Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(40)

Unified Diff: src/arm/codegen-arm.cc

Issue 151003: Add a compare stub on ARM. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge/
Patch Set: '' Created 11 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/arm/codegen-arm.h ('k') | src/arm/simulator-arm.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/arm/codegen-arm.cc
===================================================================
--- src/arm/codegen-arm.cc (revision 2284)
+++ src/arm/codegen-arm.cc (working copy)
@@ -41,6 +41,18 @@
#define __ ACCESS_MASM(masm_)
+static void EmitIdenticalObjectComparison(MacroAssembler* masm,
+ Label* slow,
+ Condition cc);
+static void EmitSmiNonsmiComparison(MacroAssembler* masm,
+ Label* rhs_not_nan,
+ Label* slow,
+ bool strict);
+static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm);
+
+
+
// -------------------------------------------------------------------------
// Platform-specific DeferredCode functions.
@@ -1002,7 +1014,13 @@
}
-void CodeGenerator::Comparison(Condition cc, bool strict) {
+void CodeGenerator::Comparison(Condition cc,
+ Expression* left,
+ Expression* right,
+ bool strict) {
+ if (left != NULL) LoadAndSpill(left);
+ if (right != NULL) LoadAndSpill(right);
+
VirtualFrame::SpilledScope spilled_scope;
// sp[0] : y
// sp[1] : x
@@ -1026,43 +1044,19 @@
__ tst(r2, Operand(kSmiTagMask));
smi.Branch(eq);
- // Perform non-smi comparison by runtime call.
- frame_->EmitPush(r1);
+ // Perform non-smi comparison by stub.
+ // CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0.
+ // We call with 0 args because there are 0 on the stack.
+ CompareStub stub(cc, strict);
+ frame_->CallStub(&stub, 0);
- // Figure out which native to call and setup the arguments.
- Builtins::JavaScript native;
- int arg_count = 1;
- if (cc == eq) {
- native = strict ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
- } else {
- native = Builtins::COMPARE;
- int ncr; // NaN compare result
- if (cc == lt || cc == le) {
- ncr = GREATER;
- } else {
- ASSERT(cc == gt || cc == ge); // remaining cases
- ncr = LESS;
- }
- frame_->EmitPush(r0);
- arg_count++;
- __ mov(r0, Operand(Smi::FromInt(ncr)));
- }
-
- // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
- // tagged as a small integer.
- frame_->EmitPush(r0);
- Result arg_count_register = allocator_->Allocate(r0);
- ASSERT(arg_count_register.is_valid());
- __ mov(arg_count_register.reg(), Operand(arg_count));
- Result result = frame_->InvokeBuiltin(native,
- CALL_JS,
- &arg_count_register,
- arg_count + 1);
+ Result result = allocator_->Allocate(r0);
+ ASSERT(result.is_valid());
__ cmp(result.reg(), Operand(0));
result.Unuse();
exit.Jump();
- // test smi equality by pointer comparison.
+ // Do smi comparisons by pointer comparison.
smi.Bind();
__ cmp(r1, Operand(r0));
@@ -1505,8 +1499,7 @@
// Duplicate TOS.
__ ldr(r0, frame_->Top());
frame_->EmitPush(r0);
- LoadAndSpill(clause->label());
- Comparison(eq, true);
+ Comparison(eq, NULL, clause->label(), true);
Branch(false, &next_test);
// Before entering the body from the test, remove the switch value from
@@ -3495,8 +3488,8 @@
case Token::SUB: {
bool overwrite =
- (node->AsBinaryOperation() != NULL &&
- node->AsBinaryOperation()->ResultOverwriteAllowed());
+ (node->expression()->AsBinaryOperation() != NULL &&
+ node->expression()->AsBinaryOperation()->ResultOverwriteAllowed());
UnarySubStub stub(overwrite);
frame_->CallStub(&stub, 0);
break;
@@ -3960,34 +3953,34 @@
return;
}
- LoadAndSpill(left);
- LoadAndSpill(right);
switch (op) {
case Token::EQ:
- Comparison(eq, false);
+ Comparison(eq, left, right, false);
break;
case Token::LT:
- Comparison(lt);
+ Comparison(lt, left, right);
break;
case Token::GT:
- Comparison(gt);
+ Comparison(gt, left, right);
break;
case Token::LTE:
- Comparison(le);
+ Comparison(le, left, right);
break;
case Token::GTE:
- Comparison(ge);
+ Comparison(ge, left, right);
break;
case Token::EQ_STRICT:
- Comparison(eq, true);
+ Comparison(eq, left, right, true);
break;
case Token::IN: {
+ LoadAndSpill(left);
+ LoadAndSpill(right);
Result arg_count = allocator_->Allocate(r0);
ASSERT(arg_count.is_valid());
__ mov(arg_count.reg(), Operand(1)); // not counting receiver
@@ -4000,6 +3993,8 @@
}
case Token::INSTANCEOF: {
+ LoadAndSpill(left);
+ LoadAndSpill(right);
InstanceofStub stub;
Result result = frame_->CallStub(&stub, 2);
// At this point if instanceof succeeded then r0 == 0.
@@ -4482,6 +4477,408 @@
}
+// Handle the case where the lhs and rhs are the same object.
+// Equality is almost reflexive (everything but NaN), so this is a test
+// for "identity and not NaN".
+static void EmitIdenticalObjectComparison(MacroAssembler* masm,
+ Label* slow,
+ Condition cc) {
+ Label not_identical;
+ __ cmp(r0, Operand(r1));
+ __ b(ne, &not_identical);
+
+ Register exp_mask_reg = r5;
+ __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
+
+ // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
+ // so we do the second best thing - test it ourselves.
+ Label heap_number, return_equal;
+ // They are both equal and they are not both Smis so both of them are not
+ // Smis. If it's not a heap number, then return equal.
+ if (cc == lt || cc == gt) {
+ __ CompareObjectType(r0, r4, r4, FIRST_JS_OBJECT_TYPE);
+ __ b(ge, slow);
+ } else {
+ __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
+ __ b(eq, &heap_number);
+ // Comparing JS objects with <=, >= is complicated.
+ if (cc != eq) {
+ __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
+ __ b(ge, slow);
+ }
+ }
+ __ bind(&return_equal);
+ if (cc == lt) {
+ __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
+ } else if (cc == gt) {
+ __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
+ } else {
+ __ mov(r0, Operand(0)); // Things are <=, >=, ==, === themselves.
+ }
+ __ mov(pc, Operand(lr)); // Return.
+
+ // For less and greater we don't have to check for NaN since the result of
+ // x < x is false regardless. For the others here is some code to check
+ // for NaN.
+ if (cc != lt && cc != gt) {
+ __ bind(&heap_number);
+ // It is a heap number, so return non-equal if it's NaN and equal if it's
+ // not NaN.
+ // The representation of NaN values has all exponent bits (52..62) set,
+ // and not all mantissa bits (0..51) clear.
+ // Read top bits of double representation (second word of value).
+ __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
+ // Test that exponent bits are all set.
+ __ and_(r3, r2, Operand(exp_mask_reg));
+ __ cmp(r3, Operand(exp_mask_reg));
+ __ b(ne, &return_equal);
+
+ // Shift out flag and all exponent bits, retaining only mantissa.
+ __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
+ // Or with all low-bits of mantissa.
+ __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
+ __ orr(r0, r3, Operand(r2), SetCC);
+ // For equal we already have the right value in r0: Return zero (equal)
+ // if all bits in mantissa are zero (it's an Infinity) and non-zero if not
+ // (it's a NaN). For <= and >= we need to load r0 with the failing value
+ // if it's a NaN.
+ if (cc != eq) {
+ // All-zero means Infinity means equal.
+ __ mov(pc, Operand(lr), LeaveCC, eq); // Return equal
+ if (cc == le) {
+ __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
+ } else {
+ __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
+ }
+ }
+ __ mov(pc, Operand(lr)); // Return.
+ }
+ // No fall through here.
+
+ __ bind(&not_identical);
+}
+
+
+// See comment at call site.
+static void EmitSmiNonsmiComparison(MacroAssembler* masm,
+ Label* rhs_not_nan,
+ Label* slow,
+ bool strict) {
+ Label lhs_is_smi;
+ __ tst(r0, Operand(kSmiTagMask));
+ __ b(eq, &lhs_is_smi);
+
+ // Rhs is a Smi. Check whether the non-smi is a heap number.
+ __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
+ if (strict) {
+ // If lhs was not a number and rhs was a Smi then strict equality cannot
+ // succeed. Return non-equal (r0 is already not zero)
+ __ mov(pc, Operand(lr), LeaveCC, ne); // Return.
+ } else {
+ // Smi compared non-strictly with a non-Smi non-heap-number. Call
+ // the runtime.
+ __ b(ne, slow);
+ }
+
+ // Rhs is a smi, lhs is a number.
+ __ push(lr);
+ __ mov(r7, Operand(r1));
+ ConvertToDoubleStub stub1(r3, r2, r7, r6);
+ __ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
+ // r3 and r2 are rhs as double.
+ __ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize));
+ __ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset));
+ // We now have both loaded as doubles but we can skip the lhs nan check
+ // since it's a Smi.
+ __ pop(lr);
+ __ jmp(rhs_not_nan);
+
+ __ bind(&lhs_is_smi);
+ // Lhs is a Smi. Check whether the non-smi is a heap number.
+ __ CompareObjectType(r1, r4, r4, HEAP_NUMBER_TYPE);
+ if (strict) {
+ // If lhs was not a number and rhs was a Smi then strict equality cannot
+ // succeed. Return non-equal.
+ __ mov(r0, Operand(1), LeaveCC, ne); // Non-zero indicates not equal.
+ __ mov(pc, Operand(lr), LeaveCC, ne); // Return.
+ } else {
+ // Smi compared non-strictly with a non-Smi non-heap-number. Call
+ // the runtime.
+ __ b(ne, slow);
+ }
+
+ // Lhs is a smi, rhs is a number.
+ // r0 is Smi and r1 is heap number.
+ __ push(lr);
+ __ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset));
+ __ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize));
+ __ mov(r7, Operand(r0));
+ ConvertToDoubleStub stub2(r1, r0, r7, r6);
+ __ Call(stub2.GetCode(), RelocInfo::CODE_TARGET);
+ __ pop(lr);
+ // Fall through to both_loaded_as_doubles.
+}
+
+
+void EmitNanCheck(MacroAssembler* masm, Label* rhs_not_nan, Condition cc) {
+ bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
+ Register lhs_exponent = exp_first ? r0 : r1;
+ Register rhs_exponent = exp_first ? r2 : r3;
+ Register lhs_mantissa = exp_first ? r1 : r0;
+ Register rhs_mantissa = exp_first ? r3 : r2;
+ Label one_is_nan, neither_is_nan;
+
+ Register exp_mask_reg = r5;
+
+ __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
+ __ and_(r4, rhs_exponent, Operand(exp_mask_reg));
+ __ cmp(r4, Operand(exp_mask_reg));
+ __ b(ne, rhs_not_nan);
+ __ mov(r4,
+ Operand(rhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
+ SetCC);
+ __ b(ne, &one_is_nan);
+ __ cmp(rhs_mantissa, Operand(0));
+ __ b(ne, &one_is_nan);
+
+ __ bind(rhs_not_nan);
+ __ mov(exp_mask_reg, Operand(HeapNumber::kExponentMask));
+ __ and_(r4, lhs_exponent, Operand(exp_mask_reg));
+ __ cmp(r4, Operand(exp_mask_reg));
+ __ b(ne, &neither_is_nan);
+ __ mov(r4,
+ Operand(lhs_exponent, LSL, HeapNumber::kNonMantissaBitsInTopWord),
+ SetCC);
+ __ b(ne, &one_is_nan);
+ __ cmp(lhs_mantissa, Operand(0));
+ __ b(eq, &neither_is_nan);
+
+ __ bind(&one_is_nan);
+ // NaN comparisons always fail.
+ // Load whatever we need in r0 to make the comparison fail.
+ if (cc == lt || cc == le) {
+ __ mov(r0, Operand(GREATER));
+ } else {
+ __ mov(r0, Operand(LESS));
+ }
+ __ mov(pc, Operand(lr)); // Return.
+
+ __ bind(&neither_is_nan);
+}
+
+
+// See comment at call site.
+static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
+ bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
+ Register lhs_exponent = exp_first ? r0 : r1;
+ Register rhs_exponent = exp_first ? r2 : r3;
+ Register lhs_mantissa = exp_first ? r1 : r0;
+ Register rhs_mantissa = exp_first ? r3 : r2;
+
+ // r0, r1, r2, r3 have the two doubles. Neither is a NaN.
+ if (cc == eq) {
+ // Doubles are not equal unless they have the same bit pattern.
+ // Exception: 0 and -0.
+ __ cmp(lhs_mantissa, Operand(rhs_mantissa));
+ __ orr(r0, lhs_mantissa, Operand(rhs_mantissa), LeaveCC, ne);
+ // Return non-zero if the numbers are unequal.
+ __ mov(pc, Operand(lr), LeaveCC, ne);
+
+ __ sub(r0, lhs_exponent, Operand(rhs_exponent), SetCC);
+ // If exponents are equal then return 0.
+ __ mov(pc, Operand(lr), LeaveCC, eq);
+
+ // Exponents are unequal. The only way we can return that the numbers
+ // are equal is if one is -0 and the other is 0. We already dealt
+ // with the case where both are -0 or both are 0.
+ // We start by seeing if the mantissas (that are equal) or the bottom
+ // 31 bits of the rhs exponent are non-zero. If so we return not
+ // equal.
+ __ orr(r4, rhs_mantissa, Operand(rhs_exponent, LSL, kSmiTagSize), SetCC);
+ __ mov(r0, Operand(r4), LeaveCC, ne);
+ __ mov(pc, Operand(lr), LeaveCC, ne); // Return conditionally.
+ // Now they are equal if and only if the lhs exponent is zero in its
+ // low 31 bits.
+ __ mov(r0, Operand(lhs_exponent, LSL, kSmiTagSize));
+ __ mov(pc, Operand(lr));
+ } else {
+ // Call a native function to do a comparison between two non-NaNs.
+ // Call C routine that may not cause GC or other trouble.
+ __ mov(r5, Operand(ExternalReference::compare_doubles()));
+ __ Jump(r5); // Tail call.
+ }
+}
+
+
+// See comment at call site.
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm) {
+ // If either operand is a JSObject or an oddball value, then they are
+ // not equal since their pointers are different.
+ // There is no test for undetectability in strict equality.
+ ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
+ Label first_non_object;
+ // Get the type of the first operand into r2 and compare it with
+ // FIRST_JS_OBJECT_TYPE.
+ __ CompareObjectType(r0, r2, r2, FIRST_JS_OBJECT_TYPE);
+ __ b(lt, &first_non_object);
+
+ // Return non-zero (r0 is not zero)
+ Label return_not_equal;
+ __ bind(&return_not_equal);
+ __ mov(pc, Operand(lr)); // Return.
+
+ __ bind(&first_non_object);
+ // Check for oddballs: true, false, null, undefined.
+ __ cmp(r2, Operand(ODDBALL_TYPE));
+ __ b(eq, &return_not_equal);
+
+ __ CompareObjectType(r1, r3, r3, FIRST_JS_OBJECT_TYPE);
+ __ b(ge, &return_not_equal);
+
+ // Check for oddballs: true, false, null, undefined.
+ __ cmp(r3, Operand(ODDBALL_TYPE));
+ __ b(eq, &return_not_equal);
+}
+
+
+// See comment at call site.
+static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
+ Label* both_loaded_as_doubles,
+ Label* not_heap_numbers,
+ Label* slow) {
+ __ CompareObjectType(r0, r2, r2, HEAP_NUMBER_TYPE);
+ __ b(ne, not_heap_numbers);
+ __ CompareObjectType(r1, r3, r3, HEAP_NUMBER_TYPE);
+ __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
+
+ // Both are heap numbers. Load them up then jump to the code we have
+ // for that.
+ __ ldr(r2, FieldMemOperand(r1, HeapNumber::kValueOffset));
+ __ ldr(r3, FieldMemOperand(r1, HeapNumber::kValueOffset + kPointerSize));
+ __ ldr(r1, FieldMemOperand(r0, HeapNumber::kValueOffset + kPointerSize));
+ __ ldr(r0, FieldMemOperand(r0, HeapNumber::kValueOffset));
+ __ jmp(both_loaded_as_doubles);
+}
+
+
+// Fast negative check for symbol-to-symbol equality.
+static void EmitCheckForSymbols(MacroAssembler* masm, Label* slow) {
+ // r2 is object type of r0.
+ __ tst(r2, Operand(kIsNotStringMask));
+ __ b(ne, slow);
+ __ tst(r2, Operand(kIsSymbolMask));
+ __ b(eq, slow);
+ __ CompareObjectType(r1, r3, r3, FIRST_NONSTRING_TYPE);
+ __ b(ge, slow);
+ __ tst(r3, Operand(kIsSymbolMask));
+ __ b(eq, slow);
+
+ // Both are symbols. We already checked they weren't the same pointer
+ // so they are not equal.
+ __ mov(r0, Operand(1)); // Non-zero indicates not equal.
+ __ mov(pc, Operand(lr)); // Return.
+}
+
+
+// On entry r0 and r1 are the things to be compared. On exit r0 is 0,
+// positive or negative to indicate the result of the comparison.
+void CompareStub::Generate(MacroAssembler* masm) {
+ Label slow; // Call builtin.
+ Label not_smis, both_loaded_as_doubles, rhs_not_nan;
+
+ // NOTICE! This code is only reached after a smi-fast-case check, so
+ // it is certain that at least one operand isn't a smi.
+
+ // Handle the case where the objects are identical. Either returns the answer
+ // or goes to slow. Only falls through if the objects were not identical.
+ EmitIdenticalObjectComparison(masm, &slow, cc_);
+
+ // If either is a Smi (we know that not both are), then they can only
+ // be strictly equal if the other is a HeapNumber.
+ ASSERT_EQ(0, kSmiTag);
+ ASSERT_EQ(0, Smi::FromInt(0));
+ __ and_(r2, r0, Operand(r1));
+ __ tst(r2, Operand(kSmiTagMask));
+ __ b(ne, &not_smis);
+ // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
+ // 1) Return the answer.
+ // 2) Go to slow.
+ // 3) Fall through to both_loaded_as_doubles.
+ // 4) Jump to rhs_not_nan.
+ // In cases 3 and 4 we have found out we were dealing with a number-number
+ // comparison and the numbers have been loaded into r0, r1, r2, r3 as doubles.
+ EmitSmiNonsmiComparison(masm, &rhs_not_nan, &slow, strict_);
+
+ __ bind(&both_loaded_as_doubles);
+ // r0, r1, r2, r3 are the double representations of the left hand side
+ // and the right hand side.
+
+ // Checks for NaN in the doubles we have loaded. Can return the answer or
+ // fall through if neither is a NaN. Also binds rhs_not_nan.
+ EmitNanCheck(masm, &rhs_not_nan, cc_);
+
+ // Compares two doubles in r0, r1, r2, r3 that are not NaNs. Returns the
+ // answer. Never falls through.
+ EmitTwoNonNanDoubleComparison(masm, cc_);
+
+ __ bind(&not_smis);
+ // At this point we know we are dealing with two different objects,
+ // and neither of them is a Smi. The objects are in r0 and r1.
+ if (strict_) {
+ // This returns non-equal for some object types, or falls through if it
+ // was not lucky.
+ EmitStrictTwoHeapObjectCompare(masm);
+ }
+
+ Label check_for_symbols;
+ // Check for heap-number-heap-number comparison. Can jump to slow case,
+ // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
+ // that case. If the inputs are not doubles then jumps to check_for_symbols.
+ // In this case r2 will contain the type of r0.
+ EmitCheckForTwoHeapNumbers(masm,
+ &both_loaded_as_doubles,
+ &check_for_symbols,
+ &slow);
+
+ __ bind(&check_for_symbols);
+ if (cc_ == eq) {
+ // Either jumps to slow or returns the answer. Assumes that r2 is the type
+ // of r0 on entry.
+ EmitCheckForSymbols(masm, &slow);
+ }
+
+ __ bind(&slow);
+ __ push(lr);
+ __ push(r1);
+ __ push(r0);
+ // Figure out which native to call and setup the arguments.
+ Builtins::JavaScript native;
+ int arg_count = 1; // Not counting receiver.
+ if (cc_ == eq) {
+ native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
+ } else {
+ native = Builtins::COMPARE;
+ int ncr; // NaN compare result
+ if (cc_ == lt || cc_ == le) {
+ ncr = GREATER;
+ } else {
+ ASSERT(cc_ == gt || cc_ == ge); // remaining cases
+ ncr = LESS;
+ }
+ arg_count++;
+ __ mov(r0, Operand(Smi::FromInt(ncr)));
+ __ push(r0);
+ }
+
+ // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
+ // tagged as a small integer.
+ __ mov(r0, Operand(arg_count));
+ __ InvokeBuiltin(native, CALL_JS);
+ __ cmp(r0, Operand(0));
+ __ pop(pc);
+}
+
+
// Allocates a heap number or jumps to the label if the young space is full and
// a scavenge is needed.
static void AllocateHeapNumber(
@@ -4538,7 +4935,8 @@
// The new heap number is in r5. r6 and r7 are scratch.
AllocateHeapNumber(masm, &slow, r5, r6, r7);
// Write Smi from r0 to r3 and r2 in double format. r6 is scratch.
- ConvertToDoubleStub stub1(r3, r2, r0, r6);
+ __ mov(r7, Operand(r0));
+ ConvertToDoubleStub stub1(r3, r2, r7, r6);
__ push(lr);
__ Call(stub1.GetCode(), RelocInfo::CODE_TARGET);
// Write Smi from r1 to r1 and r0 in double format. r6 is scratch.
@@ -5015,7 +5413,6 @@
void UnarySubStub::Generate(MacroAssembler* masm) {
Label undo;
Label slow;
- Label done;
Label not_smi;
// Enter runtime system if the value is not a smi.
@@ -5041,9 +5438,6 @@
__ mov(r0, Operand(0)); // Set number of arguments.
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_JS);
- __ bind(&done);
- __ StubReturn(1);
-
__ bind(&not_smi);
__ CompareObjectType(r0, r1, r1, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
@@ -5203,9 +5597,9 @@
// support moving the C entry code stub. This should be fixed, but currently
// this is OK because the CEntryStub gets generated so early in the V8 boot
// sequence that it is not moving ever.
- __ add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4
- __ push(lr);
- __ Jump(r5);
+ masm->add(lr, pc, Operand(4)); // compute return address: (pc + 8) + 4
+ masm->push(lr);
+ masm->Jump(r5);
if (always_allocate) {
// It's okay to clobber r2 and r3 here. Don't mess with r0 and r1
@@ -5629,6 +6023,13 @@
}
+int CompareStub::MinorKey() {
+ // Encode the two parameters in a unique 16 bit value.
+ ASSERT(static_cast<unsigned>(cc_) >> 28 < (1 << 15));
+ return (static_cast<unsigned>(cc_) >> 27) | (strict_ ? 1 : 0);
+}
+
+
#undef __
} } // namespace v8::internal
« no previous file with comments | « src/arm/codegen-arm.h ('k') | src/arm/simulator-arm.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698