| Index: third_party/tcmalloc/jemalloc/rb.h
|
| ===================================================================
|
| --- third_party/tcmalloc/jemalloc/rb.h (revision 0)
|
| +++ third_party/tcmalloc/jemalloc/rb.h (revision 0)
|
| @@ -0,0 +1,983 @@
|
| +/******************************************************************************
|
| + *
|
| + * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
|
| + * All rights reserved.
|
| + *
|
| + * Redistribution and use in source and binary forms, with or without
|
| + * modification, are permitted provided that the following conditions
|
| + * are met:
|
| + * 1. Redistributions of source code must retain the above copyright
|
| + * notice(s), this list of conditions and the following disclaimer
|
| + * unmodified other than the allowable addition of one or more
|
| + * copyright notices.
|
| + * 2. Redistributions in binary form must reproduce the above copyright
|
| + * notice(s), this list of conditions and the following disclaimer in
|
| + * the documentation and/or other materials provided with the
|
| + * distribution.
|
| + *
|
| + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
|
| + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
|
| + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
| + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
| + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
| + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
| + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
|
| + * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
| + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| + *
|
| + ******************************************************************************
|
| + *
|
| + * cpp macro implementation of left-leaning red-black trees.
|
| + *
|
| + * Usage:
|
| + *
|
| + * (Optional.)
|
| + * #define SIZEOF_PTR ...
|
| + * #define SIZEOF_PTR_2POW ...
|
| + * #define RB_NO_C99_VARARRAYS
|
| + *
|
| + * (Optional, see assert(3).)
|
| + * #define NDEBUG
|
| + *
|
| + * (Required.)
|
| + * #include <assert.h>
|
| + * #include <rb.h>
|
| + * ...
|
| + *
|
| + * All operations are done non-recursively. Parent pointers are not used, and
|
| + * color bits are stored in the least significant bit of right-child pointers,
|
| + * thus making node linkage as compact as is possible for red-black trees.
|
| + *
|
| + * Some macros use a comparison function pointer, which is expected to have the
|
| + * following prototype:
|
| + *
|
| + * int (a_cmp *)(a_type *a_node, a_type *a_other);
|
| + * ^^^^^^
|
| + * or a_key
|
| + *
|
| + * Interpretation of comparision function return values:
|
| + *
|
| + * -1 : a_node < a_other
|
| + * 0 : a_node == a_other
|
| + * 1 : a_node > a_other
|
| + *
|
| + * In all cases, the a_node or a_key macro argument is the first argument to the
|
| + * comparison function, which makes it possible to write comparison functions
|
| + * that treat the first argument specially.
|
| + *
|
| + ******************************************************************************/
|
| +
|
| +#ifndef RB_H_
|
| +#define RB_H_
|
| +
|
| +#if 0
|
| +#include <sys/cdefs.h>
|
| +__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
|
| +#endif
|
| +
|
| +/* Node structure. */
|
| +#define rb_node(a_type) \
|
| +struct { \
|
| + a_type *rbn_left; \
|
| + a_type *rbn_right_red; \
|
| +}
|
| +
|
| +/* Root structure. */
|
| +#define rb_tree(a_type) \
|
| +struct { \
|
| + a_type *rbt_root; \
|
| + a_type rbt_nil; \
|
| +}
|
| +
|
| +/* Left accessors. */
|
| +#define rbp_left_get(a_type, a_field, a_node) \
|
| + ((a_node)->a_field.rbn_left)
|
| +#define rbp_left_set(a_type, a_field, a_node, a_left) do { \
|
| + (a_node)->a_field.rbn_left = a_left; \
|
| +} while (0)
|
| +
|
| +/* Right accessors. */
|
| +#define rbp_right_get(a_type, a_field, a_node) \
|
| + ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
|
| + & ((ssize_t)-2)))
|
| +#define rbp_right_set(a_type, a_field, a_node, a_right) do { \
|
| + (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
|
| + | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
|
| +} while (0)
|
| +
|
| +/* Color accessors. */
|
| +#define rbp_red_get(a_type, a_field, a_node) \
|
| + ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
|
| + & ((size_t)1)))
|
| +#define rbp_color_set(a_type, a_field, a_node, a_red) do { \
|
| + (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
|
| + (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
|
| + | ((ssize_t)a_red)); \
|
| +} while (0)
|
| +#define rbp_red_set(a_type, a_field, a_node) do { \
|
| + (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
|
| + (a_node)->a_field.rbn_right_red) | ((size_t)1)); \
|
| +} while (0)
|
| +#define rbp_black_set(a_type, a_field, a_node) do { \
|
| + (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
|
| + (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
|
| +} while (0)
|
| +
|
| +/* Node initializer. */
|
| +#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \
|
| + rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
|
| + rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
|
| + rbp_red_set(a_type, a_field, (a_node)); \
|
| +} while (0)
|
| +
|
| +/* Tree initializer. */
|
| +#define rb_new(a_type, a_field, a_tree) do { \
|
| + (a_tree)->rbt_root = &(a_tree)->rbt_nil; \
|
| + rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \
|
| + rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \
|
| +} while (0)
|
| +
|
| +/* Tree operations. */
|
| +#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \
|
| + a_type *rbp_bh_t; \
|
| + for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \
|
| + rbp_bh_t != &(a_tree)->rbt_nil; \
|
| + rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \
|
| + if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \
|
| + (r_height)++; \
|
| + } \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \
|
| + for ((r_node) = (a_root); \
|
| + rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
|
| + (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \
|
| + for ((r_node) = (a_root); \
|
| + rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
|
| + (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
|
| + if (rbp_right_get(a_type, a_field, (a_node)) \
|
| + != &(a_tree)->rbt_nil) { \
|
| + rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \
|
| + a_field, (a_node)), (r_node)); \
|
| + } else { \
|
| + a_type *rbp_n_t = (a_tree)->rbt_root; \
|
| + assert(rbp_n_t != &(a_tree)->rbt_nil); \
|
| + (r_node) = &(a_tree)->rbt_nil; \
|
| + while (true) { \
|
| + int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \
|
| + if (rbp_n_cmp < 0) { \
|
| + (r_node) = rbp_n_t; \
|
| + rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \
|
| + } else if (rbp_n_cmp > 0) { \
|
| + rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \
|
| + } else { \
|
| + break; \
|
| + } \
|
| + assert(rbp_n_t != &(a_tree)->rbt_nil); \
|
| + } \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
|
| + if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
|
| + rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \
|
| + a_field, (a_node)), (r_node)); \
|
| + } else { \
|
| + a_type *rbp_p_t = (a_tree)->rbt_root; \
|
| + assert(rbp_p_t != &(a_tree)->rbt_nil); \
|
| + (r_node) = &(a_tree)->rbt_nil; \
|
| + while (true) { \
|
| + int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \
|
| + if (rbp_p_cmp < 0) { \
|
| + rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \
|
| + } else if (rbp_p_cmp > 0) { \
|
| + (r_node) = rbp_p_t; \
|
| + rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \
|
| + } else { \
|
| + break; \
|
| + } \
|
| + assert(rbp_p_t != &(a_tree)->rbt_nil); \
|
| + } \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rb_first(a_type, a_field, a_tree, r_node) do { \
|
| + rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \
|
| + if ((r_node) == &(a_tree)->rbt_nil) { \
|
| + (r_node) = NULL; \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rb_last(a_type, a_field, a_tree, r_node) do { \
|
| + rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \
|
| + if ((r_node) == &(a_tree)->rbt_nil) { \
|
| + (r_node) = NULL; \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
|
| + rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
|
| + if ((r_node) == &(a_tree)->rbt_nil) { \
|
| + (r_node) = NULL; \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
|
| + rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
|
| + if ((r_node) == &(a_tree)->rbt_nil) { \
|
| + (r_node) = NULL; \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
|
| + int rbp_se_cmp; \
|
| + (r_node) = (a_tree)->rbt_root; \
|
| + while ((r_node) != &(a_tree)->rbt_nil \
|
| + && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \
|
| + if (rbp_se_cmp < 0) { \
|
| + (r_node) = rbp_left_get(a_type, a_field, (r_node)); \
|
| + } else { \
|
| + (r_node) = rbp_right_get(a_type, a_field, (r_node)); \
|
| + } \
|
| + } \
|
| + if ((r_node) == &(a_tree)->rbt_nil) { \
|
| + (r_node) = NULL; \
|
| + } \
|
| +} while (0)
|
| +
|
| +/*
|
| + * Find a match if it exists. Otherwise, find the next greater node, if one
|
| + * exists.
|
| + */
|
| +#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
|
| + a_type *rbp_ns_t = (a_tree)->rbt_root; \
|
| + (r_node) = NULL; \
|
| + while (rbp_ns_t != &(a_tree)->rbt_nil) { \
|
| + int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \
|
| + if (rbp_ns_cmp < 0) { \
|
| + (r_node) = rbp_ns_t; \
|
| + rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \
|
| + } else if (rbp_ns_cmp > 0) { \
|
| + rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \
|
| + } else { \
|
| + (r_node) = rbp_ns_t; \
|
| + break; \
|
| + } \
|
| + } \
|
| +} while (0)
|
| +
|
| +/*
|
| + * Find a match if it exists. Otherwise, find the previous lesser node, if one
|
| + * exists.
|
| + */
|
| +#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
|
| + a_type *rbp_ps_t = (a_tree)->rbt_root; \
|
| + (r_node) = NULL; \
|
| + while (rbp_ps_t != &(a_tree)->rbt_nil) { \
|
| + int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \
|
| + if (rbp_ps_cmp < 0) { \
|
| + rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \
|
| + } else if (rbp_ps_cmp > 0) { \
|
| + (r_node) = rbp_ps_t; \
|
| + rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \
|
| + } else { \
|
| + (r_node) = rbp_ps_t; \
|
| + break; \
|
| + } \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \
|
| + (r_node) = rbp_right_get(a_type, a_field, (a_node)); \
|
| + rbp_right_set(a_type, a_field, (a_node), \
|
| + rbp_left_get(a_type, a_field, (r_node))); \
|
| + rbp_left_set(a_type, a_field, (r_node), (a_node)); \
|
| +} while (0)
|
| +
|
| +#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \
|
| + (r_node) = rbp_left_get(a_type, a_field, (a_node)); \
|
| + rbp_left_set(a_type, a_field, (a_node), \
|
| + rbp_right_get(a_type, a_field, (r_node))); \
|
| + rbp_right_set(a_type, a_field, (r_node), (a_node)); \
|
| +} while (0)
|
| +
|
| +#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \
|
| + bool rbp_ll_red; \
|
| + rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
|
| + rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \
|
| + rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \
|
| + rbp_red_set(a_type, a_field, (a_node)); \
|
| +} while (0)
|
| +
|
| +#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \
|
| + bool rbp_lr_red; \
|
| + rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
|
| + rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \
|
| + rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \
|
| + rbp_red_set(a_type, a_field, (a_node)); \
|
| +} while (0)
|
| +
|
| +#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \
|
| + a_type *rbp_mrl_t, *rbp_mrl_u; \
|
| + rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \
|
| + rbp_red_set(a_type, a_field, rbp_mrl_t); \
|
| + rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
|
| + rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \
|
| + if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \
|
| + rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \
|
| + rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \
|
| + rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
|
| + rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
|
| + if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \
|
| + rbp_black_set(a_type, a_field, rbp_mrl_t); \
|
| + rbp_red_set(a_type, a_field, (a_node)); \
|
| + rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \
|
| + rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \
|
| + } else { \
|
| + rbp_black_set(a_type, a_field, (a_node)); \
|
| + } \
|
| + } else { \
|
| + rbp_red_set(a_type, a_field, (a_node)); \
|
| + rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \
|
| + a_type *rbp_mrr_t; \
|
| + rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \
|
| + if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
|
| + a_type *rbp_mrr_u, *rbp_mrr_v; \
|
| + rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \
|
| + rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \
|
| + if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \
|
| + rbp_color_set(a_type, a_field, rbp_mrr_u, \
|
| + rbp_red_get(a_type, a_field, (a_node))); \
|
| + rbp_black_set(a_type, a_field, rbp_mrr_v); \
|
| + rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \
|
| + rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \
|
| + rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
|
| + rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
|
| + rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
|
| + } else { \
|
| + rbp_color_set(a_type, a_field, rbp_mrr_t, \
|
| + rbp_red_get(a_type, a_field, (a_node))); \
|
| + rbp_red_set(a_type, a_field, rbp_mrr_u); \
|
| + rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
|
| + rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
|
| + rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
|
| + } \
|
| + rbp_red_set(a_type, a_field, (a_node)); \
|
| + } else { \
|
| + rbp_red_set(a_type, a_field, rbp_mrr_t); \
|
| + rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \
|
| + if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
|
| + rbp_black_set(a_type, a_field, rbp_mrr_t); \
|
| + rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
|
| + rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
|
| + rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
|
| + } else { \
|
| + rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
|
| + } \
|
| + } \
|
| +} while (0)
|
| +
|
| +#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \
|
| + a_type rbp_i_s; \
|
| + a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \
|
| + int rbp_i_cmp = 0; \
|
| + rbp_i_g = &(a_tree)->rbt_nil; \
|
| + rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \
|
| + rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \
|
| + rbp_black_set(a_type, a_field, &rbp_i_s); \
|
| + rbp_i_p = &rbp_i_s; \
|
| + rbp_i_c = (a_tree)->rbt_root; \
|
| + /* Iteratively search down the tree for the insertion point, */\
|
| + /* splitting 4-nodes as they are encountered. At the end of each */\
|
| + /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\
|
| + /* the tree, assuming a sufficiently deep tree. */\
|
| + while (rbp_i_c != &(a_tree)->rbt_nil) { \
|
| + rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \
|
| + rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
|
| + if (rbp_red_get(a_type, a_field, rbp_i_t) \
|
| + && rbp_red_get(a_type, a_field, rbp_i_u)) { \
|
| + /* rbp_i_c is the top of a logical 4-node, so split it. */\
|
| + /* This iteration does not move down the tree, due to the */\
|
| + /* disruptiveness of node splitting. */\
|
| + /* */\
|
| + /* Rotate right. */\
|
| + rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \
|
| + /* Pass red links up one level. */\
|
| + rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
|
| + rbp_black_set(a_type, a_field, rbp_i_u); \
|
| + if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \
|
| + rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \
|
| + rbp_i_c = rbp_i_t; \
|
| + } else { \
|
| + /* rbp_i_c was the right child of rbp_i_p, so rotate */\
|
| + /* left in order to maintain the left-leaning */\
|
| + /* invariant. */\
|
| + assert(rbp_right_get(a_type, a_field, rbp_i_p) \
|
| + == rbp_i_c); \
|
| + rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \
|
| + rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \
|
| + if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
|
| + rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \
|
| + } else { \
|
| + assert(rbp_right_get(a_type, a_field, rbp_i_g) \
|
| + == rbp_i_p); \
|
| + rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \
|
| + } \
|
| + rbp_i_p = rbp_i_u; \
|
| + rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \
|
| + if (rbp_i_cmp < 0) { \
|
| + rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \
|
| + } else { \
|
| + assert(rbp_i_cmp > 0); \
|
| + rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \
|
| + } \
|
| + continue; \
|
| + } \
|
| + } \
|
| + rbp_i_g = rbp_i_p; \
|
| + rbp_i_p = rbp_i_c; \
|
| + rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \
|
| + if (rbp_i_cmp < 0) { \
|
| + rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \
|
| + } else { \
|
| + assert(rbp_i_cmp > 0); \
|
| + rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \
|
| + } \
|
| + } \
|
| + /* rbp_i_p now refers to the node under which to insert. */\
|
| + rbp_node_new(a_type, a_field, a_tree, (a_node)); \
|
| + if (rbp_i_cmp > 0) { \
|
| + rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \
|
| + rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \
|
| + if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \
|
| + rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \
|
| + } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
|
| + rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \
|
| + } \
|
| + } else { \
|
| + rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \
|
| + } \
|
| + /* Update the root and make sure that it is black. */\
|
| + (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \
|
| + rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \
|
| +} while (0)
|
| +
|
| +#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \
|
| + a_type rbp_r_s; \
|
| + a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \
|
| + int rbp_r_cmp; \
|
| + rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \
|
| + rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \
|
| + rbp_black_set(a_type, a_field, &rbp_r_s); \
|
| + rbp_r_p = &rbp_r_s; \
|
| + rbp_r_c = (a_tree)->rbt_root; \
|
| + rbp_r_xp = &(a_tree)->rbt_nil; \
|
| + /* Iterate down the tree, but always transform 2-nodes to 3- or */\
|
| + /* 4-nodes in order to maintain the invariant that the current */\
|
| + /* node is not a 2-node. This allows simple deletion once a leaf */\
|
| + /* is reached. Handle the root specially though, since there may */\
|
| + /* be no way to convert it from a 2-node to a 3-node. */\
|
| + rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
|
| + if (rbp_r_cmp < 0) { \
|
| + rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
|
| + rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
|
| + if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
|
| + && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
|
| + /* Apply standard transform to prepare for left move. */\
|
| + rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \
|
| + rbp_black_set(a_type, a_field, rbp_r_t); \
|
| + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
|
| + rbp_r_c = rbp_r_t; \
|
| + } else { \
|
| + /* Move left. */\
|
| + rbp_r_p = rbp_r_c; \
|
| + rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
|
| + } \
|
| + } else { \
|
| + if (rbp_r_cmp == 0) { \
|
| + assert((a_node) == rbp_r_c); \
|
| + if (rbp_right_get(a_type, a_field, rbp_r_c) \
|
| + == &(a_tree)->rbt_nil) { \
|
| + /* Delete root node (which is also a leaf node). */\
|
| + if (rbp_left_get(a_type, a_field, rbp_r_c) \
|
| + != &(a_tree)->rbt_nil) { \
|
| + rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \
|
| + rbp_right_set(a_type, a_field, rbp_r_t, \
|
| + &(a_tree)->rbt_nil); \
|
| + } else { \
|
| + rbp_r_t = &(a_tree)->rbt_nil; \
|
| + } \
|
| + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
|
| + } else { \
|
| + /* This is the node we want to delete, but we will */\
|
| + /* instead swap it with its successor and delete the */\
|
| + /* successor. Record enough information to do the */\
|
| + /* swap later. rbp_r_xp is the a_node's parent. */\
|
| + rbp_r_xp = rbp_r_p; \
|
| + rbp_r_cmp = 1; /* Note that deletion is incomplete. */\
|
| + } \
|
| + } \
|
| + if (rbp_r_cmp == 1) { \
|
| + if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \
|
| + a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \
|
| + == false) { \
|
| + rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
|
| + if (rbp_red_get(a_type, a_field, rbp_r_t)) { \
|
| + /* Standard transform. */\
|
| + rbp_move_red_right(a_type, a_field, rbp_r_c, \
|
| + rbp_r_t); \
|
| + } else { \
|
| + /* Root-specific transform. */\
|
| + rbp_red_set(a_type, a_field, rbp_r_c); \
|
| + rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
|
| + if (rbp_red_get(a_type, a_field, rbp_r_u)) { \
|
| + rbp_black_set(a_type, a_field, rbp_r_u); \
|
| + rbp_rotate_right(a_type, a_field, rbp_r_c, \
|
| + rbp_r_t); \
|
| + rbp_rotate_left(a_type, a_field, rbp_r_c, \
|
| + rbp_r_u); \
|
| + rbp_right_set(a_type, a_field, rbp_r_t, \
|
| + rbp_r_u); \
|
| + } else { \
|
| + rbp_red_set(a_type, a_field, rbp_r_t); \
|
| + rbp_rotate_left(a_type, a_field, rbp_r_c, \
|
| + rbp_r_t); \
|
| + } \
|
| + } \
|
| + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
|
| + rbp_r_c = rbp_r_t; \
|
| + } else { \
|
| + /* Move right. */\
|
| + rbp_r_p = rbp_r_c; \
|
| + rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
|
| + } \
|
| + } \
|
| + } \
|
| + if (rbp_r_cmp != 0) { \
|
| + while (true) { \
|
| + assert(rbp_r_p != &(a_tree)->rbt_nil); \
|
| + rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
|
| + if (rbp_r_cmp < 0) { \
|
| + rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
|
| + if (rbp_r_t == &(a_tree)->rbt_nil) { \
|
| + /* rbp_r_c now refers to the successor node to */\
|
| + /* relocate, and rbp_r_xp/a_node refer to the */\
|
| + /* context for the relocation. */\
|
| + if (rbp_left_get(a_type, a_field, rbp_r_xp) \
|
| + == (a_node)) { \
|
| + rbp_left_set(a_type, a_field, rbp_r_xp, \
|
| + rbp_r_c); \
|
| + } else { \
|
| + assert(rbp_right_get(a_type, a_field, \
|
| + rbp_r_xp) == (a_node)); \
|
| + rbp_right_set(a_type, a_field, rbp_r_xp, \
|
| + rbp_r_c); \
|
| + } \
|
| + rbp_left_set(a_type, a_field, rbp_r_c, \
|
| + rbp_left_get(a_type, a_field, (a_node))); \
|
| + rbp_right_set(a_type, a_field, rbp_r_c, \
|
| + rbp_right_get(a_type, a_field, (a_node))); \
|
| + rbp_color_set(a_type, a_field, rbp_r_c, \
|
| + rbp_red_get(a_type, a_field, (a_node))); \
|
| + if (rbp_left_get(a_type, a_field, rbp_r_p) \
|
| + == rbp_r_c) { \
|
| + rbp_left_set(a_type, a_field, rbp_r_p, \
|
| + &(a_tree)->rbt_nil); \
|
| + } else { \
|
| + assert(rbp_right_get(a_type, a_field, rbp_r_p) \
|
| + == rbp_r_c); \
|
| + rbp_right_set(a_type, a_field, rbp_r_p, \
|
| + &(a_tree)->rbt_nil); \
|
| + } \
|
| + break; \
|
| + } \
|
| + rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
|
| + if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
|
| + && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
|
| + rbp_move_red_left(a_type, a_field, rbp_r_c, \
|
| + rbp_r_t); \
|
| + if (rbp_left_get(a_type, a_field, rbp_r_p) \
|
| + == rbp_r_c) { \
|
| + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
|
| + } else { \
|
| + rbp_right_set(a_type, a_field, rbp_r_p, \
|
| + rbp_r_t); \
|
| + } \
|
| + rbp_r_c = rbp_r_t; \
|
| + } else { \
|
| + rbp_r_p = rbp_r_c; \
|
| + rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
|
| + } \
|
| + } else { \
|
| + /* Check whether to delete this node (it has to be */\
|
| + /* the correct node and a leaf node). */\
|
| + if (rbp_r_cmp == 0) { \
|
| + assert((a_node) == rbp_r_c); \
|
| + if (rbp_right_get(a_type, a_field, rbp_r_c) \
|
| + == &(a_tree)->rbt_nil) { \
|
| + /* Delete leaf node. */\
|
| + if (rbp_left_get(a_type, a_field, rbp_r_c) \
|
| + != &(a_tree)->rbt_nil) { \
|
| + rbp_lean_right(a_type, a_field, rbp_r_c, \
|
| + rbp_r_t); \
|
| + rbp_right_set(a_type, a_field, rbp_r_t, \
|
| + &(a_tree)->rbt_nil); \
|
| + } else { \
|
| + rbp_r_t = &(a_tree)->rbt_nil; \
|
| + } \
|
| + if (rbp_left_get(a_type, a_field, rbp_r_p) \
|
| + == rbp_r_c) { \
|
| + rbp_left_set(a_type, a_field, rbp_r_p, \
|
| + rbp_r_t); \
|
| + } else { \
|
| + rbp_right_set(a_type, a_field, rbp_r_p, \
|
| + rbp_r_t); \
|
| + } \
|
| + break; \
|
| + } else { \
|
| + /* This is the node we want to delete, but we */\
|
| + /* will instead swap it with its successor */\
|
| + /* and delete the successor. Record enough */\
|
| + /* information to do the swap later. */\
|
| + /* rbp_r_xp is a_node's parent. */\
|
| + rbp_r_xp = rbp_r_p; \
|
| + } \
|
| + } \
|
| + rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \
|
| + rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
|
| + if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
|
| + rbp_move_red_right(a_type, a_field, rbp_r_c, \
|
| + rbp_r_t); \
|
| + if (rbp_left_get(a_type, a_field, rbp_r_p) \
|
| + == rbp_r_c) { \
|
| + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
|
| + } else { \
|
| + rbp_right_set(a_type, a_field, rbp_r_p, \
|
| + rbp_r_t); \
|
| + } \
|
| + rbp_r_c = rbp_r_t; \
|
| + } else { \
|
| + rbp_r_p = rbp_r_c; \
|
| + rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
|
| + } \
|
| + } \
|
| + } \
|
| + } \
|
| + /* Update root. */\
|
| + (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
|
| +} while (0)
|
| +
|
| +/*
|
| + * The rb_wrap() macro provides a convenient way to wrap functions around the
|
| + * cpp macros. The main benefits of wrapping are that 1) repeated macro
|
| + * expansion can cause code bloat, especially for rb_{insert,remove)(), and
|
| + * 2) type, linkage, comparison functions, etc. need not be specified at every
|
| + * call point.
|
| + */
|
| +
|
| +#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \
|
| +a_attr void \
|
| +a_prefix##new(a_tree_type *tree) { \
|
| + rb_new(a_type, a_field, tree); \
|
| +} \
|
| +a_attr a_type * \
|
| +a_prefix##first(a_tree_type *tree) { \
|
| + a_type *ret; \
|
| + rb_first(a_type, a_field, tree, ret); \
|
| + return (ret); \
|
| +} \
|
| +a_attr a_type * \
|
| +a_prefix##last(a_tree_type *tree) { \
|
| + a_type *ret; \
|
| + rb_last(a_type, a_field, tree, ret); \
|
| + return (ret); \
|
| +} \
|
| +a_attr a_type * \
|
| +a_prefix##next(a_tree_type *tree, a_type *node) { \
|
| + a_type *ret; \
|
| + rb_next(a_type, a_field, a_cmp, tree, node, ret); \
|
| + return (ret); \
|
| +} \
|
| +a_attr a_type * \
|
| +a_prefix##prev(a_tree_type *tree, a_type *node) { \
|
| + a_type *ret; \
|
| + rb_prev(a_type, a_field, a_cmp, tree, node, ret); \
|
| + return (ret); \
|
| +} \
|
| +a_attr a_type * \
|
| +a_prefix##search(a_tree_type *tree, a_type *key) { \
|
| + a_type *ret; \
|
| + rb_search(a_type, a_field, a_cmp, tree, key, ret); \
|
| + return (ret); \
|
| +} \
|
| +a_attr a_type * \
|
| +a_prefix##nsearch(a_tree_type *tree, a_type *key) { \
|
| + a_type *ret; \
|
| + rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \
|
| + return (ret); \
|
| +} \
|
| +a_attr a_type * \
|
| +a_prefix##psearch(a_tree_type *tree, a_type *key) { \
|
| + a_type *ret; \
|
| + rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \
|
| + return (ret); \
|
| +} \
|
| +a_attr void \
|
| +a_prefix##insert(a_tree_type *tree, a_type *node) { \
|
| + rb_insert(a_type, a_field, a_cmp, tree, node); \
|
| +} \
|
| +a_attr void \
|
| +a_prefix##remove(a_tree_type *tree, a_type *node) { \
|
| + rb_remove(a_type, a_field, a_cmp, tree, node); \
|
| +}
|
| +
|
| +/*
|
| + * The iterators simulate recursion via an array of pointers that store the
|
| + * current path. This is critical to performance, since a series of calls to
|
| + * rb_{next,prev}() would require time proportional to (n lg n), whereas this
|
| + * implementation only requires time proportional to (n).
|
| + *
|
| + * Since the iterators cache a path down the tree, any tree modification may
|
| + * cause the cached path to become invalid. In order to continue iteration,
|
| + * use something like the following sequence:
|
| + *
|
| + * {
|
| + * a_type *node, *tnode;
|
| + *
|
| + * rb_foreach_begin(a_type, a_field, a_tree, node) {
|
| + * ...
|
| + * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
|
| + * rb_remove(a_type, a_field, a_cmp, a_tree, node);
|
| + * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
|
| + * ...
|
| + * } rb_foreach_end(a_type, a_field, a_tree, node)
|
| + * }
|
| + *
|
| + * Note that this idiom is not advised if every iteration modifies the tree,
|
| + * since in that case there is no algorithmic complexity improvement over a
|
| + * series of rb_{next,prev}() calls, thus making the setup overhead wasted
|
| + * effort.
|
| + */
|
| +
|
| +#ifdef RB_NO_C99_VARARRAYS
|
| + /*
|
| + * Avoid using variable-length arrays, at the cost of using more stack space.
|
| + * Size the path arrays such that they are always large enough, even if a
|
| + * tree consumes all of memory. Since each node must contain a minimum of
|
| + * two pointers, there can never be more nodes than:
|
| + *
|
| + * 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))
|
| + *
|
| + * Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
|
| + * is:
|
| + *
|
| + * (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
|
| + *
|
| + * This works out to a maximum depth of 87 and 180 for 32- and 64-bit
|
| + * systems, respectively (approximatly 348 and 1440 bytes, respectively).
|
| + */
|
| +# define rbp_compute_f_height(a_type, a_field, a_tree)
|
| +# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
|
| +# define rbp_compute_fr_height(a_type, a_field, a_tree)
|
| +# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
|
| +#else
|
| +# define rbp_compute_f_height(a_type, a_field, a_tree) \
|
| + /* Compute the maximum possible tree depth (3X the black height). */\
|
| + unsigned rbp_f_height; \
|
| + rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \
|
| + rbp_f_height *= 3;
|
| +# define rbp_compute_fr_height(a_type, a_field, a_tree) \
|
| + /* Compute the maximum possible tree depth (3X the black height). */\
|
| + unsigned rbp_fr_height; \
|
| + rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \
|
| + rbp_fr_height *= 3;
|
| +#endif
|
| +
|
| +#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \
|
| + rbp_compute_f_height(a_type, a_field, a_tree) \
|
| + { \
|
| + /* Initialize the path to contain the left spine. */\
|
| + a_type *rbp_f_path[rbp_f_height]; \
|
| + a_type *rbp_f_node; \
|
| + bool rbp_f_synced = false; \
|
| + unsigned rbp_f_depth = 0; \
|
| + if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
|
| + rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
|
| + rbp_f_depth++; \
|
| + while ((rbp_f_node = rbp_left_get(a_type, a_field, \
|
| + rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
|
| + rbp_f_path[rbp_f_depth] = rbp_f_node; \
|
| + rbp_f_depth++; \
|
| + } \
|
| + } \
|
| + /* While the path is non-empty, iterate. */\
|
| + while (rbp_f_depth > 0) { \
|
| + (a_var) = rbp_f_path[rbp_f_depth-1];
|
| +
|
| +/* Only use if modifying the tree during iteration. */
|
| +#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \
|
| + /* Re-initialize the path to contain the path to a_node. */\
|
| + rbp_f_depth = 0; \
|
| + if (a_node != NULL) { \
|
| + if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
|
| + rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
|
| + rbp_f_depth++; \
|
| + rbp_f_node = rbp_f_path[0]; \
|
| + while (true) { \
|
| + int rbp_f_cmp = (a_cmp)((a_node), \
|
| + rbp_f_path[rbp_f_depth-1]); \
|
| + if (rbp_f_cmp < 0) { \
|
| + rbp_f_node = rbp_left_get(a_type, a_field, \
|
| + rbp_f_path[rbp_f_depth-1]); \
|
| + } else if (rbp_f_cmp > 0) { \
|
| + rbp_f_node = rbp_right_get(a_type, a_field, \
|
| + rbp_f_path[rbp_f_depth-1]); \
|
| + } else { \
|
| + break; \
|
| + } \
|
| + assert(rbp_f_node != &(a_tree)->rbt_nil); \
|
| + rbp_f_path[rbp_f_depth] = rbp_f_node; \
|
| + rbp_f_depth++; \
|
| + } \
|
| + } \
|
| + } \
|
| + rbp_f_synced = true;
|
| +
|
| +#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
|
| + if (rbp_f_synced) { \
|
| + rbp_f_synced = false; \
|
| + continue; \
|
| + } \
|
| + /* Find the successor. */\
|
| + if ((rbp_f_node = rbp_right_get(a_type, a_field, \
|
| + rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
|
| + /* The successor is the left-most node in the right */\
|
| + /* subtree. */\
|
| + rbp_f_path[rbp_f_depth] = rbp_f_node; \
|
| + rbp_f_depth++; \
|
| + while ((rbp_f_node = rbp_left_get(a_type, a_field, \
|
| + rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
|
| + rbp_f_path[rbp_f_depth] = rbp_f_node; \
|
| + rbp_f_depth++; \
|
| + } \
|
| + } else { \
|
| + /* The successor is above the current node. Unwind */\
|
| + /* until a left-leaning edge is removed from the */\
|
| + /* path, or the path is empty. */\
|
| + for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
|
| + if (rbp_left_get(a_type, a_field, \
|
| + rbp_f_path[rbp_f_depth-1]) \
|
| + == rbp_f_path[rbp_f_depth]) { \
|
| + break; \
|
| + } \
|
| + } \
|
| + } \
|
| + } \
|
| + } \
|
| +}
|
| +
|
| +#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \
|
| + rbp_compute_fr_height(a_type, a_field, a_tree) \
|
| + { \
|
| + /* Initialize the path to contain the right spine. */\
|
| + a_type *rbp_fr_path[rbp_fr_height]; \
|
| + a_type *rbp_fr_node; \
|
| + bool rbp_fr_synced = false; \
|
| + unsigned rbp_fr_depth = 0; \
|
| + if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
|
| + rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
|
| + rbp_fr_depth++; \
|
| + while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
|
| + rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
|
| + rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
|
| + rbp_fr_depth++; \
|
| + } \
|
| + } \
|
| + /* While the path is non-empty, iterate. */\
|
| + while (rbp_fr_depth > 0) { \
|
| + (a_var) = rbp_fr_path[rbp_fr_depth-1];
|
| +
|
| +/* Only use if modifying the tree during iteration. */
|
| +#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
|
| + /* Re-initialize the path to contain the path to a_node. */\
|
| + rbp_fr_depth = 0; \
|
| + if (a_node != NULL) { \
|
| + if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
|
| + rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
|
| + rbp_fr_depth++; \
|
| + rbp_fr_node = rbp_fr_path[0]; \
|
| + while (true) { \
|
| + int rbp_fr_cmp = (a_cmp)((a_node), \
|
| + rbp_fr_path[rbp_fr_depth-1]); \
|
| + if (rbp_fr_cmp < 0) { \
|
| + rbp_fr_node = rbp_left_get(a_type, a_field, \
|
| + rbp_fr_path[rbp_fr_depth-1]); \
|
| + } else if (rbp_fr_cmp > 0) { \
|
| + rbp_fr_node = rbp_right_get(a_type, a_field,\
|
| + rbp_fr_path[rbp_fr_depth-1]); \
|
| + } else { \
|
| + break; \
|
| + } \
|
| + assert(rbp_fr_node != &(a_tree)->rbt_nil); \
|
| + rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
|
| + rbp_fr_depth++; \
|
| + } \
|
| + } \
|
| + } \
|
| + rbp_fr_synced = true;
|
| +
|
| +#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \
|
| + if (rbp_fr_synced) { \
|
| + rbp_fr_synced = false; \
|
| + continue; \
|
| + } \
|
| + if (rbp_fr_depth == 0) { \
|
| + /* rb_foreach_reverse_sync() was called with a NULL */\
|
| + /* a_node. */\
|
| + break; \
|
| + } \
|
| + /* Find the predecessor. */\
|
| + if ((rbp_fr_node = rbp_left_get(a_type, a_field, \
|
| + rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
|
| + /* The predecessor is the right-most node in the left */\
|
| + /* subtree. */\
|
| + rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
|
| + rbp_fr_depth++; \
|
| + while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
|
| + rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
|
| + rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
|
| + rbp_fr_depth++; \
|
| + } \
|
| + } else { \
|
| + /* The predecessor is above the current node. Unwind */\
|
| + /* until a right-leaning edge is removed from the */\
|
| + /* path, or the path is empty. */\
|
| + for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
|
| + if (rbp_right_get(a_type, a_field, \
|
| + rbp_fr_path[rbp_fr_depth-1]) \
|
| + == rbp_fr_path[rbp_fr_depth]) { \
|
| + break; \
|
| + } \
|
| + } \
|
| + } \
|
| + } \
|
| + } \
|
| +}
|
| +
|
| +#endif /* RB_H_ */
|
| +
|
|
|