Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(996)

Side by Side Diff: skia/ext/convolver.cc

Issue 13726: Move Image operations and convolver to the skia namespace and clean up a few ... (Closed) Base URL: svn://chrome-svn/chrome/trunk/src/
Patch Set: '' Created 12 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « skia/ext/convolver.h ('k') | skia/ext/convolver_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include <algorithm> 5 #include <algorithm>
6 6
7 #include "base/basictypes.h"
8 #include "base/logging.h"
9 #include "skia/ext/convolver.h" 7 #include "skia/ext/convolver.h"
8 #include "SkTypes.h"
10 9
11 namespace gfx { 10 namespace skia {
12 11
13 namespace { 12 namespace {
14 13
15 // Converts the argument to an 8-bit unsigned value by clamping to the range 14 // Converts the argument to an 8-bit unsigned value by clamping to the range
16 // 0-255. 15 // 0-255.
17 inline uint8 ClampTo8(int32 a) { 16 inline unsigned char ClampTo8(int a) {
18 if (static_cast<uint32>(a) < 256) 17 if (static_cast<unsigned>(a) < 256)
19 return a; // Avoid the extra check in the common case. 18 return a; // Avoid the extra check in the common case.
20 if (a < 0) 19 if (a < 0)
21 return 0; 20 return 0;
22 return 255; 21 return 255;
23 } 22 }
24 23
25 // Stores a list of rows in a circular buffer. The usage is you write into it 24 // Stores a list of rows in a circular buffer. The usage is you write into it
26 // by calling AdvanceRow. It will keep track of which row in the buffer it 25 // by calling AdvanceRow. It will keep track of which row in the buffer it
27 // should use next, and the total number of rows added. 26 // should use next, and the total number of rows added.
28 class CircularRowBuffer { 27 class CircularRowBuffer {
29 public: 28 public:
30 // The number of pixels in each row is given in |source_row_pixel_width|. 29 // The number of pixels in each row is given in |source_row_pixel_width|.
31 // The maximum number of rows needed in the buffer is |max_y_filter_size| 30 // The maximum number of rows needed in the buffer is |max_y_filter_size|
32 // (we only need to store enough rows for the biggest filter). 31 // (we only need to store enough rows for the biggest filter).
33 // 32 //
34 // We use the |first_input_row| to compute the coordinates of all of the 33 // We use the |first_input_row| to compute the coordinates of all of the
35 // following rows returned by Advance(). 34 // following rows returned by Advance().
36 CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, 35 CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size,
37 int first_input_row) 36 int first_input_row)
38 : row_byte_width_(dest_row_pixel_width * 4), 37 : row_byte_width_(dest_row_pixel_width * 4),
39 num_rows_(max_y_filter_size), 38 num_rows_(max_y_filter_size),
40 next_row_(0), 39 next_row_(0),
41 next_row_coordinate_(first_input_row) { 40 next_row_coordinate_(first_input_row) {
42 buffer_.resize(row_byte_width_ * max_y_filter_size); 41 buffer_.resize(row_byte_width_ * max_y_filter_size);
43 row_addresses_.resize(num_rows_); 42 row_addresses_.resize(num_rows_);
44 } 43 }
45 44
46 // Moves to the next row in the buffer, returning a pointer to the beginning 45 // Moves to the next row in the buffer, returning a pointer to the beginning
47 // of it. 46 // of it.
48 uint8* AdvanceRow() { 47 unsigned char* AdvanceRow() {
49 uint8* row = &buffer_[next_row_ * row_byte_width_]; 48 unsigned char* row = &buffer_[next_row_ * row_byte_width_];
50 next_row_coordinate_++; 49 next_row_coordinate_++;
51 50
52 // Set the pointer to the next row to use, wrapping around if necessary. 51 // Set the pointer to the next row to use, wrapping around if necessary.
53 next_row_++; 52 next_row_++;
54 if (next_row_ == num_rows_) 53 if (next_row_ == num_rows_)
55 next_row_ = 0; 54 next_row_ = 0;
56 return row; 55 return row;
57 } 56 }
58 57
59 // Returns a pointer to an "unrolled" array of rows. These rows will start 58 // Returns a pointer to an "unrolled" array of rows. These rows will start
60 // at the y coordinate placed into |*first_row_index| and will continue in 59 // at the y coordinate placed into |*first_row_index| and will continue in
61 // order for the maximum number of rows in this circular buffer. 60 // order for the maximum number of rows in this circular buffer.
62 // 61 //
63 // The |first_row_index_| may be negative. This means the circular buffer 62 // The |first_row_index_| may be negative. This means the circular buffer
64 // starts before the top of the image (it hasn't been filled yet). 63 // starts before the top of the image (it hasn't been filled yet).
65 uint8* const* GetRowAddresses(int* first_row_index) { 64 unsigned char* const* GetRowAddresses(int* first_row_index) {
66 // Example for a 4-element circular buffer holding coords 6-9. 65 // Example for a 4-element circular buffer holding coords 6-9.
67 // Row 0 Coord 8 66 // Row 0 Coord 8
68 // Row 1 Coord 9 67 // Row 1 Coord 9
69 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. 68 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10.
70 // Row 3 Coord 7 69 // Row 3 Coord 7
71 // 70 //
72 // The "next" row is also the first (lowest) coordinate. This computation 71 // The "next" row is also the first (lowest) coordinate. This computation
73 // may yield a negative value, but that's OK, the math will work out 72 // may yield a negative value, but that's OK, the math will work out
74 // since the user of this buffer will compute the offset relative 73 // since the user of this buffer will compute the offset relative
75 // to the first_row_index and the negative rows will never be used. 74 // to the first_row_index and the negative rows will never be used.
76 *first_row_index = next_row_coordinate_ - num_rows_; 75 *first_row_index = next_row_coordinate_ - num_rows_;
77 76
78 int cur_row = next_row_; 77 int cur_row = next_row_;
79 for (int i = 0; i < num_rows_; i++) { 78 for (int i = 0; i < num_rows_; i++) {
80 row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; 79 row_addresses_[i] = &buffer_[cur_row * row_byte_width_];
81 80
82 // Advance to the next row, wrapping if necessary. 81 // Advance to the next row, wrapping if necessary.
83 cur_row++; 82 cur_row++;
84 if (cur_row == num_rows_) 83 if (cur_row == num_rows_)
85 cur_row = 0; 84 cur_row = 0;
86 } 85 }
87 return &row_addresses_[0]; 86 return &row_addresses_[0];
88 } 87 }
89 88
90 private: 89 private:
91 // The buffer storing the rows. They are packed, each one row_byte_width_. 90 // The buffer storing the rows. They are packed, each one row_byte_width_.
92 std::vector<uint8> buffer_; 91 std::vector<unsigned char> buffer_;
93 92
94 // Number of bytes per row in the |buffer_|. 93 // Number of bytes per row in the |buffer_|.
95 int row_byte_width_; 94 int row_byte_width_;
96 95
97 // The number of rows available in the buffer. 96 // The number of rows available in the buffer.
98 int num_rows_; 97 int num_rows_;
99 98
100 // The next row index we should write into. This wraps around as the 99 // The next row index we should write into. This wraps around as the
101 // circular buffer is used. 100 // circular buffer is used.
102 int next_row_; 101 int next_row_;
103 102
104 // The y coordinate of the |next_row_|. This is incremented each time a 103 // The y coordinate of the |next_row_|. This is incremented each time a
105 // new row is appended and does not wrap. 104 // new row is appended and does not wrap.
106 int next_row_coordinate_; 105 int next_row_coordinate_;
107 106
108 // Buffer used by GetRowAddresses(). 107 // Buffer used by GetRowAddresses().
109 std::vector<uint8*> row_addresses_; 108 std::vector<unsigned char*> row_addresses_;
110 }; 109 };
111 110
112 // Convolves horizontally along a single row. The row data is given in 111 // Convolves horizontally along a single row. The row data is given in
113 // |src_data| and continues for the num_values() of the filter. 112 // |src_data| and continues for the num_values() of the filter.
114 template<bool has_alpha> 113 template<bool has_alpha>
115 void ConvolveHorizontally(const uint8* src_data, 114 void ConvolveHorizontally(const unsigned char* src_data,
116 const ConvolusionFilter1D& filter, 115 const ConvolusionFilter1D& filter,
117 unsigned char* out_row) { 116 unsigned char* out_row) {
118 // Loop over each pixel on this row in the output image. 117 // Loop over each pixel on this row in the output image.
119 int num_values = filter.num_values(); 118 int num_values = filter.num_values();
120 for (int out_x = 0; out_x < num_values; out_x++) { 119 for (int out_x = 0; out_x < num_values; out_x++) {
121 // Get the filter that determines the current output pixel. 120 // Get the filter that determines the current output pixel.
122 int filter_offset, filter_length; 121 int filter_offset, filter_length;
123 const int16* filter_values = 122 const ConvolusionFilter1D::Fixed* filter_values =
124 filter.FilterForValue(out_x, &filter_offset, &filter_length); 123 filter.FilterForValue(out_x, &filter_offset, &filter_length);
125 124
126 // Compute the first pixel in this row that the filter affects. It will 125 // Compute the first pixel in this row that the filter affects. It will
127 // touch |filter_length| pixels (4 bytes each) after this. 126 // touch |filter_length| pixels (4 bytes each) after this.
128 const uint8* row_to_filter = &src_data[filter_offset * 4]; 127 const unsigned char* row_to_filter = &src_data[filter_offset * 4];
129 128
130 // Apply the filter to the row to get the destination pixel in |accum|. 129 // Apply the filter to the row to get the destination pixel in |accum|.
131 int32 accum[4] = {0}; 130 int32 accum[4] = {0};
132 for (int filter_x = 0; filter_x < filter_length; filter_x++) { 131 for (int filter_x = 0; filter_x < filter_length; filter_x++) {
133 int16 cur_filter = filter_values[filter_x]; 132 ConvolusionFilter1D::Fixed cur_filter = filter_values[filter_x];
134 accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; 133 accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0];
135 accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; 134 accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1];
136 accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; 135 accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2];
137 if (has_alpha) 136 if (has_alpha)
138 accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; 137 accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3];
139 } 138 }
140 139
141 // Bring this value back in range. All of the filter scaling factors 140 // Bring this value back in range. All of the filter scaling factors
142 // are in fixed point with kShiftBits bits of fractional part. 141 // are in fixed point with kShiftBits bits of fractional part.
143 accum[0] >>= ConvolusionFilter1D::kShiftBits; 142 accum[0] >>= ConvolusionFilter1D::kShiftBits;
(...skipping 11 matching lines...) Expand all
155 } 154 }
156 } 155 }
157 156
158 // Does vertical convolusion to produce one output row. The filter values and 157 // Does vertical convolusion to produce one output row. The filter values and
159 // length are given in the first two parameters. These are applied to each 158 // length are given in the first two parameters. These are applied to each
160 // of the rows pointed to in the |source_data_rows| array, with each row 159 // of the rows pointed to in the |source_data_rows| array, with each row
161 // being |pixel_width| wide. 160 // being |pixel_width| wide.
162 // 161 //
163 // The output must have room for |pixel_width * 4| bytes. 162 // The output must have room for |pixel_width * 4| bytes.
164 template<bool has_alpha> 163 template<bool has_alpha>
165 void ConvolveVertically(const int16* filter_values, 164 void ConvolveVertically(const ConvolusionFilter1D::Fixed* filter_values,
166 int filter_length, 165 int filter_length,
167 uint8* const* source_data_rows, 166 unsigned char* const* source_data_rows,
168 int pixel_width, 167 int pixel_width,
169 uint8* out_row) { 168 unsigned char* out_row) {
170 // We go through each column in the output and do a vertical convolusion, 169 // We go through each column in the output and do a vertical convolusion,
171 // generating one output pixel each time. 170 // generating one output pixel each time.
172 for (int out_x = 0; out_x < pixel_width; out_x++) { 171 for (int out_x = 0; out_x < pixel_width; out_x++) {
173 // Compute the number of bytes over in each row that the current column 172 // Compute the number of bytes over in each row that the current column
174 // we're convolving starts at. The pixel will cover the next 4 bytes. 173 // we're convolving starts at. The pixel will cover the next 4 bytes.
175 int byte_offset = out_x * 4; 174 int byte_offset = out_x * 4;
176 175
177 // Apply the filter to one column of pixels. 176 // Apply the filter to one column of pixels.
178 int32 accum[4] = {0}; 177 int32 accum[4] = {0};
179 for (int filter_y = 0; filter_y < filter_length; filter_y++) { 178 for (int filter_y = 0; filter_y < filter_length; filter_y++) {
180 int16 cur_filter = filter_values[filter_y]; 179 ConvolusionFilter1D::Fixed cur_filter = filter_values[filter_y];
181 accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; 180 accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0];
182 accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; 181 accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1];
183 accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; 182 accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2];
184 if (has_alpha) 183 if (has_alpha)
185 accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; 184 accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3];
186 } 185 }
187 186
188 // Bring this value back in range. All of the filter scaling factors 187 // Bring this value back in range. All of the filter scaling factors
189 // are in fixed point with kShiftBits bits of precision. 188 // are in fixed point with kShiftBits bits of precision.
190 accum[0] >>= ConvolusionFilter1D::kShiftBits; 189 accum[0] >>= ConvolusionFilter1D::kShiftBits;
191 accum[1] >>= ConvolusionFilter1D::kShiftBits; 190 accum[1] >>= ConvolusionFilter1D::kShiftBits;
192 accum[2] >>= ConvolusionFilter1D::kShiftBits; 191 accum[2] >>= ConvolusionFilter1D::kShiftBits;
193 if (has_alpha) 192 if (has_alpha)
194 accum[3] >>= ConvolusionFilter1D::kShiftBits; 193 accum[3] >>= ConvolusionFilter1D::kShiftBits;
195 194
196 // Store the new pixel. 195 // Store the new pixel.
197 out_row[byte_offset + 0] = ClampTo8(accum[0]); 196 out_row[byte_offset + 0] = ClampTo8(accum[0]);
198 out_row[byte_offset + 1] = ClampTo8(accum[1]); 197 out_row[byte_offset + 1] = ClampTo8(accum[1]);
199 out_row[byte_offset + 2] = ClampTo8(accum[2]); 198 out_row[byte_offset + 2] = ClampTo8(accum[2]);
200 if (has_alpha) { 199 if (has_alpha) {
201 uint8 alpha = ClampTo8(accum[3]); 200 unsigned char alpha = ClampTo8(accum[3]);
202 201
203 // Make sure the alpha channel doesn't come out larger than any of the 202 // Make sure the alpha channel doesn't come out larger than any of the
204 // color channels. We use premultipled alpha channels, so this should 203 // color channels. We use premultipled alpha channels, so this should
205 // never happen, but rounding errors will cause this from time to time. 204 // never happen, but rounding errors will cause this from time to time.
206 // These "impossible" colors will cause overflows (and hence random pixel 205 // These "impossible" colors will cause overflows (and hence random pixel
207 // values) when the resulting bitmap is drawn to the screen. 206 // values) when the resulting bitmap is drawn to the screen.
208 // 207 //
209 // We only need to do this when generating the final output row (here). 208 // We only need to do this when generating the final output row (here).
210 int max_color_channel = std::max(out_row[byte_offset + 0], 209 int max_color_channel = std::max(out_row[byte_offset + 0],
211 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); 210 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2]));
(...skipping 14 matching lines...) Expand all
226 225
227 void ConvolusionFilter1D::AddFilter(int filter_offset, 226 void ConvolusionFilter1D::AddFilter(int filter_offset,
228 const float* filter_values, 227 const float* filter_values,
229 int filter_length) { 228 int filter_length) {
230 FilterInstance instance; 229 FilterInstance instance;
231 instance.data_location = static_cast<int>(filter_values_.size()); 230 instance.data_location = static_cast<int>(filter_values_.size());
232 instance.offset = filter_offset; 231 instance.offset = filter_offset;
233 instance.length = filter_length; 232 instance.length = filter_length;
234 filters_.push_back(instance); 233 filters_.push_back(instance);
235 234
236 DCHECK(filter_length > 0); 235 SkASSERT(filter_length > 0);
237 for (int i = 0; i < filter_length; i++) 236 for (int i = 0; i < filter_length; i++)
238 filter_values_.push_back(FloatToFixed(filter_values[i])); 237 filter_values_.push_back(FloatToFixed(filter_values[i]));
239 238
240 max_filter_ = std::max(max_filter_, filter_length); 239 max_filter_ = std::max(max_filter_, filter_length);
241 } 240 }
242 241
243 void ConvolusionFilter1D::AddFilter(int filter_offset, 242 void ConvolusionFilter1D::AddFilter(int filter_offset,
244 const int16* filter_values, 243 const Fixed* filter_values,
245 int filter_length) { 244 int filter_length) {
246 FilterInstance instance; 245 FilterInstance instance;
247 instance.data_location = static_cast<int>(filter_values_.size()); 246 instance.data_location = static_cast<int>(filter_values_.size());
248 instance.offset = filter_offset; 247 instance.offset = filter_offset;
249 instance.length = filter_length; 248 instance.length = filter_length;
250 filters_.push_back(instance); 249 filters_.push_back(instance);
251 250
252 DCHECK(filter_length > 0); 251 SkASSERT(filter_length > 0);
253 for (int i = 0; i < filter_length; i++) 252 for (int i = 0; i < filter_length; i++)
254 filter_values_.push_back(filter_values[i]); 253 filter_values_.push_back(filter_values[i]);
255 254
256 max_filter_ = std::max(max_filter_, filter_length); 255 max_filter_ = std::max(max_filter_, filter_length);
257 } 256 }
258 257
259 // BGRAConvolve2D ------------------------------------------------------------- 258 // BGRAConvolve2D -------------------------------------------------------------
260 259
261 void BGRAConvolve2D(const uint8* source_data, 260 void BGRAConvolve2D(const unsigned char* source_data,
262 int source_byte_row_stride, 261 int source_byte_row_stride,
263 bool source_has_alpha, 262 bool source_has_alpha,
264 const ConvolusionFilter1D& filter_x, 263 const ConvolusionFilter1D& filter_x,
265 const ConvolusionFilter1D& filter_y, 264 const ConvolusionFilter1D& filter_y,
266 uint8* output) { 265 unsigned char* output) {
267 int max_y_filter_size = filter_y.max_filter(); 266 int max_y_filter_size = filter_y.max_filter();
268 267
269 // The next row in the input that we will generate a horizontally 268 // The next row in the input that we will generate a horizontally
270 // convolved row for. If the filter doesn't start at the beginning of the 269 // convolved row for. If the filter doesn't start at the beginning of the
271 // image (this is the case when we are only resizing a subset), then we 270 // image (this is the case when we are only resizing a subset), then we
272 // don't want to generate any output rows before that. Compute the starting 271 // don't want to generate any output rows before that. Compute the starting
273 // row for convolusion as the first pixel for the first vertical filter. 272 // row for convolusion as the first pixel for the first vertical filter.
274 int filter_offset, filter_length; 273 int filter_offset, filter_length;
275 const int16* filter_values = 274 const ConvolusionFilter1D::Fixed* filter_values =
276 filter_y.FilterForValue(0, &filter_offset, &filter_length); 275 filter_y.FilterForValue(0, &filter_offset, &filter_length);
277 int next_x_row = filter_offset; 276 int next_x_row = filter_offset;
278 277
279 // We loop over each row in the input doing a horizontal convolusion. This 278 // We loop over each row in the input doing a horizontal convolusion. This
280 // will result in a horizontally convolved image. We write the results into 279 // will result in a horizontally convolved image. We write the results into
281 // a circular buffer of convolved rows and do vertical convolusion as rows 280 // a circular buffer of convolved rows and do vertical convolusion as rows
282 // are available. This prevents us from having to store the entire 281 // are available. This prevents us from having to store the entire
283 // intermediate image and helps cache coherency. 282 // intermediate image and helps cache coherency.
284 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, 283 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size,
285 filter_offset); 284 filter_offset);
(...skipping 14 matching lines...) Expand all
300 filter_x, row_buffer.AdvanceRow()); 299 filter_x, row_buffer.AdvanceRow());
301 } else { 300 } else {
302 ConvolveHorizontally<false>( 301 ConvolveHorizontally<false>(
303 &source_data[next_x_row * source_byte_row_stride], 302 &source_data[next_x_row * source_byte_row_stride],
304 filter_x, row_buffer.AdvanceRow()); 303 filter_x, row_buffer.AdvanceRow());
305 } 304 }
306 next_x_row++; 305 next_x_row++;
307 } 306 }
308 307
309 // Compute where in the output image this row of final data will go. 308 // Compute where in the output image this row of final data will go.
310 uint8* cur_output_row = &output[out_y * output_row_byte_width]; 309 unsigned char* cur_output_row = &output[out_y * output_row_byte_width];
311 310
312 // Get the list of rows that the circular buffer has, in order. 311 // Get the list of rows that the circular buffer has, in order.
313 int first_row_in_circular_buffer; 312 int first_row_in_circular_buffer;
314 uint8* const* rows_to_convolve = 313 unsigned char* const* rows_to_convolve =
315 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); 314 row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
316 315
317 // Now compute the start of the subset of those rows that the filter 316 // Now compute the start of the subset of those rows that the filter
318 // needs. 317 // needs.
319 uint8* const* first_row_for_filter = 318 unsigned char* const* first_row_for_filter =
320 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; 319 &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
321 320
322 if (source_has_alpha) { 321 if (source_has_alpha) {
323 ConvolveVertically<true>(filter_values, filter_length, 322 ConvolveVertically<true>(filter_values, filter_length,
324 first_row_for_filter, 323 first_row_for_filter,
325 filter_x.num_values(), cur_output_row); 324 filter_x.num_values(), cur_output_row);
326 } else { 325 } else {
327 ConvolveVertically<false>(filter_values, filter_length, 326 ConvolveVertically<false>(filter_values, filter_length,
328 first_row_for_filter, 327 first_row_for_filter,
329 filter_x.num_values(), cur_output_row); 328 filter_x.num_values(), cur_output_row);
330 } 329 }
331 } 330 }
332 } 331 }
333 332
334 } // namespace gfx 333 } // namespace skia
335 334
OLDNEW
« no previous file with comments | « skia/ext/convolver.h ('k') | skia/ext/convolver_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698