Index: third_party/tcmalloc/jemalloc/rb.h |
=================================================================== |
--- third_party/tcmalloc/jemalloc/rb.h (revision 0) |
+++ third_party/tcmalloc/jemalloc/rb.h (revision 0) |
@@ -0,0 +1,983 @@ |
+/****************************************************************************** |
+ * |
+ * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>. |
+ * All rights reserved. |
+ * |
+ * Redistribution and use in source and binary forms, with or without |
+ * modification, are permitted provided that the following conditions |
+ * are met: |
+ * 1. Redistributions of source code must retain the above copyright |
+ * notice(s), this list of conditions and the following disclaimer |
+ * unmodified other than the allowable addition of one or more |
+ * copyright notices. |
+ * 2. Redistributions in binary form must reproduce the above copyright |
+ * notice(s), this list of conditions and the following disclaimer in |
+ * the documentation and/or other materials provided with the |
+ * distribution. |
+ * |
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY |
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE |
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR |
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE |
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, |
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+ * |
+ ****************************************************************************** |
+ * |
+ * cpp macro implementation of left-leaning red-black trees. |
+ * |
+ * Usage: |
+ * |
+ * (Optional.) |
+ * #define SIZEOF_PTR ... |
+ * #define SIZEOF_PTR_2POW ... |
+ * #define RB_NO_C99_VARARRAYS |
+ * |
+ * (Optional, see assert(3).) |
+ * #define NDEBUG |
+ * |
+ * (Required.) |
+ * #include <assert.h> |
+ * #include <rb.h> |
+ * ... |
+ * |
+ * All operations are done non-recursively. Parent pointers are not used, and |
+ * color bits are stored in the least significant bit of right-child pointers, |
+ * thus making node linkage as compact as is possible for red-black trees. |
+ * |
+ * Some macros use a comparison function pointer, which is expected to have the |
+ * following prototype: |
+ * |
+ * int (a_cmp *)(a_type *a_node, a_type *a_other); |
+ * ^^^^^^ |
+ * or a_key |
+ * |
+ * Interpretation of comparision function return values: |
+ * |
+ * -1 : a_node < a_other |
+ * 0 : a_node == a_other |
+ * 1 : a_node > a_other |
+ * |
+ * In all cases, the a_node or a_key macro argument is the first argument to the |
+ * comparison function, which makes it possible to write comparison functions |
+ * that treat the first argument specially. |
+ * |
+ ******************************************************************************/ |
+ |
+#ifndef RB_H_ |
+#define RB_H_ |
+ |
+#if 0 |
+#include <sys/cdefs.h> |
+__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $"); |
+#endif |
+ |
+/* Node structure. */ |
+#define rb_node(a_type) \ |
+struct { \ |
+ a_type *rbn_left; \ |
+ a_type *rbn_right_red; \ |
+} |
+ |
+/* Root structure. */ |
+#define rb_tree(a_type) \ |
+struct { \ |
+ a_type *rbt_root; \ |
+ a_type rbt_nil; \ |
+} |
+ |
+/* Left accessors. */ |
+#define rbp_left_get(a_type, a_field, a_node) \ |
+ ((a_node)->a_field.rbn_left) |
+#define rbp_left_set(a_type, a_field, a_node, a_left) do { \ |
+ (a_node)->a_field.rbn_left = a_left; \ |
+} while (0) |
+ |
+/* Right accessors. */ |
+#define rbp_right_get(a_type, a_field, a_node) \ |
+ ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \ |
+ & ((ssize_t)-2))) |
+#define rbp_right_set(a_type, a_field, a_node, a_right) do { \ |
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \ |
+ | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \ |
+} while (0) |
+ |
+/* Color accessors. */ |
+#define rbp_red_get(a_type, a_field, a_node) \ |
+ ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \ |
+ & ((size_t)1))) |
+#define rbp_color_set(a_type, a_field, a_node, a_red) do { \ |
+ (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \ |
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \ |
+ | ((ssize_t)a_red)); \ |
+} while (0) |
+#define rbp_red_set(a_type, a_field, a_node) do { \ |
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \ |
+ (a_node)->a_field.rbn_right_red) | ((size_t)1)); \ |
+} while (0) |
+#define rbp_black_set(a_type, a_field, a_node) do { \ |
+ (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \ |
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \ |
+} while (0) |
+ |
+/* Node initializer. */ |
+#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \ |
+ rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \ |
+ rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \ |
+ rbp_red_set(a_type, a_field, (a_node)); \ |
+} while (0) |
+ |
+/* Tree initializer. */ |
+#define rb_new(a_type, a_field, a_tree) do { \ |
+ (a_tree)->rbt_root = &(a_tree)->rbt_nil; \ |
+ rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \ |
+ rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \ |
+} while (0) |
+ |
+/* Tree operations. */ |
+#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \ |
+ a_type *rbp_bh_t; \ |
+ for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \ |
+ rbp_bh_t != &(a_tree)->rbt_nil; \ |
+ rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \ |
+ if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \ |
+ (r_height)++; \ |
+ } \ |
+ } \ |
+} while (0) |
+ |
+#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \ |
+ for ((r_node) = (a_root); \ |
+ rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \ |
+ (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \ |
+ } \ |
+} while (0) |
+ |
+#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \ |
+ for ((r_node) = (a_root); \ |
+ rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \ |
+ (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \ |
+ } \ |
+} while (0) |
+ |
+#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ |
+ if (rbp_right_get(a_type, a_field, (a_node)) \ |
+ != &(a_tree)->rbt_nil) { \ |
+ rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \ |
+ a_field, (a_node)), (r_node)); \ |
+ } else { \ |
+ a_type *rbp_n_t = (a_tree)->rbt_root; \ |
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \ |
+ (r_node) = &(a_tree)->rbt_nil; \ |
+ while (true) { \ |
+ int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \ |
+ if (rbp_n_cmp < 0) { \ |
+ (r_node) = rbp_n_t; \ |
+ rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \ |
+ } else if (rbp_n_cmp > 0) { \ |
+ rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \ |
+ } else { \ |
+ break; \ |
+ } \ |
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \ |
+ } \ |
+ } \ |
+} while (0) |
+ |
+#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ |
+ if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\ |
+ rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \ |
+ a_field, (a_node)), (r_node)); \ |
+ } else { \ |
+ a_type *rbp_p_t = (a_tree)->rbt_root; \ |
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \ |
+ (r_node) = &(a_tree)->rbt_nil; \ |
+ while (true) { \ |
+ int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \ |
+ if (rbp_p_cmp < 0) { \ |
+ rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \ |
+ } else if (rbp_p_cmp > 0) { \ |
+ (r_node) = rbp_p_t; \ |
+ rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \ |
+ } else { \ |
+ break; \ |
+ } \ |
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \ |
+ } \ |
+ } \ |
+} while (0) |
+ |
+#define rb_first(a_type, a_field, a_tree, r_node) do { \ |
+ rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \ |
+ if ((r_node) == &(a_tree)->rbt_nil) { \ |
+ (r_node) = NULL; \ |
+ } \ |
+} while (0) |
+ |
+#define rb_last(a_type, a_field, a_tree, r_node) do { \ |
+ rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \ |
+ if ((r_node) == &(a_tree)->rbt_nil) { \ |
+ (r_node) = NULL; \ |
+ } \ |
+} while (0) |
+ |
+#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ |
+ rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \ |
+ if ((r_node) == &(a_tree)->rbt_nil) { \ |
+ (r_node) = NULL; \ |
+ } \ |
+} while (0) |
+ |
+#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ |
+ rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \ |
+ if ((r_node) == &(a_tree)->rbt_nil) { \ |
+ (r_node) = NULL; \ |
+ } \ |
+} while (0) |
+ |
+#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ |
+ int rbp_se_cmp; \ |
+ (r_node) = (a_tree)->rbt_root; \ |
+ while ((r_node) != &(a_tree)->rbt_nil \ |
+ && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \ |
+ if (rbp_se_cmp < 0) { \ |
+ (r_node) = rbp_left_get(a_type, a_field, (r_node)); \ |
+ } else { \ |
+ (r_node) = rbp_right_get(a_type, a_field, (r_node)); \ |
+ } \ |
+ } \ |
+ if ((r_node) == &(a_tree)->rbt_nil) { \ |
+ (r_node) = NULL; \ |
+ } \ |
+} while (0) |
+ |
+/* |
+ * Find a match if it exists. Otherwise, find the next greater node, if one |
+ * exists. |
+ */ |
+#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ |
+ a_type *rbp_ns_t = (a_tree)->rbt_root; \ |
+ (r_node) = NULL; \ |
+ while (rbp_ns_t != &(a_tree)->rbt_nil) { \ |
+ int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \ |
+ if (rbp_ns_cmp < 0) { \ |
+ (r_node) = rbp_ns_t; \ |
+ rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \ |
+ } else if (rbp_ns_cmp > 0) { \ |
+ rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \ |
+ } else { \ |
+ (r_node) = rbp_ns_t; \ |
+ break; \ |
+ } \ |
+ } \ |
+} while (0) |
+ |
+/* |
+ * Find a match if it exists. Otherwise, find the previous lesser node, if one |
+ * exists. |
+ */ |
+#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ |
+ a_type *rbp_ps_t = (a_tree)->rbt_root; \ |
+ (r_node) = NULL; \ |
+ while (rbp_ps_t != &(a_tree)->rbt_nil) { \ |
+ int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \ |
+ if (rbp_ps_cmp < 0) { \ |
+ rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \ |
+ } else if (rbp_ps_cmp > 0) { \ |
+ (r_node) = rbp_ps_t; \ |
+ rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \ |
+ } else { \ |
+ (r_node) = rbp_ps_t; \ |
+ break; \ |
+ } \ |
+ } \ |
+} while (0) |
+ |
+#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \ |
+ (r_node) = rbp_right_get(a_type, a_field, (a_node)); \ |
+ rbp_right_set(a_type, a_field, (a_node), \ |
+ rbp_left_get(a_type, a_field, (r_node))); \ |
+ rbp_left_set(a_type, a_field, (r_node), (a_node)); \ |
+} while (0) |
+ |
+#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \ |
+ (r_node) = rbp_left_get(a_type, a_field, (a_node)); \ |
+ rbp_left_set(a_type, a_field, (a_node), \ |
+ rbp_right_get(a_type, a_field, (r_node))); \ |
+ rbp_right_set(a_type, a_field, (r_node), (a_node)); \ |
+} while (0) |
+ |
+#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \ |
+ bool rbp_ll_red; \ |
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ |
+ rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \ |
+ rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \ |
+ rbp_red_set(a_type, a_field, (a_node)); \ |
+} while (0) |
+ |
+#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \ |
+ bool rbp_lr_red; \ |
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ |
+ rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \ |
+ rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \ |
+ rbp_red_set(a_type, a_field, (a_node)); \ |
+} while (0) |
+ |
+#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \ |
+ a_type *rbp_mrl_t, *rbp_mrl_u; \ |
+ rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \ |
+ rbp_red_set(a_type, a_field, rbp_mrl_t); \ |
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \ |
+ rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \ |
+ if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \ |
+ rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \ |
+ rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \ |
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ |
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \ |
+ if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \ |
+ rbp_black_set(a_type, a_field, rbp_mrl_t); \ |
+ rbp_red_set(a_type, a_field, (a_node)); \ |
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \ |
+ rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \ |
+ } else { \ |
+ rbp_black_set(a_type, a_field, (a_node)); \ |
+ } \ |
+ } else { \ |
+ rbp_red_set(a_type, a_field, (a_node)); \ |
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ |
+ } \ |
+} while (0) |
+ |
+#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \ |
+ a_type *rbp_mrr_t; \ |
+ rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \ |
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \ |
+ a_type *rbp_mrr_u, *rbp_mrr_v; \ |
+ rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \ |
+ rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \ |
+ if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \ |
+ rbp_color_set(a_type, a_field, rbp_mrr_u, \ |
+ rbp_red_get(a_type, a_field, (a_node))); \ |
+ rbp_black_set(a_type, a_field, rbp_mrr_v); \ |
+ rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \ |
+ rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \ |
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ |
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ |
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ |
+ } else { \ |
+ rbp_color_set(a_type, a_field, rbp_mrr_t, \ |
+ rbp_red_get(a_type, a_field, (a_node))); \ |
+ rbp_red_set(a_type, a_field, rbp_mrr_u); \ |
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ |
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ |
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ |
+ } \ |
+ rbp_red_set(a_type, a_field, (a_node)); \ |
+ } else { \ |
+ rbp_red_set(a_type, a_field, rbp_mrr_t); \ |
+ rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \ |
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \ |
+ rbp_black_set(a_type, a_field, rbp_mrr_t); \ |
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ |
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ |
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ |
+ } else { \ |
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ |
+ } \ |
+ } \ |
+} while (0) |
+ |
+#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \ |
+ a_type rbp_i_s; \ |
+ a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \ |
+ int rbp_i_cmp = 0; \ |
+ rbp_i_g = &(a_tree)->rbt_nil; \ |
+ rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \ |
+ rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \ |
+ rbp_black_set(a_type, a_field, &rbp_i_s); \ |
+ rbp_i_p = &rbp_i_s; \ |
+ rbp_i_c = (a_tree)->rbt_root; \ |
+ /* Iteratively search down the tree for the insertion point, */\ |
+ /* splitting 4-nodes as they are encountered. At the end of each */\ |
+ /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\ |
+ /* the tree, assuming a sufficiently deep tree. */\ |
+ while (rbp_i_c != &(a_tree)->rbt_nil) { \ |
+ rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \ |
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \ |
+ if (rbp_red_get(a_type, a_field, rbp_i_t) \ |
+ && rbp_red_get(a_type, a_field, rbp_i_u)) { \ |
+ /* rbp_i_c is the top of a logical 4-node, so split it. */\ |
+ /* This iteration does not move down the tree, due to the */\ |
+ /* disruptiveness of node splitting. */\ |
+ /* */\ |
+ /* Rotate right. */\ |
+ rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \ |
+ /* Pass red links up one level. */\ |
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \ |
+ rbp_black_set(a_type, a_field, rbp_i_u); \ |
+ if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \ |
+ rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \ |
+ rbp_i_c = rbp_i_t; \ |
+ } else { \ |
+ /* rbp_i_c was the right child of rbp_i_p, so rotate */\ |
+ /* left in order to maintain the left-leaning */\ |
+ /* invariant. */\ |
+ assert(rbp_right_get(a_type, a_field, rbp_i_p) \ |
+ == rbp_i_c); \ |
+ rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \ |
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \ |
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\ |
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \ |
+ } else { \ |
+ assert(rbp_right_get(a_type, a_field, rbp_i_g) \ |
+ == rbp_i_p); \ |
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \ |
+ } \ |
+ rbp_i_p = rbp_i_u; \ |
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \ |
+ if (rbp_i_cmp < 0) { \ |
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \ |
+ } else { \ |
+ assert(rbp_i_cmp > 0); \ |
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \ |
+ } \ |
+ continue; \ |
+ } \ |
+ } \ |
+ rbp_i_g = rbp_i_p; \ |
+ rbp_i_p = rbp_i_c; \ |
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \ |
+ if (rbp_i_cmp < 0) { \ |
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \ |
+ } else { \ |
+ assert(rbp_i_cmp > 0); \ |
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \ |
+ } \ |
+ } \ |
+ /* rbp_i_p now refers to the node under which to insert. */\ |
+ rbp_node_new(a_type, a_field, a_tree, (a_node)); \ |
+ if (rbp_i_cmp > 0) { \ |
+ rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \ |
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \ |
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \ |
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \ |
+ } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\ |
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \ |
+ } \ |
+ } else { \ |
+ rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \ |
+ } \ |
+ /* Update the root and make sure that it is black. */\ |
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \ |
+ rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \ |
+} while (0) |
+ |
+#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \ |
+ a_type rbp_r_s; \ |
+ a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \ |
+ int rbp_r_cmp; \ |
+ rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \ |
+ rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \ |
+ rbp_black_set(a_type, a_field, &rbp_r_s); \ |
+ rbp_r_p = &rbp_r_s; \ |
+ rbp_r_c = (a_tree)->rbt_root; \ |
+ rbp_r_xp = &(a_tree)->rbt_nil; \ |
+ /* Iterate down the tree, but always transform 2-nodes to 3- or */\ |
+ /* 4-nodes in order to maintain the invariant that the current */\ |
+ /* node is not a 2-node. This allows simple deletion once a leaf */\ |
+ /* is reached. Handle the root specially though, since there may */\ |
+ /* be no way to convert it from a 2-node to a 3-node. */\ |
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \ |
+ if (rbp_r_cmp < 0) { \ |
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ |
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ |
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \ |
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ |
+ /* Apply standard transform to prepare for left move. */\ |
+ rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \ |
+ rbp_black_set(a_type, a_field, rbp_r_t); \ |
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ |
+ rbp_r_c = rbp_r_t; \ |
+ } else { \ |
+ /* Move left. */\ |
+ rbp_r_p = rbp_r_c; \ |
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \ |
+ } \ |
+ } else { \ |
+ if (rbp_r_cmp == 0) { \ |
+ assert((a_node) == rbp_r_c); \ |
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \ |
+ == &(a_tree)->rbt_nil) { \ |
+ /* Delete root node (which is also a leaf node). */\ |
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \ |
+ != &(a_tree)->rbt_nil) { \ |
+ rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \ |
+ rbp_right_set(a_type, a_field, rbp_r_t, \ |
+ &(a_tree)->rbt_nil); \ |
+ } else { \ |
+ rbp_r_t = &(a_tree)->rbt_nil; \ |
+ } \ |
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ |
+ } else { \ |
+ /* This is the node we want to delete, but we will */\ |
+ /* instead swap it with its successor and delete the */\ |
+ /* successor. Record enough information to do the */\ |
+ /* swap later. rbp_r_xp is the a_node's parent. */\ |
+ rbp_r_xp = rbp_r_p; \ |
+ rbp_r_cmp = 1; /* Note that deletion is incomplete. */\ |
+ } \ |
+ } \ |
+ if (rbp_r_cmp == 1) { \ |
+ if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \ |
+ a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \ |
+ == false) { \ |
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ |
+ if (rbp_red_get(a_type, a_field, rbp_r_t)) { \ |
+ /* Standard transform. */\ |
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \ |
+ rbp_r_t); \ |
+ } else { \ |
+ /* Root-specific transform. */\ |
+ rbp_red_set(a_type, a_field, rbp_r_c); \ |
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ |
+ if (rbp_red_get(a_type, a_field, rbp_r_u)) { \ |
+ rbp_black_set(a_type, a_field, rbp_r_u); \ |
+ rbp_rotate_right(a_type, a_field, rbp_r_c, \ |
+ rbp_r_t); \ |
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \ |
+ rbp_r_u); \ |
+ rbp_right_set(a_type, a_field, rbp_r_t, \ |
+ rbp_r_u); \ |
+ } else { \ |
+ rbp_red_set(a_type, a_field, rbp_r_t); \ |
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \ |
+ rbp_r_t); \ |
+ } \ |
+ } \ |
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ |
+ rbp_r_c = rbp_r_t; \ |
+ } else { \ |
+ /* Move right. */\ |
+ rbp_r_p = rbp_r_c; \ |
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \ |
+ } \ |
+ } \ |
+ } \ |
+ if (rbp_r_cmp != 0) { \ |
+ while (true) { \ |
+ assert(rbp_r_p != &(a_tree)->rbt_nil); \ |
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \ |
+ if (rbp_r_cmp < 0) { \ |
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ |
+ if (rbp_r_t == &(a_tree)->rbt_nil) { \ |
+ /* rbp_r_c now refers to the successor node to */\ |
+ /* relocate, and rbp_r_xp/a_node refer to the */\ |
+ /* context for the relocation. */\ |
+ if (rbp_left_get(a_type, a_field, rbp_r_xp) \ |
+ == (a_node)) { \ |
+ rbp_left_set(a_type, a_field, rbp_r_xp, \ |
+ rbp_r_c); \ |
+ } else { \ |
+ assert(rbp_right_get(a_type, a_field, \ |
+ rbp_r_xp) == (a_node)); \ |
+ rbp_right_set(a_type, a_field, rbp_r_xp, \ |
+ rbp_r_c); \ |
+ } \ |
+ rbp_left_set(a_type, a_field, rbp_r_c, \ |
+ rbp_left_get(a_type, a_field, (a_node))); \ |
+ rbp_right_set(a_type, a_field, rbp_r_c, \ |
+ rbp_right_get(a_type, a_field, (a_node))); \ |
+ rbp_color_set(a_type, a_field, rbp_r_c, \ |
+ rbp_red_get(a_type, a_field, (a_node))); \ |
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \ |
+ == rbp_r_c) { \ |
+ rbp_left_set(a_type, a_field, rbp_r_p, \ |
+ &(a_tree)->rbt_nil); \ |
+ } else { \ |
+ assert(rbp_right_get(a_type, a_field, rbp_r_p) \ |
+ == rbp_r_c); \ |
+ rbp_right_set(a_type, a_field, rbp_r_p, \ |
+ &(a_tree)->rbt_nil); \ |
+ } \ |
+ break; \ |
+ } \ |
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ |
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \ |
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ |
+ rbp_move_red_left(a_type, a_field, rbp_r_c, \ |
+ rbp_r_t); \ |
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \ |
+ == rbp_r_c) { \ |
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\ |
+ } else { \ |
+ rbp_right_set(a_type, a_field, rbp_r_p, \ |
+ rbp_r_t); \ |
+ } \ |
+ rbp_r_c = rbp_r_t; \ |
+ } else { \ |
+ rbp_r_p = rbp_r_c; \ |
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \ |
+ } \ |
+ } else { \ |
+ /* Check whether to delete this node (it has to be */\ |
+ /* the correct node and a leaf node). */\ |
+ if (rbp_r_cmp == 0) { \ |
+ assert((a_node) == rbp_r_c); \ |
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \ |
+ == &(a_tree)->rbt_nil) { \ |
+ /* Delete leaf node. */\ |
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \ |
+ != &(a_tree)->rbt_nil) { \ |
+ rbp_lean_right(a_type, a_field, rbp_r_c, \ |
+ rbp_r_t); \ |
+ rbp_right_set(a_type, a_field, rbp_r_t, \ |
+ &(a_tree)->rbt_nil); \ |
+ } else { \ |
+ rbp_r_t = &(a_tree)->rbt_nil; \ |
+ } \ |
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \ |
+ == rbp_r_c) { \ |
+ rbp_left_set(a_type, a_field, rbp_r_p, \ |
+ rbp_r_t); \ |
+ } else { \ |
+ rbp_right_set(a_type, a_field, rbp_r_p, \ |
+ rbp_r_t); \ |
+ } \ |
+ break; \ |
+ } else { \ |
+ /* This is the node we want to delete, but we */\ |
+ /* will instead swap it with its successor */\ |
+ /* and delete the successor. Record enough */\ |
+ /* information to do the swap later. */\ |
+ /* rbp_r_xp is a_node's parent. */\ |
+ rbp_r_xp = rbp_r_p; \ |
+ } \ |
+ } \ |
+ rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \ |
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ |
+ if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ |
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \ |
+ rbp_r_t); \ |
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \ |
+ == rbp_r_c) { \ |
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\ |
+ } else { \ |
+ rbp_right_set(a_type, a_field, rbp_r_p, \ |
+ rbp_r_t); \ |
+ } \ |
+ rbp_r_c = rbp_r_t; \ |
+ } else { \ |
+ rbp_r_p = rbp_r_c; \ |
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \ |
+ } \ |
+ } \ |
+ } \ |
+ } \ |
+ /* Update root. */\ |
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \ |
+} while (0) |
+ |
+/* |
+ * The rb_wrap() macro provides a convenient way to wrap functions around the |
+ * cpp macros. The main benefits of wrapping are that 1) repeated macro |
+ * expansion can cause code bloat, especially for rb_{insert,remove)(), and |
+ * 2) type, linkage, comparison functions, etc. need not be specified at every |
+ * call point. |
+ */ |
+ |
+#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \ |
+a_attr void \ |
+a_prefix##new(a_tree_type *tree) { \ |
+ rb_new(a_type, a_field, tree); \ |
+} \ |
+a_attr a_type * \ |
+a_prefix##first(a_tree_type *tree) { \ |
+ a_type *ret; \ |
+ rb_first(a_type, a_field, tree, ret); \ |
+ return (ret); \ |
+} \ |
+a_attr a_type * \ |
+a_prefix##last(a_tree_type *tree) { \ |
+ a_type *ret; \ |
+ rb_last(a_type, a_field, tree, ret); \ |
+ return (ret); \ |
+} \ |
+a_attr a_type * \ |
+a_prefix##next(a_tree_type *tree, a_type *node) { \ |
+ a_type *ret; \ |
+ rb_next(a_type, a_field, a_cmp, tree, node, ret); \ |
+ return (ret); \ |
+} \ |
+a_attr a_type * \ |
+a_prefix##prev(a_tree_type *tree, a_type *node) { \ |
+ a_type *ret; \ |
+ rb_prev(a_type, a_field, a_cmp, tree, node, ret); \ |
+ return (ret); \ |
+} \ |
+a_attr a_type * \ |
+a_prefix##search(a_tree_type *tree, a_type *key) { \ |
+ a_type *ret; \ |
+ rb_search(a_type, a_field, a_cmp, tree, key, ret); \ |
+ return (ret); \ |
+} \ |
+a_attr a_type * \ |
+a_prefix##nsearch(a_tree_type *tree, a_type *key) { \ |
+ a_type *ret; \ |
+ rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \ |
+ return (ret); \ |
+} \ |
+a_attr a_type * \ |
+a_prefix##psearch(a_tree_type *tree, a_type *key) { \ |
+ a_type *ret; \ |
+ rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \ |
+ return (ret); \ |
+} \ |
+a_attr void \ |
+a_prefix##insert(a_tree_type *tree, a_type *node) { \ |
+ rb_insert(a_type, a_field, a_cmp, tree, node); \ |
+} \ |
+a_attr void \ |
+a_prefix##remove(a_tree_type *tree, a_type *node) { \ |
+ rb_remove(a_type, a_field, a_cmp, tree, node); \ |
+} |
+ |
+/* |
+ * The iterators simulate recursion via an array of pointers that store the |
+ * current path. This is critical to performance, since a series of calls to |
+ * rb_{next,prev}() would require time proportional to (n lg n), whereas this |
+ * implementation only requires time proportional to (n). |
+ * |
+ * Since the iterators cache a path down the tree, any tree modification may |
+ * cause the cached path to become invalid. In order to continue iteration, |
+ * use something like the following sequence: |
+ * |
+ * { |
+ * a_type *node, *tnode; |
+ * |
+ * rb_foreach_begin(a_type, a_field, a_tree, node) { |
+ * ... |
+ * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode); |
+ * rb_remove(a_type, a_field, a_cmp, a_tree, node); |
+ * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode); |
+ * ... |
+ * } rb_foreach_end(a_type, a_field, a_tree, node) |
+ * } |
+ * |
+ * Note that this idiom is not advised if every iteration modifies the tree, |
+ * since in that case there is no algorithmic complexity improvement over a |
+ * series of rb_{next,prev}() calls, thus making the setup overhead wasted |
+ * effort. |
+ */ |
+ |
+#ifdef RB_NO_C99_VARARRAYS |
+ /* |
+ * Avoid using variable-length arrays, at the cost of using more stack space. |
+ * Size the path arrays such that they are always large enough, even if a |
+ * tree consumes all of memory. Since each node must contain a minimum of |
+ * two pointers, there can never be more nodes than: |
+ * |
+ * 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)) |
+ * |
+ * Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth |
+ * is: |
+ * |
+ * (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))) |
+ * |
+ * This works out to a maximum depth of 87 and 180 for 32- and 64-bit |
+ * systems, respectively (approximatly 348 and 1440 bytes, respectively). |
+ */ |
+# define rbp_compute_f_height(a_type, a_field, a_tree) |
+# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))) |
+# define rbp_compute_fr_height(a_type, a_field, a_tree) |
+# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))) |
+#else |
+# define rbp_compute_f_height(a_type, a_field, a_tree) \ |
+ /* Compute the maximum possible tree depth (3X the black height). */\ |
+ unsigned rbp_f_height; \ |
+ rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \ |
+ rbp_f_height *= 3; |
+# define rbp_compute_fr_height(a_type, a_field, a_tree) \ |
+ /* Compute the maximum possible tree depth (3X the black height). */\ |
+ unsigned rbp_fr_height; \ |
+ rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \ |
+ rbp_fr_height *= 3; |
+#endif |
+ |
+#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \ |
+ rbp_compute_f_height(a_type, a_field, a_tree) \ |
+ { \ |
+ /* Initialize the path to contain the left spine. */\ |
+ a_type *rbp_f_path[rbp_f_height]; \ |
+ a_type *rbp_f_node; \ |
+ bool rbp_f_synced = false; \ |
+ unsigned rbp_f_depth = 0; \ |
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ |
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \ |
+ rbp_f_depth++; \ |
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \ |
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ |
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \ |
+ rbp_f_depth++; \ |
+ } \ |
+ } \ |
+ /* While the path is non-empty, iterate. */\ |
+ while (rbp_f_depth > 0) { \ |
+ (a_var) = rbp_f_path[rbp_f_depth-1]; |
+ |
+/* Only use if modifying the tree during iteration. */ |
+#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \ |
+ /* Re-initialize the path to contain the path to a_node. */\ |
+ rbp_f_depth = 0; \ |
+ if (a_node != NULL) { \ |
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ |
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \ |
+ rbp_f_depth++; \ |
+ rbp_f_node = rbp_f_path[0]; \ |
+ while (true) { \ |
+ int rbp_f_cmp = (a_cmp)((a_node), \ |
+ rbp_f_path[rbp_f_depth-1]); \ |
+ if (rbp_f_cmp < 0) { \ |
+ rbp_f_node = rbp_left_get(a_type, a_field, \ |
+ rbp_f_path[rbp_f_depth-1]); \ |
+ } else if (rbp_f_cmp > 0) { \ |
+ rbp_f_node = rbp_right_get(a_type, a_field, \ |
+ rbp_f_path[rbp_f_depth-1]); \ |
+ } else { \ |
+ break; \ |
+ } \ |
+ assert(rbp_f_node != &(a_tree)->rbt_nil); \ |
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \ |
+ rbp_f_depth++; \ |
+ } \ |
+ } \ |
+ } \ |
+ rbp_f_synced = true; |
+ |
+#define rb_foreach_end(a_type, a_field, a_tree, a_var) \ |
+ if (rbp_f_synced) { \ |
+ rbp_f_synced = false; \ |
+ continue; \ |
+ } \ |
+ /* Find the successor. */\ |
+ if ((rbp_f_node = rbp_right_get(a_type, a_field, \ |
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ |
+ /* The successor is the left-most node in the right */\ |
+ /* subtree. */\ |
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \ |
+ rbp_f_depth++; \ |
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \ |
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ |
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \ |
+ rbp_f_depth++; \ |
+ } \ |
+ } else { \ |
+ /* The successor is above the current node. Unwind */\ |
+ /* until a left-leaning edge is removed from the */\ |
+ /* path, or the path is empty. */\ |
+ for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \ |
+ if (rbp_left_get(a_type, a_field, \ |
+ rbp_f_path[rbp_f_depth-1]) \ |
+ == rbp_f_path[rbp_f_depth]) { \ |
+ break; \ |
+ } \ |
+ } \ |
+ } \ |
+ } \ |
+ } \ |
+} |
+ |
+#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \ |
+ rbp_compute_fr_height(a_type, a_field, a_tree) \ |
+ { \ |
+ /* Initialize the path to contain the right spine. */\ |
+ a_type *rbp_fr_path[rbp_fr_height]; \ |
+ a_type *rbp_fr_node; \ |
+ bool rbp_fr_synced = false; \ |
+ unsigned rbp_fr_depth = 0; \ |
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ |
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \ |
+ rbp_fr_depth++; \ |
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \ |
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \ |
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ |
+ rbp_fr_depth++; \ |
+ } \ |
+ } \ |
+ /* While the path is non-empty, iterate. */\ |
+ while (rbp_fr_depth > 0) { \ |
+ (a_var) = rbp_fr_path[rbp_fr_depth-1]; |
+ |
+/* Only use if modifying the tree during iteration. */ |
+#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \ |
+ /* Re-initialize the path to contain the path to a_node. */\ |
+ rbp_fr_depth = 0; \ |
+ if (a_node != NULL) { \ |
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ |
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \ |
+ rbp_fr_depth++; \ |
+ rbp_fr_node = rbp_fr_path[0]; \ |
+ while (true) { \ |
+ int rbp_fr_cmp = (a_cmp)((a_node), \ |
+ rbp_fr_path[rbp_fr_depth-1]); \ |
+ if (rbp_fr_cmp < 0) { \ |
+ rbp_fr_node = rbp_left_get(a_type, a_field, \ |
+ rbp_fr_path[rbp_fr_depth-1]); \ |
+ } else if (rbp_fr_cmp > 0) { \ |
+ rbp_fr_node = rbp_right_get(a_type, a_field,\ |
+ rbp_fr_path[rbp_fr_depth-1]); \ |
+ } else { \ |
+ break; \ |
+ } \ |
+ assert(rbp_fr_node != &(a_tree)->rbt_nil); \ |
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ |
+ rbp_fr_depth++; \ |
+ } \ |
+ } \ |
+ } \ |
+ rbp_fr_synced = true; |
+ |
+#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \ |
+ if (rbp_fr_synced) { \ |
+ rbp_fr_synced = false; \ |
+ continue; \ |
+ } \ |
+ if (rbp_fr_depth == 0) { \ |
+ /* rb_foreach_reverse_sync() was called with a NULL */\ |
+ /* a_node. */\ |
+ break; \ |
+ } \ |
+ /* Find the predecessor. */\ |
+ if ((rbp_fr_node = rbp_left_get(a_type, a_field, \ |
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \ |
+ /* The predecessor is the right-most node in the left */\ |
+ /* subtree. */\ |
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ |
+ rbp_fr_depth++; \ |
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \ |
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\ |
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ |
+ rbp_fr_depth++; \ |
+ } \ |
+ } else { \ |
+ /* The predecessor is above the current node. Unwind */\ |
+ /* until a right-leaning edge is removed from the */\ |
+ /* path, or the path is empty. */\ |
+ for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\ |
+ if (rbp_right_get(a_type, a_field, \ |
+ rbp_fr_path[rbp_fr_depth-1]) \ |
+ == rbp_fr_path[rbp_fr_depth]) { \ |
+ break; \ |
+ } \ |
+ } \ |
+ } \ |
+ } \ |
+ } \ |
+} |
+ |
+#endif /* RB_H_ */ |
+ |