| - bool reversed,
|
| - OverwriteMode overwrite_mode);
|
| -
|
| - // Emit code to perform a binary operation on two likely smis.
|
| - // The code to handle smi arguments is produced inline.
|
| - // Consumes the Results *left and *right.
|
| - void LikelySmiBinaryOperation(Token::Value op,
|
| - Result* left,
|
| - Result* right,
|
| - OverwriteMode overwrite_mode);
|
| -
|
| - void Comparison(Condition cc,
|
| - bool strict,
|
| - ControlDestination* destination);
|
| -
|
| - // To prevent long attacker-controlled byte sequences, integer constants
|
| - // from the JavaScript source are loaded in two parts if they are larger
|
| - // than 16 bits.
|
| - static const int kMaxSmiInlinedBits = 16;
|
| - bool IsUnsafeSmi(Handle<Object> value);
|
| - // Load an integer constant x into a register target using
|
| - // at most 16 bits of user-controlled data per assembly operation.
|
| - void LoadUnsafeSmi(Register target, Handle<Object> value);
|
| -
|
| - void CallWithArguments(ZoneList<Expression*>* arguments, int position);
|
| -
|
| - // Use an optimized version of Function.prototype.apply that avoid
|
| - // allocating the arguments object and just copies the arguments
|
| - // from the stack.
|
| - void CallApplyLazy(Property* apply,
|
| - Expression* receiver,
|
| - VariableProxy* arguments,
|
| - int position);
|
| -
|
| - void CheckStack();
|
| -
|
| - struct InlineRuntimeLUT {
|
| - void (CodeGenerator::*method)(ZoneList<Expression*>*);
|
| - const char* name;
|
| - };
|
| -
|
| - static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
|
| - bool CheckForInlineRuntimeCall(CallRuntime* node);
|
| - static bool PatchInlineRuntimeEntry(Handle<String> name,
|
| - const InlineRuntimeLUT& new_entry,
|
| - InlineRuntimeLUT* old_entry);
|
| -
|
| - Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node);
|
| - void ProcessDeclarations(ZoneList<Declaration*>* declarations);
|
| -
|
| - Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
|
| -
|
| - // Declare global variables and functions in the given array of
|
| - // name/value pairs.
|
| - void DeclareGlobals(Handle<FixedArray> pairs);
|
| -
|
| - // Instantiate the function boilerplate.
|
| - void InstantiateBoilerplate(Handle<JSFunction> boilerplate);
|
| -
|
| - // Support for type checks.
|
| - void GenerateIsSmi(ZoneList<Expression*>* args);
|
| - void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
|
| - void GenerateIsArray(ZoneList<Expression*>* args);
|
| -
|
| - // Support for construct call checks.
|
| - void GenerateIsConstructCall(ZoneList<Expression*>* args);
|
| -
|
| - // Support for arguments.length and arguments[?].
|
| - void GenerateArgumentsLength(ZoneList<Expression*>* args);
|
| - void GenerateArgumentsAccess(ZoneList<Expression*>* args);
|
| -
|
| - // Support for accessing the class and value fields of an object.
|
| - void GenerateClassOf(ZoneList<Expression*>* args);
|
| - void GenerateValueOf(ZoneList<Expression*>* args);
|
| - void GenerateSetValueOf(ZoneList<Expression*>* args);
|
| -
|
| - // Fast support for charCodeAt(n).
|
| - void GenerateFastCharCodeAt(ZoneList<Expression*>* args);
|
| -
|
| - // Fast support for object equality testing.
|
| - void GenerateObjectEquals(ZoneList<Expression*>* args);
|
| -
|
| - void GenerateLog(ZoneList<Expression*>* args);
|
| -
|
| - void GenerateGetFramePointer(ZoneList<Expression*>* args);
|
| -
|
| - // Fast support for Math.random().
|
| - void GenerateRandomPositiveSmi(ZoneList<Expression*>* args);
|
| -
|
| - // Fast support for Math.sin and Math.cos.
|
| - enum MathOp { SIN, COS };
|
| - void GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args);
|
| - inline void GenerateMathSin(ZoneList<Expression*>* args);
|
| - inline void GenerateMathCos(ZoneList<Expression*>* args);
|
| -
|
| - // Methods used to indicate which source code is generated for. Source
|
| - // positions are collected by the assembler and emitted with the relocation
|
| - // information.
|
| - void CodeForFunctionPosition(FunctionLiteral* fun);
|
| - void CodeForReturnPosition(FunctionLiteral* fun);
|
| - void CodeForStatementPosition(AstNode* node);
|
| - void CodeForSourcePosition(int pos);
|
| -
|
| -#ifdef DEBUG
|
| - // True if the registers are valid for entry to a block. There should
|
| - // be no frame-external references to (non-reserved) registers.
|
| - bool HasValidEntryRegisters();
|
| -#endif
|
| -
|
| - bool is_eval_; // Tells whether code is generated for eval.
|
| - Handle<Script> script_;
|
| - ZoneList<DeferredCode*> deferred_;
|
| -
|
| - // Assembler
|
| - MacroAssembler* masm_; // to generate code
|
| -
|
| - // Code generation state
|
| - Scope* scope_;
|
| - VirtualFrame* frame_;
|
| - RegisterAllocator* allocator_;
|
| - CodeGenState* state_;
|
| - int loop_nesting_;
|
| -
|
| - // Jump targets.
|
| - // The target of the return from the function.
|
| - BreakTarget function_return_;
|
| -
|
| - // True if the function return is shadowed (ie, jumping to the target
|
| - // function_return_ does not jump to the true function return, but rather
|
| - // to some unlinking code).
|
| - bool function_return_is_shadowed_;
|
| -
|
| - // True when we are in code that expects the virtual frame to be fully
|
| - // spilled. Some virtual frame function are disabled in DEBUG builds when
|
| - // called from spilled code, because they do not leave the virtual frame
|
| - // in a spilled state.
|
| - bool in_spilled_code_;
|
| -
|
| - static InlineRuntimeLUT kInlineRuntimeLUT[];
|
| -
|
| - friend class VirtualFrame;
|
| - friend class JumpTarget;
|
| - friend class Reference;
|
| - friend class Result;
|
| -
|
| - friend class CodeGeneratorPatcher; // Used in test-log-stack-tracer.cc
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
|
| -};
|
| -
|
| -
|
| -// Flag that indicates whether or not the code that handles smi arguments
|
| -// should be placed in the stub, inlined, or omitted entirely.
|
| -enum GenericBinaryFlags {
|
| - SMI_CODE_IN_STUB,
|
| - SMI_CODE_INLINED
|
| -};
|
| -
|
| -
|
| -class GenericBinaryOpStub: public CodeStub {
|
| - public:
|
| - GenericBinaryOpStub(Token::Value op,
|
| - OverwriteMode mode,
|
| - GenericBinaryFlags flags)
|
| - : op_(op), mode_(mode), flags_(flags) {
|
| - use_sse3_ = CpuFeatures::IsSupported(CpuFeatures::SSE3);
|
| - ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
|
| - }
|
| -
|
| - void GenerateSmiCode(MacroAssembler* masm, Label* slow);
|
| -
|
| - private:
|
| - Token::Value op_;
|
| - OverwriteMode mode_;
|
| - GenericBinaryFlags flags_;
|
| - bool use_sse3_;
|
| -
|
| - const char* GetName();
|
| -
|
| -#ifdef DEBUG
|
| - void Print() {
|
| - PrintF("GenericBinaryOpStub (op %s), (mode %d, flags %d)\n",
|
| - Token::String(op_),
|
| - static_cast<int>(mode_),
|
| - static_cast<int>(flags_));
|
| - }
|
| -#endif
|
| -
|
| - // Minor key encoding in 16 bits FSOOOOOOOOOOOOMM.
|
| - class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
| - class OpBits: public BitField<Token::Value, 2, 12> {};
|
| - class SSE3Bits: public BitField<bool, 14, 1> {};
|
| - class FlagBits: public BitField<GenericBinaryFlags, 15, 1> {};
|
| -
|
| - Major MajorKey() { return GenericBinaryOp; }
|
| - int MinorKey() {
|
| - // Encode the parameters in a unique 16 bit value.
|
| - return OpBits::encode(op_)
|
| - | ModeBits::encode(mode_)
|
| - | FlagBits::encode(flags_)
|
| - | SSE3Bits::encode(use_sse3_);
|
| - }
|
| - void Generate(MacroAssembler* masm);
|
| -};
|
| -
|
| -
|
| -} } // namespace v8::internal
|
| -
|
| -#endif // V8_IA32_CODEGEN_IA32_H_
|
| +// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following
|
| +// disclaimer in the documentation and/or other materials provided
|
| +// with the distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived
|
| +// from this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +#ifndef V8_IA32_CODEGEN_IA32_H_
|
| +#define V8_IA32_CODEGEN_IA32_H_
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +// Forward declarations
|
| +class DeferredCode;
|
| +class RegisterAllocator;
|
| +class RegisterFile;
|
| +
|
| +enum InitState { CONST_INIT, NOT_CONST_INIT };
|
| +enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
|
| +
|
| +
|
| +// -------------------------------------------------------------------------
|
| +// Reference support
|
| +
|
| +// A reference is a C++ stack-allocated object that keeps an ECMA
|
| +// reference on the execution stack while in scope. For variables
|
| +// the reference is empty, indicating that it isn't necessary to
|
| +// store state on the stack for keeping track of references to those.
|
| +// For properties, we keep either one (named) or two (indexed) values
|
| +// on the execution stack to represent the reference.
|
| +
|
| +class Reference BASE_EMBEDDED {
|
| + public:
|
| + // The values of the types is important, see size().
|
| + enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
|
| + Reference(CodeGenerator* cgen, Expression* expression);
|
| + ~Reference();
|
| +
|
| + Expression* expression() const { return expression_; }
|
| + Type type() const { return type_; }
|
| + void set_type(Type value) {
|
| + ASSERT(type_ == ILLEGAL);
|
| + type_ = value;
|
| + }
|
| +
|
| + // The size the reference takes up on the stack.
|
| + int size() const { return (type_ == ILLEGAL) ? 0 : type_; }
|
| +
|
| + bool is_illegal() const { return type_ == ILLEGAL; }
|
| + bool is_slot() const { return type_ == SLOT; }
|
| + bool is_property() const { return type_ == NAMED || type_ == KEYED; }
|
| +
|
| + // Return the name. Only valid for named property references.
|
| + Handle<String> GetName();
|
| +
|
| + // Generate code to push the value of the reference on top of the
|
| + // expression stack. The reference is expected to be already on top of
|
| + // the expression stack, and it is left in place with its value above it.
|
| + void GetValue(TypeofState typeof_state);
|
| +
|
| + // Like GetValue except that the slot is expected to be written to before
|
| + // being read from again. Thae value of the reference may be invalidated,
|
| + // causing subsequent attempts to read it to fail.
|
| + void TakeValue(TypeofState typeof_state);
|
| +
|
| + // Generate code to store the value on top of the expression stack in the
|
| + // reference. The reference is expected to be immediately below the value
|
| + // on the expression stack. The stored value is left in place (with the
|
| + // reference intact below it) to support chained assignments.
|
| + void SetValue(InitState init_state);
|
| +
|
| + private:
|
| + CodeGenerator* cgen_;
|
| + Expression* expression_;
|
| + Type type_;
|
| +};
|
| +
|
| +
|
| +// -------------------------------------------------------------------------
|
| +// Control destinations.
|
| +
|
| +// A control destination encapsulates a pair of jump targets and a
|
| +// flag indicating which one is the preferred fall-through. The
|
| +// preferred fall-through must be unbound, the other may be already
|
| +// bound (ie, a backward target).
|
| +//
|
| +// The true and false targets may be jumped to unconditionally or
|
| +// control may split conditionally. Unconditional jumping and
|
| +// splitting should be emitted in tail position (as the last thing
|
| +// when compiling an expression) because they can cause either label
|
| +// to be bound or the non-fall through to be jumped to leaving an
|
| +// invalid virtual frame.
|
| +//
|
| +// The labels in the control destination can be extracted and
|
| +// manipulated normally without affecting the state of the
|
| +// destination.
|
| +
|
| +class ControlDestination BASE_EMBEDDED {
|
| + public:
|
| + ControlDestination(JumpTarget* true_target,
|
| + JumpTarget* false_target,
|
| + bool true_is_fall_through)
|
| + : true_target_(true_target),
|
| + false_target_(false_target),
|
| + true_is_fall_through_(true_is_fall_through),
|
| + is_used_(false) {
|
| + ASSERT(true_is_fall_through ? !true_target->is_bound()
|
| + : !false_target->is_bound());
|
| + }
|
| +
|
| + // Accessors for the jump targets. Directly jumping or branching to
|
| + // or binding the targets will not update the destination's state.
|
| + JumpTarget* true_target() const { return true_target_; }
|
| + JumpTarget* false_target() const { return false_target_; }
|
| +
|
| + // True if the the destination has been jumped to unconditionally or
|
| + // control has been split to both targets. This predicate does not
|
| + // test whether the targets have been extracted and manipulated as
|
| + // raw jump targets.
|
| + bool is_used() const { return is_used_; }
|
| +
|
| + // True if the destination is used and the true target (respectively
|
| + // false target) was the fall through. If the target is backward,
|
| + // "fall through" included jumping unconditionally to it.
|
| + bool true_was_fall_through() const {
|
| + return is_used_ && true_is_fall_through_;
|
| + }
|
| +
|
| + bool false_was_fall_through() const {
|
| + return is_used_ && !true_is_fall_through_;
|
| + }
|
| +
|
| + // Emit a branch to one of the true or false targets, and bind the
|
| + // other target. Because this binds the fall-through target, it
|
| + // should be emitted in tail position (as the last thing when
|
| + // compiling an expression).
|
| + void Split(Condition cc) {
|
| + ASSERT(!is_used_);
|
| + if (true_is_fall_through_) {
|
| + false_target_->Branch(NegateCondition(cc));
|
| + true_target_->Bind();
|
| + } else {
|
| + true_target_->Branch(cc);
|
| + false_target_->Bind();
|
| + }
|
| + is_used_ = true;
|
| + }
|
| +
|
| + // Emit an unconditional jump in tail position, to the true target
|
| + // (if the argument is true) or the false target. The "jump" will
|
| + // actually bind the jump target if it is forward, jump to it if it
|
| + // is backward.
|
| + void Goto(bool where) {
|
| + ASSERT(!is_used_);
|
| + JumpTarget* target = where ? true_target_ : false_target_;
|
| + if (target->is_bound()) {
|
| + target->Jump();
|
| + } else {
|
| + target->Bind();
|
| + }
|
| + is_used_ = true;
|
| + true_is_fall_through_ = where;
|
| + }
|
| +
|
| + // Mark this jump target as used as if Goto had been called, but
|
| + // without generating a jump or binding a label (the control effect
|
| + // should have already happened). This is used when the left
|
| + // subexpression of the short-circuit boolean operators are
|
| + // compiled.
|
| + void Use(bool where) {
|
| + ASSERT(!is_used_);
|
| + ASSERT((where ? true_target_ : false_target_)->is_bound());
|
| + is_used_ = true;
|
| + true_is_fall_through_ = where;
|
| + }
|
| +
|
| + // Swap the true and false targets but keep the same actual label as
|
| + // the fall through. This is used when compiling negated
|
| + // expressions, where we want to swap the targets but preserve the
|
| + // state.
|
| + void Invert() {
|
| + JumpTarget* temp_target = true_target_;
|
| + true_target_ = false_target_;
|
| + false_target_ = temp_target;
|
| +
|
| + true_is_fall_through_ = !true_is_fall_through_;
|
| + }
|
| +
|
| + private:
|
| + // True and false jump targets.
|
| + JumpTarget* true_target_;
|
| + JumpTarget* false_target_;
|
| +
|
| + // Before using the destination: true if the true target is the
|
| + // preferred fall through, false if the false target is. After
|
| + // using the destination: true if the true target was actually used
|
| + // as the fall through, false if the false target was.
|
| + bool true_is_fall_through_;
|
| +
|
| + // True if the Split or Goto functions have been called.
|
| + bool is_used_;
|
| +};
|
| +
|
| +
|
| +// -------------------------------------------------------------------------
|
| +// Code generation state
|
| +
|
| +// The state is passed down the AST by the code generator (and back up, in
|
| +// the form of the state of the jump target pair). It is threaded through
|
| +// the call stack. Constructing a state implicitly pushes it on the owning
|
| +// code generator's stack of states, and destroying one implicitly pops it.
|
| +//
|
| +// The code generator state is only used for expressions, so statements have
|
| +// the initial state.
|
| +
|
| +class CodeGenState BASE_EMBEDDED {
|
| + public:
|
| + // Create an initial code generator state. Destroying the initial state
|
| + // leaves the code generator with a NULL state.
|
| + explicit CodeGenState(CodeGenerator* owner);
|
| +
|
| + // Create a code generator state based on a code generator's current
|
| + // state. The new state may or may not be inside a typeof, and has its
|
| + // own control destination.
|
| + CodeGenState(CodeGenerator* owner,
|
| + TypeofState typeof_state,
|
| + ControlDestination* destination);
|
| +
|
| + // Destroy a code generator state and restore the owning code generator's
|
| + // previous state.
|
| + ~CodeGenState();
|
| +
|
| + // Accessors for the state.
|
| + TypeofState typeof_state() const { return typeof_state_; }
|
| + ControlDestination* destination() const { return destination_; }
|
| +
|
| + private:
|
| + // The owning code generator.
|
| + CodeGenerator* owner_;
|
| +
|
| + // A flag indicating whether we are compiling the immediate subexpression
|
| + // of a typeof expression.
|
| + TypeofState typeof_state_;
|
| +
|
| + // A control destination in case the expression has a control-flow
|
| + // effect.
|
| + ControlDestination* destination_;
|
| +
|
| + // The previous state of the owning code generator, restored when
|
| + // this state is destroyed.
|
| + CodeGenState* previous_;
|
| +};
|
| +
|
| +
|
| +// -------------------------------------------------------------------------
|
| +// Arguments allocation mode
|
| +
|
| +enum ArgumentsAllocationMode {
|
| + NO_ARGUMENTS_ALLOCATION,
|
| + EAGER_ARGUMENTS_ALLOCATION,
|
| + LAZY_ARGUMENTS_ALLOCATION
|
| +};
|
| +
|
| +
|
| +// -------------------------------------------------------------------------
|
| +// CodeGenerator
|
| +
|
| +class CodeGenerator: public AstVisitor {
|
| + public:
|
| + // Takes a function literal, generates code for it. This function should only
|
| + // be called by compiler.cc.
|
| + static Handle<Code> MakeCode(FunctionLiteral* fun,
|
| + Handle<Script> script,
|
| + bool is_eval);
|
| +
|
| +#ifdef ENABLE_LOGGING_AND_PROFILING
|
| + static bool ShouldGenerateLog(Expression* type);
|
| +#endif
|
| +
|
| + static void SetFunctionInfo(Handle<JSFunction> fun,
|
| + FunctionLiteral* lit,
|
| + bool is_toplevel,
|
| + Handle<Script> script);
|
| +
|
| + // Accessors
|
| + MacroAssembler* masm() { return masm_; }
|
| +
|
| + VirtualFrame* frame() const { return frame_; }
|
| +
|
| + bool has_valid_frame() const { return frame_ != NULL; }
|
| +
|
| + // Set the virtual frame to be new_frame, with non-frame register
|
| + // reference counts given by non_frame_registers. The non-frame
|
| + // register reference counts of the old frame are returned in
|
| + // non_frame_registers.
|
| + void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
|
| +
|
| + void DeleteFrame();
|
| +
|
| + RegisterAllocator* allocator() const { return allocator_; }
|
| +
|
| + CodeGenState* state() { return state_; }
|
| + void set_state(CodeGenState* state) { state_ = state; }
|
| +
|
| + void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
|
| +
|
| + bool in_spilled_code() const { return in_spilled_code_; }
|
| + void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; }
|
| +
|
| + private:
|
| + // Construction/Destruction
|
| + CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval);
|
| + virtual ~CodeGenerator() { delete masm_; }
|
| +
|
| + // Accessors
|
| + Scope* scope() const { return scope_; }
|
| + bool is_eval() { return is_eval_; }
|
| +
|
| + // Generating deferred code.
|
| + void ProcessDeferred();
|
| +
|
| + // State
|
| + TypeofState typeof_state() const { return state_->typeof_state(); }
|
| + ControlDestination* destination() const { return state_->destination(); }
|
| +
|
| + // Track loop nesting level.
|
| + int loop_nesting() const { return loop_nesting_; }
|
| + void IncrementLoopNesting() { loop_nesting_++; }
|
| + void DecrementLoopNesting() { loop_nesting_--; }
|
| +
|
| + // Node visitors.
|
| + void VisitStatements(ZoneList<Statement*>* statements);
|
| +
|
| +#define DEF_VISIT(type) \
|
| + void Visit##type(type* node);
|
| + AST_NODE_LIST(DEF_VISIT)
|
| +#undef DEF_VISIT
|
| +
|
| + // Visit a statement and then spill the virtual frame if control flow can
|
| + // reach the end of the statement (ie, it does not exit via break,
|
| + // continue, return, or throw). This function is used temporarily while
|
| + // the code generator is being transformed.
|
| + void VisitAndSpill(Statement* statement);
|
| +
|
| + // Visit a list of statements and then spill the virtual frame if control
|
| + // flow can reach the end of the list.
|
| + void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
|
| +
|
| + // Main code generation function
|
| + void GenCode(FunctionLiteral* fun);
|
| +
|
| + // Generate the return sequence code. Should be called no more than
|
| + // once per compiled function, immediately after binding the return
|
| + // target (which can not be done more than once).
|
| + void GenerateReturnSequence(Result* return_value);
|
| +
|
| + // Returns the arguments allocation mode.
|
| + ArgumentsAllocationMode ArgumentsMode() const;
|
| +
|
| + // Store the arguments object and allocate it if necessary.
|
| + Result StoreArgumentsObject(bool initial);
|
| +
|
| + // The following are used by class Reference.
|
| + void LoadReference(Reference* ref);
|
| + void UnloadReference(Reference* ref);
|
| +
|
| + Operand ContextOperand(Register context, int index) const {
|
| + return Operand(context, Context::SlotOffset(index));
|
| + }
|
| +
|
| + Operand SlotOperand(Slot* slot, Register tmp);
|
| +
|
| + Operand ContextSlotOperandCheckExtensions(Slot* slot,
|
| + Result tmp,
|
| + JumpTarget* slow);
|
| +
|
| + // Expressions
|
| + Operand GlobalObject() const {
|
| + return ContextOperand(esi, Context::GLOBAL_INDEX);
|
| + }
|
| +
|
| + void LoadCondition(Expression* x,
|
| + TypeofState typeof_state,
|
| + ControlDestination* destination,
|
| + bool force_control);
|
| + void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF);
|
| + void LoadGlobal();
|
| + void LoadGlobalReceiver();
|
| +
|
| + // Generate code to push the value of an expression on top of the frame
|
| + // and then spill the frame fully to memory. This function is used
|
| + // temporarily while the code generator is being transformed.
|
| + void LoadAndSpill(Expression* expression,
|
| + TypeofState typeof_state = NOT_INSIDE_TYPEOF);
|
| +
|
| + // Read a value from a slot and leave it on top of the expression stack.
|
| + void LoadFromSlot(Slot* slot, TypeofState typeof_state);
|
| + void LoadFromSlotCheckForArguments(Slot* slot, TypeofState typeof_state);
|
| + Result LoadFromGlobalSlotCheckExtensions(Slot* slot,
|
| + TypeofState typeof_state,
|
| + JumpTarget* slow);
|
| +
|
| + // Store the value on top of the expression stack into a slot, leaving the
|
| + // value in place.
|
| + void StoreToSlot(Slot* slot, InitState init_state);
|
| +
|
| + // Special code for typeof expressions: Unfortunately, we must
|
| + // be careful when loading the expression in 'typeof'
|
| + // expressions. We are not allowed to throw reference errors for
|
| + // non-existing properties of the global object, so we must make it
|
| + // look like an explicit property access, instead of an access
|
| + // through the context chain.
|
| + void LoadTypeofExpression(Expression* x);
|
| +
|
| + // Translate the value on top of the frame into control flow to the
|
| + // control destination.
|
| + void ToBoolean(ControlDestination* destination);
|
| +
|
| + void GenericBinaryOperation(
|
| + Token::Value op,
|
| + SmiAnalysis* type,
|
| + OverwriteMode overwrite_mode);
|
| +
|
| + // If possible, combine two constant smi values using op to produce
|
| + // a smi result, and push it on the virtual frame, all at compile time.
|
| + // Returns true if it succeeds. Otherwise it has no effect.
|
| + bool FoldConstantSmis(Token::Value op, int left, int right);
|
| +
|
| + // Emit code to perform a binary operation on a constant
|
| + // smi and a likely smi. Consumes the Result *operand.
|
| + void ConstantSmiBinaryOperation(Token::Value op,
|
| + Result* operand,
|
| + Handle<Object> constant_operand,
|
| + SmiAnalysis* type,
|
| + bool reversed,
|
| + OverwriteMode overwrite_mode);
|
| +
|
| + // Emit code to perform a binary operation on two likely smis.
|
| + // The code to handle smi arguments is produced inline.
|
| + // Consumes the Results *left and *right.
|
| + void LikelySmiBinaryOperation(Token::Value op,
|
| + Result* left,
|
| + Result* right,
|
| + OverwriteMode overwrite_mode);
|
| +
|
| + void Comparison(Condition cc,
|
| + bool strict,
|
| + ControlDestination* destination);
|
| +
|
| + // To prevent long attacker-controlled byte sequences, integer constants
|
| + // from the JavaScript source are loaded in two parts if they are larger
|
| + // than 16 bits.
|
| + static const int kMaxSmiInlinedBits = 16;
|
| + bool IsUnsafeSmi(Handle<Object> value);
|
| + // Load an integer constant x into a register target using
|
| + // at most 16 bits of user-controlled data per assembly operation.
|
| + void LoadUnsafeSmi(Register target, Handle<Object> value);
|
| +
|
| + void CallWithArguments(ZoneList<Expression*>* arguments, int position);
|
| +
|
| + // Use an optimized version of Function.prototype.apply that avoid
|
| + // allocating the arguments object and just copies the arguments
|
| + // from the stack.
|
| + void CallApplyLazy(Property* apply,
|
| + Expression* receiver,
|
| + VariableProxy* arguments,
|
| + int position);
|
| +
|
| + void CheckStack();
|
| +
|
| + struct InlineRuntimeLUT {
|
| + void (CodeGenerator::*method)(ZoneList<Expression*>*);
|
| + const char* name;
|
| + };
|
| +
|
| + static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
|
| + bool CheckForInlineRuntimeCall(CallRuntime* node);
|
| + static bool PatchInlineRuntimeEntry(Handle<String> name,
|
| + const InlineRuntimeLUT& new_entry,
|
| + InlineRuntimeLUT* old_entry);
|
| +
|
| + Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node);
|
| + void ProcessDeclarations(ZoneList<Declaration*>* declarations);
|
| +
|
| + Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
|
| +
|
| + // Declare global variables and functions in the given array of
|
| + // name/value pairs.
|
| + void DeclareGlobals(Handle<FixedArray> pairs);
|
| +
|
| + // Instantiate the function boilerplate.
|
| + void InstantiateBoilerplate(Handle<JSFunction> boilerplate);
|
| +
|
| + // Support for type checks.
|
| + void GenerateIsSmi(ZoneList<Expression*>* args);
|
| + void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
|
| + void GenerateIsArray(ZoneList<Expression*>* args);
|
| +
|
| + // Support for construct call checks.
|
| + void GenerateIsConstructCall(ZoneList<Expression*>* args);
|
| +
|
| + // Support for arguments.length and arguments[?].
|
| + void GenerateArgumentsLength(ZoneList<Expression*>* args);
|
| + void GenerateArgumentsAccess(ZoneList<Expression*>* args);
|
| +
|
| + // Support for accessing the class and value fields of an object.
|
| + void GenerateClassOf(ZoneList<Expression*>* args);
|
| + void GenerateValueOf(ZoneList<Expression*>* args);
|
| + void GenerateSetValueOf(ZoneList<Expression*>* args);
|
| +
|
| + // Fast support for charCodeAt(n).
|
| + void GenerateFastCharCodeAt(ZoneList<Expression*>* args);
|
| +
|
| + // Fast support for object equality testing.
|
| + void GenerateObjectEquals(ZoneList<Expression*>* args);
|
| +
|
| + void GenerateLog(ZoneList<Expression*>* args);
|
| +
|
| + void GenerateGetFramePointer(ZoneList<Expression*>* args);
|
| +
|
| + // Fast support for Math.random().
|
| + void GenerateRandomPositiveSmi(ZoneList<Expression*>* args);
|
| +
|
| + // Fast support for Math.sin and Math.cos.
|
| + enum MathOp { SIN, COS };
|
| + void GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args);
|
| + inline void GenerateMathSin(ZoneList<Expression*>* args);
|
| + inline void GenerateMathCos(ZoneList<Expression*>* args);
|
| +
|
| + // Methods used to indicate which source code is generated for. Source
|
| + // positions are collected by the assembler and emitted with the relocation
|
| + // information.
|
| + void CodeForFunctionPosition(FunctionLiteral* fun);
|
| + void CodeForReturnPosition(FunctionLiteral* fun);
|
| + void CodeForStatementPosition(AstNode* node);
|
| + void CodeForSourcePosition(int pos);
|
| +
|
| +#ifdef DEBUG
|
| + // True if the registers are valid for entry to a block. There should
|
| + // be no frame-external references to (non-reserved) registers.
|
| + bool HasValidEntryRegisters();
|
| +#endif
|
| +
|
| + bool is_eval_; // Tells whether code is generated for eval.
|
| + Handle<Script> script_;
|
| + ZoneList<DeferredCode*> deferred_;
|
| +
|
| + // Assembler
|
| + MacroAssembler* masm_; // to generate code
|
| +
|
| + // Code generation state
|
| + Scope* scope_;
|
| + VirtualFrame* frame_;
|
| + RegisterAllocator* allocator_;
|
| + CodeGenState* state_;
|
| + int loop_nesting_;
|
| +
|
| + // Jump targets.
|
| + // The target of the return from the function.
|
| + BreakTarget function_return_;
|
| +
|
| + // True if the function return is shadowed (ie, jumping to the target
|
| + // function_return_ does not jump to the true function return, but rather
|
| + // to some unlinking code).
|
| + bool function_return_is_shadowed_;
|
| +
|
| + // True when we are in code that expects the virtual frame to be fully
|
| + // spilled. Some virtual frame function are disabled in DEBUG builds when
|
| + // called from spilled code, because they do not leave the virtual frame
|
| + // in a spilled state.
|
| + bool in_spilled_code_;
|
| +
|
| + static InlineRuntimeLUT kInlineRuntimeLUT[];
|
| +
|
| + friend class VirtualFrame;
|
| + friend class JumpTarget;
|
| + friend class Reference;
|
| + friend class Result;
|
| +
|
| + friend class CodeGeneratorPatcher; // Used in test-log-stack-tracer.cc
|
| +
|
| + DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
|
| +};
|
| +
|
| +
|
| +// Flag that indicates whether or not the code that handles smi arguments
|
| +// should be placed in the stub, inlined, or omitted entirely.
|
| +enum GenericBinaryFlags {
|
| + SMI_CODE_IN_STUB,
|
| + SMI_CODE_INLINED
|
| +};
|
| +
|
| +
|
| +class GenericBinaryOpStub: public CodeStub {
|
| + public:
|
| + GenericBinaryOpStub(Token::Value op,
|
| + OverwriteMode mode,
|
| + GenericBinaryFlags flags)
|
| + : op_(op), mode_(mode), flags_(flags) {
|
| + use_sse3_ = CpuFeatures::IsSupported(CpuFeatures::SSE3);
|
| + ASSERT(OpBits::is_valid(Token::NUM_TOKENS));
|
| + }
|
| +
|
| + void GenerateSmiCode(MacroAssembler* masm, Label* slow);
|
| +
|
| + private:
|
| + Token::Value op_;
|
| + OverwriteMode mode_;
|
| + GenericBinaryFlags flags_;
|
| + bool use_sse3_;
|
| +
|
| + const char* GetName();
|
| +
|
| +#ifdef DEBUG
|
| + void Print() {
|
| + PrintF("GenericBinaryOpStub (op %s), (mode %d, flags %d)\n",
|
| + Token::String(op_),
|
| + static_cast<int>(mode_),
|
| + static_cast<int>(flags_));
|
| + }
|
| +#endif
|
| +
|
| + // Minor key encoding in 16 bits FSOOOOOOOOOOOOMM.
|
| + class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
| + class OpBits: public BitField<Token::Value, 2, 12> {};
|
| + class SSE3Bits: public BitField<bool, 14, 1> {};
|
| + class FlagBits: public BitField<GenericBinaryFlags, 15, 1> {};
|
| +
|
| + Major MajorKey() { return GenericBinaryOp; }
|
| + int MinorKey() {
|
| + // Encode the parameters in a unique 16 bit value.
|
| + return OpBits::encode(op_)
|
| + | ModeBits::encode(mode_)
|
| + | FlagBits::encode(flags_)
|
| + | SSE3Bits::encode(use_sse3_);
|
| + }
|
| + void Generate(MacroAssembler* masm);
|
| +};
|
| +
|
| +
|
| +} } // namespace v8::internal
|
| +
|
| +#endif // V8_IA32_CODEGEN_IA32_H_
|
|
|