Chromium Code Reviews| Index: src/data-flow.cc |
| diff --git a/src/data-flow.cc b/src/data-flow.cc |
| index 1bc77c033822fdc396f2f623e92a7dc17f83bc82..66e97d8bca15be53caa61b32d288f81cc924f4e2 100644 |
| --- a/src/data-flow.cc |
| +++ b/src/data-flow.cc |
| @@ -28,7 +28,6 @@ |
| #include "v8.h" |
| #include "data-flow.h" |
| -#include "flow-graph.h" |
| #include "scopes.h" |
| namespace v8 { |
| @@ -621,21 +620,34 @@ void AssignedVariablesAnalyzer::VisitCatchExtensionObject( |
| void AssignedVariablesAnalyzer::VisitAssignment(Assignment* expr) { |
| ASSERT(av_.IsEmpty()); |
| - if (expr->target()->AsProperty() != NULL) { |
| - // Visit receiver and key of property store and rhs. |
| - Visit(expr->target()->AsProperty()->obj()); |
| - ProcessExpression(expr->target()->AsProperty()->key()); |
| - ProcessExpression(expr->value()); |
| + // There are three kinds of assignments: variable assignments, property |
| + // assignments, and reference errors (invalid left-hand sides). |
| + Variable* var = expr->target()->AsVariableProxy()->AsVariable(); |
| + Property* prop = expr->target()->AsProperty(); |
| + ASSERT(var == NULL || prop == NULL); |
| + |
| + if (var != NULL) { |
| + MarkIfTrivial(expr->value()); |
| + Visit(expr->value()); |
| + if (expr->is_compound()) { |
| + // Left-hand side occurs also as an rvalue. |
| + MarkIfTrivial(expr->target()); |
| + ProcessExpression(expr->target()); |
| + } |
| + RecordAssignedVar(var); |
| + |
| + } else if (prop != NULL) { |
| + MarkIfTrivial(expr->value()); |
| + Visit(expr->value()); |
| + if (!prop->key()->IsPropertyName()) { |
| + MarkIfTrivial(prop->key()); |
| + ProcessExpression(prop->key()); |
| + } |
| + MarkIfTrivial(prop->obj()); |
| + ProcessExpression(prop->obj()); |
| - // If we have a variable as a receiver in a property store, check if |
| - // we can mark it as trivial. |
| - MarkIfTrivial(expr->target()->AsProperty()->obj()); |
| } else { |
| Visit(expr->target()); |
| - ProcessExpression(expr->value()); |
| - |
| - Variable* var = expr->target()->AsVariableProxy()->AsVariable(); |
| - if (var != NULL) RecordAssignedVar(var); |
| } |
| } |
| @@ -648,12 +660,12 @@ void AssignedVariablesAnalyzer::VisitThrow(Throw* expr) { |
| void AssignedVariablesAnalyzer::VisitProperty(Property* expr) { |
| ASSERT(av_.IsEmpty()); |
| - Visit(expr->obj()); |
| - ProcessExpression(expr->key()); |
| - |
| - // In case we have a variable as a receiver, check if we can mark |
| - // it as trivial. |
| + if (!expr->key()->IsPropertyName()) { |
| + MarkIfTrivial(expr->key()); |
| + Visit(expr->key()); |
| + } |
| MarkIfTrivial(expr->obj()); |
| + ProcessExpression(expr->key()); |
|
fschneider
2010/03/29 13:49:59
That should be
ProcessExpression(expr->obj());
Kevin Millikin (Chromium)
2010/03/29 14:22:53
Thank you.
|
| } |
| @@ -713,25 +725,19 @@ void AssignedVariablesAnalyzer::VisitCountOperation(CountOperation* expr) { |
| void AssignedVariablesAnalyzer::VisitBinaryOperation(BinaryOperation* expr) { |
| ASSERT(av_.IsEmpty()); |
| - Visit(expr->left()); |
| - |
| - ProcessExpression(expr->right()); |
| - |
| - // In case we have a variable on the left side, check if we can mark |
| - // it as trivial. |
| + MarkIfTrivial(expr->right()); |
| + Visit(expr->right()); |
| MarkIfTrivial(expr->left()); |
| + ProcessExpression(expr->left()); |
| } |
| void AssignedVariablesAnalyzer::VisitCompareOperation(CompareOperation* expr) { |
| ASSERT(av_.IsEmpty()); |
| - Visit(expr->left()); |
| - |
| - ProcessExpression(expr->right()); |
| - |
| - // In case we have a variable on the left side, check if we can mark |
| - // it as trivial. |
| + MarkIfTrivial(expr->right()); |
| + Visit(expr->right()); |
| MarkIfTrivial(expr->left()); |
| + ProcessExpression(expr->left()); |
| } |
| @@ -746,802 +752,4 @@ void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) { |
| } |
| -int ReachingDefinitions::IndexFor(Variable* var, int variable_count) { |
| - // Parameters are numbered left-to-right from the beginning of the bit |
| - // set. Stack-allocated locals are allocated right-to-left from the end. |
| - ASSERT(var != NULL && var->IsStackAllocated()); |
| - Slot* slot = var->slot(); |
| - if (slot->type() == Slot::PARAMETER) { |
| - return slot->index(); |
| - } else { |
| - return (variable_count - 1) - slot->index(); |
| - } |
| -} |
| - |
| - |
| -void Node::InitializeReachingDefinitions(int definition_count, |
| - List<BitVector*>* variables, |
| - WorkList<Node>* worklist, |
| - bool mark) { |
| - ASSERT(!IsMarkedWith(mark)); |
| - rd_.Initialize(definition_count); |
| - MarkWith(mark); |
| - worklist->Insert(this); |
| -} |
| - |
| - |
| -void BlockNode::InitializeReachingDefinitions(int definition_count, |
| - List<BitVector*>* variables, |
| - WorkList<Node>* worklist, |
| - bool mark) { |
| - ASSERT(!IsMarkedWith(mark)); |
| - int instruction_count = instructions_.length(); |
| - int variable_count = variables->length(); |
| - |
| - rd_.Initialize(definition_count); |
| - // The RD_in set for the entry node has a definition for each parameter |
| - // and local. |
| - if (predecessor_ == NULL) { |
| - for (int i = 0; i < variable_count; i++) rd_.rd_in()->Add(i); |
| - } |
| - |
| - for (int i = 0; i < instruction_count; i++) { |
| - Expression* expr = instructions_[i]->AsExpression(); |
| - if (expr == NULL) continue; |
| - Variable* var = expr->AssignedVariable(); |
| - if (var == NULL || !var->IsStackAllocated()) continue; |
| - |
| - // All definitions of this variable are killed. |
| - BitVector* def_set = |
| - variables->at(ReachingDefinitions::IndexFor(var, variable_count)); |
| - rd_.kill()->Union(*def_set); |
| - |
| - // All previously generated definitions are not generated. |
| - rd_.gen()->Subtract(*def_set); |
| - |
| - // This one is generated. |
| - rd_.gen()->Add(expr->num()); |
| - } |
| - |
| - // Add all blocks except the entry node to the worklist. |
| - if (predecessor_ != NULL) { |
| - MarkWith(mark); |
| - worklist->Insert(this); |
| - } |
| -} |
| - |
| - |
| -void ExitNode::ComputeRDOut(BitVector* result) { |
| - // Should not be the predecessor of any node. |
| - UNREACHABLE(); |
| -} |
| - |
| - |
| -void BlockNode::ComputeRDOut(BitVector* result) { |
| - // All definitions reaching this block ... |
| - *result = *rd_.rd_in(); |
| - // ... except those killed by the block ... |
| - result->Subtract(*rd_.kill()); |
| - // ... but including those generated by the block. |
| - result->Union(*rd_.gen()); |
| -} |
| - |
| - |
| -void BranchNode::ComputeRDOut(BitVector* result) { |
| - // Branch nodes don't kill or generate definitions. |
| - *result = *rd_.rd_in(); |
| -} |
| - |
| - |
| -void JoinNode::ComputeRDOut(BitVector* result) { |
| - // Join nodes don't kill or generate definitions. |
| - *result = *rd_.rd_in(); |
| -} |
| - |
| - |
| -void ExitNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) { |
| - // The exit node has no successors so we can just update in place. New |
| - // RD_in is the union over all predecessors. |
| - int definition_count = rd_.rd_in()->length(); |
| - rd_.rd_in()->Clear(); |
| - |
| - BitVector temp(definition_count); |
| - for (int i = 0, len = predecessors_.length(); i < len; i++) { |
| - // Because ComputeRDOut always overwrites temp and its value is |
| - // always read out before calling ComputeRDOut again, we do not |
| - // have to clear it on each iteration of the loop. |
| - predecessors_[i]->ComputeRDOut(&temp); |
| - rd_.rd_in()->Union(temp); |
| - } |
| -} |
| - |
| - |
| -void BlockNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) { |
| - // The entry block has no predecessor. Its RD_in does not change. |
| - if (predecessor_ == NULL) return; |
| - |
| - BitVector new_rd_in(rd_.rd_in()->length()); |
| - predecessor_->ComputeRDOut(&new_rd_in); |
| - |
| - if (rd_.rd_in()->Equals(new_rd_in)) return; |
| - |
| - // Update RD_in. |
| - *rd_.rd_in() = new_rd_in; |
| - // Add the successor to the worklist if not already present. |
| - if (!successor_->IsMarkedWith(mark)) { |
| - successor_->MarkWith(mark); |
| - worklist->Insert(successor_); |
| - } |
| -} |
| - |
| - |
| -void BranchNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) { |
| - BitVector new_rd_in(rd_.rd_in()->length()); |
| - predecessor_->ComputeRDOut(&new_rd_in); |
| - |
| - if (rd_.rd_in()->Equals(new_rd_in)) return; |
| - |
| - // Update RD_in. |
| - *rd_.rd_in() = new_rd_in; |
| - // Add the successors to the worklist if not already present. |
| - if (!successor0_->IsMarkedWith(mark)) { |
| - successor0_->MarkWith(mark); |
| - worklist->Insert(successor0_); |
| - } |
| - if (!successor1_->IsMarkedWith(mark)) { |
| - successor1_->MarkWith(mark); |
| - worklist->Insert(successor1_); |
| - } |
| -} |
| - |
| - |
| -void JoinNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) { |
| - int definition_count = rd_.rd_in()->length(); |
| - BitVector new_rd_in(definition_count); |
| - |
| - // New RD_in is the union over all predecessors. |
| - BitVector temp(definition_count); |
| - for (int i = 0, len = predecessors_.length(); i < len; i++) { |
| - predecessors_[i]->ComputeRDOut(&temp); |
| - new_rd_in.Union(temp); |
| - } |
| - |
| - if (rd_.rd_in()->Equals(new_rd_in)) return; |
| - |
| - // Update RD_in. |
| - *rd_.rd_in() = new_rd_in; |
| - // Add the successor to the worklist if not already present. |
| - if (!successor_->IsMarkedWith(mark)) { |
| - successor_->MarkWith(mark); |
| - worklist->Insert(successor_); |
| - } |
| -} |
| - |
| - |
| -void Node::PropagateReachingDefinitions(List<BitVector*>* variables) { |
| - // Nothing to do. |
| -} |
| - |
| - |
| -void BlockNode::PropagateReachingDefinitions(List<BitVector*>* variables) { |
| - // Propagate RD_in from the start of the block to all the variable |
| - // references. |
| - int variable_count = variables->length(); |
| - BitVector rd = *rd_.rd_in(); |
| - for (int i = 0, len = instructions_.length(); i < len; i++) { |
| - Expression* expr = instructions_[i]->AsExpression(); |
| - if (expr == NULL) continue; |
| - |
| - // Look for a variable reference to record its reaching definitions. |
| - VariableProxy* proxy = expr->AsVariableProxy(); |
| - if (proxy == NULL) { |
| - // Not a VariableProxy? Maybe it's a count operation. |
| - CountOperation* count_operation = expr->AsCountOperation(); |
| - if (count_operation != NULL) { |
| - proxy = count_operation->expression()->AsVariableProxy(); |
| - } |
| - } |
| - if (proxy == NULL) { |
| - // OK, Maybe it's a compound assignment. |
| - Assignment* assignment = expr->AsAssignment(); |
| - if (assignment != NULL && assignment->is_compound()) { |
| - proxy = assignment->target()->AsVariableProxy(); |
| - } |
| - } |
| - |
| - if (proxy != NULL && |
| - proxy->var()->IsStackAllocated() && |
| - !proxy->var()->is_this()) { |
| - // All definitions for this variable. |
| - BitVector* definitions = |
| - variables->at(ReachingDefinitions::IndexFor(proxy->var(), |
| - variable_count)); |
| - BitVector* reaching_definitions = new BitVector(*definitions); |
| - // Intersected with all definitions (of any variable) reaching this |
| - // instruction. |
| - reaching_definitions->Intersect(rd); |
| - proxy->set_reaching_definitions(reaching_definitions); |
| - } |
| - |
| - // It may instead (or also) be a definition. If so update the running |
| - // value of reaching definitions for the block. |
| - Variable* var = expr->AssignedVariable(); |
| - if (var == NULL || !var->IsStackAllocated()) continue; |
| - |
| - // All definitions of this variable are killed. |
| - BitVector* def_set = |
| - variables->at(ReachingDefinitions::IndexFor(var, variable_count)); |
| - rd.Subtract(*def_set); |
| - // This definition is generated. |
| - rd.Add(expr->num()); |
| - } |
| -} |
| - |
| - |
| -void ReachingDefinitions::Compute() { |
| - // The definitions in the body plus an implicit definition for each |
| - // variable at function entry. |
| - int definition_count = body_definitions_->length() + variable_count_; |
| - int node_count = postorder_->length(); |
| - |
| - // Step 1: For each stack-allocated variable, identify the set of all its |
| - // definitions. |
| - List<BitVector*> variables; |
| - for (int i = 0; i < variable_count_; i++) { |
| - // Add the initial definition for each variable. |
| - BitVector* initial = new BitVector(definition_count); |
| - initial->Add(i); |
| - variables.Add(initial); |
| - } |
| - for (int i = 0, len = body_definitions_->length(); i < len; i++) { |
| - // Account for each definition in the body as a definition of the |
| - // defined variable. |
| - Variable* var = body_definitions_->at(i)->AssignedVariable(); |
| - variables[IndexFor(var, variable_count_)]->Add(i + variable_count_); |
| - } |
| - |
| - // Step 2: Compute KILL and GEN for each block node, initialize RD_in for |
| - // all nodes, and mark and add all nodes to the worklist in reverse |
| - // postorder. All nodes should currently have the same mark. |
| - bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current. |
| - WorkList<Node> worklist(node_count); |
| - for (int i = node_count - 1; i >= 0; i--) { |
| - postorder_->at(i)->InitializeReachingDefinitions(definition_count, |
| - &variables, |
| - &worklist, |
| - mark); |
| - } |
| - |
| - // Step 3: Until the worklist is empty, remove an item compute and update |
| - // its rd_in based on its predecessor's rd_out. If rd_in has changed, add |
| - // all necessary successors to the worklist. |
| - while (!worklist.is_empty()) { |
| - Node* node = worklist.Remove(); |
| - node->MarkWith(!mark); |
| - node->UpdateRDIn(&worklist, mark); |
| - } |
| - |
| - // Step 4: Based on RD_in for block nodes, propagate reaching definitions |
| - // to all variable uses in the block. |
| - for (int i = 0; i < node_count; i++) { |
| - postorder_->at(i)->PropagateReachingDefinitions(&variables); |
| - } |
| -} |
| - |
| - |
| -bool TypeAnalyzer::IsPrimitiveDef(int def_num) { |
| - if (def_num < param_count_) return false; |
| - if (def_num < variable_count_) return true; |
| - return body_definitions_->at(def_num - variable_count_)->IsPrimitive(); |
| -} |
| - |
| - |
| -void TypeAnalyzer::Compute() { |
| - bool changed; |
| - int count = 0; |
| - |
| - do { |
| - changed = false; |
| - |
| - if (FLAG_print_graph_text) { |
| - PrintF("TypeAnalyzer::Compute - iteration %d\n", count++); |
| - } |
| - |
| - for (int i = postorder_->length() - 1; i >= 0; --i) { |
| - Node* node = postorder_->at(i); |
| - if (node->IsBlockNode()) { |
| - BlockNode* block = BlockNode::cast(node); |
| - for (int j = 0; j < block->instructions()->length(); j++) { |
| - Expression* expr = block->instructions()->at(j)->AsExpression(); |
| - if (expr != NULL) { |
| - // For variable uses: Compute new type from reaching definitions. |
| - VariableProxy* proxy = expr->AsVariableProxy(); |
| - if (proxy != NULL && proxy->reaching_definitions() != NULL) { |
| - BitVector* rd = proxy->reaching_definitions(); |
| - bool prim_type = true; |
| - // TODO(fsc): A sparse set representation of reaching |
| - // definitions would speed up iterating here. |
| - for (int k = 0; k < rd->length(); k++) { |
| - if (rd->Contains(k) && !IsPrimitiveDef(k)) { |
| - prim_type = false; |
| - break; |
| - } |
| - } |
| - // Reset changed flag if new type information was computed. |
| - if (prim_type != proxy->IsPrimitive()) { |
| - changed = true; |
| - proxy->SetIsPrimitive(prim_type); |
| - } |
| - } |
| - } |
| - } |
| - } |
| - } |
| - } while (changed); |
| -} |
| - |
| - |
| -void Node::MarkCriticalInstructions( |
| - List<AstNode*>* stack, |
| - ZoneList<Expression*>* body_definitions, |
| - int variable_count) { |
| -} |
| - |
| - |
| -void BlockNode::MarkCriticalInstructions( |
| - List<AstNode*>* stack, |
| - ZoneList<Expression*>* body_definitions, |
| - int variable_count) { |
| - for (int i = instructions_.length() - 1; i >= 0; i--) { |
| - // Only expressions can appear in the flow graph for now. |
| - Expression* expr = instructions_[i]->AsExpression(); |
| - if (expr != NULL && !expr->is_live() && |
| - (expr->is_loop_condition() || expr->IsCritical())) { |
| - expr->mark_as_live(); |
| - expr->ProcessNonLiveChildren(stack, body_definitions, variable_count); |
| - } |
| - } |
| -} |
| - |
| - |
| -void MarkLiveCode(ZoneList<Node*>* nodes, |
| - ZoneList<Expression*>* body_definitions, |
| - int variable_count) { |
| - List<AstNode*> stack(20); |
| - |
| - // Mark the critical AST nodes as live; mark their dependencies and |
| - // add them to the marking stack. |
| - for (int i = nodes->length() - 1; i >= 0; i--) { |
| - nodes->at(i)->MarkCriticalInstructions(&stack, body_definitions, |
| - variable_count); |
| - } |
| - |
| - // Continue marking dependencies until no more. |
| - while (!stack.is_empty()) { |
| - // Only expressions can appear in the flow graph for now. |
| - Expression* expr = stack.RemoveLast()->AsExpression(); |
| - if (expr != NULL) { |
| - expr->ProcessNonLiveChildren(&stack, body_definitions, variable_count); |
| - } |
| - } |
| -} |
| - |
| - |
| -#ifdef DEBUG |
| - |
| -// Print a textual representation of an instruction in a flow graph. Using |
| -// the AstVisitor is overkill because there is no recursion here. It is |
| -// only used for printing in debug mode. |
| -class TextInstructionPrinter: public AstVisitor { |
| - public: |
| - TextInstructionPrinter() : number_(0) {} |
| - |
| - int NextNumber() { return number_; } |
| - void AssignNumber(AstNode* node) { node->set_num(number_++); } |
| - |
| - private: |
| - // AST node visit functions. |
| -#define DECLARE_VISIT(type) virtual void Visit##type(type* node); |
| - AST_NODE_LIST(DECLARE_VISIT) |
| -#undef DECLARE_VISIT |
| - |
| - int number_; |
| - |
| - DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter); |
| -}; |
| - |
| - |
| -void TextInstructionPrinter::VisitDeclaration(Declaration* decl) { |
| - UNREACHABLE(); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitBlock(Block* stmt) { |
| - PrintF("Block"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitExpressionStatement( |
| - ExpressionStatement* stmt) { |
| - PrintF("ExpressionStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) { |
| - PrintF("EmptyStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) { |
| - PrintF("IfStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) { |
| - UNREACHABLE(); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) { |
| - UNREACHABLE(); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) { |
| - PrintF("return @%d", stmt->expression()->num()); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) { |
| - PrintF("WithEnterStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) { |
| - PrintF("WithExitStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) { |
| - UNREACHABLE(); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) { |
| - PrintF("DoWhileStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) { |
| - PrintF("WhileStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) { |
| - PrintF("ForStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) { |
| - PrintF("ForInStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) { |
| - UNREACHABLE(); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitTryFinallyStatement( |
| - TryFinallyStatement* stmt) { |
| - UNREACHABLE(); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) { |
| - PrintF("DebuggerStatement"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) { |
| - PrintF("FunctionLiteral"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitSharedFunctionInfoLiteral( |
| - SharedFunctionInfoLiteral* expr) { |
| - PrintF("SharedFunctionInfoLiteral"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitConditional(Conditional* expr) { |
| - PrintF("Conditional"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitSlot(Slot* expr) { |
| - UNREACHABLE(); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) { |
| - Variable* var = expr->AsVariable(); |
| - if (var != NULL) { |
| - PrintF("%s", *var->name()->ToCString()); |
| - if (var->IsStackAllocated() && expr->reaching_definitions() != NULL) { |
| - expr->reaching_definitions()->Print(); |
| - } |
| - } else { |
| - ASSERT(expr->AsProperty() != NULL); |
| - VisitProperty(expr->AsProperty()); |
| - } |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitLiteral(Literal* expr) { |
| - expr->handle()->ShortPrint(); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) { |
| - PrintF("RegExpLiteral"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) { |
| - PrintF("ObjectLiteral"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) { |
| - PrintF("ArrayLiteral"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitCatchExtensionObject( |
| - CatchExtensionObject* expr) { |
| - PrintF("CatchExtensionObject"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitAssignment(Assignment* expr) { |
| - Variable* var = expr->target()->AsVariableProxy()->AsVariable(); |
| - Property* prop = expr->target()->AsProperty(); |
| - |
| - if (var == NULL && prop == NULL) { |
| - // Throw reference error. |
| - Visit(expr->target()); |
| - return; |
| - } |
| - |
| - // Print the left-hand side. |
| - if (var != NULL) { |
| - PrintF("%s", *var->name()->ToCString()); |
| - } else if (prop != NULL) { |
| - PrintF("@%d", prop->obj()->num()); |
| - if (prop->key()->IsPropertyName()) { |
| - PrintF("."); |
| - ASSERT(prop->key()->AsLiteral() != NULL); |
| - prop->key()->AsLiteral()->handle()->Print(); |
| - } else { |
| - PrintF("[@%d]", prop->key()->num()); |
| - } |
| - } |
| - |
| - // Print the operation. |
| - if (expr->is_compound()) { |
| - PrintF(" = "); |
| - // Print the left-hand side again when compound. |
| - if (var != NULL) { |
| - PrintF("@%d", expr->target()->num()); |
| - } else { |
| - PrintF("@%d", prop->obj()->num()); |
| - if (prop->key()->IsPropertyName()) { |
| - PrintF("."); |
| - ASSERT(prop->key()->AsLiteral() != NULL); |
| - prop->key()->AsLiteral()->handle()->Print(); |
| - } else { |
| - PrintF("[@%d]", prop->key()->num()); |
| - } |
| - } |
| - // Print the corresponding binary operator. |
| - PrintF(" %s ", Token::String(expr->binary_op())); |
| - } else { |
| - PrintF(" %s ", Token::String(expr->op())); |
| - } |
| - |
| - // Print the right-hand side. |
| - PrintF("@%d", expr->value()->num()); |
| - |
| - if (expr->num() != AstNode::kNoNumber) { |
| - PrintF(" ;; D%d", expr->num()); |
| - } |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitThrow(Throw* expr) { |
| - PrintF("throw @%d", expr->exception()->num()); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitProperty(Property* expr) { |
| - if (expr->key()->IsPropertyName()) { |
| - PrintF("@%d.", expr->obj()->num()); |
| - ASSERT(expr->key()->AsLiteral() != NULL); |
| - expr->key()->AsLiteral()->handle()->Print(); |
| - } else { |
| - PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num()); |
| - } |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitCall(Call* expr) { |
| - PrintF("@%d(", expr->expression()->num()); |
| - ZoneList<Expression*>* arguments = expr->arguments(); |
| - for (int i = 0, len = arguments->length(); i < len; i++) { |
| - if (i != 0) PrintF(", "); |
| - PrintF("@%d", arguments->at(i)->num()); |
| - } |
| - PrintF(")"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitCallNew(CallNew* expr) { |
| - PrintF("new @%d(", expr->expression()->num()); |
| - ZoneList<Expression*>* arguments = expr->arguments(); |
| - for (int i = 0, len = arguments->length(); i < len; i++) { |
| - if (i != 0) PrintF(", "); |
| - PrintF("@%d", arguments->at(i)->num()); |
| - } |
| - PrintF(")"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) { |
| - PrintF("%s(", *expr->name()->ToCString()); |
| - ZoneList<Expression*>* arguments = expr->arguments(); |
| - for (int i = 0, len = arguments->length(); i < len; i++) { |
| - if (i != 0) PrintF(", "); |
| - PrintF("@%d", arguments->at(i)->num()); |
| - } |
| - PrintF(")"); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) { |
| - PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num()); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) { |
| - if (expr->is_prefix()) { |
| - PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num()); |
| - } else { |
| - PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op())); |
| - } |
| - |
| - if (expr->num() != AstNode::kNoNumber) { |
| - PrintF(" ;; D%d", expr->num()); |
| - } |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) { |
| - ASSERT(expr->op() != Token::COMMA); |
| - ASSERT(expr->op() != Token::OR); |
| - ASSERT(expr->op() != Token::AND); |
| - PrintF("@%d %s @%d", |
| - expr->left()->num(), |
| - Token::String(expr->op()), |
| - expr->right()->num()); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) { |
| - PrintF("@%d %s @%d", |
| - expr->left()->num(), |
| - Token::String(expr->op()), |
| - expr->right()->num()); |
| -} |
| - |
| - |
| -void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) { |
| - PrintF("ThisFunction"); |
| -} |
| - |
| - |
| -static int node_count = 0; |
| -static int instruction_count = 0; |
| - |
| - |
| -void Node::AssignNodeNumber() { |
| - set_number(node_count++); |
| -} |
| - |
| - |
| -void Node::PrintReachingDefinitions() { |
| - if (rd_.rd_in() != NULL) { |
| - ASSERT(rd_.kill() != NULL && rd_.gen() != NULL); |
| - |
| - PrintF("RD_in = "); |
| - rd_.rd_in()->Print(); |
| - PrintF("\n"); |
| - |
| - PrintF("RD_kill = "); |
| - rd_.kill()->Print(); |
| - PrintF("\n"); |
| - |
| - PrintF("RD_gen = "); |
| - rd_.gen()->Print(); |
| - PrintF("\n"); |
| - } |
| -} |
| - |
| - |
| -void ExitNode::PrintText() { |
| - PrintReachingDefinitions(); |
| - PrintF("L%d: Exit\n\n", number()); |
| -} |
| - |
| - |
| -void BlockNode::PrintText() { |
| - PrintReachingDefinitions(); |
| - // Print the instructions in the block. |
| - PrintF("L%d: Block\n", number()); |
| - TextInstructionPrinter printer; |
| - for (int i = 0, len = instructions_.length(); i < len; i++) { |
| - AstNode* instr = instructions_[i]; |
| - // Print a star next to dead instructions. |
| - if (instr->AsExpression() != NULL && instr->AsExpression()->is_live()) { |
| - PrintF(" "); |
| - } else { |
| - PrintF("* "); |
| - } |
| - PrintF("%d ", printer.NextNumber()); |
| - printer.Visit(instr); |
| - printer.AssignNumber(instr); |
| - PrintF("\n"); |
| - } |
| - PrintF("goto L%d\n\n", successor_->number()); |
| -} |
| - |
| - |
| -void BranchNode::PrintText() { |
| - PrintReachingDefinitions(); |
| - PrintF("L%d: Branch\n", number()); |
| - PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number()); |
| -} |
| - |
| - |
| -void JoinNode::PrintText() { |
| - PrintReachingDefinitions(); |
| - PrintF("L%d: Join(", number()); |
| - for (int i = 0, len = predecessors_.length(); i < len; i++) { |
| - if (i != 0) PrintF(", "); |
| - PrintF("L%d", predecessors_[i]->number()); |
| - } |
| - PrintF(")\ngoto L%d\n\n", successor_->number()); |
| -} |
| - |
| - |
| -void FlowGraph::PrintText(FunctionLiteral* fun, ZoneList<Node*>* postorder) { |
| - PrintF("\n========\n"); |
| - PrintF("name = %s\n", *fun->name()->ToCString()); |
| - |
| - // Number nodes and instructions in reverse postorder. |
| - node_count = 0; |
| - instruction_count = 0; |
| - for (int i = postorder->length() - 1; i >= 0; i--) { |
| - postorder->at(i)->AssignNodeNumber(); |
| - } |
| - |
| - // Print basic blocks in reverse postorder. |
| - for (int i = postorder->length() - 1; i >= 0; i--) { |
| - postorder->at(i)->PrintText(); |
| - } |
| -} |
| - |
| -#endif // DEBUG |
| - |
| - |
| } } // namespace v8::internal |