| Index: src/data-flow.cc
|
| diff --git a/src/data-flow.cc b/src/data-flow.cc
|
| index fe4b3db00e1e6bf1dddf19e53a5e42ae25545171..1bc77c033822fdc396f2f623e92a7dc17f83bc82 100644
|
| --- a/src/data-flow.cc
|
| +++ b/src/data-flow.cc
|
| @@ -28,6 +28,7 @@
|
| #include "v8.h"
|
|
|
| #include "data-flow.h"
|
| +#include "flow-graph.h"
|
| #include "scopes.h"
|
|
|
| namespace v8 {
|
| @@ -50,561 +51,6 @@ void BitVector::Print() {
|
| #endif
|
|
|
|
|
| -void FlowGraph::AppendInstruction(AstNode* instruction) {
|
| - // Add a (non-null) AstNode to the end of the graph fragment.
|
| - ASSERT(instruction != NULL);
|
| - if (exit()->IsExitNode()) return;
|
| - if (!exit()->IsBlockNode()) AppendNode(new BlockNode());
|
| - BlockNode::cast(exit())->AddInstruction(instruction);
|
| -}
|
| -
|
| -
|
| -void FlowGraph::AppendNode(Node* node) {
|
| - // Add a node to the end of the graph. An empty block is added to
|
| - // maintain edge-split form (that no join nodes or exit nodes as
|
| - // successors to branch nodes).
|
| - ASSERT(node != NULL);
|
| - if (exit()->IsExitNode()) return;
|
| - if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
|
| - AppendNode(new BlockNode());
|
| - }
|
| - exit()->AddSuccessor(node);
|
| - node->AddPredecessor(exit());
|
| - exit_ = node;
|
| -}
|
| -
|
| -
|
| -void FlowGraph::AppendGraph(FlowGraph* graph) {
|
| - // Add a flow graph fragment to the end of this one. An empty block is
|
| - // added to maintain edge-split form (that no join nodes or exit nodes as
|
| - // successors to branch nodes).
|
| - ASSERT(graph != NULL);
|
| - if (exit()->IsExitNode()) return;
|
| - Node* node = graph->entry();
|
| - if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) {
|
| - AppendNode(new BlockNode());
|
| - }
|
| - exit()->AddSuccessor(node);
|
| - node->AddPredecessor(exit());
|
| - exit_ = graph->exit();
|
| -}
|
| -
|
| -
|
| -void FlowGraph::Split(BranchNode* branch,
|
| - FlowGraph* left,
|
| - FlowGraph* right,
|
| - JoinNode* join) {
|
| - // Add the branch node, left flowgraph, join node.
|
| - AppendNode(branch);
|
| - AppendGraph(left);
|
| - AppendNode(join);
|
| -
|
| - // Splice in the right flowgraph.
|
| - right->AppendNode(join);
|
| - branch->AddSuccessor(right->entry());
|
| - right->entry()->AddPredecessor(branch);
|
| -}
|
| -
|
| -
|
| -void FlowGraph::Loop(JoinNode* join,
|
| - FlowGraph* condition,
|
| - BranchNode* branch,
|
| - FlowGraph* body) {
|
| - // Add the join, condition and branch. Add join's predecessors in
|
| - // left-to-right order.
|
| - AppendNode(join);
|
| - body->AppendNode(join);
|
| - AppendGraph(condition);
|
| - AppendNode(branch);
|
| -
|
| - // Splice in the body flowgraph.
|
| - branch->AddSuccessor(body->entry());
|
| - body->entry()->AddPredecessor(branch);
|
| -}
|
| -
|
| -
|
| -void ExitNode::Traverse(bool mark,
|
| - ZoneList<Node*>* preorder,
|
| - ZoneList<Node*>* postorder) {
|
| - preorder->Add(this);
|
| - postorder->Add(this);
|
| -}
|
| -
|
| -
|
| -void BlockNode::Traverse(bool mark,
|
| - ZoneList<Node*>* preorder,
|
| - ZoneList<Node*>* postorder) {
|
| - ASSERT(successor_ != NULL);
|
| - preorder->Add(this);
|
| - if (!successor_->IsMarkedWith(mark)) {
|
| - successor_->MarkWith(mark);
|
| - successor_->Traverse(mark, preorder, postorder);
|
| - }
|
| - postorder->Add(this);
|
| -}
|
| -
|
| -
|
| -void BranchNode::Traverse(bool mark,
|
| - ZoneList<Node*>* preorder,
|
| - ZoneList<Node*>* postorder) {
|
| - ASSERT(successor0_ != NULL && successor1_ != NULL);
|
| - preorder->Add(this);
|
| - if (!successor1_->IsMarkedWith(mark)) {
|
| - successor1_->MarkWith(mark);
|
| - successor1_->Traverse(mark, preorder, postorder);
|
| - }
|
| - if (!successor0_->IsMarkedWith(mark)) {
|
| - successor0_->MarkWith(mark);
|
| - successor0_->Traverse(mark, preorder, postorder);
|
| - }
|
| - postorder->Add(this);
|
| -}
|
| -
|
| -
|
| -void JoinNode::Traverse(bool mark,
|
| - ZoneList<Node*>* preorder,
|
| - ZoneList<Node*>* postorder) {
|
| - ASSERT(successor_ != NULL);
|
| - preorder->Add(this);
|
| - if (!successor_->IsMarkedWith(mark)) {
|
| - successor_->MarkWith(mark);
|
| - successor_->Traverse(mark, preorder, postorder);
|
| - }
|
| - postorder->Add(this);
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::Build(FunctionLiteral* lit) {
|
| - global_exit_ = new ExitNode();
|
| - VisitStatements(lit->body());
|
| -
|
| - if (HasStackOverflow()) return;
|
| -
|
| - // The graph can end with a branch node (if the function ended with a
|
| - // loop). Maintain edge-split form (no join nodes or exit nodes as
|
| - // successors to branch nodes).
|
| - if (graph_.exit()->IsBranchNode()) graph_.AppendNode(new BlockNode());
|
| - graph_.AppendNode(global_exit_);
|
| -
|
| - // Build preorder and postorder traversal orders. All the nodes in
|
| - // the graph have the same mark flag. For the traversal, use that
|
| - // flag's negation. Traversal will flip all the flags.
|
| - bool mark = graph_.entry()->IsMarkedWith(false);
|
| - graph_.entry()->MarkWith(mark);
|
| - graph_.entry()->Traverse(mark, &preorder_, &postorder_);
|
| -}
|
| -
|
| -
|
| -// This function peels off one iteration of a for-loop. The return value
|
| -// is either a block statement containing the peeled loop or NULL in case
|
| -// there is a stack overflow.
|
| -static Statement* PeelForLoop(ForStatement* stmt) {
|
| - // Mark this for-statement as processed.
|
| - stmt->set_peel_this_loop(false);
|
| -
|
| - // Create new block containing the init statement of the for-loop and
|
| - // an if-statement containing the peeled iteration and the original
|
| - // loop without the init-statement.
|
| - Block* block = new Block(NULL, 2, false);
|
| - if (stmt->init() != NULL) {
|
| - Statement* init = stmt->init();
|
| - // The init statement gets the statement position of the for-loop
|
| - // to make debugging of peeled loops possible.
|
| - init->set_statement_pos(stmt->statement_pos());
|
| - block->AddStatement(init);
|
| - }
|
| -
|
| - // Copy the condition.
|
| - CopyAstVisitor copy_visitor;
|
| - Expression* cond_copy = stmt->cond() != NULL
|
| - ? copy_visitor.DeepCopyExpr(stmt->cond())
|
| - : new Literal(Factory::true_value());
|
| - if (copy_visitor.HasStackOverflow()) return NULL;
|
| -
|
| - // Construct a block with the peeled body and the rest of the for-loop.
|
| - Statement* body_copy = copy_visitor.DeepCopyStmt(stmt->body());
|
| - if (copy_visitor.HasStackOverflow()) return NULL;
|
| -
|
| - Statement* next_copy = stmt->next() != NULL
|
| - ? copy_visitor.DeepCopyStmt(stmt->next())
|
| - : new EmptyStatement();
|
| - if (copy_visitor.HasStackOverflow()) return NULL;
|
| -
|
| - Block* peeled_body = new Block(NULL, 3, false);
|
| - peeled_body->AddStatement(body_copy);
|
| - peeled_body->AddStatement(next_copy);
|
| - peeled_body->AddStatement(stmt);
|
| -
|
| - // Remove the duplicated init statement from the for-statement.
|
| - stmt->set_init(NULL);
|
| -
|
| - // Create new test at the top and add it to the newly created block.
|
| - IfStatement* test = new IfStatement(cond_copy,
|
| - peeled_body,
|
| - new EmptyStatement());
|
| - block->AddStatement(test);
|
| - return block;
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitStatements(ZoneList<Statement*>* stmts) {
|
| - for (int i = 0, len = stmts->length(); i < len; i++) {
|
| - stmts->at(i) = ProcessStatement(stmts->at(i));
|
| - }
|
| -}
|
| -
|
| -
|
| -Statement* FlowGraphBuilder::ProcessStatement(Statement* stmt) {
|
| - if (FLAG_loop_peeling &&
|
| - stmt->AsForStatement() != NULL &&
|
| - stmt->AsForStatement()->peel_this_loop()) {
|
| - Statement* tmp_stmt = PeelForLoop(stmt->AsForStatement());
|
| - if (tmp_stmt == NULL) {
|
| - SetStackOverflow();
|
| - } else {
|
| - stmt = tmp_stmt;
|
| - }
|
| - }
|
| - Visit(stmt);
|
| - return stmt;
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitDeclaration(Declaration* decl) {
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitBlock(Block* stmt) {
|
| - VisitStatements(stmt->statements());
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
|
| - Visit(stmt->expression());
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
|
| - // Nothing to do.
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) {
|
| - Visit(stmt->condition());
|
| -
|
| - BranchNode* branch = new BranchNode();
|
| - FlowGraph original = graph_;
|
| - graph_ = FlowGraph::Empty();
|
| - stmt->set_then_statement(ProcessStatement(stmt->then_statement()));
|
| -
|
| - FlowGraph left = graph_;
|
| - graph_ = FlowGraph::Empty();
|
| - stmt->set_else_statement(ProcessStatement(stmt->else_statement()));
|
| -
|
| - if (HasStackOverflow()) return;
|
| - JoinNode* join = new JoinNode();
|
| - original.Split(branch, &left, &graph_, join);
|
| - graph_ = original;
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) {
|
| - if (stmt->init() != NULL) stmt->set_init(ProcessStatement(stmt->init()));
|
| -
|
| - JoinNode* join = new JoinNode();
|
| - FlowGraph original = graph_;
|
| - graph_ = FlowGraph::Empty();
|
| - if (stmt->cond() != NULL) Visit(stmt->cond());
|
| -
|
| - BranchNode* branch = new BranchNode();
|
| - FlowGraph condition = graph_;
|
| - graph_ = FlowGraph::Empty();
|
| - stmt->set_body(ProcessStatement(stmt->body()));
|
| -
|
| - if (stmt->next() != NULL) stmt->set_next(ProcessStatement(stmt->next()));
|
| -
|
| - if (HasStackOverflow()) return;
|
| - original.Loop(join, &condition, branch, &graph_);
|
| - graph_ = original;
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitSharedFunctionInfoLiteral(
|
| - SharedFunctionInfoLiteral* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitConditional(Conditional* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitSlot(Slot* expr) {
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
|
| - graph_.AppendInstruction(expr);
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitLiteral(Literal* expr) {
|
| - graph_.AppendInstruction(expr);
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitAssignment(Assignment* expr) {
|
| - Variable* var = expr->target()->AsVariableProxy()->AsVariable();
|
| - Property* prop = expr->target()->AsProperty();
|
| - // Left-hand side can be a variable or property (or reference error) but
|
| - // not both.
|
| - ASSERT(var == NULL || prop == NULL);
|
| - if (var != NULL) {
|
| - if (expr->is_compound()) Visit(expr->target());
|
| - Visit(expr->value());
|
| - if (var->IsStackAllocated()) {
|
| - // The first definition in the body is numbered n, where n is the
|
| - // number of parameters and stack-allocated locals.
|
| - expr->set_num(body_definitions_.length() + variable_count_);
|
| - body_definitions_.Add(expr);
|
| - }
|
| -
|
| - } else if (prop != NULL) {
|
| - Visit(prop->obj());
|
| - if (!prop->key()->IsPropertyName()) Visit(prop->key());
|
| - Visit(expr->value());
|
| - }
|
| -
|
| - if (HasStackOverflow()) return;
|
| - graph_.AppendInstruction(expr);
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitThrow(Throw* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitProperty(Property* expr) {
|
| - Visit(expr->obj());
|
| - if (!expr->key()->IsPropertyName()) Visit(expr->key());
|
| -
|
| - if (HasStackOverflow()) return;
|
| - graph_.AppendInstruction(expr);
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitCall(Call* expr) {
|
| - Visit(expr->expression());
|
| - ZoneList<Expression*>* arguments = expr->arguments();
|
| - for (int i = 0, len = arguments->length(); i < len; i++) {
|
| - Visit(arguments->at(i));
|
| - }
|
| -
|
| - if (HasStackOverflow()) return;
|
| - graph_.AppendInstruction(expr);
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitCallNew(CallNew* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
|
| - switch (expr->op()) {
|
| - case Token::NOT:
|
| - case Token::BIT_NOT:
|
| - case Token::DELETE:
|
| - case Token::TYPEOF:
|
| - case Token::VOID:
|
| - SetStackOverflow();
|
| - break;
|
| -
|
| - case Token::ADD:
|
| - case Token::SUB:
|
| - Visit(expr->expression());
|
| - if (HasStackOverflow()) return;
|
| - graph_.AppendInstruction(expr);
|
| - break;
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) {
|
| - Visit(expr->expression());
|
| - Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
|
| - if (var != NULL && var->IsStackAllocated()) {
|
| - // The first definition in the body is numbered n, where n is the number
|
| - // of parameters and stack-allocated locals.
|
| - expr->set_num(body_definitions_.length() + variable_count_);
|
| - body_definitions_.Add(expr);
|
| - }
|
| -
|
| - if (HasStackOverflow()) return;
|
| - graph_.AppendInstruction(expr);
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
|
| - switch (expr->op()) {
|
| - case Token::COMMA:
|
| - case Token::OR:
|
| - case Token::AND:
|
| - SetStackOverflow();
|
| - break;
|
| -
|
| - case Token::BIT_OR:
|
| - case Token::BIT_XOR:
|
| - case Token::BIT_AND:
|
| - case Token::SHL:
|
| - case Token::SHR:
|
| - case Token::ADD:
|
| - case Token::SUB:
|
| - case Token::MUL:
|
| - case Token::DIV:
|
| - case Token::MOD:
|
| - case Token::SAR:
|
| - Visit(expr->left());
|
| - Visit(expr->right());
|
| - if (HasStackOverflow()) return;
|
| - graph_.AppendInstruction(expr);
|
| - break;
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
|
| - switch (expr->op()) {
|
| - case Token::EQ:
|
| - case Token::NE:
|
| - case Token::EQ_STRICT:
|
| - case Token::NE_STRICT:
|
| - case Token::INSTANCEOF:
|
| - case Token::IN:
|
| - SetStackOverflow();
|
| - break;
|
| -
|
| - case Token::LT:
|
| - case Token::GT:
|
| - case Token::LTE:
|
| - case Token::GTE:
|
| - Visit(expr->left());
|
| - Visit(expr->right());
|
| - if (HasStackOverflow()) return;
|
| - graph_.AppendInstruction(expr);
|
| - break;
|
| -
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) {
|
| - SetStackOverflow();
|
| -}
|
| -
|
| -
|
| void AstLabeler::Label(CompilationInfo* info) {
|
| info_ = info;
|
| VisitStatements(info_->function()->body());
|
| @@ -1300,6 +746,387 @@ void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) {
|
| }
|
|
|
|
|
| +int ReachingDefinitions::IndexFor(Variable* var, int variable_count) {
|
| + // Parameters are numbered left-to-right from the beginning of the bit
|
| + // set. Stack-allocated locals are allocated right-to-left from the end.
|
| + ASSERT(var != NULL && var->IsStackAllocated());
|
| + Slot* slot = var->slot();
|
| + if (slot->type() == Slot::PARAMETER) {
|
| + return slot->index();
|
| + } else {
|
| + return (variable_count - 1) - slot->index();
|
| + }
|
| +}
|
| +
|
| +
|
| +void Node::InitializeReachingDefinitions(int definition_count,
|
| + List<BitVector*>* variables,
|
| + WorkList<Node>* worklist,
|
| + bool mark) {
|
| + ASSERT(!IsMarkedWith(mark));
|
| + rd_.Initialize(definition_count);
|
| + MarkWith(mark);
|
| + worklist->Insert(this);
|
| +}
|
| +
|
| +
|
| +void BlockNode::InitializeReachingDefinitions(int definition_count,
|
| + List<BitVector*>* variables,
|
| + WorkList<Node>* worklist,
|
| + bool mark) {
|
| + ASSERT(!IsMarkedWith(mark));
|
| + int instruction_count = instructions_.length();
|
| + int variable_count = variables->length();
|
| +
|
| + rd_.Initialize(definition_count);
|
| + // The RD_in set for the entry node has a definition for each parameter
|
| + // and local.
|
| + if (predecessor_ == NULL) {
|
| + for (int i = 0; i < variable_count; i++) rd_.rd_in()->Add(i);
|
| + }
|
| +
|
| + for (int i = 0; i < instruction_count; i++) {
|
| + Expression* expr = instructions_[i]->AsExpression();
|
| + if (expr == NULL) continue;
|
| + Variable* var = expr->AssignedVariable();
|
| + if (var == NULL || !var->IsStackAllocated()) continue;
|
| +
|
| + // All definitions of this variable are killed.
|
| + BitVector* def_set =
|
| + variables->at(ReachingDefinitions::IndexFor(var, variable_count));
|
| + rd_.kill()->Union(*def_set);
|
| +
|
| + // All previously generated definitions are not generated.
|
| + rd_.gen()->Subtract(*def_set);
|
| +
|
| + // This one is generated.
|
| + rd_.gen()->Add(expr->num());
|
| + }
|
| +
|
| + // Add all blocks except the entry node to the worklist.
|
| + if (predecessor_ != NULL) {
|
| + MarkWith(mark);
|
| + worklist->Insert(this);
|
| + }
|
| +}
|
| +
|
| +
|
| +void ExitNode::ComputeRDOut(BitVector* result) {
|
| + // Should not be the predecessor of any node.
|
| + UNREACHABLE();
|
| +}
|
| +
|
| +
|
| +void BlockNode::ComputeRDOut(BitVector* result) {
|
| + // All definitions reaching this block ...
|
| + *result = *rd_.rd_in();
|
| + // ... except those killed by the block ...
|
| + result->Subtract(*rd_.kill());
|
| + // ... but including those generated by the block.
|
| + result->Union(*rd_.gen());
|
| +}
|
| +
|
| +
|
| +void BranchNode::ComputeRDOut(BitVector* result) {
|
| + // Branch nodes don't kill or generate definitions.
|
| + *result = *rd_.rd_in();
|
| +}
|
| +
|
| +
|
| +void JoinNode::ComputeRDOut(BitVector* result) {
|
| + // Join nodes don't kill or generate definitions.
|
| + *result = *rd_.rd_in();
|
| +}
|
| +
|
| +
|
| +void ExitNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
| + // The exit node has no successors so we can just update in place. New
|
| + // RD_in is the union over all predecessors.
|
| + int definition_count = rd_.rd_in()->length();
|
| + rd_.rd_in()->Clear();
|
| +
|
| + BitVector temp(definition_count);
|
| + for (int i = 0, len = predecessors_.length(); i < len; i++) {
|
| + // Because ComputeRDOut always overwrites temp and its value is
|
| + // always read out before calling ComputeRDOut again, we do not
|
| + // have to clear it on each iteration of the loop.
|
| + predecessors_[i]->ComputeRDOut(&temp);
|
| + rd_.rd_in()->Union(temp);
|
| + }
|
| +}
|
| +
|
| +
|
| +void BlockNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
| + // The entry block has no predecessor. Its RD_in does not change.
|
| + if (predecessor_ == NULL) return;
|
| +
|
| + BitVector new_rd_in(rd_.rd_in()->length());
|
| + predecessor_->ComputeRDOut(&new_rd_in);
|
| +
|
| + if (rd_.rd_in()->Equals(new_rd_in)) return;
|
| +
|
| + // Update RD_in.
|
| + *rd_.rd_in() = new_rd_in;
|
| + // Add the successor to the worklist if not already present.
|
| + if (!successor_->IsMarkedWith(mark)) {
|
| + successor_->MarkWith(mark);
|
| + worklist->Insert(successor_);
|
| + }
|
| +}
|
| +
|
| +
|
| +void BranchNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
| + BitVector new_rd_in(rd_.rd_in()->length());
|
| + predecessor_->ComputeRDOut(&new_rd_in);
|
| +
|
| + if (rd_.rd_in()->Equals(new_rd_in)) return;
|
| +
|
| + // Update RD_in.
|
| + *rd_.rd_in() = new_rd_in;
|
| + // Add the successors to the worklist if not already present.
|
| + if (!successor0_->IsMarkedWith(mark)) {
|
| + successor0_->MarkWith(mark);
|
| + worklist->Insert(successor0_);
|
| + }
|
| + if (!successor1_->IsMarkedWith(mark)) {
|
| + successor1_->MarkWith(mark);
|
| + worklist->Insert(successor1_);
|
| + }
|
| +}
|
| +
|
| +
|
| +void JoinNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
| + int definition_count = rd_.rd_in()->length();
|
| + BitVector new_rd_in(definition_count);
|
| +
|
| + // New RD_in is the union over all predecessors.
|
| + BitVector temp(definition_count);
|
| + for (int i = 0, len = predecessors_.length(); i < len; i++) {
|
| + predecessors_[i]->ComputeRDOut(&temp);
|
| + new_rd_in.Union(temp);
|
| + }
|
| +
|
| + if (rd_.rd_in()->Equals(new_rd_in)) return;
|
| +
|
| + // Update RD_in.
|
| + *rd_.rd_in() = new_rd_in;
|
| + // Add the successor to the worklist if not already present.
|
| + if (!successor_->IsMarkedWith(mark)) {
|
| + successor_->MarkWith(mark);
|
| + worklist->Insert(successor_);
|
| + }
|
| +}
|
| +
|
| +
|
| +void Node::PropagateReachingDefinitions(List<BitVector*>* variables) {
|
| + // Nothing to do.
|
| +}
|
| +
|
| +
|
| +void BlockNode::PropagateReachingDefinitions(List<BitVector*>* variables) {
|
| + // Propagate RD_in from the start of the block to all the variable
|
| + // references.
|
| + int variable_count = variables->length();
|
| + BitVector rd = *rd_.rd_in();
|
| + for (int i = 0, len = instructions_.length(); i < len; i++) {
|
| + Expression* expr = instructions_[i]->AsExpression();
|
| + if (expr == NULL) continue;
|
| +
|
| + // Look for a variable reference to record its reaching definitions.
|
| + VariableProxy* proxy = expr->AsVariableProxy();
|
| + if (proxy == NULL) {
|
| + // Not a VariableProxy? Maybe it's a count operation.
|
| + CountOperation* count_operation = expr->AsCountOperation();
|
| + if (count_operation != NULL) {
|
| + proxy = count_operation->expression()->AsVariableProxy();
|
| + }
|
| + }
|
| + if (proxy == NULL) {
|
| + // OK, Maybe it's a compound assignment.
|
| + Assignment* assignment = expr->AsAssignment();
|
| + if (assignment != NULL && assignment->is_compound()) {
|
| + proxy = assignment->target()->AsVariableProxy();
|
| + }
|
| + }
|
| +
|
| + if (proxy != NULL &&
|
| + proxy->var()->IsStackAllocated() &&
|
| + !proxy->var()->is_this()) {
|
| + // All definitions for this variable.
|
| + BitVector* definitions =
|
| + variables->at(ReachingDefinitions::IndexFor(proxy->var(),
|
| + variable_count));
|
| + BitVector* reaching_definitions = new BitVector(*definitions);
|
| + // Intersected with all definitions (of any variable) reaching this
|
| + // instruction.
|
| + reaching_definitions->Intersect(rd);
|
| + proxy->set_reaching_definitions(reaching_definitions);
|
| + }
|
| +
|
| + // It may instead (or also) be a definition. If so update the running
|
| + // value of reaching definitions for the block.
|
| + Variable* var = expr->AssignedVariable();
|
| + if (var == NULL || !var->IsStackAllocated()) continue;
|
| +
|
| + // All definitions of this variable are killed.
|
| + BitVector* def_set =
|
| + variables->at(ReachingDefinitions::IndexFor(var, variable_count));
|
| + rd.Subtract(*def_set);
|
| + // This definition is generated.
|
| + rd.Add(expr->num());
|
| + }
|
| +}
|
| +
|
| +
|
| +void ReachingDefinitions::Compute() {
|
| + // The definitions in the body plus an implicit definition for each
|
| + // variable at function entry.
|
| + int definition_count = body_definitions_->length() + variable_count_;
|
| + int node_count = postorder_->length();
|
| +
|
| + // Step 1: For each stack-allocated variable, identify the set of all its
|
| + // definitions.
|
| + List<BitVector*> variables;
|
| + for (int i = 0; i < variable_count_; i++) {
|
| + // Add the initial definition for each variable.
|
| + BitVector* initial = new BitVector(definition_count);
|
| + initial->Add(i);
|
| + variables.Add(initial);
|
| + }
|
| + for (int i = 0, len = body_definitions_->length(); i < len; i++) {
|
| + // Account for each definition in the body as a definition of the
|
| + // defined variable.
|
| + Variable* var = body_definitions_->at(i)->AssignedVariable();
|
| + variables[IndexFor(var, variable_count_)]->Add(i + variable_count_);
|
| + }
|
| +
|
| + // Step 2: Compute KILL and GEN for each block node, initialize RD_in for
|
| + // all nodes, and mark and add all nodes to the worklist in reverse
|
| + // postorder. All nodes should currently have the same mark.
|
| + bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current.
|
| + WorkList<Node> worklist(node_count);
|
| + for (int i = node_count - 1; i >= 0; i--) {
|
| + postorder_->at(i)->InitializeReachingDefinitions(definition_count,
|
| + &variables,
|
| + &worklist,
|
| + mark);
|
| + }
|
| +
|
| + // Step 3: Until the worklist is empty, remove an item compute and update
|
| + // its rd_in based on its predecessor's rd_out. If rd_in has changed, add
|
| + // all necessary successors to the worklist.
|
| + while (!worklist.is_empty()) {
|
| + Node* node = worklist.Remove();
|
| + node->MarkWith(!mark);
|
| + node->UpdateRDIn(&worklist, mark);
|
| + }
|
| +
|
| + // Step 4: Based on RD_in for block nodes, propagate reaching definitions
|
| + // to all variable uses in the block.
|
| + for (int i = 0; i < node_count; i++) {
|
| + postorder_->at(i)->PropagateReachingDefinitions(&variables);
|
| + }
|
| +}
|
| +
|
| +
|
| +bool TypeAnalyzer::IsPrimitiveDef(int def_num) {
|
| + if (def_num < param_count_) return false;
|
| + if (def_num < variable_count_) return true;
|
| + return body_definitions_->at(def_num - variable_count_)->IsPrimitive();
|
| +}
|
| +
|
| +
|
| +void TypeAnalyzer::Compute() {
|
| + bool changed;
|
| + int count = 0;
|
| +
|
| + do {
|
| + changed = false;
|
| +
|
| + if (FLAG_print_graph_text) {
|
| + PrintF("TypeAnalyzer::Compute - iteration %d\n", count++);
|
| + }
|
| +
|
| + for (int i = postorder_->length() - 1; i >= 0; --i) {
|
| + Node* node = postorder_->at(i);
|
| + if (node->IsBlockNode()) {
|
| + BlockNode* block = BlockNode::cast(node);
|
| + for (int j = 0; j < block->instructions()->length(); j++) {
|
| + Expression* expr = block->instructions()->at(j)->AsExpression();
|
| + if (expr != NULL) {
|
| + // For variable uses: Compute new type from reaching definitions.
|
| + VariableProxy* proxy = expr->AsVariableProxy();
|
| + if (proxy != NULL && proxy->reaching_definitions() != NULL) {
|
| + BitVector* rd = proxy->reaching_definitions();
|
| + bool prim_type = true;
|
| + // TODO(fsc): A sparse set representation of reaching
|
| + // definitions would speed up iterating here.
|
| + for (int k = 0; k < rd->length(); k++) {
|
| + if (rd->Contains(k) && !IsPrimitiveDef(k)) {
|
| + prim_type = false;
|
| + break;
|
| + }
|
| + }
|
| + // Reset changed flag if new type information was computed.
|
| + if (prim_type != proxy->IsPrimitive()) {
|
| + changed = true;
|
| + proxy->SetIsPrimitive(prim_type);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| + } while (changed);
|
| +}
|
| +
|
| +
|
| +void Node::MarkCriticalInstructions(
|
| + List<AstNode*>* stack,
|
| + ZoneList<Expression*>* body_definitions,
|
| + int variable_count) {
|
| +}
|
| +
|
| +
|
| +void BlockNode::MarkCriticalInstructions(
|
| + List<AstNode*>* stack,
|
| + ZoneList<Expression*>* body_definitions,
|
| + int variable_count) {
|
| + for (int i = instructions_.length() - 1; i >= 0; i--) {
|
| + // Only expressions can appear in the flow graph for now.
|
| + Expression* expr = instructions_[i]->AsExpression();
|
| + if (expr != NULL && !expr->is_live() &&
|
| + (expr->is_loop_condition() || expr->IsCritical())) {
|
| + expr->mark_as_live();
|
| + expr->ProcessNonLiveChildren(stack, body_definitions, variable_count);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void MarkLiveCode(ZoneList<Node*>* nodes,
|
| + ZoneList<Expression*>* body_definitions,
|
| + int variable_count) {
|
| + List<AstNode*> stack(20);
|
| +
|
| + // Mark the critical AST nodes as live; mark their dependencies and
|
| + // add them to the marking stack.
|
| + for (int i = nodes->length() - 1; i >= 0; i--) {
|
| + nodes->at(i)->MarkCriticalInstructions(&stack, body_definitions,
|
| + variable_count);
|
| + }
|
| +
|
| + // Continue marking dependencies until no more.
|
| + while (!stack.is_empty()) {
|
| + // Only expressions can appear in the flow graph for now.
|
| + Expression* expr = stack.RemoveLast()->AsExpression();
|
| + if (expr != NULL) {
|
| + expr->ProcessNonLiveChildren(&stack, body_definitions, variable_count);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| #ifdef DEBUG
|
|
|
| // Print a textual representation of an instruction in a flow graph. Using
|
| @@ -1714,389 +1541,7 @@ void FlowGraph::PrintText(FunctionLiteral* fun, ZoneList<Node*>* postorder) {
|
| }
|
| }
|
|
|
| -
|
| -#endif // defined(DEBUG)
|
| -
|
| -
|
| -int ReachingDefinitions::IndexFor(Variable* var, int variable_count) {
|
| - // Parameters are numbered left-to-right from the beginning of the bit
|
| - // set. Stack-allocated locals are allocated right-to-left from the end.
|
| - ASSERT(var != NULL && var->IsStackAllocated());
|
| - Slot* slot = var->slot();
|
| - if (slot->type() == Slot::PARAMETER) {
|
| - return slot->index();
|
| - } else {
|
| - return (variable_count - 1) - slot->index();
|
| - }
|
| -}
|
| -
|
| -
|
| -void Node::InitializeReachingDefinitions(int definition_count,
|
| - List<BitVector*>* variables,
|
| - WorkList<Node>* worklist,
|
| - bool mark) {
|
| - ASSERT(!IsMarkedWith(mark));
|
| - rd_.Initialize(definition_count);
|
| - MarkWith(mark);
|
| - worklist->Insert(this);
|
| -}
|
| -
|
| -
|
| -void BlockNode::InitializeReachingDefinitions(int definition_count,
|
| - List<BitVector*>* variables,
|
| - WorkList<Node>* worklist,
|
| - bool mark) {
|
| - ASSERT(!IsMarkedWith(mark));
|
| - int instruction_count = instructions_.length();
|
| - int variable_count = variables->length();
|
| -
|
| - rd_.Initialize(definition_count);
|
| - // The RD_in set for the entry node has a definition for each parameter
|
| - // and local.
|
| - if (predecessor_ == NULL) {
|
| - for (int i = 0; i < variable_count; i++) rd_.rd_in()->Add(i);
|
| - }
|
| -
|
| - for (int i = 0; i < instruction_count; i++) {
|
| - Expression* expr = instructions_[i]->AsExpression();
|
| - if (expr == NULL) continue;
|
| - Variable* var = expr->AssignedVariable();
|
| - if (var == NULL || !var->IsStackAllocated()) continue;
|
| -
|
| - // All definitions of this variable are killed.
|
| - BitVector* def_set =
|
| - variables->at(ReachingDefinitions::IndexFor(var, variable_count));
|
| - rd_.kill()->Union(*def_set);
|
| -
|
| - // All previously generated definitions are not generated.
|
| - rd_.gen()->Subtract(*def_set);
|
| -
|
| - // This one is generated.
|
| - rd_.gen()->Add(expr->num());
|
| - }
|
| -
|
| - // Add all blocks except the entry node to the worklist.
|
| - if (predecessor_ != NULL) {
|
| - MarkWith(mark);
|
| - worklist->Insert(this);
|
| - }
|
| -}
|
| -
|
| -
|
| -void ExitNode::ComputeRDOut(BitVector* result) {
|
| - // Should not be the predecessor of any node.
|
| - UNREACHABLE();
|
| -}
|
| -
|
| -
|
| -void BlockNode::ComputeRDOut(BitVector* result) {
|
| - // All definitions reaching this block ...
|
| - *result = *rd_.rd_in();
|
| - // ... except those killed by the block ...
|
| - result->Subtract(*rd_.kill());
|
| - // ... but including those generated by the block.
|
| - result->Union(*rd_.gen());
|
| -}
|
| -
|
| -
|
| -void BranchNode::ComputeRDOut(BitVector* result) {
|
| - // Branch nodes don't kill or generate definitions.
|
| - *result = *rd_.rd_in();
|
| -}
|
| -
|
| -
|
| -void JoinNode::ComputeRDOut(BitVector* result) {
|
| - // Join nodes don't kill or generate definitions.
|
| - *result = *rd_.rd_in();
|
| -}
|
| -
|
| -
|
| -void ExitNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
| - // The exit node has no successors so we can just update in place. New
|
| - // RD_in is the union over all predecessors.
|
| - int definition_count = rd_.rd_in()->length();
|
| - rd_.rd_in()->Clear();
|
| -
|
| - BitVector temp(definition_count);
|
| - for (int i = 0, len = predecessors_.length(); i < len; i++) {
|
| - // Because ComputeRDOut always overwrites temp and its value is
|
| - // always read out before calling ComputeRDOut again, we do not
|
| - // have to clear it on each iteration of the loop.
|
| - predecessors_[i]->ComputeRDOut(&temp);
|
| - rd_.rd_in()->Union(temp);
|
| - }
|
| -}
|
| -
|
| -
|
| -void BlockNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
| - // The entry block has no predecessor. Its RD_in does not change.
|
| - if (predecessor_ == NULL) return;
|
| -
|
| - BitVector new_rd_in(rd_.rd_in()->length());
|
| - predecessor_->ComputeRDOut(&new_rd_in);
|
| -
|
| - if (rd_.rd_in()->Equals(new_rd_in)) return;
|
| -
|
| - // Update RD_in.
|
| - *rd_.rd_in() = new_rd_in;
|
| - // Add the successor to the worklist if not already present.
|
| - if (!successor_->IsMarkedWith(mark)) {
|
| - successor_->MarkWith(mark);
|
| - worklist->Insert(successor_);
|
| - }
|
| -}
|
| -
|
| -
|
| -void BranchNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
| - BitVector new_rd_in(rd_.rd_in()->length());
|
| - predecessor_->ComputeRDOut(&new_rd_in);
|
| -
|
| - if (rd_.rd_in()->Equals(new_rd_in)) return;
|
| -
|
| - // Update RD_in.
|
| - *rd_.rd_in() = new_rd_in;
|
| - // Add the successors to the worklist if not already present.
|
| - if (!successor0_->IsMarkedWith(mark)) {
|
| - successor0_->MarkWith(mark);
|
| - worklist->Insert(successor0_);
|
| - }
|
| - if (!successor1_->IsMarkedWith(mark)) {
|
| - successor1_->MarkWith(mark);
|
| - worklist->Insert(successor1_);
|
| - }
|
| -}
|
| -
|
| -
|
| -void JoinNode::UpdateRDIn(WorkList<Node>* worklist, bool mark) {
|
| - int definition_count = rd_.rd_in()->length();
|
| - BitVector new_rd_in(definition_count);
|
| -
|
| - // New RD_in is the union over all predecessors.
|
| - BitVector temp(definition_count);
|
| - for (int i = 0, len = predecessors_.length(); i < len; i++) {
|
| - predecessors_[i]->ComputeRDOut(&temp);
|
| - new_rd_in.Union(temp);
|
| - }
|
| -
|
| - if (rd_.rd_in()->Equals(new_rd_in)) return;
|
| -
|
| - // Update RD_in.
|
| - *rd_.rd_in() = new_rd_in;
|
| - // Add the successor to the worklist if not already present.
|
| - if (!successor_->IsMarkedWith(mark)) {
|
| - successor_->MarkWith(mark);
|
| - worklist->Insert(successor_);
|
| - }
|
| -}
|
| -
|
| -
|
| -void Node::PropagateReachingDefinitions(List<BitVector*>* variables) {
|
| - // Nothing to do.
|
| -}
|
| -
|
| -
|
| -void BlockNode::PropagateReachingDefinitions(List<BitVector*>* variables) {
|
| - // Propagate RD_in from the start of the block to all the variable
|
| - // references.
|
| - int variable_count = variables->length();
|
| - BitVector rd = *rd_.rd_in();
|
| - for (int i = 0, len = instructions_.length(); i < len; i++) {
|
| - Expression* expr = instructions_[i]->AsExpression();
|
| - if (expr == NULL) continue;
|
| -
|
| - // Look for a variable reference to record its reaching definitions.
|
| - VariableProxy* proxy = expr->AsVariableProxy();
|
| - if (proxy == NULL) {
|
| - // Not a VariableProxy? Maybe it's a count operation.
|
| - CountOperation* count_operation = expr->AsCountOperation();
|
| - if (count_operation != NULL) {
|
| - proxy = count_operation->expression()->AsVariableProxy();
|
| - }
|
| - }
|
| - if (proxy == NULL) {
|
| - // OK, Maybe it's a compound assignment.
|
| - Assignment* assignment = expr->AsAssignment();
|
| - if (assignment != NULL && assignment->is_compound()) {
|
| - proxy = assignment->target()->AsVariableProxy();
|
| - }
|
| - }
|
| -
|
| - if (proxy != NULL &&
|
| - proxy->var()->IsStackAllocated() &&
|
| - !proxy->var()->is_this()) {
|
| - // All definitions for this variable.
|
| - BitVector* definitions =
|
| - variables->at(ReachingDefinitions::IndexFor(proxy->var(),
|
| - variable_count));
|
| - BitVector* reaching_definitions = new BitVector(*definitions);
|
| - // Intersected with all definitions (of any variable) reaching this
|
| - // instruction.
|
| - reaching_definitions->Intersect(rd);
|
| - proxy->set_reaching_definitions(reaching_definitions);
|
| - }
|
| -
|
| - // It may instead (or also) be a definition. If so update the running
|
| - // value of reaching definitions for the block.
|
| - Variable* var = expr->AssignedVariable();
|
| - if (var == NULL || !var->IsStackAllocated()) continue;
|
| -
|
| - // All definitions of this variable are killed.
|
| - BitVector* def_set =
|
| - variables->at(ReachingDefinitions::IndexFor(var, variable_count));
|
| - rd.Subtract(*def_set);
|
| - // This definition is generated.
|
| - rd.Add(expr->num());
|
| - }
|
| -}
|
| -
|
| -
|
| -void ReachingDefinitions::Compute() {
|
| - // The definitions in the body plus an implicit definition for each
|
| - // variable at function entry.
|
| - int definition_count = body_definitions_->length() + variable_count_;
|
| - int node_count = postorder_->length();
|
| -
|
| - // Step 1: For each stack-allocated variable, identify the set of all its
|
| - // definitions.
|
| - List<BitVector*> variables;
|
| - for (int i = 0; i < variable_count_; i++) {
|
| - // Add the initial definition for each variable.
|
| - BitVector* initial = new BitVector(definition_count);
|
| - initial->Add(i);
|
| - variables.Add(initial);
|
| - }
|
| - for (int i = 0, len = body_definitions_->length(); i < len; i++) {
|
| - // Account for each definition in the body as a definition of the
|
| - // defined variable.
|
| - Variable* var = body_definitions_->at(i)->AssignedVariable();
|
| - variables[IndexFor(var, variable_count_)]->Add(i + variable_count_);
|
| - }
|
| -
|
| - // Step 2: Compute KILL and GEN for each block node, initialize RD_in for
|
| - // all nodes, and mark and add all nodes to the worklist in reverse
|
| - // postorder. All nodes should currently have the same mark.
|
| - bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current.
|
| - WorkList<Node> worklist(node_count);
|
| - for (int i = node_count - 1; i >= 0; i--) {
|
| - postorder_->at(i)->InitializeReachingDefinitions(definition_count,
|
| - &variables,
|
| - &worklist,
|
| - mark);
|
| - }
|
| -
|
| - // Step 3: Until the worklist is empty, remove an item compute and update
|
| - // its rd_in based on its predecessor's rd_out. If rd_in has changed, add
|
| - // all necessary successors to the worklist.
|
| - while (!worklist.is_empty()) {
|
| - Node* node = worklist.Remove();
|
| - node->MarkWith(!mark);
|
| - node->UpdateRDIn(&worklist, mark);
|
| - }
|
| -
|
| - // Step 4: Based on RD_in for block nodes, propagate reaching definitions
|
| - // to all variable uses in the block.
|
| - for (int i = 0; i < node_count; i++) {
|
| - postorder_->at(i)->PropagateReachingDefinitions(&variables);
|
| - }
|
| -}
|
| -
|
| -
|
| -bool TypeAnalyzer::IsPrimitiveDef(int def_num) {
|
| - if (def_num < param_count_) return false;
|
| - if (def_num < variable_count_) return true;
|
| - return body_definitions_->at(def_num - variable_count_)->IsPrimitive();
|
| -}
|
| -
|
| -
|
| -void TypeAnalyzer::Compute() {
|
| - bool changed;
|
| - int count = 0;
|
| -
|
| - do {
|
| - changed = false;
|
| -
|
| - if (FLAG_print_graph_text) {
|
| - PrintF("TypeAnalyzer::Compute - iteration %d\n", count++);
|
| - }
|
| -
|
| - for (int i = postorder_->length() - 1; i >= 0; --i) {
|
| - Node* node = postorder_->at(i);
|
| - if (node->IsBlockNode()) {
|
| - BlockNode* block = BlockNode::cast(node);
|
| - for (int j = 0; j < block->instructions()->length(); j++) {
|
| - Expression* expr = block->instructions()->at(j)->AsExpression();
|
| - if (expr != NULL) {
|
| - // For variable uses: Compute new type from reaching definitions.
|
| - VariableProxy* proxy = expr->AsVariableProxy();
|
| - if (proxy != NULL && proxy->reaching_definitions() != NULL) {
|
| - BitVector* rd = proxy->reaching_definitions();
|
| - bool prim_type = true;
|
| - // TODO(fsc): A sparse set representation of reaching
|
| - // definitions would speed up iterating here.
|
| - for (int k = 0; k < rd->length(); k++) {
|
| - if (rd->Contains(k) && !IsPrimitiveDef(k)) {
|
| - prim_type = false;
|
| - break;
|
| - }
|
| - }
|
| - // Reset changed flag if new type information was computed.
|
| - if (prim_type != proxy->IsPrimitive()) {
|
| - changed = true;
|
| - proxy->SetIsPrimitive(prim_type);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - } while (changed);
|
| -}
|
| -
|
| -
|
| -void Node::MarkCriticalInstructions(
|
| - List<AstNode*>* stack,
|
| - ZoneList<Expression*>* body_definitions,
|
| - int variable_count) {
|
| -}
|
| -
|
| -
|
| -void BlockNode::MarkCriticalInstructions(
|
| - List<AstNode*>* stack,
|
| - ZoneList<Expression*>* body_definitions,
|
| - int variable_count) {
|
| - for (int i = instructions_.length() - 1; i >= 0; i--) {
|
| - // Only expressions can appear in the flow graph for now.
|
| - Expression* expr = instructions_[i]->AsExpression();
|
| - if (expr != NULL && !expr->is_live() &&
|
| - (expr->is_loop_condition() || expr->IsCritical())) {
|
| - expr->mark_as_live();
|
| - expr->ProcessNonLiveChildren(stack, body_definitions, variable_count);
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void MarkLiveCode(ZoneList<Node*>* nodes,
|
| - ZoneList<Expression*>* body_definitions,
|
| - int variable_count) {
|
| - List<AstNode*> stack(20);
|
| -
|
| - // Mark the critical AST nodes as live; mark their dependencies and
|
| - // add them to the marking stack.
|
| - for (int i = nodes->length() - 1; i >= 0; i--) {
|
| - nodes->at(i)->MarkCriticalInstructions(&stack, body_definitions,
|
| - variable_count);
|
| - }
|
| -
|
| - // Continue marking dependencies until no more.
|
| - while (!stack.is_empty()) {
|
| - // Only expressions can appear in the flow graph for now.
|
| - Expression* expr = stack.RemoveLast()->AsExpression();
|
| - if (expr != NULL) {
|
| - expr->ProcessNonLiveChildren(&stack, body_definitions, variable_count);
|
| - }
|
| - }
|
| -}
|
| +#endif // DEBUG
|
|
|
|
|
| } } // namespace v8::internal
|
|
|