OLD | NEW |
| (Empty) |
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <algorithm> | |
6 | |
7 #include "base/basictypes.h" | |
8 #include "base/gfx/convolver.h" | |
9 #include "base/logging.h" | |
10 | |
11 namespace gfx { | |
12 | |
13 namespace { | |
14 | |
15 // Converts the argument to an 8-bit unsigned value by clamping to the range | |
16 // 0-255. | |
17 inline uint8 ClampTo8(int32 a) { | |
18 if (static_cast<uint32>(a) < 256) | |
19 return a; // Avoid the extra check in the common case. | |
20 if (a < 0) | |
21 return 0; | |
22 return 255; | |
23 } | |
24 | |
25 // Stores a list of rows in a circular buffer. The usage is you write into it | |
26 // by calling AdvanceRow. It will keep track of which row in the buffer it | |
27 // should use next, and the total number of rows added. | |
28 class CircularRowBuffer { | |
29 public: | |
30 // The number of pixels in each row is given in |source_row_pixel_width|. | |
31 // The maximum number of rows needed in the buffer is |max_y_filter_size| | |
32 // (we only need to store enough rows for the biggest filter). | |
33 // | |
34 // We use the |first_input_row| to compute the coordinates of all of the | |
35 // following rows returned by Advance(). | |
36 CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, | |
37 int first_input_row) | |
38 : row_byte_width_(dest_row_pixel_width * 4), | |
39 num_rows_(max_y_filter_size), | |
40 next_row_(0), | |
41 next_row_coordinate_(first_input_row) { | |
42 buffer_.resize(row_byte_width_ * max_y_filter_size); | |
43 row_addresses_.resize(num_rows_); | |
44 } | |
45 | |
46 // Moves to the next row in the buffer, returning a pointer to the beginning | |
47 // of it. | |
48 uint8* AdvanceRow() { | |
49 uint8* row = &buffer_[next_row_ * row_byte_width_]; | |
50 next_row_coordinate_++; | |
51 | |
52 // Set the pointer to the next row to use, wrapping around if necessary. | |
53 next_row_++; | |
54 if (next_row_ == num_rows_) | |
55 next_row_ = 0; | |
56 return row; | |
57 } | |
58 | |
59 // Returns a pointer to an "unrolled" array of rows. These rows will start | |
60 // at the y coordinate placed into |*first_row_index| and will continue in | |
61 // order for the maximum number of rows in this circular buffer. | |
62 // | |
63 // The |first_row_index_| may be negative. This means the circular buffer | |
64 // starts before the top of the image (it hasn't been filled yet). | |
65 uint8* const* GetRowAddresses(int* first_row_index) { | |
66 // Example for a 4-element circular buffer holding coords 6-9. | |
67 // Row 0 Coord 8 | |
68 // Row 1 Coord 9 | |
69 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. | |
70 // Row 3 Coord 7 | |
71 // | |
72 // The "next" row is also the first (lowest) coordinate. This computation | |
73 // may yield a negative value, but that's OK, the math will work out | |
74 // since the user of this buffer will compute the offset relative | |
75 // to the first_row_index and the negative rows will never be used. | |
76 *first_row_index = next_row_coordinate_ - num_rows_; | |
77 | |
78 int cur_row = next_row_; | |
79 for (int i = 0; i < num_rows_; i++) { | |
80 row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; | |
81 | |
82 // Advance to the next row, wrapping if necessary. | |
83 cur_row++; | |
84 if (cur_row == num_rows_) | |
85 cur_row = 0; | |
86 } | |
87 return &row_addresses_[0]; | |
88 } | |
89 | |
90 private: | |
91 // The buffer storing the rows. They are packed, each one row_byte_width_. | |
92 std::vector<uint8> buffer_; | |
93 | |
94 // Number of bytes per row in the |buffer_|. | |
95 int row_byte_width_; | |
96 | |
97 // The number of rows available in the buffer. | |
98 int num_rows_; | |
99 | |
100 // The next row index we should write into. This wraps around as the | |
101 // circular buffer is used. | |
102 int next_row_; | |
103 | |
104 // The y coordinate of the |next_row_|. This is incremented each time a | |
105 // new row is appended and does not wrap. | |
106 int next_row_coordinate_; | |
107 | |
108 // Buffer used by GetRowAddresses(). | |
109 std::vector<uint8*> row_addresses_; | |
110 }; | |
111 | |
112 // Convolves horizontally along a single row. The row data is given in | |
113 // |src_data| and continues for the num_values() of the filter. | |
114 template<bool has_alpha> | |
115 void ConvolveHorizontally(const uint8* src_data, | |
116 const ConvolusionFilter1D& filter, | |
117 unsigned char* out_row) { | |
118 // Loop over each pixel on this row in the output image. | |
119 int num_values = filter.num_values(); | |
120 for (int out_x = 0; out_x < num_values; out_x++) { | |
121 // Get the filter that determines the current output pixel. | |
122 int filter_offset, filter_length; | |
123 const int16* filter_values = | |
124 filter.FilterForValue(out_x, &filter_offset, &filter_length); | |
125 | |
126 // Compute the first pixel in this row that the filter affects. It will | |
127 // touch |filter_length| pixels (4 bytes each) after this. | |
128 const uint8* row_to_filter = &src_data[filter_offset * 4]; | |
129 | |
130 // Apply the filter to the row to get the destination pixel in |accum|. | |
131 int32 accum[4] = {0}; | |
132 for (int filter_x = 0; filter_x < filter_length; filter_x++) { | |
133 int16 cur_filter = filter_values[filter_x]; | |
134 accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; | |
135 accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; | |
136 accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; | |
137 if (has_alpha) | |
138 accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; | |
139 } | |
140 | |
141 // Bring this value back in range. All of the filter scaling factors | |
142 // are in fixed point with kShiftBits bits of fractional part. | |
143 accum[0] >>= ConvolusionFilter1D::kShiftBits; | |
144 accum[1] >>= ConvolusionFilter1D::kShiftBits; | |
145 accum[2] >>= ConvolusionFilter1D::kShiftBits; | |
146 if (has_alpha) | |
147 accum[3] >>= ConvolusionFilter1D::kShiftBits; | |
148 | |
149 // Store the new pixel. | |
150 out_row[out_x * 4 + 0] = ClampTo8(accum[0]); | |
151 out_row[out_x * 4 + 1] = ClampTo8(accum[1]); | |
152 out_row[out_x * 4 + 2] = ClampTo8(accum[2]); | |
153 if (has_alpha) | |
154 out_row[out_x * 4 + 3] = ClampTo8(accum[3]); | |
155 } | |
156 } | |
157 | |
158 // Does vertical convolusion to produce one output row. The filter values and | |
159 // length are given in the first two parameters. These are applied to each | |
160 // of the rows pointed to in the |source_data_rows| array, with each row | |
161 // being |pixel_width| wide. | |
162 // | |
163 // The output must have room for |pixel_width * 4| bytes. | |
164 template<bool has_alpha> | |
165 void ConvolveVertically(const int16* filter_values, | |
166 int filter_length, | |
167 uint8* const* source_data_rows, | |
168 int pixel_width, | |
169 uint8* out_row) { | |
170 // We go through each column in the output and do a vertical convolusion, | |
171 // generating one output pixel each time. | |
172 for (int out_x = 0; out_x < pixel_width; out_x++) { | |
173 // Compute the number of bytes over in each row that the current column | |
174 // we're convolving starts at. The pixel will cover the next 4 bytes. | |
175 int byte_offset = out_x * 4; | |
176 | |
177 // Apply the filter to one column of pixels. | |
178 int32 accum[4] = {0}; | |
179 for (int filter_y = 0; filter_y < filter_length; filter_y++) { | |
180 int16 cur_filter = filter_values[filter_y]; | |
181 accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; | |
182 accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; | |
183 accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; | |
184 if (has_alpha) | |
185 accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; | |
186 } | |
187 | |
188 // Bring this value back in range. All of the filter scaling factors | |
189 // are in fixed point with kShiftBits bits of precision. | |
190 accum[0] >>= ConvolusionFilter1D::kShiftBits; | |
191 accum[1] >>= ConvolusionFilter1D::kShiftBits; | |
192 accum[2] >>= ConvolusionFilter1D::kShiftBits; | |
193 if (has_alpha) | |
194 accum[3] >>= ConvolusionFilter1D::kShiftBits; | |
195 | |
196 // Store the new pixel. | |
197 out_row[byte_offset + 0] = ClampTo8(accum[0]); | |
198 out_row[byte_offset + 1] = ClampTo8(accum[1]); | |
199 out_row[byte_offset + 2] = ClampTo8(accum[2]); | |
200 if (has_alpha) { | |
201 uint8 alpha = ClampTo8(accum[3]); | |
202 | |
203 // Make sure the alpha channel doesn't come out larger than any of the | |
204 // color channels. We use premultipled alpha channels, so this should | |
205 // never happen, but rounding errors will cause this from time to time. | |
206 // These "impossible" colors will cause overflows (and hence random pixel | |
207 // values) when the resulting bitmap is drawn to the screen. | |
208 // | |
209 // We only need to do this when generating the final output row (here). | |
210 int max_color_channel = std::max(out_row[byte_offset + 0], | |
211 std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); | |
212 if (alpha < max_color_channel) | |
213 out_row[byte_offset + 3] = max_color_channel; | |
214 else | |
215 out_row[byte_offset + 3] = alpha; | |
216 } else { | |
217 // No alpha channel, the image is opaque. | |
218 out_row[byte_offset + 3] = 0xff; | |
219 } | |
220 } | |
221 } | |
222 | |
223 } // namespace | |
224 | |
225 // ConvolusionFilter1D --------------------------------------------------------- | |
226 | |
227 void ConvolusionFilter1D::AddFilter(int filter_offset, | |
228 const float* filter_values, | |
229 int filter_length) { | |
230 FilterInstance instance; | |
231 instance.data_location = static_cast<int>(filter_values_.size()); | |
232 instance.offset = filter_offset; | |
233 instance.length = filter_length; | |
234 filters_.push_back(instance); | |
235 | |
236 DCHECK(filter_length > 0); | |
237 for (int i = 0; i < filter_length; i++) | |
238 filter_values_.push_back(FloatToFixed(filter_values[i])); | |
239 | |
240 max_filter_ = std::max(max_filter_, filter_length); | |
241 } | |
242 | |
243 void ConvolusionFilter1D::AddFilter(int filter_offset, | |
244 const int16* filter_values, | |
245 int filter_length) { | |
246 FilterInstance instance; | |
247 instance.data_location = static_cast<int>(filter_values_.size()); | |
248 instance.offset = filter_offset; | |
249 instance.length = filter_length; | |
250 filters_.push_back(instance); | |
251 | |
252 DCHECK(filter_length > 0); | |
253 for (int i = 0; i < filter_length; i++) | |
254 filter_values_.push_back(filter_values[i]); | |
255 | |
256 max_filter_ = std::max(max_filter_, filter_length); | |
257 } | |
258 | |
259 // BGRAConvolve2D ------------------------------------------------------------- | |
260 | |
261 void BGRAConvolve2D(const uint8* source_data, | |
262 int source_byte_row_stride, | |
263 bool source_has_alpha, | |
264 const ConvolusionFilter1D& filter_x, | |
265 const ConvolusionFilter1D& filter_y, | |
266 uint8* output) { | |
267 int max_y_filter_size = filter_y.max_filter(); | |
268 | |
269 // The next row in the input that we will generate a horizontally | |
270 // convolved row for. If the filter doesn't start at the beginning of the | |
271 // image (this is the case when we are only resizing a subset), then we | |
272 // don't want to generate any output rows before that. Compute the starting | |
273 // row for convolusion as the first pixel for the first vertical filter. | |
274 int filter_offset, filter_length; | |
275 const int16* filter_values = | |
276 filter_y.FilterForValue(0, &filter_offset, &filter_length); | |
277 int next_x_row = filter_offset; | |
278 | |
279 // We loop over each row in the input doing a horizontal convolusion. This | |
280 // will result in a horizontally convolved image. We write the results into | |
281 // a circular buffer of convolved rows and do vertical convolusion as rows | |
282 // are available. This prevents us from having to store the entire | |
283 // intermediate image and helps cache coherency. | |
284 CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, | |
285 filter_offset); | |
286 | |
287 // Loop over every possible output row, processing just enough horizontal | |
288 // convolusions to run each subsequent vertical convolusion. | |
289 int output_row_byte_width = filter_x.num_values() * 4; | |
290 int num_output_rows = filter_y.num_values(); | |
291 for (int out_y = 0; out_y < num_output_rows; out_y++) { | |
292 filter_values = filter_y.FilterForValue(out_y, | |
293 &filter_offset, &filter_length); | |
294 | |
295 // Generate output rows until we have enough to run the current filter. | |
296 while (next_x_row < filter_offset + filter_length) { | |
297 if (source_has_alpha) { | |
298 ConvolveHorizontally<true>( | |
299 &source_data[next_x_row * source_byte_row_stride], | |
300 filter_x, row_buffer.AdvanceRow()); | |
301 } else { | |
302 ConvolveHorizontally<false>( | |
303 &source_data[next_x_row * source_byte_row_stride], | |
304 filter_x, row_buffer.AdvanceRow()); | |
305 } | |
306 next_x_row++; | |
307 } | |
308 | |
309 // Compute where in the output image this row of final data will go. | |
310 uint8* cur_output_row = &output[out_y * output_row_byte_width]; | |
311 | |
312 // Get the list of rows that the circular buffer has, in order. | |
313 int first_row_in_circular_buffer; | |
314 uint8* const* rows_to_convolve = | |
315 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); | |
316 | |
317 // Now compute the start of the subset of those rows that the filter | |
318 // needs. | |
319 uint8* const* first_row_for_filter = | |
320 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; | |
321 | |
322 if (source_has_alpha) { | |
323 ConvolveVertically<true>(filter_values, filter_length, | |
324 first_row_for_filter, | |
325 filter_x.num_values(), cur_output_row); | |
326 } else { | |
327 ConvolveVertically<false>(filter_values, filter_length, | |
328 first_row_for_filter, | |
329 filter_x.num_values(), cur_output_row); | |
330 } | |
331 } | |
332 } | |
333 | |
334 } // namespace gfx | |
335 | |
OLD | NEW |