| Index: src/platform/vboot_reference/utils/firmware_image_fw.c
|
| diff --git a/src/platform/vboot_reference/utils/firmware_image_fw.c b/src/platform/vboot_reference/utils/firmware_image_fw.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..f5c7d8919d6267748223a5e5f909afebefd02ca6
|
| --- /dev/null
|
| +++ b/src/platform/vboot_reference/utils/firmware_image_fw.c
|
| @@ -0,0 +1,323 @@
|
| +/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + *
|
| + * Functions for verifying a verified boot firmware image.
|
| + * (Firmware Portion)
|
| + */
|
| +
|
| +#include "firmware_image_fw.h"
|
| +
|
| +#include "padding.h"
|
| +#include "rollback_index.h"
|
| +#include "rsa_utility.h"
|
| +#include "sha_utility.h"
|
| +#include "utility.h"
|
| +
|
| +/* Macro to determine the size of a field structure in the FirmwareImage
|
| + * structure. */
|
| +#define FIELD_LEN(field) (sizeof(((FirmwareImage*)0)->field))
|
| +
|
| +char* kVerifyFirmwareErrors[VERIFY_FIRMWARE_MAX] = {
|
| + "Success.",
|
| + "Invalid Image.",
|
| + "Root Key Signature Failed.",
|
| + "Invalid Verification Algorithm.",
|
| + "Preamble Signature Failed.",
|
| + "Firmware Signature Failed.",
|
| + "Wrong Firmware Magic.",
|
| + "Invalid Firmware Header Checksum.",
|
| + "Firmware Signing Key Rollback.",
|
| + "Firmware Version Rollback."
|
| +};
|
| +
|
| +int VerifyFirmwareHeader(const uint8_t* root_key_blob,
|
| + const uint8_t* header_blob,
|
| + int* algorithm,
|
| + int* header_len) {
|
| + int firmware_sign_key_len;
|
| + int root_key_len;
|
| + uint16_t hlen, algo;
|
| + uint8_t* header_checksum = NULL;
|
| +
|
| + /* Base Offset for the header_checksum field. Actual offset is
|
| + * this + firmware_sign_key_len. */
|
| + int base_header_checksum_offset = (FIELD_LEN(header_len) +
|
| + FIELD_LEN(firmware_sign_algorithm) +
|
| + FIELD_LEN(firmware_key_version));
|
| +
|
| +
|
| + root_key_len = RSAProcessedKeySize(ROOT_SIGNATURE_ALGORITHM);
|
| + Memcpy(&hlen, header_blob, sizeof(hlen));
|
| + Memcpy(&algo,
|
| + header_blob + FIELD_LEN(firmware_sign_algorithm),
|
| + sizeof(algo));
|
| + if (algo >= kNumAlgorithms)
|
| + return VERIFY_FIRMWARE_INVALID_ALGORITHM;
|
| + *algorithm = (int) algo;
|
| + firmware_sign_key_len = RSAProcessedKeySize(*algorithm);
|
| +
|
| + /* Verify that header len is correct. */
|
| + if (hlen != (base_header_checksum_offset +
|
| + firmware_sign_key_len +
|
| + FIELD_LEN(header_checksum)))
|
| + return VERIFY_FIRMWARE_INVALID_IMAGE;
|
| +
|
| + *header_len = (int) hlen;
|
| +
|
| + /* Verify if the hash of the header is correct. */
|
| + header_checksum = DigestBuf(header_blob,
|
| + *header_len - FIELD_LEN(header_checksum),
|
| + SHA512_DIGEST_ALGORITHM);
|
| + if (SafeMemcmp(header_checksum,
|
| + header_blob + (base_header_checksum_offset +
|
| + firmware_sign_key_len),
|
| + FIELD_LEN(header_checksum))) {
|
| + Free(header_checksum);
|
| + return VERIFY_FIRMWARE_WRONG_HEADER_CHECKSUM;
|
| + }
|
| + Free(header_checksum);
|
| +
|
| + /* Root key signature on the firmware signing key is always checked
|
| + * irrespective of dev mode. */
|
| + if (!RSAVerifyBinary_f(root_key_blob, NULL, /* Key to use */
|
| + header_blob, /* Data to verify */
|
| + *header_len, /* Length of data */
|
| + header_blob + *header_len, /* Expected Signature */
|
| + ROOT_SIGNATURE_ALGORITHM))
|
| + return VERIFY_FIRMWARE_ROOT_SIGNATURE_FAILED;
|
| + return 0;
|
| +}
|
| +
|
| +int VerifyFirmwarePreamble(RSAPublicKey* firmware_sign_key,
|
| + const uint8_t* preamble_blob,
|
| + int algorithm,
|
| + uint64_t* firmware_len) {
|
| + uint64_t len;
|
| + int preamble_len;
|
| + uint16_t firmware_version;
|
| +
|
| + Memcpy(&firmware_version, preamble_blob, sizeof(firmware_version));
|
| +
|
| + preamble_len = (FIELD_LEN(firmware_version) +
|
| + FIELD_LEN(firmware_len) +
|
| + FIELD_LEN(preamble));
|
| + if (!RSAVerifyBinary_f(NULL, firmware_sign_key, /* Key to use */
|
| + preamble_blob, /* Data to verify */
|
| + preamble_len, /* Length of data */
|
| + preamble_blob + preamble_len, /* Expected Signature */
|
| + algorithm))
|
| + return VERIFY_FIRMWARE_PREAMBLE_SIGNATURE_FAILED;
|
| +
|
| + Memcpy(&len, preamble_blob + FIELD_LEN(firmware_version),
|
| + sizeof(len));
|
| + *firmware_len = len;
|
| + return 0;
|
| +}
|
| +
|
| +int VerifyFirmwareData(RSAPublicKey* firmware_sign_key,
|
| + const uint8_t* preamble_start,
|
| + const uint8_t* firmware_data_start,
|
| + uint64_t firmware_len,
|
| + int algorithm) {
|
| + int signature_len = siglen_map[algorithm];
|
| + uint8_t* digest;
|
| + DigestContext ctx;
|
| +
|
| + /* Since the firmware signature is over the preamble and the firmware data,
|
| + * which does not form a contiguous region of memory, we calculate the
|
| + * message digest ourselves. */
|
| + DigestInit(&ctx, algorithm);
|
| + DigestUpdate(&ctx, preamble_start,
|
| + (FIELD_LEN(firmware_version) +
|
| + FIELD_LEN(firmware_len) +
|
| + FIELD_LEN(preamble)));
|
| + DigestUpdate(&ctx, firmware_data_start + signature_len, firmware_len);
|
| + digest = DigestFinal(&ctx);
|
| + if (!RSAVerifyBinaryWithDigest_f(
|
| + NULL, firmware_sign_key, /* Key to use. */
|
| + digest, /* Digest of the data to verify. */
|
| + firmware_data_start, /* Expected Signature */
|
| + algorithm)) {
|
| + Free(digest);
|
| + return VERIFY_FIRMWARE_SIGNATURE_FAILED;
|
| + }
|
| + Free(digest);
|
| + return 0;
|
| +}
|
| +
|
| +int VerifyFirmware(const uint8_t* root_key_blob,
|
| + const uint8_t* firmware_blob) {
|
| + int error_code = 0;
|
| + int algorithm; /* Signing key algorithm. */
|
| + RSAPublicKey* firmware_sign_key = NULL;
|
| + int firmware_sign_key_len, signature_len, header_len;
|
| + uint64_t firmware_len;
|
| + const uint8_t* header_ptr = NULL; /* Pointer to header. */
|
| + const uint8_t* firmware_sign_key_ptr = NULL; /* Pointer to signing key. */
|
| + const uint8_t* preamble_ptr = NULL; /* Pointer to preamble block. */
|
| + const uint8_t* firmware_ptr = NULL; /* Pointer to firmware signature/data. */
|
| +
|
| + /* Note: All the offset calculations are based on struct FirmwareImage which
|
| + * is defined in include/firmware_image.h. */
|
| +
|
| + /* Compare magic bytes. */
|
| + if (SafeMemcmp(firmware_blob, FIRMWARE_MAGIC, FIRMWARE_MAGIC_SIZE))
|
| + return VERIFY_FIRMWARE_WRONG_MAGIC;
|
| + header_ptr = firmware_blob + FIRMWARE_MAGIC_SIZE;
|
| +
|
| + /* Only continue if header verification succeeds. */
|
| + if ((error_code = VerifyFirmwareHeader(root_key_blob, header_ptr,
|
| + &algorithm, &header_len)))
|
| + return error_code; /* AKA jump to revovery. */
|
| +
|
| + /* Parse signing key into RSAPublicKey structure since it is required multiple
|
| + * times. */
|
| + firmware_sign_key_len = RSAProcessedKeySize(algorithm);
|
| + firmware_sign_key_ptr = header_ptr + (FIELD_LEN(header_len) +
|
| + FIELD_LEN(firmware_sign_algorithm) +
|
| + FIELD_LEN(firmware_key_version));
|
| + firmware_sign_key = RSAPublicKeyFromBuf(firmware_sign_key_ptr,
|
| + firmware_sign_key_len);
|
| + signature_len = siglen_map[algorithm];
|
| +
|
| + /* Only continue if preamble verification succeeds. */
|
| + preamble_ptr = (header_ptr + header_len +
|
| + FIELD_LEN(firmware_key_signature));
|
| + if ((error_code = VerifyFirmwarePreamble(firmware_sign_key, preamble_ptr,
|
| + algorithm,
|
| + &firmware_len))) {
|
| + RSAPublicKeyFree(firmware_sign_key);
|
| + debug("Couldn't verify Firmware preamble.\n");
|
| + return error_code; /* AKA jump to recovery. */
|
| + }
|
| + /* Only continue if firmware data verification succeeds. */
|
| + firmware_ptr = (preamble_ptr +
|
| + (FIELD_LEN(firmware_version) + /* Skip the preamble. */
|
| + FIELD_LEN(firmware_len) +
|
| + FIELD_LEN(preamble)) +
|
| + signature_len);
|
| +
|
| + if ((error_code = VerifyFirmwareData(firmware_sign_key, preamble_ptr,
|
| + firmware_ptr,
|
| + firmware_len,
|
| + algorithm))) {
|
| + RSAPublicKeyFree(firmware_sign_key);
|
| + debug("Couldn't verify Firmware data.\n");
|
| + return error_code; /* AKA jump to recovery. */
|
| + }
|
| +
|
| + RSAPublicKeyFree(firmware_sign_key);
|
| + return 0; /* Success! */
|
| +}
|
| +
|
| +uint32_t GetLogicalFirmwareVersion(uint8_t* firmware_blob) {
|
| + uint16_t firmware_key_version;
|
| + uint16_t firmware_version;
|
| + uint16_t firmware_sign_algorithm;
|
| + int firmware_sign_key_len;
|
| + Memcpy(&firmware_sign_algorithm,
|
| + firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
| + FIELD_LEN(header_len)),
|
| + sizeof(firmware_sign_algorithm));
|
| + Memcpy(&firmware_key_version,
|
| + firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
| + FIELD_LEN(header_len) +
|
| + FIELD_LEN(firmware_sign_algorithm)),
|
| + sizeof(firmware_key_version));
|
| + if (firmware_sign_algorithm >= kNumAlgorithms)
|
| + return 0;
|
| + firmware_sign_key_len = RSAProcessedKeySize(firmware_sign_algorithm);
|
| + Memcpy(&firmware_version,
|
| + firmware_blob + (FIELD_LEN(magic) + /* Offset to field. */
|
| + FIELD_LEN(header_len) +
|
| + FIELD_LEN(firmware_key_version) +
|
| + firmware_sign_key_len +
|
| + FIELD_LEN(header_checksum) +
|
| + FIELD_LEN(firmware_key_signature)),
|
| + sizeof(firmware_version));
|
| + return CombineUint16Pair(firmware_key_version, firmware_version);
|
| +}
|
| +
|
| +int VerifyFirmwareDriver_f(uint8_t* root_key_blob,
|
| + uint8_t* firmwareA,
|
| + uint8_t* firmwareB) {
|
| + /* Contains the logical firmware version (32-bit) which is calculated as
|
| + * (firmware_key_version << 16 | firmware_version) where
|
| + * [firmware_key_version] [firmware_version] are both 16-bit.
|
| + */
|
| + uint32_t firmwareA_lversion, firmwareB_lversion;
|
| + uint8_t firmwareA_is_verified = 0; /* Whether firmwareA verify succeeded. */
|
| + uint32_t min_lversion; /* Minimum of firmware A and firmware lversion. */
|
| + uint32_t stored_lversion; /* Stored logical version in the TPM. */
|
| +
|
| + /* Initialize the TPM since we'll be reading the rollback indices. */
|
| + SetupTPM();
|
| +
|
| + /* We get the key versions by reading directly from the image blobs without
|
| + * any additional (expensive) sanity checking on the blob since it's faster to
|
| + * outright reject a firmware with an older firmware key version. A malformed
|
| + * or corrupted firmware blob will still fail when VerifyFirmware() is called
|
| + * on it.
|
| + */
|
| + firmwareA_lversion = GetLogicalFirmwareVersion(firmwareA);
|
| + firmwareB_lversion = GetLogicalFirmwareVersion(firmwareB);
|
| + min_lversion = Min(firmwareA_lversion, firmwareB_lversion);
|
| + stored_lversion = CombineUint16Pair(GetStoredVersion(FIRMWARE_KEY_VERSION),
|
| + GetStoredVersion(FIRMWARE_VERSION));
|
| + /* Always try FirmwareA first. */
|
| + if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareA))
|
| + firmwareA_is_verified = 1;
|
| + if (firmwareA_is_verified && (stored_lversion < firmwareA_lversion)) {
|
| + /* Stored version may need to be updated but only if FirmwareB
|
| + * is successfully verified and has a logical version greater than
|
| + * the stored logical version. */
|
| + if (stored_lversion < firmwareB_lversion) {
|
| + if (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareB)) {
|
| + WriteStoredVersion(FIRMWARE_KEY_VERSION,
|
| + (uint16_t) (min_lversion >> 16));
|
| + WriteStoredVersion(FIRMWARE_VERSION,
|
| + (uint16_t) (min_lversion & 0x00FFFF));
|
| + stored_lversion = min_lversion; /* Update stored version as it's used
|
| + * later. */
|
| + }
|
| + }
|
| + }
|
| + /* Lock Firmware TPM rollback indices from further writes. */
|
| + /* TODO(gauravsh): Figure out if these can be combined into one
|
| + * 32-bit location since we seem to always use them together. This can help
|
| + * us minimize the number of NVRAM writes/locks (which are limited over flash
|
| + * memory lifetimes.
|
| + */
|
| + LockStoredVersion(FIRMWARE_KEY_VERSION);
|
| + LockStoredVersion(FIRMWARE_VERSION);
|
| +
|
| + /* Determine which firmware (if any) to jump to.
|
| + *
|
| + * We always attempt to jump to FirmwareA first. If verification of FirmwareA
|
| + * fails, we try FirmwareB. In all cases, if the firmware successfully
|
| + * verified but is a rollback, we jump to recovery.
|
| + *
|
| + * Note: This means that if FirmwareA verified successfully and is a
|
| + * rollback, then no attempt is made to check FirmwareB. We still jump to
|
| + * recovery. FirmwareB is only used as a backup in case FirmwareA gets
|
| + * corrupted. Since newer firmware updates are always written to A,
|
| + * the case where firmware A is verified but a rollback should not occur in
|
| + * normal operation.
|
| + */
|
| + if (firmwareA_is_verified) {
|
| + if (stored_lversion <= firmwareA_lversion)
|
| + return BOOT_FIRMWARE_A_CONTINUE;
|
| + } else {
|
| + /* If FirmwareA was not valid, then we skipped over the
|
| + * check to update the rollback indices and a Verify of FirmwareB wasn't
|
| + * attempted.
|
| + * If FirmwareB is not a rollback, then we attempt to do the verification.
|
| + */
|
| + if (stored_lversion <= firmwareB_lversion &&
|
| + (VERIFY_FIRMWARE_SUCCESS == VerifyFirmware(root_key_blob, firmwareB)))
|
| + return BOOT_FIRMWARE_B_CONTINUE;
|
| + }
|
| + /* D'oh: No bootable firmware. */
|
| + return BOOT_FIRMWARE_RECOVERY_CONTINUE;
|
| +}
|
|
|