Index: samples/siteswap/math.js |
=================================================================== |
--- samples/siteswap/math.js (revision 0) |
+++ samples/siteswap/math.js (revision 0) |
@@ -0,0 +1,1492 @@ |
+// @@REWRITE(insert js-copyright) |
+// @@REWRITE(delete-start) |
+// Copyright 2009 Google Inc. All Rights Reserved |
+// @@REWRITE(delete-end) |
+ |
+/** |
+ * @fileoverview This file contains all the math for the siteswap animator. It |
+ * handles all of the site-swap-related stuff [converting a sequence of integers |
+ * into a more-useful representation of a pattern, pattern validation, etc.] as |
+ * well as all the physics used for the simulation. |
+ */ |
+ |
+/** |
+ * This is a container class that holds the coefficients of an equation |
+ * describing the motion of an object. |
+ * The basic equation is: |
+ * f(x) := a t^2 + b t + c + d sin (f t) + e cos (f t). |
+ * However, sometimes we LERP between that function and this one: |
+ * g(x) := lA t^2 + lB t + lC |
+ * lerpRate [so far] is always either 1 [LERP from f to g over 1 beat] or -1, |
+ * [LERP from g to f over one beat]. |
+ * |
+ * Just plug in t to evaluate the equation. There's no JavaScript function to |
+ * do this because it's always done on the GPU. |
+ * |
+ * @constructor |
+ */ |
+EquationCoefficients = function(a, b, c, d, e, f, lA, lB, lC, lerpRate) { |
+ assert(!isNaN(a) && !isNaN(b) && !isNaN(c)); |
+ d = d || 0; |
+ e = e || 0; |
+ f = f || 0; |
+ assert(!isNaN(d) && !isNaN(e) && !isNaN(f)); |
+ lA = lA || 0; |
+ lB = lB || 0; |
+ lC = lC || 0; |
+ assert(!isNaN(lA) && !isNaN(lB) && !isNaN(lC)); |
+ lerpRate = lerpRate || 0; |
+ this.a = a; |
+ this.b = b; |
+ this.c = c; |
+ this.d = d; |
+ this.e = e; |
+ this.f = f; |
+ this.lA = lA; |
+ this.lB = lB; |
+ this.lC = lC; |
+ this.lerpRate = lerpRate; |
+} |
+ |
+/** |
+ * Create a new equation that's equivalent to this equation's coefficients a-f |
+ * with a LERP to the polynomial portion of the supplied equation. |
+ * @param {!EquationCoefficients} eqn the source of coefficients. |
+ * @param {!number} lerpRate the rate and direction of the LERP; positive for |
+ * "from this equation to the new one" and vice-versa. |
+ * @return {!EquationCoefficients} a new set of coefficients. |
+ */ |
+EquationCoefficients.prototype.lerpIn = function(eqn, lerpRate) { |
+ assert(!this.lerpRate); |
+ return new EquationCoefficients(this.a, this.b, this.c, this.d, this.e, |
+ this.f, eqn.a, eqn.b, eqn.c, lerpRate); |
+}; |
+ |
+/** |
+ * Convert the EquationCoefficients to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+EquationCoefficients.prototype.toString = function() { |
+ return 'F(t) := ' + this.a.toFixed(2) + ' t^2 + ' + this.b.toFixed(2) + |
+ ' t + ' + this.c.toFixed(2) + ' + ' + |
+ this.d.toFixed(2) + ' sin(' + this.f.toFixed(2) + ' t) + ' + |
+ this.e.toFixed(2) + ' cos(' + this.f.toFixed(2) + ' t) + LERP(' + |
+ this.lerpRate.toFixed(2) + ') of ' + |
+ this.lA.toFixed(2) + ' t^2 + ' + this.lB.toFixed(2) + |
+ ' t + ' + this.lC.toFixed(2); |
+}; |
+ |
+/** |
+ * A set of equations which describe the motion of an object over time. |
+ * The three equations each supply one dimension of the motion, and the curve is |
+ * valid from startTime to startTime + duration. |
+ * @param {!number} startTime the initial time at which the curve is valid. |
+ * @param {!number} duration how long [in beats] the curve is valid. |
+ * @param {!EquationCoefficients} xEqn the equation for motion in x. |
+ * @param {!EquationCoefficients} yEqn the equation for motion in y. |
+ * @param {!EquationCoefficients} zEqn the equation for motion in z. |
+ * @constructor |
+ */ |
+Curve = function(startTime, duration, xEqn, yEqn, zEqn) { |
+ this.startTime = startTime; |
+ this.duration = duration; |
+ this.xEqn = xEqn; |
+ this.yEqn = yEqn; |
+ this.zEqn = zEqn; |
+} |
+ |
+/** |
+ * Convert the Curve to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+Curve.prototype.toString = function() { |
+ var s = 'startTime: ' + this.startTime + '\n'; |
+ s += 'duration: ' + this.duration + '\n'; |
+ s += this.xEqn + '\n'; |
+ s += this.yEqn + '\n'; |
+ s += this.zEqn + '\n'; |
+ return s; |
+}; |
+ |
+/** |
+ * Modify this curve's coefficients to include a LERP to the polynomial |
+ * portion of the supplied curve. |
+ * @param {!Curve} curve the source of coefficients. |
+ * @param {!number} lerpRate the rate and direction of the LERP; positive for |
+ * "from this equation to the new one" and vice-versa. |
+ * @return {!Curve} a new curve. |
+ */ |
+Curve.prototype.lerpIn = function(curve, lerpRate) { |
+ assert(this.startTime == curve.startTime); |
+ assert(this.duration == curve.duration); |
+ var xEqn = this.xEqn.lerpIn(curve.xEqn, lerpRate); |
+ var yEqn = this.yEqn.lerpIn(curve.yEqn, lerpRate); |
+ var zEqn = this.zEqn.lerpIn(curve.zEqn, lerpRate); |
+ return new Curve(this.startTime, this.duration, xEqn, yEqn, zEqn); |
+}; |
+ |
+/** |
+ * Produce a set of polynomial coefficients that describe linear motion between |
+ * two points in 1 dimension. |
+ * @param {!number} startPos the starting position. |
+ * @param {!number} endPos the ending position. |
+ * @param {!number} duration how long the motion takes. |
+ * @return {!EquationCoefficients} the equation for the motion. |
+ */ |
+Curve.computeLinearCoefficients = function(startPos, endPos, duration) { |
+ return new EquationCoefficients( |
+ 0, (endPos - startPos) / duration, startPos); |
+} |
+ |
+var GRAVITY = 1; // Higher means higher throws for the same duration. |
+/** |
+ * Produce a set of polynomial coefficients that describe parabolic motion |
+ * between two points in 1 dimension. |
+ * @param {!number} startPos the starting position. |
+ * @param {!number} endPos the ending position. |
+ * @param {!number} duration how long the motion takes. |
+ * @return {!EquationCoefficients} the equation for the motion. |
+ */ |
+Curve.computeParabolicCoefficients = function(startPos, endPos, duration) { |
+ var dY = endPos - startPos; |
+ return new EquationCoefficients(-GRAVITY / 2, |
+ dY / duration + GRAVITY * duration / 2, |
+ startPos); |
+} |
+ |
+/** |
+ * Compute the curve taken by a ball given its throw and catch positions, the |
+ * time it was thrown, and how long it stayed in the air. |
+ * |
+ * We use duration rather than throwTime and catchTime because, what |
+ * with the modular arithmetic used in our records, catchTime might be before |
+ * throwTime, and in some representations the pattern could wrap around a few |
+ * times while the ball's in the air. When the parabola computed here is used, |
+ * time must be supplied as an offset from the time of the throw, and must of |
+ * course not wrap at all. That is, these coefficients work for f(0) == |
+ * throwPos, f(duration) == catchPos. |
+ * |
+ * We treat the y axis as vertical and thus affected by gravity. |
+ * |
+ * @param {!EquationCoefficients} throwPos |
+ * @param {!EquationCoefficients} catchPos |
+ * @param {!number} startTime |
+ * @param {!number} duration |
+ * @return {!Curve} |
+ */ |
+Curve.computeThrowCurve = function(throwPos, catchPos, startTime, duration) { |
+ var xEqn = Curve.computeLinearCoefficients(throwPos.x, catchPos.x, duration); |
+ var yEqn = Curve.computeParabolicCoefficients(throwPos.y, catchPos.y, |
+ duration); |
+ var zEqn = Curve.computeLinearCoefficients(throwPos.z, catchPos.z, duration); |
+ return new Curve(startTime, duration, xEqn, yEqn, zEqn); |
+} |
+ |
+/** |
+ * Compute a straight line Curve given start and end positions, the start time, |
+ * and the duration of the motion. |
+ * |
+ * @param {!EquationCoefficients} startPos |
+ * @param {!EquationCoefficients} endPos |
+ * @param {!number} startTime |
+ * @param {!number} duration |
+ * @return {!Curve} |
+ */ |
+Curve.computeStraightLineCurve = |
+ function(startPos, endPos, startTime, duration) { |
+ var xEqn = Curve.computeLinearCoefficients(startPos.x, endPos.x, duration); |
+ var yEqn = Curve.computeLinearCoefficients(startPos.y, endPos.y, duration); |
+ var zEqn = Curve.computeLinearCoefficients(startPos.z, endPos.z, duration); |
+ return new Curve(startTime, duration, xEqn, yEqn, zEqn); |
+} |
+ |
+/** |
+ * Threshold horizontal distance below which computeCircularCurve won't bother |
+ * trying to approximate a circular curve. See the comment above |
+ * computeCircularCurve for more info. |
+ * @type {number} |
+ */ |
+Curve.EPSILON = .0001; |
+ |
+/** |
+ * Compute a circular curve, used as an approximation for the motion of a hand |
+ * between a catch and its following throw. |
+ * |
+ * Assumes a lot of stuff about this looking like a "normal" throw: the catch is |
+ * moving roughly the opposite direction as the throw, the throw and catch |
+ * aren't at the same place, and such. Otherwise this looks very odd at best. |
+ * This is used for the height of the curve. |
+ * This produces coefficients for d sin(f t) + e cos(f t) for each of x, y, z. |
+ * It produces a vertical-ish circular curve from the start to the end, going |
+ * down, then up. So if dV [the distance from the start to finish in the x-z |
+ * plane, ignoring y] is less than Curve.EPSILON, it doesn't know which way down |
+ * is, and it bails by returning a straight line instead. |
+ */ |
+Curve.computeCircularCurve = function(startPos, endPos, startTime, duration) { |
+ var dX = endPos.x - startPos.x; |
+ var dY = endPos.y - startPos.y; |
+ var dZ = endPos.z - startPos.z; |
+ var dV = Math.sqrt(dX * dX + dZ * dZ); |
+ if (dV < Curve.EPSILON) { |
+ return Curve.computeStraightLineCurve(startPos, endPos, startTime, |
+ duration); |
+ } |
+ var negHalfdV = -0.5 * dV; |
+ var negHalfdY = -0.5 * dY; |
+ var f = Math.PI / duration; |
+ var yEqn = new EquationCoefficients( |
+ 0, 0, startPos.y + dY / 2, |
+ negHalfdV, negHalfdY, f); |
+ var ratio = dX / dV; |
+ var xEqn = new EquationCoefficients( |
+ 0, 0, startPos.x + dX / 2, |
+ negHalfdY * ratio, negHalfdV * ratio, f); |
+ ratio = dZ / dV; |
+ var zEqn = new EquationCoefficients( |
+ 0, 0, startPos.z + dZ / 2, |
+ negHalfdY * ratio, negHalfdV * ratio, f); |
+ return new Curve(startTime, duration, xEqn, yEqn, zEqn); |
+} |
+ |
+/** |
+ * This is the abstract base class for an object that describes a throw, catch, |
+ * or empty hand [placeholder] in a site-swap pattern. |
+ * @constructor |
+ */ |
+Descriptor = function() { |
+} |
+ |
+/** |
+ * Create an otherwise-identical copy of this descriptor at a given time offset. |
+ * Note that offset may put time past patternLength; the caller will have to fix |
+ * this up manually. |
+ * @param {number} offset how many beats to offset the new descriptor. |
+ * Derived classes must override this function. |
+ */ |
+Descriptor.prototype.clone = function(offset) { |
+ throw new Error('Unimplemented.'); |
+}; |
+ |
+/** |
+ * Generate the Curve implied by this descriptor and the supplied hand |
+ * positions. |
+ * @param {!Array.HandPositionRecord} handPositions where the hands will be. |
+ * Derived classes must override this function. |
+ */ |
+Descriptor.prototype.generateCurve = function(handPositions) { |
+ throw new Error('Unimplemented.'); |
+}; |
+ |
+/** |
+ * Adjust the start time of this Descriptor to be in [0, pathLength). |
+ * @param {!number} pathLength the duration of a path, in beats. |
+ * @return {!Descriptor} this. |
+ */ |
+Descriptor.prototype.fixUpModPathLength = function(pathLength) { |
+ this.time = this.time % pathLength; |
+ return this; |
+}; |
+ |
+/** |
+ * This describes a throw in a site-swap pattern. |
+ * @param {!number} throwNum the site-swap number of the throw. |
+ * @param {!number} throwTime the time this throw occurs. |
+ * @param {!number} sourceHand the index of the throwing hand. |
+ * @param {!number} destHand the index of the catching hand. |
+ * @constructor |
+ */ |
+ThrowDescriptor = function(throwNum, throwTime, sourceHand, destHand) { |
+ this.throwNum = throwNum; |
+ this.sourceHand = sourceHand; |
+ this.destHand = destHand; |
+ this.time = throwTime; |
+} |
+ |
+/** |
+ * This is a subclass of Descriptor. |
+ */ |
+ThrowDescriptor.prototype = new Descriptor(); |
+ |
+/** |
+ * Set up the constructor, just to be neat. |
+ */ |
+ThrowDescriptor.prototype.constructor = ThrowDescriptor; |
+ |
+/** |
+ * We label each Descriptor subclass with a type for debugging. |
+ */ |
+ThrowDescriptor.prototype.type = 'THROW'; |
+ |
+/** |
+ * Create an otherwise-identical copy of this descriptor at a given time offset. |
+ * Note that offset may put time past patternLength; the caller will have to fix |
+ * this up manually. |
+ * @param {number} offset how many beats to offset the new descriptor. |
+ * @return {!Descriptor} the new copy. |
+ */ |
+ThrowDescriptor.prototype.clone = function(offset) { |
+ offset = offset || 0; // Turn null into 0. |
+ return new ThrowDescriptor(this.throwNum, this.time + offset, |
+ this.sourceHand, this.destHand); |
+}; |
+ |
+/** |
+ * Convert the ThrowDescriptor to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+ThrowDescriptor.prototype.toString = function() { |
+ return '(' + this.throwNum + ' from hand ' + this.sourceHand + ' to hand ' + |
+ this.destHand + ')'; |
+}; |
+ |
+/** |
+ * Generate the Curve implied by this descriptor and the supplied hand |
+ * positions. |
+ * @param {!Array.HandPositionRecord} handPositions where the hands will be. |
+ * @return {!Curve} the curve. |
+ */ |
+ThrowDescriptor.prototype.generateCurve = function(handPositions) { |
+ var startPos = handPositions[this.sourceHand].throwPositions[this.destHand]; |
+ var endPos = handPositions[this.destHand].catchPosition; |
+ return Curve.computeThrowCurve(startPos, endPos, this.time, |
+ this.throwNum - 1); }; |
+ |
+/** |
+ * This describes a catch in a site-swap pattern. |
+ * @param {!number} hand the index of the catching hand. |
+ * @param {!number} sourceThrowNum the site-swap number of the preceeding throw. |
+ * @param {!number} destThrowNum the site-swap number of the following throw. |
+ * @param {!number} sourceHand the index of the hand throwing the source throw. |
+ * @param {!number} destHand the index of the hand catching the following throw. |
+ * @param {!number} catchTime the time at which the catch occurs. |
+ * @constructor |
+ */ |
+CarryDescriptor = function(hand, sourceThrowNum, destThrowNum, sourceHand, |
+ destHand, catchTime) { |
+ this.hand = hand; |
+ this.sourceThrowNum = sourceThrowNum; |
+ this.destThrowNum = destThrowNum; |
+ this.sourceHand = sourceHand; |
+ this.destHand = destHand; |
+ this.time = catchTime; |
+} |
+ |
+/** |
+ * This is a subclass of Descriptor. |
+ */ |
+CarryDescriptor.prototype = new Descriptor(); |
+ |
+/** |
+ * Set up the constructor, just to be neat. |
+ */ |
+CarryDescriptor.prototype.constructor = CarryDescriptor; |
+ |
+/** |
+ * We label each Descriptor subclass with a type for debugging. |
+ */ |
+CarryDescriptor.prototype.type = 'CARRY'; |
+ |
+/** |
+ * Since this gets pathLength, not patternLength, we'll have to collapse sets |
+ * of CarryDescriptors later, as they may be spread sparsely through the full |
+ * animation and we'll only want them to be distributed over the full pattern |
+ * length. We may have dupes to throw away as well. |
+ * @param {!ThrowDescriptor} inThrowDescriptor |
+ * @param {!ThrowDescriptor} outThrowDescriptor |
+ * @param {!number} pathLength |
+ * @return {!CarryDescriptor} |
+ */ |
+CarryDescriptor.fromThrowDescriptors = function(inThrowDescriptor, |
+ outThrowDescriptor, pathLength) { |
+ assert(inThrowDescriptor.destHand == outThrowDescriptor.sourceHand); |
+ assert((inThrowDescriptor.time + inThrowDescriptor.throwNum) % |
+ pathLength == outThrowDescriptor.time); |
+ return new CarryDescriptor(inThrowDescriptor.destHand, |
+ inThrowDescriptor.throwNum, outThrowDescriptor.throwNum, |
+ inThrowDescriptor.sourceHand, outThrowDescriptor.destHand, |
+ (outThrowDescriptor.time + pathLength - 1) % pathLength); |
+}; |
+ |
+/** |
+ * Create an otherwise-identical copy of this descriptor at a given time offset. |
+ * Note that offset may put time past patternLength; the caller will have to fix |
+ * this up manually. |
+ * @param {number} offset how many beats to offset the new descriptor. |
+ * @return {!Descriptor} the new copy. |
+ */ |
+CarryDescriptor.prototype.clone = function(offset) { |
+ offset = offset || 0; // Turn null into 0. |
+ return new CarryDescriptor(this.hand, this.sourceThrowNum, |
+ this.destThrowNum, this.sourceHand, this.destHand, this.time + offset); |
+}; |
+ |
+/** |
+ * Convert the CarryDescriptor to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+CarryDescriptor.prototype.toString = function() { |
+ return 'time: ' + this.time + ' (hand ' + this.hand + ' catches ' + |
+ this.sourceThrowNum + ' from hand ' + this.sourceHand + ' then throws ' + |
+ this.destThrowNum + ' to hand ' + this.destHand + ')'; |
+}; |
+ |
+/** |
+ * Test if this CarryDescriptor is equivalent to another, mod patternLength. |
+ * @param {!CarryDescriptor} cd the other CarryDescriptor. |
+ * @param {!number} patternLength the length of the pattern. |
+ * @return {!bool} |
+ */ |
+CarryDescriptor.prototype.equalsWithMod = function(cd, patternLength) { |
+ if (!(cd instanceof CarryDescriptor)) { |
+ return false; |
+ } |
+ if (this.hand != cd.hand) { |
+ return false; |
+ } |
+ if (this.sourceThrowNum != cd.sourceThrowNum) { |
+ return false; |
+ } |
+ if (this.destThrowNum != cd.destThrowNum) { |
+ return false; |
+ } |
+ if (this.sourceHand != cd.sourceHand) { |
+ return false; |
+ } |
+ if (this.destHand != cd.destHand) { |
+ return false; |
+ } |
+ if (this.time % patternLength != cd.time % patternLength) { |
+ return false; |
+ } |
+ return true; |
+}; |
+ |
+/** |
+ * Generate the Curve implied by this descriptor and the supplied hand |
+ * positions. |
+ * @param {!Array.HandPositionRecord} handPositions where the hands will be. |
+ * @return {!Curve} the curve. |
+ */ |
+CarryDescriptor.prototype.generateCurve = function(handPositions) { |
+ var startPos = handPositions[this.hand].catchPosition; |
+ var endPos = handPositions[this.hand].throwPositions[this.destHand]; |
+ return Curve.computeCircularCurve(startPos, endPos, this.time, 1); |
+}; |
+ |
+/** |
+ * This describes a carry of a "1" in a site-swap pattern. |
+ * The flags isThrow and isCatch tell whether this is the actual 1 [isThrow] or |
+ * the carry that receives the handoff [isCatch]. It's legal for both to be |
+ * true, which happens when there are two 1s in a row. |
+ * @param {!number} sourceThrowNum the site-swap number of the prev throw |
+ * [including this one if isCatch]. |
+ * @param {!number} sourceHand the index of the hand throwing sourceThrowNum. |
+ * @param {!number} destThrowNum the site-swap number of the next throw |
+ * [including this one if isThrow]. |
+ * @param {!number} destHand the index of the hand catching destThrowNum. |
+ * @param {!number} hand the index of the hand doing this carry. |
+ * @param {!number} time the time at which the carry starts. |
+ * @param {!bool} isThrow whether this is a 1. |
+ * @param {!bool} isCatch whether this is the carry after a 1. |
+ * @constructor |
+ */ |
+CarryOneDescriptor = function(sourceThrowNum, sourceHand, destThrowNum, |
+ destHand, hand, time, isThrow, isCatch) { |
+ // It's possible to have !isCatch with sourceThrowNum == 1 temporarily, if we |
+ // just haven't handled that 1 yet [we're doing the throw of this one, and |
+ // will later get to the previous one, due to wraparound], and vice-versa. |
+ assert(isThrow || (sourceThrowNum == 1)); |
+ assert(isCatch || (destThrowNum == 1)); |
+ this.sourceThrowNum = sourceThrowNum; |
+ this.sourceHand = sourceHand; |
+ this.destHand = destHand; |
+ this.destThrowNum = destThrowNum; |
+ this.hand = hand; |
+ this.time = time; |
+ this.isThrow = isThrow; |
+ this.isCatch = isCatch; |
+ return this; |
+} |
+ |
+/** |
+ * This is a subclass of Descriptor. |
+ */ |
+CarryOneDescriptor.prototype = new Descriptor(); |
+ |
+/** |
+ * Set up the constructor, just to be neat. |
+ */ |
+CarryOneDescriptor.prototype.constructor = CarryOneDescriptor; |
+ |
+/** |
+ * We label each Descriptor subclass with a type for debugging. |
+ */ |
+CarryOneDescriptor.prototype.type = 'CARRY_ONE'; |
+ |
+/** |
+ * Create a pair of CarryOneDescriptors to describe the carry that is a throw of |
+ * 1. A 1 spends all its time being carried, so these two carries surrounding |
+ * it represent [and therefore don't have] a throw between them. |
+ * Prev and post are generally the ordinary CarryDescriptors surrounding the |
+ * throw of 1 that we're trying to implement. However, they could each [or |
+ * both] independently be CarryOneDescriptors implementing other 1 throws. |
+ * @param {!Descriptor} prev the carry descriptor previous to the 1. |
+ * @param {!Descriptor} post the carry descriptor subsequent to the 1. |
+ * @return {!Array.CarryOneDescriptor} a pair of CarryOneDescriptors. |
+ */ |
+CarryOneDescriptor.getDescriptorPair = function(prev, post) { |
+ assert(prev instanceof CarryDescriptor || prev instanceof CarryOneDescriptor); |
+ assert(post instanceof CarryDescriptor || post instanceof CarryOneDescriptor); |
+ assert(prev.destHand == post.hand); |
+ assert(prev.hand == post.sourceHand); |
+ var newPrev; |
+ var newPost; |
+ if (prev instanceof CarryOneDescriptor) { |
+ assert(prev.isCatch && !prev.isThrow); |
+ newPrev = prev; |
+ newPrev.isThrow = true; |
+ assert(newPrev.destHand == post.hand); |
+ } else { |
+ newPrev = new CarryOneDescriptor(prev.sourceThrowNum, prev.sourceHand, 1, |
+ post.hand, prev.hand, prev.time, true, false); |
+ } |
+ if (post instanceof CarryOneDescriptor) { |
+ assert(post.isThrow && !post.isCatch); |
+ newPost = post; |
+ newPost.isCatch = true; |
+ assert(newPost.sourceHand == prev.hand); |
+ assert(newPost.sourceThrowNum == 1); |
+ } else { |
+ newPost = new CarryOneDescriptor(1, prev.hand, post.destThrowNum, |
+ post.destHand, post.hand, post.time, false, true); |
+ } |
+ return [newPrev, newPost]; |
+}; |
+ |
+/** |
+ * Convert the CarryOneDescriptor to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+CarryOneDescriptor.prototype.toString = function() { |
+ var s; |
+ if (this.isThrow) { |
+ s = 'Hand ' + this.hand + ' catches a ' + this.sourceThrowNum + ' from ' + |
+ this.sourceHand + ' at time ' + this.time + ' and then passes a 1 to ' + |
+ this.destHand + '.'; |
+ } else { |
+ assert(this.isCatch && this.sourceThrowNum == 1); |
+ s = 'Hand ' + this.hand + ' catches a 1 from ' + this.sourceHand + |
+ ' at time ' + this.time + ' and then passes a ' + this.destThrowNum + |
+ ' to ' + this.destHand + '.'; |
+ } |
+ return s; |
+}; |
+ |
+/** |
+ * Compute the curve taken by a ball during the carry representing a 1, as long |
+ * as it's not both a catch and a throw of a 1, which is handled elsewhere. |
+ * It's either a LERP from a circular curve [a catch of a throw > 1] to a |
+ * straight line to the handoff point [for isThrow] or a LERP from a straight |
+ * line from the handoff to a circular curve for the next throw > 1 [for |
+ * isCatch]. |
+ * |
+ * @param {!EquationCoefficients} catchPos |
+ * @param {!EquationCoefficients} throwPos |
+ * @param {!EquationCoefficients} handoffPos |
+ * @param {!number} startTime |
+ * @param {!bool} isCatch whether this is the carry after a 1. |
+ * @param {!bool} isThrow whether this is a 1. |
+ * @return {!Curve} |
+ */ |
+Curve.computeCarryOneCurve = function(catchPos, throwPos, handoffPos, startTime, |
+ isCatch, isThrow) { |
+ assert(!isCatch != !isThrow); |
+ var curve = Curve.computeCircularCurve(catchPos, throwPos, startTime, 1); |
+ var curve2 = Curve.computeStraightLineCurve(handoffPos, handoffPos, |
+ startTime, 1); |
+ return curve.lerpIn(curve2, isThrow ? 1 : -1); |
+} |
+ |
+/** |
+ * Compute the curve taken by a ball during the carry representing a 1 that is |
+ * both the catch of one 1 and the immediately-following throw of another 1. |
+ * |
+ * @param {!EquationCoefficients} leadingHandoffPos |
+ * @param {!EquationCoefficients} trailingHandoffPos |
+ * @param {!Array.HandPositionRecord} handPositions where the hands will be. |
+ * @param {!number} hand |
+ * @param {!number} time the time at which the first 1's catch takes place. |
+ * @return {!Curve} |
+ */ |
+Curve.computeConsecutiveCarryOneCurve = function(leadingHandoffPos, |
+ trailingHandoffPos, handPositions, hand, time) { |
+ var curve = Curve.computeStraightLineCurve(leadingHandoffPos, |
+ handPositions[hand].basePosition, time, 1); |
+ var curve2 = |
+ Curve.computeStraightLineCurve(handPositions[hand].basePosition, |
+ trailingHandoffPos, time, 1); |
+ return curve.lerpIn(curve2, 1); |
+} |
+ |
+/** |
+ * Generate the Curve implied by this descriptor and the supplied hand |
+ * positions. |
+ * @param {!Array.HandPositionRecord} handPositions where the hands will be. |
+ * @return {!Curve} the curve. |
+ */ |
+CarryOneDescriptor.prototype.generateCurve = function(handPositions) { |
+ var leadingHandoffPos, trailingHandoffPos; |
+ if (this.isCatch) { |
+ var p0 = handPositions[this.hand].basePosition; |
+ var p1 = handPositions[this.sourceHand].basePosition; |
+ handoffPos = leadingHandoffPos = p0.add(p1).scale(0.5); |
+ } |
+ if (this.isThrow) { |
+ var p0 = handPositions[this.hand].basePosition; |
+ var p1 = handPositions[this.destHand].basePosition; |
+ handoffPos = trailingHandoffPos = p0.add(p1).scale(0.5); |
+ } |
+ if (!this.isCatch || !this.isThrow) { |
+ return Curve.computeCarryOneCurve(handPositions[this.hand].catchPosition, |
+ handPositions[this.hand].throwPositions[this.destHand], handoffPos, |
+ this.time, this.isCatch, this.isThrow); |
+ } else { |
+ return Curve.computeConsecutiveCarryOneCurve(leadingHandoffPos, |
+ trailingHandoffPos, handPositions, this.hand, this.time); |
+ } |
+}; |
+ |
+/** |
+ * Create an otherwise-identical copy of this descriptor at a given time offset. |
+ * Note that offset may put time past patternLength; the caller will have to fix |
+ * this up manually. |
+ * @param {number} offset how many beats to offset the new descriptor. |
+ * @return {!Descriptor} the new copy. |
+ */ |
+CarryOneDescriptor.prototype.clone = function(offset) { |
+ offset = offset || 0; // Turn null into 0. |
+ return new CarryOneDescriptor(this.sourceThrowNum, this.sourceHand, |
+ this.destThrowNum, this.destHand, this.hand, this.time + offset, |
+ this.isThrow, this.isCatch); |
+}; |
+ |
+/** |
+ * Test if this CarryOneDescriptor is equivalent to another, mod patternLength. |
+ * @param {!CarryOneDescriptor} cd the other CarryOneDescriptor. |
+ * @param {!number} patternLength the length of the pattern. |
+ * @return {!bool} |
+ */ |
+CarryOneDescriptor.prototype.equalsWithMod = function(cd, patternLength) { |
+ if (!(cd instanceof CarryOneDescriptor)) { |
+ return false; |
+ } |
+ if (this.hand != cd.hand) { |
+ return false; |
+ } |
+ if (this.sourceThrowNum != cd.sourceThrowNum) { |
+ return false; |
+ } |
+ if (this.destThrowNum != cd.destThrowNum) { |
+ return false; |
+ } |
+ if (this.sourceHand != cd.sourceHand) { |
+ return false; |
+ } |
+ if (this.destHand != cd.destHand) { |
+ return false; |
+ } |
+ if (this.isCatch != cd.isCatch) { |
+ return false; |
+ } |
+ if (this.isThrow != cd.isThrow) { |
+ return false; |
+ } |
+ if (this.time % patternLength != cd.time % patternLength) { |
+ return false; |
+ } |
+ return true; |
+}; |
+ |
+/** |
+ * This describes an empty hand in a site-swap pattern. |
+ * @param {!Descriptor} cd0 the CarryDescriptor or CarryOneDescriptor describing |
+ * this hand immediately before it was emptied. |
+ * @param {!Descriptor} cd1 the CarryDescriptor or CarryOneDescriptor describing |
+ * this hand immediately after it's done being empty. |
+ * @param {!number} patternLength the length of the pattern. |
+ * @constructor |
+ */ |
+EmptyHandDescriptor = function(cd0, cd1, patternLength) { |
+ assert(cd0.hand == cd1.hand); |
+ this.hand = cd0.hand; |
+ this.prevThrowDest = cd0.destHand; |
+ this.sourceThrowNum = cd0.destThrowNum; |
+ this.nextCatchSource = cd1.sourceHand; |
+ this.destThrowNum = cd1.sourceThrowNum; |
+ // This code assumes that each CarryDescriptor and CarryOneDescriptor always |
+ // has a duration of 1 beat. If we want to be able to allow long-held balls |
+ // [instead of thrown twos, for example], we'll have to fix that here and a |
+ // number of other places. |
+ this.time = (cd0.time + 1) % patternLength; |
+ this.duration = cd1.time - this.time; |
+ if (this.duration < 0) { |
+ this.duration += patternLength; |
+ assert(this.duration > 0); |
+ } |
+} |
+ |
+/** |
+ * This is a subclass of Descriptor. |
+ */ |
+EmptyHandDescriptor.prototype = new Descriptor(); |
+ |
+/** |
+ * Set up the constructor, just to be neat. |
+ */ |
+EmptyHandDescriptor.prototype.constructor = EmptyHandDescriptor; |
+ |
+/** |
+ * We label each Descriptor subclass with a type for debugging. |
+ */ |
+EmptyHandDescriptor.prototype.type = 'EMPTY'; |
+ |
+/** |
+ * Convert the EmptyHandDescriptor to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+EmptyHandDescriptor.prototype.toString = function() { |
+ return 'time: ' + this.time + ' for ' + this.duration + ' (hand ' + |
+ this.hand + ', after throwing a ' + this.sourceThrowNum + ' to hand ' + |
+ this.prevThrowDest + ' then catches a ' + this.destThrowNum + |
+ ' from hand ' + this.nextCatchSource + ')'; |
+}; |
+ |
+/** |
+ * Generate the Curve implied by this descriptor and the supplied hand |
+ * positions. |
+ * @param {!Array.HandPositionRecord} handPositions where the hands will be. |
+ * @return {!Curve} the curve. |
+ */ |
+EmptyHandDescriptor.prototype.generateCurve = function(handPositions) { |
+ var startPos, endPos; |
+ if (this.sourceThrowNum == 1) { |
+ var p0 = handPositions[this.hand].basePosition; |
+ var p1 = handPositions[this.prevThrowDest].basePosition; |
+ startPos = p0.add(p1).scale(0.5); |
+ } else { |
+ startPos = handPositions[this.hand].throwPositions[this.prevThrowDest]; |
+ } |
+ if (this.destThrowNum == 1) { |
+ var p0 = handPositions[this.hand].basePosition; |
+ var p1 = handPositions[this.nextCatchSource].basePosition; |
+ endPos = p0.add(p1).scale(0.5); |
+ } else { |
+ endPos = handPositions[this.hand].catchPosition; |
+ } |
+ // TODO: Replace with a good empty-hand curve. |
+ return Curve.computeStraightLineCurve(startPos, endPos, this.time, |
+ this.duration); |
+}; |
+ |
+/** |
+ * A series of descriptors that describes the full path of an object during a |
+ * pattern. |
+ * @param {!Array.Descriptor} descriptors all descriptors for the object. |
+ * @param {!number} pathLength the length of the path in beats. |
+ * @constructor |
+ */ |
+Path = function(descriptors, pathLength) { |
+ this.descriptors = descriptors; |
+ this.pathLength = pathLength; |
+} |
+ |
+/** |
+ * Create a Path representing a ball, filling in the gaps between the throws |
+ * with carry descriptors. Since it's a ball's path, there are no |
+ * EmptyHandDescriptors in the output. |
+ * @param {!Array.ThrowDescriptor} throwDescriptors the ball's part of the |
+ * pattern. |
+ * @param {!number} pathLength the length of the pattern in beats. |
+ * @return {!Path} the ball's full path. |
+ */ |
+Path.ballPathFromThrowDescriptors = function(throwDescriptors, pathLength) { |
+ return new Path( |
+ Path.createDescriptorList(throwDescriptors, pathLength), pathLength); |
+}; |
+ |
+/** |
+ * Create the sequence of ThrowDescriptors, CarryDescriptors, and |
+ * CarryOneDescriptor describing the path of a ball through a pattern. |
+ * A sequence such as (h j k) generally maps to an alternating series of throw |
+ * and carry descriptors [Th Chj Tj Cjk Tk Ck? ...]. However, when j is a 1, |
+ * you remove the throw descriptor and modify the previous and subsequent carry |
+ * descriptors, since the throw descriptor has zero duration and the carry |
+ * descriptors need to take into account the handoff. |
+ * @param {!Array.ThrowDescriptor} throwDescriptors the ball's part of the |
+ * pattern. |
+ * @param {!number} pathLength the length of the pattern in beats. |
+ * @return {!Array.Descriptor} the full set of descriptors for the ball. |
+ */ |
+Path.createDescriptorList = function(throwDescriptors, pathLength) { |
+ var descriptors = []; |
+ var prevThrow; |
+ for (var index in throwDescriptors) { |
+ var td = throwDescriptors[index]; |
+ if (prevThrow) { |
+ descriptors.push( |
+ CarryDescriptor.fromThrowDescriptors(prevThrow, td, pathLength)); |
+ } // Else it's handled after the loop. |
+ descriptors.push(td); |
+ prevThrow = td; |
+ } |
+ descriptors.push( |
+ CarryDescriptor.fromThrowDescriptors(prevThrow, throwDescriptors[0], |
+ pathLength)); |
+ // Now post-process to take care of throws of 1. It's easier to do it here |
+ // than during construction since we can now assume that the previous and |
+ // subsequent carry descriptors are already in place [modulo pathLength]. |
+ for (var i = 0; i < descriptors.length; ++i) { |
+ var descriptor = descriptors[i]; |
+ if (descriptor instanceof ThrowDescriptor) { |
+ if (descriptor.throwNum == 1) { |
+ var prevIndex = (i + descriptors.length - 1) % descriptors.length; |
+ var postIndex = (i + 1) % descriptors.length; |
+ var replacements = CarryOneDescriptor.getDescriptorPair( |
+ descriptors[prevIndex], descriptors[postIndex]); |
+ descriptors[prevIndex] = replacements[0]; |
+ descriptors[postIndex] = replacements[1]; |
+ descriptors.splice(i, 1); |
+ // We've removed a descriptor from the array, but since we can never |
+ // have 2 ThrowDescriptors in a row, we don't need to decrement i. |
+ } |
+ } |
+ } |
+ return descriptors; |
+}; |
+ |
+/** |
+ * Convert the Path to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+Path.prototype.toString = function() { |
+ var ret = 'pathLength is ' + this.pathLength + '; ['; |
+ for (var index in this.descriptors) { |
+ ret += this.descriptors[index].toString(); |
+ } |
+ ret += ']'; |
+ return ret; |
+}; |
+ |
+/** |
+ * Create an otherwise-identical copy of this path at a given time offset. |
+ * Note that offset may put time references in the Path past the length of the |
+ * pattern. The caller must fix this up manually. |
+ * @param {number} offset how many beats to offset the new Path. |
+ * @return {!Path} the new copy. |
+ */ |
+Path.prototype.clone = function(offset) { |
+ offset = offset || 0; // Turn null into 0. |
+ var descriptors = []; |
+ for (var index in this.descriptors) { |
+ descriptors.push(this.descriptors[index].clone(offset)); |
+ } |
+ return new Path(descriptors, this.pathLength); |
+}; |
+ |
+/** |
+ * Adjust the start time of all descriptors to be in [0, pathLength) via modular |
+ * arithmetic. Reorder the array such that they're sorted in increasing order |
+ * of time. |
+ * @return {!Path} this. |
+ */ |
+Path.prototype.fixUpModPathLength = function() { |
+ var splitIndex; |
+ var prevTime = 0; |
+ for (var index in this.descriptors) { |
+ var d = this.descriptors[index]; |
+ d.fixUpModPathLength(this.pathLength); |
+ if (d.time < prevTime) { |
+ assert(null == splitIndex); |
+ splitIndex = index; // From here to the end should move to the start. |
+ } |
+ prevTime = d.time; |
+ } |
+ if (null != splitIndex) { |
+ var temp = this.descriptors.slice(splitIndex); |
+ this.descriptors.length = splitIndex; |
+ this.descriptors = temp.concat(this.descriptors); |
+ } |
+ return this; |
+}; |
+ |
+/** |
+ * Take a standard asynch siteswap pattern [expressed as an array of ints] and |
+ * a number of hands, and expand it into a 2D grid of ThrowDescriptors with one |
+ * row per hand. |
+ * Non-asynch patterns are more complicated, since their linear forms aren't |
+ * fully-specified, so we don't handle them here. |
+ * You'll want to expand your pattern to the LCM of numHands and minimal pattern |
+ * length before calling this. |
+ * The basic approach doesn't really work for one-handed patterns. It ends up |
+ * with catches and throws happening at the same time [having removed all |
+ * empty-hand time in between them]. To fix this, we double all throw heights |
+ * and space them out, as if doing a two-handed pattern with all zeroes from the |
+ * other hand. Yes, this points out that the overall approach we're taking is a |
+ * bit odd [since you end up with hands empty for time proportional to the |
+ * number of hands], but you have to make some sort of assumptions to generalize |
+ * siteswaps to N hands, and that's what I chose. |
+ * @param {!Array.number} pattern an asynch siteswap pattern. |
+ * @param {!number} numHands the number of hands. |
+ * @return {!Array.Array.ThrowDescriptor} the expanded pattern. |
+ */ |
+function expandPattern(pattern, numHands) { |
+ var fullPattern = []; |
+ assert(numHands > 0); |
+ if (numHands == 1) { |
+ numHands = 2; |
+ var temp = []; |
+ for (var i = 0; i < pattern.length; ++i) { |
+ temp[2 * i] = 2 * pattern[i]; |
+ temp[2 * i + 1] = 0; |
+ } |
+ pattern = temp; |
+ } |
+ for (var hand = 0; hand < numHands; ++hand) { |
+ fullPattern[hand] = []; |
+ } |
+ for (var time = 0; time < pattern.length; ++time) { |
+ for (var hand = 0; hand < numHands; ++hand) { |
+ var t; |
+ if (hand == time % numHands) { |
+ t = new ThrowDescriptor(pattern[time], time, hand, |
+ (hand + pattern[time]) % numHands); |
+ } else { |
+ // These are ignored during analysis, so they don't appear in BallPaths. |
+ t = new ThrowDescriptor(0, time, hand, hand); |
+ } |
+ fullPattern[hand].push(t); |
+ } |
+ } |
+ return fullPattern; |
+} |
+ |
+// TODO: Wrap the final pattern in a class, then make the remaining few global |
+// functions be members of that class to clean up the global namespace. |
+ |
+/** |
+ * Given a valid site-swap for a nonzero number of balls, stored as an expanded |
+ * pattern array-of-arrays, with pattern length the LCM of hands and minimal |
+ * pattern length, produce Paths for all the balls. |
+ * @param {!Array.Array.ThrowDescriptor} pattern a valid pattern. |
+ * @return {!Array.Path} the paths of all the balls. |
+ */ |
+function generateBallPaths(pattern) { |
+ var numHands = pattern.length; |
+ assert(numHands > 0); |
+ var patternLength = pattern[0].length; |
+ assert(patternLength > 0); |
+ var sum = 0; |
+ for (var hand in pattern) { |
+ for (var time in pattern[hand]) { |
+ sum += pattern[hand][time].throwNum; |
+ } |
+ } |
+ var numBalls = sum / patternLength; |
+ assert(numBalls == Math.round(numBalls)); |
+ assert(numBalls > 0); |
+ |
+ var ballsToAllocate = numBalls; |
+ var ballPaths = []; |
+ // NOTE: The indices of locationsChecked are reversed from those of pattern |
+ // for simplicity of allocation. This might be worth flipping to match. |
+ var locationsChecked = []; |
+ for (var time = 0; time < patternLength && ballsToAllocate; ++time) { |
+ locationsChecked[time] = locationsChecked[time] || []; |
+ for (var hand = 0; hand < numHands && ballsToAllocate; ++hand) { |
+ if (locationsChecked[time][hand]) { |
+ continue; |
+ } |
+ var curThrowDesc = pattern[hand][time]; |
+ var curThrow = curThrowDesc.throwNum; |
+ if (!curThrow) { |
+ assert(curThrow === 0); |
+ continue; |
+ } |
+ var throwDescriptors = []; |
+ var curTime = time; |
+ var curHand = hand; |
+ var wraps = 0; |
+ do { |
+ if (!locationsChecked[curTime]) { |
+ locationsChecked[curTime] = []; |
+ } |
+ assert(!locationsChecked[curTime][curHand]); |
+ locationsChecked[curTime][curHand] = true; |
+ // We copy curThrowDesc here, adding wraps * patternLength, to get |
+ // the true throw time relative to offset. Later we'll add in offset |
+ // when we clone again, then mod by pathLength. |
+ throwDescriptors.push(curThrowDesc.clone(wraps * patternLength)); |
+ var nextThrowTime = curThrow + curTime; |
+ wraps += Math.floor(nextThrowTime / patternLength); |
+ curTime = nextThrowTime % patternLength; |
+ assert(curTime >= time); // Else we'd have covered it earlier. |
+ curHand = curThrowDesc.destHand; |
+ var tempThrowDesc = curThrowDesc; |
+ curThrowDesc = pattern[curHand][curTime]; |
+ curThrow = curThrowDesc.throwNum; |
+ assert(tempThrowDesc.destHand == curThrowDesc.sourceHand); |
+ assert(curThrowDesc.time == |
+ (tempThrowDesc.throwNum + tempThrowDesc.time) % patternLength); |
+ } while (curTime != time || curHand != hand); |
+ var pathLength = wraps * patternLength; |
+ var ballPath = |
+ Path.ballPathFromThrowDescriptors(throwDescriptors, pathLength); |
+ for (var i = 0; i < wraps; ++i) { |
+ var offset = i * patternLength % pathLength; |
+ ballPaths.push(ballPath.clone(offset, pathLength).fixUpModPathLength()); |
+ } |
+ ballsToAllocate -= wraps; |
+ assert(ballsToAllocate >= 0); |
+ } |
+ } |
+ return ballPaths; |
+} |
+ |
+/** |
+ * Given an array of ball paths, produce the corresponding set of hand paths. |
+ * @param {!Array.Path} ballPaths the Paths of all the balls in the pattern. |
+ * @param {!number} numHands how many hands to use in the pattern. |
+ * @param {!number} patternLength the length, in beats, of the pattern. |
+ * @return {!Array.Path} the paths of all the hands. |
+ */ |
+function generateHandPaths(ballPaths, numHands, patternLength) { |
+ assert(numHands > 0); |
+ assert(patternLength > 0); |
+ var handRecords = []; // One record per hand. |
+ for (var idxBR in ballPaths) { |
+ var descriptors = ballPaths[idxBR].descriptors; |
+ for (var idxD in descriptors) { |
+ var descriptor = descriptors[idxD]; |
+ // TODO: Fix likely needed for throws of 1. |
+ if (!(descriptor instanceof ThrowDescriptor)) { |
+ // It's a CarryDescriptor or a CarryOneDescriptor. |
+ var hand = descriptor.hand; |
+ if (!handRecords[hand]) { |
+ handRecords[hand] = []; |
+ } |
+ // TODO: Should we not shorten stuff here if we're going to lengthen |
+ // everything later anyway? Is there a risk of inconsistency due to |
+ // ball paths of different lengths? |
+ var catchTime = descriptor.time % patternLength; |
+ if (!handRecords[hand][catchTime]) { |
+ // We pass in this offset to set the new descriptor's time to |
+ // catchTime, so as to keep it within [0, patternLength). |
+ handRecords[hand][catchTime] = |
+ descriptor.clone(catchTime - descriptor.time); |
+ } else { |
+ assert( |
+ handRecords[hand][catchTime].equalsWithMod( |
+ descriptor, patternLength)); |
+ } |
+ } |
+ } |
+ } |
+ var handPaths = []; |
+ for (var hand in handRecords) { |
+ var outDescriptors = []; |
+ var inDescriptors = handRecords[hand]; |
+ var prevDescriptor = null; |
+ var descriptor; |
+ for (var idxD in inDescriptors) { |
+ descriptor = inDescriptors[idxD]; |
+ assert(descriptor); // Enumeration should skip array holes. |
+ assert(descriptor.hand == hand); |
+ if (prevDescriptor) { |
+ outDescriptors.push(new EmptyHandDescriptor(prevDescriptor, descriptor, |
+ patternLength)); |
+ } |
+ outDescriptors.push(descriptor.clone()); |
+ prevDescriptor = descriptor; |
+ } |
+ // Note that this EmptyHandDescriptor that wraps around the end lives at the |
+ // end of the array, not the beginning, despite the fact that it may be the |
+ // active one at time zero. This is the same behavior as with Paths for |
+ // balls. |
+ descriptor = new EmptyHandDescriptor(prevDescriptor, outDescriptors[0], |
+ patternLength); |
+ if (descriptor.time < outDescriptors[0].time) { |
+ assert(descriptor.time + descriptor.duration == outDescriptors[0].time); |
+ outDescriptors.unshift(descriptor); |
+ } else { |
+ assert(descriptor.time == |
+ outDescriptors[outDescriptors.length - 1].time + 1); |
+ outDescriptors.push(descriptor); |
+ } |
+ handPaths[hand] = |
+ new Path(outDescriptors, patternLength).fixUpModPathLength(); |
+ } |
+ return handPaths; |
+} |
+ |
+// NOTE: All this Vector stuff does lots of object allocations. If that's a |
+// problem for your browser [e.g. IE6], you'd better stick with the embedded V8. |
+// This code predates the creation of o3djs/math.js; I should probably switch it |
+// over at some point, but for now it's not worth the trouble. |
+ |
+/** |
+ * A simple 3-dimensional vector. |
+ * @constructor |
+ */ |
+Vector = function(x, y, z) { |
+ this.x = x; |
+ this.y = y; |
+ this.z = z; |
+} |
+ |
+Vector.prototype.sub = function(v) { |
+ return new Vector(this.x - v.x, this.y - v.y, this.z - v.z); |
+}; |
+ |
+Vector.prototype.add = function(v) { |
+ return new Vector(this.x + v.x, this.y + v.y, this.z + v.z); |
+}; |
+ |
+Vector.prototype.dot = function(v) { |
+ return this.x * v.x + this.y * v.y + this.z * v.z; |
+}; |
+ |
+Vector.prototype.length = function() { |
+ return Math.sqrt(this.dot(this)); |
+}; |
+ |
+Vector.prototype.scale = function(s) { |
+ return new Vector(this.x * s, this.y * s, this.z * s); |
+}; |
+ |
+Vector.prototype.set = function(v) { |
+ this.x = v.x; |
+ this.y = v.y; |
+ this.z = v.z; |
+}; |
+ |
+Vector.prototype.normalize = function() { |
+ var length = this.length(); |
+ assert(length); |
+ this.set(this.scale(1 / length)); |
+ return this; |
+}; |
+ |
+/** |
+ * Convert the Vector to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+Vector.prototype.toString = function() { |
+ return '{' + this.x.toFixed(3) + ', ' + this.y.toFixed(3) + ', ' + |
+ this.z.toFixed(3) + '}'; |
+}; |
+ |
+/** |
+ * A container class that holds the positions relevant to a hand: where it is |
+ * when it's not doing anything, where it likes to catch balls, and where it |
+ * likes to throw balls to each of the other hands. |
+ * @param {!Vector} basePosition the centroid of throw and catch positions when |
+ * the hand throws to itself. |
+ * @param {!Vector} catchPosition where the hand likes to catch balls. |
+ * @constructor |
+ */ |
+HandPositionRecord = function(basePosition, catchPosition) { |
+ this.basePosition = basePosition; |
+ this.catchPosition = catchPosition; |
+ this.throwPositions = []; |
+} |
+ |
+/** |
+ * Convert the HandPositionRecord to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+HandPositionRecord.prototype.toString = function() { |
+ var s = 'base: ' + this.basePosition.toString() + ';\n'; |
+ s += 'catch: ' + this.catchPosition.toString() + ';\n'; |
+ s += 'throws:\n'; |
+ for (var i = 0; i < this.throwPositions.length; ++i) { |
+ s += '[' + i + '] ' + this.throwPositions[i].toString() + '\n'; |
+ } |
+ return s; |
+}; |
+ |
+/** |
+ * Compute all the hand positions used in a pattern given a number of hands and |
+ * a grouping style ["even" for evenly-spaced hands, "pairs" to group them in |
+ * pairs, as with 2-handed jugglers]. |
+ * @param {!number} numHands the number of hands to use. |
+ * @param {!String} style the grouping style. |
+ * @return {!Array.HandPositionRecord} a full set of hand positions. |
+ */ |
+function computeHandPositions(numHands, style) { |
+ assert(numHands > 0); |
+ var majorRadiusScale = 0.75; |
+ var majorRadius = majorRadiusScale * (numHands - 1); |
+ var throwCatchOffset = 0.45; |
+ var catchRadius = majorRadius + throwCatchOffset; |
+ var handPositionRecords = []; |
+ for (var hand = 0; hand < numHands; ++hand) { |
+ var circleFraction; |
+ if (style == 'even') { |
+ circleFraction = hand / numHands; |
+ } else { |
+ assert(style == 'pairs'); |
+ circleFraction = (hand + Math.floor(hand / 2)) / (1.5 * numHands); |
+ } |
+ var cos = Math.cos(Math.PI * 2 * circleFraction); |
+ var sin = Math.sin(Math.PI * 2 * circleFraction); |
+ var cX = catchRadius * cos; |
+ var cY = 0; |
+ var cZ = catchRadius * sin; |
+ var bX = majorRadius * cos; |
+ var bY = 0; |
+ var bZ = majorRadius * sin; |
+ handPositionRecords[hand] = new HandPositionRecord( |
+ new Vector(bX, bY, bZ), new Vector(cX, cY, cZ)); |
+ } |
+ // Now that we've got all the hands' base and catch positions, we need to |
+ // compute the appropriate throw positions for each hand pair. |
+ for (var source = 0; source < numHands; ++source) { |
+ var throwHand = handPositionRecords[source]; |
+ for (var target = 0; target < numHands; ++target) { |
+ var catchHand = handPositionRecords[target]; |
+ if (throwHand == catchHand) { |
+ var baseV = throwHand.basePosition; |
+ throwHand.throwPositions[target] = |
+ baseV.add(baseV.sub(throwHand.catchPosition)); |
+ } else { |
+ var directionV = |
+ catchHand.catchPosition.sub(throwHand.basePosition).normalize(); |
+ var offsetV = directionV.scale(throwCatchOffset); |
+ throwHand.throwPositions[target] = |
+ throwHand.basePosition.add(offsetV); |
+ } |
+ } |
+ } |
+ return handPositionRecords; |
+} |
+ |
+/** |
+ * Convert an array of HandPositionRecord to a string for debugging. |
+ * @param {!Array.HandPositionRecord} positions the positions to display. |
+ * @return {String} debugging output. |
+ */ |
+function getStringFromHandPositions(positions) { |
+ var s = ''; |
+ for (index in positions) { |
+ s += positions[index].toString(); |
+ } |
+ return s; |
+} |
+ |
+/** |
+ * The set of curves an object passes through throughout a full animation cycle. |
+ * @param {!number} duration the length of the animation in beats. |
+ * @param {!Array.Curve} curves the full set of Curves. |
+ * @constructor |
+ */ |
+CurveSet = function(duration, curves) { |
+ this.duration = duration; |
+ this.curves = curves; |
+} |
+ |
+/** |
+ * Looks up what curve is active at a particular time. This is slower than |
+ * getCurveForTime, but can be used even if no Curve starts precisely at |
+ * unsafeTime % this.duration. |
+ * @param {!number} unsafeTime the time at which to check. |
+ * @return {!Curve} the curve active at unsafeTime. |
+ */ |
+CurveSet.prototype.getCurveForUnsafeTime = function(unsafeTime) { |
+ unsafeTime %= this.duration; |
+ time = Math.floor(unsafeTime); |
+ if (this.curves[time]) { |
+ return this.curves[time]; |
+ } |
+ var curve; |
+ for (var i = time; i >= 0; --i) { |
+ curve = this.curves[i]; |
+ if (curve) { |
+ assert(i + curve.duration >= unsafeTime); |
+ return curve; |
+ } |
+ } |
+ // We must want the last one. There's always a last one, given how we |
+ // construct the CurveSets; they're sparse, but the length gets set by adding |
+ // elements at the end. |
+ curve = this.curves[this.curves.length - 1]; |
+ unsafeTime += this.duration; |
+ assert(curve.startTime <= unsafeTime); |
+ assert(curve.startTime + curve.duration > unsafeTime); |
+ return curve; |
+}; |
+ |
+/** |
+ * Looks up what curve is active at a particular time. This is faster than |
+ * getCurveForUnsafeTime, but can only be used if if a Curve starts precisely at |
+ * unsafeTime % this.duration. |
+ * @param {!number} time the time at which to check. |
+ * @return {!Curve} the curve starting at time. |
+ */ |
+CurveSet.prototype.getCurveForTime = function(time) { |
+ return this.curves[time % this.duration]; |
+}; |
+ |
+/** |
+ * Convert the CurveSet to a string for debugging. |
+ * @return {String} debugging output. |
+ */ |
+CurveSet.prototype.toString = function() { |
+ var s = 'Duration: ' + this.duration + '\n'; |
+ for (var c in this.curves) { |
+ s += this.curves[c].toString(); |
+ } |
+ return s; |
+}; |
+ |
+/** |
+ * Namespace object to hold the pure math functions. |
+ * TODO: Consider just rolling these into the Pattern object, when it gets |
+ * created. |
+ */ |
+var JugglingMath = {}; |
+ |
+/** |
+ * Computes the greatest common devisor of integers a and b. |
+ * @param {!number} a an integer. |
+ * @param {!number} b an integer. |
+ * @return {!number} the GCD of a and b. |
+ */ |
+JugglingMath.computeGCD = function(a, b) { |
+ assert(Math.round(a) == a); |
+ assert(Math.round(b) == b); |
+ assert(a >= 0); |
+ assert(b >= 0); |
+ if (!b) { |
+ return a; |
+ } else { |
+ return JugglingMath.computeGCD(b, a % b); |
+ } |
+} |
+ |
+/** |
+ * Computes the least common multiple of integers a and b, by making use of the |
+ * fact that LCM(a, b) * GCD(a, b) == a * b. |
+ * @param {!number} a an integer. |
+ * @param {!number} b an integer. |
+ * @return {!number} the LCM of a and b. |
+ */ |
+JugglingMath.computeLCM = function(a, b) { |
+ assert(Math.round(a) == a); |
+ assert(Math.round(b) == b); |
+ assert(a >= 0); |
+ assert(b >= 0); |
+ var ret = a * b / JugglingMath.computeGCD(a, b); |
+ assert(Math.round(ret) == ret); |
+ return ret; |
+} |
+ |
+/** |
+ * Given a Path and a set of hand positions, compute the corresponding set of |
+ * Curves. |
+ * @param {!Path} path the path of an object. |
+ * @param {!Array.HandPositionRecord} handPositions the positions of the hands |
+ * juggling the pattern containing the path. |
+ * @return {!CurveSet} the full set of curves. |
+ */ |
+CurveSet.getCurveSetFromPath = function(path, handPositions) { |
+ var curves = []; |
+ var pathLength = path.pathLength; |
+ for (var index in path.descriptors) { |
+ var descriptor = path.descriptors[index]; |
+ var curve = descriptor.generateCurve(handPositions); |
+ assert(!curves[curve.startTime]); |
+ assert(curve.startTime < pathLength); |
+ curves[curve.startTime] = curve; |
+ } |
+ return new CurveSet(pathLength, curves); |
+} |
+ |
+/** |
+ * Given a set of Paths and a set of hand positions, compute the corresponding |
+ * CurveSets. |
+ * @param {!Array.Path} paths the paths of a number of objects. |
+ * @param {!Array.HandPositionRecord} handPositions the positions of the hands |
+ * juggling the pattern containing the paths. |
+ * @return {!Array.CurveSet} the CurveSets. |
+ */ |
+CurveSet.getCurveSetsFromPaths = function(paths, handPositions) { |
+ var curveSets = []; |
+ for (var index in paths) { |
+ var path = paths[index]; |
+ curveSets[index] = CurveSet.getCurveSetFromPath(path, handPositions); |
+ } |
+ return curveSets; |
+} |
+ |
+/** |
+ * This is a temporary top-level calculation function that converts a standard |
+ * asynchronous siteswap, expressed as a string of digits, into a full |
+ * ready-to-animate set of CurveSets. Later on we'll be using an interface that |
+ * can create a richer set of patterns than those expressable in the traditional |
+ * string-of-ints format. |
+ * @param {!String} patternString the siteswap. |
+ * @param {!number} numHands the number of hands to use for the pattern. |
+ * @param {!String} style how to space the hands ["pairs" or "even"]. |
+ * @return {!Object} a fully-analyzed pattern as CurveSets and associated data. |
+ */ |
+function computeFullPatternFromString(patternString, numHands, style) { |
+ var patternAsStrings = patternString.split(/[ ,]+ */); |
+ var patternSegment = []; |
+ for (var index in patternAsStrings) { |
+ if (patternAsStrings[index]) { // Beware extra whitespace at the ends. |
+ patternSegment.push(parseInt(patternAsStrings[index])); |
+ } |
+ } |
+ var pattern = []; |
+ // Now expand the pattern out to the length of the LCM of pattern length and |
+ // number of hands, so that each throw gets done in each of its incarnations. |
+ var multiple = JugglingMath.computeLCM(patternSegment.length, numHands) / |
+ patternSegment.length; |
+ for (var i = 0; i < multiple; ++i) { |
+ pattern = pattern.concat(patternSegment); |
+ } |
+ |
+ var fullPattern = expandPattern(pattern, numHands); |
+ var patternLength = fullPattern[0].length; |
+ |
+ var ballPaths = generateBallPaths(fullPattern); |
+ var handPaths = generateHandPaths(ballPaths, numHands, patternLength); |
+ |
+ var handPositions = computeHandPositions(numHands, style); |
+ var ballCurveSets = CurveSet.getCurveSetsFromPaths(ballPaths, handPositions); |
+ var handCurveSets = CurveSet.getCurveSetsFromPaths(handPaths, handPositions); |
+ |
+ // Find the LCM of all the curveSet durations. This will be the length of the |
+ // fully-expanded queue. We could expand to this before computing the |
+ // CurveSets, but this way's probably just a little cheaper. |
+ var lcmDuration = 1; |
+ for (var i in ballCurveSets) { |
+ var duration = ballCurveSets[i].duration; |
+ if (duration > lcmDuration || lcmDuration % duration) { |
+ lcmDuration = JugglingMath.computeLCM(lcmDuration, duration); |
+ } |
+ } |
+ for (var i in handCurveSets) { |
+ var duration = handCurveSets[i].duration; |
+ if (duration > lcmDuration || lcmDuration % duration) { |
+ lcmDuration = JugglingMath.computeLCM(lcmDuration, duration); |
+ } |
+ } |
+ return { |
+ numBalls: ballPaths.length, |
+ numHands: handPaths.length, |
+ duration: lcmDuration, |
+ handCurveSets: handCurveSets, |
+ ballCurveSets: ballCurveSets |
+ } |
+} |