Index: src/data-flow.cc |
diff --git a/src/data-flow.cc b/src/data-flow.cc |
index 1bc77c033822fdc396f2f623e92a7dc17f83bc82..66e97d8bca15be53caa61b32d288f81cc924f4e2 100644 |
--- a/src/data-flow.cc |
+++ b/src/data-flow.cc |
@@ -28,7 +28,6 @@ |
#include "v8.h" |
#include "data-flow.h" |
-#include "flow-graph.h" |
#include "scopes.h" |
namespace v8 { |
@@ -621,21 +620,34 @@ void AssignedVariablesAnalyzer::VisitCatchExtensionObject( |
void AssignedVariablesAnalyzer::VisitAssignment(Assignment* expr) { |
ASSERT(av_.IsEmpty()); |
- if (expr->target()->AsProperty() != NULL) { |
- // Visit receiver and key of property store and rhs. |
- Visit(expr->target()->AsProperty()->obj()); |
- ProcessExpression(expr->target()->AsProperty()->key()); |
- ProcessExpression(expr->value()); |
+ // There are three kinds of assignments: variable assignments, property |
+ // assignments, and reference errors (invalid left-hand sides). |
+ Variable* var = expr->target()->AsVariableProxy()->AsVariable(); |
+ Property* prop = expr->target()->AsProperty(); |
+ ASSERT(var == NULL || prop == NULL); |
+ |
+ if (var != NULL) { |
+ MarkIfTrivial(expr->value()); |
+ Visit(expr->value()); |
+ if (expr->is_compound()) { |
+ // Left-hand side occurs also as an rvalue. |
+ MarkIfTrivial(expr->target()); |
+ ProcessExpression(expr->target()); |
+ } |
+ RecordAssignedVar(var); |
+ |
+ } else if (prop != NULL) { |
+ MarkIfTrivial(expr->value()); |
+ Visit(expr->value()); |
+ if (!prop->key()->IsPropertyName()) { |
+ MarkIfTrivial(prop->key()); |
+ ProcessExpression(prop->key()); |
+ } |
+ MarkIfTrivial(prop->obj()); |
+ ProcessExpression(prop->obj()); |
- // If we have a variable as a receiver in a property store, check if |
- // we can mark it as trivial. |
- MarkIfTrivial(expr->target()->AsProperty()->obj()); |
} else { |
Visit(expr->target()); |
- ProcessExpression(expr->value()); |
- |
- Variable* var = expr->target()->AsVariableProxy()->AsVariable(); |
- if (var != NULL) RecordAssignedVar(var); |
} |
} |
@@ -648,12 +660,12 @@ void AssignedVariablesAnalyzer::VisitThrow(Throw* expr) { |
void AssignedVariablesAnalyzer::VisitProperty(Property* expr) { |
ASSERT(av_.IsEmpty()); |
- Visit(expr->obj()); |
- ProcessExpression(expr->key()); |
- |
- // In case we have a variable as a receiver, check if we can mark |
- // it as trivial. |
+ if (!expr->key()->IsPropertyName()) { |
+ MarkIfTrivial(expr->key()); |
+ Visit(expr->key()); |
+ } |
MarkIfTrivial(expr->obj()); |
+ ProcessExpression(expr->key()); |
fschneider
2010/03/29 13:49:59
That should be
ProcessExpression(expr->obj());
Kevin Millikin (Chromium)
2010/03/29 14:22:53
Thank you.
|
} |
@@ -713,25 +725,19 @@ void AssignedVariablesAnalyzer::VisitCountOperation(CountOperation* expr) { |
void AssignedVariablesAnalyzer::VisitBinaryOperation(BinaryOperation* expr) { |
ASSERT(av_.IsEmpty()); |
- Visit(expr->left()); |
- |
- ProcessExpression(expr->right()); |
- |
- // In case we have a variable on the left side, check if we can mark |
- // it as trivial. |
+ MarkIfTrivial(expr->right()); |
+ Visit(expr->right()); |
MarkIfTrivial(expr->left()); |
+ ProcessExpression(expr->left()); |
} |
void AssignedVariablesAnalyzer::VisitCompareOperation(CompareOperation* expr) { |
ASSERT(av_.IsEmpty()); |
- Visit(expr->left()); |
- |
- ProcessExpression(expr->right()); |
- |
- // In case we have a variable on the left side, check if we can mark |
- // it as trivial. |
+ MarkIfTrivial(expr->right()); |
+ Visit(expr->right()); |
MarkIfTrivial(expr->left()); |
+ ProcessExpression(expr->left()); |
} |
@@ -746,802 +752,4 @@ void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) { |
} |
-int ReachingDefinitions::IndexFor(Variable* var, int variable_count) { |
- // Parameters are numbered left-to-right from the beginning of the bit |
- // set. Stack-allocated locals are allocated right-to-left from the end. |
- ASSERT(var != NULL && var->IsStackAllocated()); |
- Slot* slot = var->slot(); |
- if (slot->type() == Slot::PARAMETER) { |
- return slot->index(); |
- } else { |
- return (variable_count - 1) - slot->index(); |
- } |
-} |
- |
- |
-void Node::InitializeReachingDefinitions(int definition_count, |
- List<BitVector*>* variables, |
- WorkList<Node>* worklist, |
- bool mark) { |
- ASSERT(!IsMarkedWith(mark)); |
- rd_.Initialize(definition_count); |
- MarkWith(mark); |
- worklist->Insert(this); |
-} |
- |
- |
-void BlockNode::InitializeReachingDefinitions(int definition_count, |
- List<BitVector*>* variables, |
- WorkList<Node>* worklist, |
- bool mark) { |
- ASSERT(!IsMarkedWith(mark)); |
- int instruction_count = instructions_.length(); |
- int variable_count = variables->length(); |
- |
- rd_.Initialize(definition_count); |
- // The RD_in set for the entry node has a definition for each parameter |
- // and local. |
- if (predecessor_ == NULL) { |
- for (int i = 0; i < variable_count; i++) rd_.rd_in()->Add(i); |
- } |
- |
- for (int i = 0; i < instruction_count; i++) { |
- Expression* expr = instructions_[i]->AsExpression(); |
- if (expr == NULL) continue; |
- Variable* var = expr->AssignedVariable(); |
- if (var == NULL || !var->IsStackAllocated()) continue; |
- |
- // All definitions of this variable are killed. |
- BitVector* def_set = |
- variables->at(ReachingDefinitions::IndexFor(var, variable_count)); |
- rd_.kill()->Union(*def_set); |
- |
- // All previously generated definitions are not generated. |
- rd_.gen()->Subtract(*def_set); |
- |
- // This one is generated. |
- rd_.gen()->Add(expr->num()); |
- } |
- |
- // Add all blocks except the entry node to the worklist. |
- if (predecessor_ != NULL) { |
- MarkWith(mark); |
- worklist->Insert(this); |
- } |
-} |
- |
- |
-void ExitNode::ComputeRDOut(BitVector* result) { |
- // Should not be the predecessor of any node. |
- UNREACHABLE(); |
-} |
- |
- |
-void BlockNode::ComputeRDOut(BitVector* result) { |
- // All definitions reaching this block ... |
- *result = *rd_.rd_in(); |
- // ... except those killed by the block ... |
- result->Subtract(*rd_.kill()); |
- // ... but including those generated by the block. |
- result->Union(*rd_.gen()); |
-} |
- |
- |
-void BranchNode::ComputeRDOut(BitVector* result) { |
- // Branch nodes don't kill or generate definitions. |
- *result = *rd_.rd_in(); |
-} |
- |
- |
-void JoinNode::ComputeRDOut(BitVector* result) { |
- // Join nodes don't kill or generate definitions. |
- *result = *rd_.rd_in(); |
-} |
- |
- |
-void ExitNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) { |
- // The exit node has no successors so we can just update in place. New |
- // RD_in is the union over all predecessors. |
- int definition_count = rd_.rd_in()->length(); |
- rd_.rd_in()->Clear(); |
- |
- BitVector temp(definition_count); |
- for (int i = 0, len = predecessors_.length(); i < len; i++) { |
- // Because ComputeRDOut always overwrites temp and its value is |
- // always read out before calling ComputeRDOut again, we do not |
- // have to clear it on each iteration of the loop. |
- predecessors_[i]->ComputeRDOut(&temp); |
- rd_.rd_in()->Union(temp); |
- } |
-} |
- |
- |
-void BlockNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) { |
- // The entry block has no predecessor. Its RD_in does not change. |
- if (predecessor_ == NULL) return; |
- |
- BitVector new_rd_in(rd_.rd_in()->length()); |
- predecessor_->ComputeRDOut(&new_rd_in); |
- |
- if (rd_.rd_in()->Equals(new_rd_in)) return; |
- |
- // Update RD_in. |
- *rd_.rd_in() = new_rd_in; |
- // Add the successor to the worklist if not already present. |
- if (!successor_->IsMarkedWith(mark)) { |
- successor_->MarkWith(mark); |
- worklist->Insert(successor_); |
- } |
-} |
- |
- |
-void BranchNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) { |
- BitVector new_rd_in(rd_.rd_in()->length()); |
- predecessor_->ComputeRDOut(&new_rd_in); |
- |
- if (rd_.rd_in()->Equals(new_rd_in)) return; |
- |
- // Update RD_in. |
- *rd_.rd_in() = new_rd_in; |
- // Add the successors to the worklist if not already present. |
- if (!successor0_->IsMarkedWith(mark)) { |
- successor0_->MarkWith(mark); |
- worklist->Insert(successor0_); |
- } |
- if (!successor1_->IsMarkedWith(mark)) { |
- successor1_->MarkWith(mark); |
- worklist->Insert(successor1_); |
- } |
-} |
- |
- |
-void JoinNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) { |
- int definition_count = rd_.rd_in()->length(); |
- BitVector new_rd_in(definition_count); |
- |
- // New RD_in is the union over all predecessors. |
- BitVector temp(definition_count); |
- for (int i = 0, len = predecessors_.length(); i < len; i++) { |
- predecessors_[i]->ComputeRDOut(&temp); |
- new_rd_in.Union(temp); |
- } |
- |
- if (rd_.rd_in()->Equals(new_rd_in)) return; |
- |
- // Update RD_in. |
- *rd_.rd_in() = new_rd_in; |
- // Add the successor to the worklist if not already present. |
- if (!successor_->IsMarkedWith(mark)) { |
- successor_->MarkWith(mark); |
- worklist->Insert(successor_); |
- } |
-} |
- |
- |
-void Node::PropagateReachingDefinitions(List<BitVector*>* variables) { |
- // Nothing to do. |
-} |
- |
- |
-void BlockNode::PropagateReachingDefinitions(List<BitVector*>* variables) { |
- // Propagate RD_in from the start of the block to all the variable |
- // references. |
- int variable_count = variables->length(); |
- BitVector rd = *rd_.rd_in(); |
- for (int i = 0, len = instructions_.length(); i < len; i++) { |
- Expression* expr = instructions_[i]->AsExpression(); |
- if (expr == NULL) continue; |
- |
- // Look for a variable reference to record its reaching definitions. |
- VariableProxy* proxy = expr->AsVariableProxy(); |
- if (proxy == NULL) { |
- // Not a VariableProxy? Maybe it's a count operation. |
- CountOperation* count_operation = expr->AsCountOperation(); |
- if (count_operation != NULL) { |
- proxy = count_operation->expression()->AsVariableProxy(); |
- } |
- } |
- if (proxy == NULL) { |
- // OK, Maybe it's a compound assignment. |
- Assignment* assignment = expr->AsAssignment(); |
- if (assignment != NULL && assignment->is_compound()) { |
- proxy = assignment->target()->AsVariableProxy(); |
- } |
- } |
- |
- if (proxy != NULL && |
- proxy->var()->IsStackAllocated() && |
- !proxy->var()->is_this()) { |
- // All definitions for this variable. |
- BitVector* definitions = |
- variables->at(ReachingDefinitions::IndexFor(proxy->var(), |
- variable_count)); |
- BitVector* reaching_definitions = new BitVector(*definitions); |
- // Intersected with all definitions (of any variable) reaching this |
- // instruction. |
- reaching_definitions->Intersect(rd); |
- proxy->set_reaching_definitions(reaching_definitions); |
- } |
- |
- // It may instead (or also) be a definition. If so update the running |
- // value of reaching definitions for the block. |
- Variable* var = expr->AssignedVariable(); |
- if (var == NULL || !var->IsStackAllocated()) continue; |
- |
- // All definitions of this variable are killed. |
- BitVector* def_set = |
- variables->at(ReachingDefinitions::IndexFor(var, variable_count)); |
- rd.Subtract(*def_set); |
- // This definition is generated. |
- rd.Add(expr->num()); |
- } |
-} |
- |
- |
-void ReachingDefinitions::Compute() { |
- // The definitions in the body plus an implicit definition for each |
- // variable at function entry. |
- int definition_count = body_definitions_->length() + variable_count_; |
- int node_count = postorder_->length(); |
- |
- // Step 1: For each stack-allocated variable, identify the set of all its |
- // definitions. |
- List<BitVector*> variables; |
- for (int i = 0; i < variable_count_; i++) { |
- // Add the initial definition for each variable. |
- BitVector* initial = new BitVector(definition_count); |
- initial->Add(i); |
- variables.Add(initial); |
- } |
- for (int i = 0, len = body_definitions_->length(); i < len; i++) { |
- // Account for each definition in the body as a definition of the |
- // defined variable. |
- Variable* var = body_definitions_->at(i)->AssignedVariable(); |
- variables[IndexFor(var, variable_count_)]->Add(i + variable_count_); |
- } |
- |
- // Step 2: Compute KILL and GEN for each block node, initialize RD_in for |
- // all nodes, and mark and add all nodes to the worklist in reverse |
- // postorder. All nodes should currently have the same mark. |
- bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current. |
- WorkList<Node> worklist(node_count); |
- for (int i = node_count - 1; i >= 0; i--) { |
- postorder_->at(i)->InitializeReachingDefinitions(definition_count, |
- &variables, |
- &worklist, |
- mark); |
- } |
- |
- // Step 3: Until the worklist is empty, remove an item compute and update |
- // its rd_in based on its predecessor's rd_out. If rd_in has changed, add |
- // all necessary successors to the worklist. |
- while (!worklist.is_empty()) { |
- Node* node = worklist.Remove(); |
- node->MarkWith(!mark); |
- node->UpdateRDIn(&worklist, mark); |
- } |
- |
- // Step 4: Based on RD_in for block nodes, propagate reaching definitions |
- // to all variable uses in the block. |
- for (int i = 0; i < node_count; i++) { |
- postorder_->at(i)->PropagateReachingDefinitions(&variables); |
- } |
-} |
- |
- |
-bool TypeAnalyzer::IsPrimitiveDef(int def_num) { |
- if (def_num < param_count_) return false; |
- if (def_num < variable_count_) return true; |
- return body_definitions_->at(def_num - variable_count_)->IsPrimitive(); |
-} |
- |
- |
-void TypeAnalyzer::Compute() { |
- bool changed; |
- int count = 0; |
- |
- do { |
- changed = false; |
- |
- if (FLAG_print_graph_text) { |
- PrintF("TypeAnalyzer::Compute - iteration %d\n", count++); |
- } |
- |
- for (int i = postorder_->length() - 1; i >= 0; --i) { |
- Node* node = postorder_->at(i); |
- if (node->IsBlockNode()) { |
- BlockNode* block = BlockNode::cast(node); |
- for (int j = 0; j < block->instructions()->length(); j++) { |
- Expression* expr = block->instructions()->at(j)->AsExpression(); |
- if (expr != NULL) { |
- // For variable uses: Compute new type from reaching definitions. |
- VariableProxy* proxy = expr->AsVariableProxy(); |
- if (proxy != NULL && proxy->reaching_definitions() != NULL) { |
- BitVector* rd = proxy->reaching_definitions(); |
- bool prim_type = true; |
- // TODO(fsc): A sparse set representation of reaching |
- // definitions would speed up iterating here. |
- for (int k = 0; k < rd->length(); k++) { |
- if (rd->Contains(k) && !IsPrimitiveDef(k)) { |
- prim_type = false; |
- break; |
- } |
- } |
- // Reset changed flag if new type information was computed. |
- if (prim_type != proxy->IsPrimitive()) { |
- changed = true; |
- proxy->SetIsPrimitive(prim_type); |
- } |
- } |
- } |
- } |
- } |
- } |
- } while (changed); |
-} |
- |
- |
-void Node::MarkCriticalInstructions( |
- List<AstNode*>* stack, |
- ZoneList<Expression*>* body_definitions, |
- int variable_count) { |
-} |
- |
- |
-void BlockNode::MarkCriticalInstructions( |
- List<AstNode*>* stack, |
- ZoneList<Expression*>* body_definitions, |
- int variable_count) { |
- for (int i = instructions_.length() - 1; i >= 0; i--) { |
- // Only expressions can appear in the flow graph for now. |
- Expression* expr = instructions_[i]->AsExpression(); |
- if (expr != NULL && !expr->is_live() && |
- (expr->is_loop_condition() || expr->IsCritical())) { |
- expr->mark_as_live(); |
- expr->ProcessNonLiveChildren(stack, body_definitions, variable_count); |
- } |
- } |
-} |
- |
- |
-void MarkLiveCode(ZoneList<Node*>* nodes, |
- ZoneList<Expression*>* body_definitions, |
- int variable_count) { |
- List<AstNode*> stack(20); |
- |
- // Mark the critical AST nodes as live; mark their dependencies and |
- // add them to the marking stack. |
- for (int i = nodes->length() - 1; i >= 0; i--) { |
- nodes->at(i)->MarkCriticalInstructions(&stack, body_definitions, |
- variable_count); |
- } |
- |
- // Continue marking dependencies until no more. |
- while (!stack.is_empty()) { |
- // Only expressions can appear in the flow graph for now. |
- Expression* expr = stack.RemoveLast()->AsExpression(); |
- if (expr != NULL) { |
- expr->ProcessNonLiveChildren(&stack, body_definitions, variable_count); |
- } |
- } |
-} |
- |
- |
-#ifdef DEBUG |
- |
-// Print a textual representation of an instruction in a flow graph. Using |
-// the AstVisitor is overkill because there is no recursion here. It is |
-// only used for printing in debug mode. |
-class TextInstructionPrinter: public AstVisitor { |
- public: |
- TextInstructionPrinter() : number_(0) {} |
- |
- int NextNumber() { return number_; } |
- void AssignNumber(AstNode* node) { node->set_num(number_++); } |
- |
- private: |
- // AST node visit functions. |
-#define DECLARE_VISIT(type) virtual void Visit##type(type* node); |
- AST_NODE_LIST(DECLARE_VISIT) |
-#undef DECLARE_VISIT |
- |
- int number_; |
- |
- DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter); |
-}; |
- |
- |
-void TextInstructionPrinter::VisitDeclaration(Declaration* decl) { |
- UNREACHABLE(); |
-} |
- |
- |
-void TextInstructionPrinter::VisitBlock(Block* stmt) { |
- PrintF("Block"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitExpressionStatement( |
- ExpressionStatement* stmt) { |
- PrintF("ExpressionStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) { |
- PrintF("EmptyStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) { |
- PrintF("IfStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) { |
- UNREACHABLE(); |
-} |
- |
- |
-void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) { |
- UNREACHABLE(); |
-} |
- |
- |
-void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) { |
- PrintF("return @%d", stmt->expression()->num()); |
-} |
- |
- |
-void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) { |
- PrintF("WithEnterStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) { |
- PrintF("WithExitStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) { |
- UNREACHABLE(); |
-} |
- |
- |
-void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) { |
- PrintF("DoWhileStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) { |
- PrintF("WhileStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) { |
- PrintF("ForStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) { |
- PrintF("ForInStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) { |
- UNREACHABLE(); |
-} |
- |
- |
-void TextInstructionPrinter::VisitTryFinallyStatement( |
- TryFinallyStatement* stmt) { |
- UNREACHABLE(); |
-} |
- |
- |
-void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) { |
- PrintF("DebuggerStatement"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) { |
- PrintF("FunctionLiteral"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitSharedFunctionInfoLiteral( |
- SharedFunctionInfoLiteral* expr) { |
- PrintF("SharedFunctionInfoLiteral"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitConditional(Conditional* expr) { |
- PrintF("Conditional"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitSlot(Slot* expr) { |
- UNREACHABLE(); |
-} |
- |
- |
-void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) { |
- Variable* var = expr->AsVariable(); |
- if (var != NULL) { |
- PrintF("%s", *var->name()->ToCString()); |
- if (var->IsStackAllocated() && expr->reaching_definitions() != NULL) { |
- expr->reaching_definitions()->Print(); |
- } |
- } else { |
- ASSERT(expr->AsProperty() != NULL); |
- VisitProperty(expr->AsProperty()); |
- } |
-} |
- |
- |
-void TextInstructionPrinter::VisitLiteral(Literal* expr) { |
- expr->handle()->ShortPrint(); |
-} |
- |
- |
-void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) { |
- PrintF("RegExpLiteral"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) { |
- PrintF("ObjectLiteral"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) { |
- PrintF("ArrayLiteral"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitCatchExtensionObject( |
- CatchExtensionObject* expr) { |
- PrintF("CatchExtensionObject"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitAssignment(Assignment* expr) { |
- Variable* var = expr->target()->AsVariableProxy()->AsVariable(); |
- Property* prop = expr->target()->AsProperty(); |
- |
- if (var == NULL && prop == NULL) { |
- // Throw reference error. |
- Visit(expr->target()); |
- return; |
- } |
- |
- // Print the left-hand side. |
- if (var != NULL) { |
- PrintF("%s", *var->name()->ToCString()); |
- } else if (prop != NULL) { |
- PrintF("@%d", prop->obj()->num()); |
- if (prop->key()->IsPropertyName()) { |
- PrintF("."); |
- ASSERT(prop->key()->AsLiteral() != NULL); |
- prop->key()->AsLiteral()->handle()->Print(); |
- } else { |
- PrintF("[@%d]", prop->key()->num()); |
- } |
- } |
- |
- // Print the operation. |
- if (expr->is_compound()) { |
- PrintF(" = "); |
- // Print the left-hand side again when compound. |
- if (var != NULL) { |
- PrintF("@%d", expr->target()->num()); |
- } else { |
- PrintF("@%d", prop->obj()->num()); |
- if (prop->key()->IsPropertyName()) { |
- PrintF("."); |
- ASSERT(prop->key()->AsLiteral() != NULL); |
- prop->key()->AsLiteral()->handle()->Print(); |
- } else { |
- PrintF("[@%d]", prop->key()->num()); |
- } |
- } |
- // Print the corresponding binary operator. |
- PrintF(" %s ", Token::String(expr->binary_op())); |
- } else { |
- PrintF(" %s ", Token::String(expr->op())); |
- } |
- |
- // Print the right-hand side. |
- PrintF("@%d", expr->value()->num()); |
- |
- if (expr->num() != AstNode::kNoNumber) { |
- PrintF(" ;; D%d", expr->num()); |
- } |
-} |
- |
- |
-void TextInstructionPrinter::VisitThrow(Throw* expr) { |
- PrintF("throw @%d", expr->exception()->num()); |
-} |
- |
- |
-void TextInstructionPrinter::VisitProperty(Property* expr) { |
- if (expr->key()->IsPropertyName()) { |
- PrintF("@%d.", expr->obj()->num()); |
- ASSERT(expr->key()->AsLiteral() != NULL); |
- expr->key()->AsLiteral()->handle()->Print(); |
- } else { |
- PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num()); |
- } |
-} |
- |
- |
-void TextInstructionPrinter::VisitCall(Call* expr) { |
- PrintF("@%d(", expr->expression()->num()); |
- ZoneList<Expression*>* arguments = expr->arguments(); |
- for (int i = 0, len = arguments->length(); i < len; i++) { |
- if (i != 0) PrintF(", "); |
- PrintF("@%d", arguments->at(i)->num()); |
- } |
- PrintF(")"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitCallNew(CallNew* expr) { |
- PrintF("new @%d(", expr->expression()->num()); |
- ZoneList<Expression*>* arguments = expr->arguments(); |
- for (int i = 0, len = arguments->length(); i < len; i++) { |
- if (i != 0) PrintF(", "); |
- PrintF("@%d", arguments->at(i)->num()); |
- } |
- PrintF(")"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) { |
- PrintF("%s(", *expr->name()->ToCString()); |
- ZoneList<Expression*>* arguments = expr->arguments(); |
- for (int i = 0, len = arguments->length(); i < len; i++) { |
- if (i != 0) PrintF(", "); |
- PrintF("@%d", arguments->at(i)->num()); |
- } |
- PrintF(")"); |
-} |
- |
- |
-void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) { |
- PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num()); |
-} |
- |
- |
-void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) { |
- if (expr->is_prefix()) { |
- PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num()); |
- } else { |
- PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op())); |
- } |
- |
- if (expr->num() != AstNode::kNoNumber) { |
- PrintF(" ;; D%d", expr->num()); |
- } |
-} |
- |
- |
-void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) { |
- ASSERT(expr->op() != Token::COMMA); |
- ASSERT(expr->op() != Token::OR); |
- ASSERT(expr->op() != Token::AND); |
- PrintF("@%d %s @%d", |
- expr->left()->num(), |
- Token::String(expr->op()), |
- expr->right()->num()); |
-} |
- |
- |
-void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) { |
- PrintF("@%d %s @%d", |
- expr->left()->num(), |
- Token::String(expr->op()), |
- expr->right()->num()); |
-} |
- |
- |
-void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) { |
- PrintF("ThisFunction"); |
-} |
- |
- |
-static int node_count = 0; |
-static int instruction_count = 0; |
- |
- |
-void Node::AssignNodeNumber() { |
- set_number(node_count++); |
-} |
- |
- |
-void Node::PrintReachingDefinitions() { |
- if (rd_.rd_in() != NULL) { |
- ASSERT(rd_.kill() != NULL && rd_.gen() != NULL); |
- |
- PrintF("RD_in = "); |
- rd_.rd_in()->Print(); |
- PrintF("\n"); |
- |
- PrintF("RD_kill = "); |
- rd_.kill()->Print(); |
- PrintF("\n"); |
- |
- PrintF("RD_gen = "); |
- rd_.gen()->Print(); |
- PrintF("\n"); |
- } |
-} |
- |
- |
-void ExitNode::PrintText() { |
- PrintReachingDefinitions(); |
- PrintF("L%d: Exit\n\n", number()); |
-} |
- |
- |
-void BlockNode::PrintText() { |
- PrintReachingDefinitions(); |
- // Print the instructions in the block. |
- PrintF("L%d: Block\n", number()); |
- TextInstructionPrinter printer; |
- for (int i = 0, len = instructions_.length(); i < len; i++) { |
- AstNode* instr = instructions_[i]; |
- // Print a star next to dead instructions. |
- if (instr->AsExpression() != NULL && instr->AsExpression()->is_live()) { |
- PrintF(" "); |
- } else { |
- PrintF("* "); |
- } |
- PrintF("%d ", printer.NextNumber()); |
- printer.Visit(instr); |
- printer.AssignNumber(instr); |
- PrintF("\n"); |
- } |
- PrintF("goto L%d\n\n", successor_->number()); |
-} |
- |
- |
-void BranchNode::PrintText() { |
- PrintReachingDefinitions(); |
- PrintF("L%d: Branch\n", number()); |
- PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number()); |
-} |
- |
- |
-void JoinNode::PrintText() { |
- PrintReachingDefinitions(); |
- PrintF("L%d: Join(", number()); |
- for (int i = 0, len = predecessors_.length(); i < len; i++) { |
- if (i != 0) PrintF(", "); |
- PrintF("L%d", predecessors_[i]->number()); |
- } |
- PrintF(")\ngoto L%d\n\n", successor_->number()); |
-} |
- |
- |
-void FlowGraph::PrintText(FunctionLiteral* fun, ZoneList<Node*>* postorder) { |
- PrintF("\n========\n"); |
- PrintF("name = %s\n", *fun->name()->ToCString()); |
- |
- // Number nodes and instructions in reverse postorder. |
- node_count = 0; |
- instruction_count = 0; |
- for (int i = postorder->length() - 1; i >= 0; i--) { |
- postorder->at(i)->AssignNodeNumber(); |
- } |
- |
- // Print basic blocks in reverse postorder. |
- for (int i = postorder->length() - 1; i >= 0; i--) { |
- postorder->at(i)->PrintText(); |
- } |
-} |
- |
-#endif // DEBUG |
- |
- |
} } // namespace v8::internal |