| Index: base/crypto/rsa_private_key_win.cc
|
| diff --git a/base/crypto/rsa_private_key_win.cc b/base/crypto/rsa_private_key_win.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..e963f7f3cc54ef94a0e4fad2c90a875a8bbda13a
|
| --- /dev/null
|
| +++ b/base/crypto/rsa_private_key_win.cc
|
| @@ -0,0 +1,445 @@
|
| +// Copyright (c) 2009 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "base/crypto/rsa_private_key.h"
|
| +
|
| +#include <list>
|
| +
|
| +#include "base/logging.h"
|
| +#include "base/scoped_ptr.h"
|
| +
|
| +
|
| +// This file manually encodes and decodes RSA private keys using PrivateKeyInfo
|
| +// from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are:
|
| +//
|
| +// PrivateKeyInfo ::= SEQUENCE {
|
| +// version Version,
|
| +// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
|
| +// privateKey PrivateKey,
|
| +// attributes [0] IMPLICIT Attributes OPTIONAL
|
| +// }
|
| +//
|
| +// RSAPrivateKey ::= SEQUENCE {
|
| +// version Version,
|
| +// modulus INTEGER,
|
| +// publicExponent INTEGER,
|
| +// privateExponent INTEGER,
|
| +// prime1 INTEGER,
|
| +// prime2 INTEGER,
|
| +// exponent1 INTEGER,
|
| +// exponent2 INTEGER,
|
| +// coefficient INTEGER
|
| +// }
|
| +
|
| +
|
| +namespace {
|
| +
|
| +// ASN.1 encoding of the AlgorithmIdentifier from PKCS #8.
|
| +const uint8 kRsaAlgorithmIdentifier[] = {
|
| + 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01,
|
| + 0x05, 0x00
|
| +};
|
| +
|
| +// ASN.1 tags for some types we use.
|
| +const uint8 kSequenceTag = 0x30;
|
| +const uint8 kIntegerTag = 0x02;
|
| +const uint8 kNullTag = 0x05;
|
| +const uint8 kOctetStringTag = 0x04;
|
| +
|
| +// Helper function to prepend an array of bytes into a list, reversing their
|
| +// order. This is needed because ASN.1 integers are big-endian, while CryptoAPI
|
| +// uses little-endian.
|
| +static void PrependBytesInReverseOrder(uint8* val, int num_bytes,
|
| + std::list<uint8>* data) {
|
| + for (int i = 0; i < num_bytes; ++i)
|
| + data->push_front(val[i]);
|
| +}
|
| +
|
| +// Helper to prepend an ASN.1 length field.
|
| +static void PrependLength(size_t size, std::list<uint8>* data) {
|
| + // The high bit is used to indicate whether additional octets are needed to
|
| + // represent the length.
|
| + if (size < 0x80) {
|
| + data->push_front(static_cast<uint8>(size));
|
| + } else {
|
| + uint8 num_bytes = 0;
|
| + while (size > 0) {
|
| + data->push_front(static_cast<uint8>(size & 0xFF));
|
| + size >>= 8;
|
| + num_bytes++;
|
| + }
|
| + CHECK(num_bytes <= 4);
|
| + data->push_front(0x80 | num_bytes);
|
| + }
|
| +}
|
| +
|
| +// Helper to prepend an ASN.1 type header.
|
| +static void PrependTypeHeaderAndLength(uint8 type, uint32 length,
|
| + std::list<uint8>* output) {
|
| + PrependLength(length, output);
|
| + output->push_front(type);
|
| +}
|
| +
|
| +// Helper to prepend an ASN.1 integer.
|
| +static void PrependInteger(uint8* val, int num_bytes, std::list<uint8>* data) {
|
| + // If the MSB is set, we need an extra null byte at the front.
|
| + bool needs_null_byte = !(val[num_bytes - 1] & 0x80);
|
| + int length = needs_null_byte ? num_bytes + 1 : num_bytes;
|
| +
|
| + PrependBytesInReverseOrder(val, num_bytes, data);
|
| +
|
| + // Add a null byte to force the integer to be positive if necessary.
|
| + if (needs_null_byte)
|
| + data->push_front(0x00);
|
| +
|
| + PrependTypeHeaderAndLength(kIntegerTag, length, data);
|
| +}
|
| +
|
| +// Helper for error handling during key import.
|
| +#define READ_ASSERT(truth) \
|
| + if (!(truth)) { \
|
| + NOTREACHED(); \
|
| + return false; \
|
| + }
|
| +
|
| +// Read an ASN.1 length field. This also checks that the length does not extend
|
| +// beyond |end|.
|
| +static bool ReadLength(uint8** pos, uint8* end, uint32* result) {
|
| + READ_ASSERT(*pos < end);
|
| + int length = 0;
|
| +
|
| + // If the MSB is not set, the length is just the byte itself.
|
| + if (!(**pos & 0x80)) {
|
| + length = **pos;
|
| + (*pos)++;
|
| + } else {
|
| + // Otherwise, the lower 7 indicate the length of the length.
|
| + int length_of_length = **pos & 0x7F;
|
| + READ_ASSERT(length_of_length <= 4);
|
| + (*pos)++;
|
| + READ_ASSERT(*pos + length_of_length < end);
|
| +
|
| + length = 0;
|
| + for (int i = 0; i < length_of_length; ++i) {
|
| + length <<= 8;
|
| + length |= **pos;
|
| + (*pos)++;
|
| + }
|
| + }
|
| +
|
| + READ_ASSERT(*pos + length <= end);
|
| + if (result) *result = length;
|
| + return true;
|
| +}
|
| +
|
| +// Read an ASN.1 type header and its length.
|
| +static bool ReadTypeHeaderAndLength(uint8** pos, uint8* end,
|
| + uint8 expected_tag, uint32* length) {
|
| + READ_ASSERT(*pos < end);
|
| + READ_ASSERT(**pos == expected_tag);
|
| + (*pos)++;
|
| +
|
| + return ReadLength(pos, end, length);
|
| +}
|
| +
|
| +// Read an ASN.1 sequence declaration. This consumes the type header and length
|
| +// field, but not the contents of the sequence.
|
| +static bool ReadSequence(uint8** pos, uint8* end) {
|
| + return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
|
| +}
|
| +
|
| +// Read the RSA AlgorithmIdentifier.
|
| +static bool ReadAlgorithmIdentifier(uint8** pos, uint8* end) {
|
| + READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
|
| + READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
|
| + sizeof(kRsaAlgorithmIdentifier)) == 0);
|
| + (*pos) += sizeof(kRsaAlgorithmIdentifier);
|
| + return true;
|
| +}
|
| +
|
| +// Read one of the two version fields in PrivateKeyInfo.
|
| +static bool ReadVersion(uint8** pos, uint8* end) {
|
| + uint32 length = 0;
|
| + if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
|
| + return false;
|
| +
|
| + // The version should be zero.
|
| + for (uint32 i = 0; i < length; ++i) {
|
| + READ_ASSERT(**pos == 0x00);
|
| + (*pos)++;
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +// Read an ASN.1 integer.
|
| +static bool ReadInteger(uint8** pos, uint8* end, std::vector<uint8>* out) {
|
| + uint32 length = 0;
|
| + if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
|
| + return false;
|
| +
|
| + // Read the bytes out in reverse order because of endianness.
|
| + for (uint32 i = length - 1; i > 0; --i)
|
| + out->push_back(*(*pos + i));
|
| +
|
| + // The last byte can be zero to force positiveness. We can ignore this.
|
| + if (**pos != 0x00)
|
| + out->push_back(**pos);
|
| +
|
| + (*pos) += length;
|
| + return true;
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +
|
| +namespace base {
|
| +
|
| +// static
|
| +RSAPrivateKey* RSAPrivateKey::Create(uint16 num_bits) {
|
| + scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);
|
| + if (!result->InitProvider())
|
| + return NULL;
|
| +
|
| + DWORD flags = CRYPT_EXPORTABLE;
|
| +
|
| + // The size is encoded as the upper 16 bits of the flags. :: sigh ::.
|
| + flags |= (num_bits << 16);
|
| + if (!CryptGenKey(result->provider_, CALG_RSA_SIGN, flags, &result->key_))
|
| + return NULL;
|
| +
|
| + return result.release();
|
| +}
|
| +
|
| +// static
|
| +RSAPrivateKey* RSAPrivateKey::CreateFromPrivateKeyInfo(
|
| + const std::vector<uint8>& input) {
|
| + scoped_ptr<RSAPrivateKey> result(new RSAPrivateKey);
|
| + if (!result->InitProvider())
|
| + return NULL;
|
| +
|
| + uint8* src = const_cast<uint8*>(&input.front());
|
| + uint8* end = src + input.size();
|
| + int version = -1;
|
| + std::vector<uint8> modulus;
|
| + std::vector<uint8> public_exponent;
|
| + std::vector<uint8> private_exponent;
|
| + std::vector<uint8> prime1;
|
| + std::vector<uint8> prime2;
|
| + std::vector<uint8> exponent1;
|
| + std::vector<uint8> exponent2;
|
| + std::vector<uint8> coefficient;
|
| +
|
| + if (!ReadSequence(&src, end) ||
|
| + !ReadVersion(&src, end) ||
|
| + !ReadAlgorithmIdentifier(&src, end) ||
|
| + !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
|
| + !ReadSequence(&src, end) ||
|
| + !ReadVersion(&src, end) ||
|
| + !ReadInteger(&src, end, &modulus) ||
|
| + !ReadInteger(&src, end, &public_exponent) ||
|
| + !ReadInteger(&src, end, &private_exponent) ||
|
| + !ReadInteger(&src, end, &prime1) ||
|
| + !ReadInteger(&src, end, &prime2) ||
|
| + !ReadInteger(&src, end, &exponent1) ||
|
| + !ReadInteger(&src, end, &exponent2) ||
|
| + !ReadInteger(&src, end, &coefficient))
|
| + return false;
|
| +
|
| + READ_ASSERT(src == end);
|
| +
|
| + int blob_size = sizeof(PUBLICKEYSTRUC) + sizeof(RSAPUBKEY) + modulus.size() +
|
| + prime1.size() + prime2.size() +
|
| + exponent1.size() + exponent2.size() +
|
| + coefficient.size() + private_exponent.size();
|
| + scoped_array<BYTE> blob(new BYTE[blob_size]);
|
| +
|
| + uint8* dest = blob.get();
|
| + PUBLICKEYSTRUC* public_key_struc = reinterpret_cast<PUBLICKEYSTRUC*>(dest);
|
| + public_key_struc->bType = PRIVATEKEYBLOB;
|
| + public_key_struc->bVersion = 0x02;
|
| + public_key_struc->reserved = 0;
|
| + public_key_struc->aiKeyAlg = CALG_RSA_SIGN;
|
| + dest += sizeof(PUBLICKEYSTRUC);
|
| +
|
| + RSAPUBKEY* rsa_pub_key = reinterpret_cast<RSAPUBKEY*>(dest);
|
| + rsa_pub_key->magic = 0x32415352;
|
| + rsa_pub_key->bitlen = modulus.size() * 8;
|
| + int public_exponent_int = 0;
|
| + for (size_t i = public_exponent.size(); i > 0; --i) {
|
| + public_exponent_int <<= 8;
|
| + public_exponent_int |= public_exponent[i - 1];
|
| + }
|
| + rsa_pub_key->pubexp = public_exponent_int;
|
| + dest += sizeof(RSAPUBKEY);
|
| +
|
| + memcpy(dest, &modulus.front(), modulus.size());
|
| + dest += modulus.size();
|
| + memcpy(dest, &prime1.front(), prime1.size());
|
| + dest += prime1.size();
|
| + memcpy(dest, &prime2.front(), prime2.size());
|
| + dest += prime2.size();
|
| + memcpy(dest, &exponent1.front(), exponent1.size());
|
| + dest += exponent1.size();
|
| + memcpy(dest, &exponent2.front(), exponent2.size());
|
| + dest += exponent2.size();
|
| + memcpy(dest, &coefficient.front(), coefficient.size());
|
| + dest += coefficient.size();
|
| + memcpy(dest, &private_exponent.front(), private_exponent.size());
|
| + dest += private_exponent.size();
|
| +
|
| + READ_ASSERT(dest == blob.get() + blob_size);
|
| + if (!CryptImportKey(
|
| + result->provider_, reinterpret_cast<uint8*>(public_key_struc), blob_size,
|
| + NULL, CRYPT_EXPORTABLE, &result->key_)) {
|
| + return NULL;
|
| + }
|
| +
|
| + return result.release();
|
| +}
|
| +
|
| +RSAPrivateKey::RSAPrivateKey() : provider_(NULL), key_(NULL) {}
|
| +
|
| +RSAPrivateKey::~RSAPrivateKey() {
|
| + if (key_) {
|
| + if (!CryptDestroyKey(key_))
|
| + NOTREACHED();
|
| + }
|
| +
|
| + if (provider_) {
|
| + if (!CryptReleaseContext(provider_, 0))
|
| + NOTREACHED();
|
| + }
|
| +}
|
| +
|
| +bool RSAPrivateKey::InitProvider() {
|
| + return FALSE != CryptAcquireContext(&provider_, NULL, NULL,
|
| + PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
|
| +}
|
| +
|
| +bool RSAPrivateKey::ExportPrivateKey(std::vector<uint8>* output) {
|
| + // Export the key
|
| + DWORD blob_length = 0;
|
| + if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, NULL, &blob_length)) {
|
| + NOTREACHED();
|
| + return false;
|
| + }
|
| +
|
| + scoped_array<uint8> blob(new uint8[blob_length]);
|
| + if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, blob.get(),
|
| + &blob_length)) {
|
| + NOTREACHED();
|
| + return false;
|
| + }
|
| +
|
| + uint8* pos = blob.get();
|
| + PUBLICKEYSTRUC *publickey_struct = reinterpret_cast<PUBLICKEYSTRUC*>(pos);
|
| + pos += sizeof(PUBLICKEYSTRUC);
|
| +
|
| + RSAPUBKEY *rsa_pub_key = reinterpret_cast<RSAPUBKEY*>(pos);
|
| + pos += sizeof(RSAPUBKEY);
|
| +
|
| + int mod_size = rsa_pub_key->bitlen / 8;
|
| + int primes_size = rsa_pub_key->bitlen / 16;
|
| + int exponents_size = primes_size;
|
| + int coefficient_size = primes_size;
|
| + int private_exponent_size = mod_size;
|
| +
|
| + uint8* modulus = pos;
|
| + pos += mod_size;
|
| +
|
| + uint8* prime1 = pos;
|
| + pos += primes_size;
|
| + uint8* prime2 = pos;
|
| + pos += primes_size;
|
| +
|
| + uint8* exponent1 = pos;
|
| + pos += exponents_size;
|
| + uint8* exponent2 = pos;
|
| + pos += exponents_size;
|
| +
|
| + uint8* coefficient = pos;
|
| + pos += coefficient_size;
|
| +
|
| + uint8* private_exponent = pos;
|
| + pos += private_exponent_size;
|
| +
|
| + CHECK((pos - blob_length) == reinterpret_cast<BYTE*>(publickey_struct));
|
| +
|
| + std::list<uint8> content;
|
| +
|
| + // Version (always zero)
|
| + uint8 version = 0;
|
| +
|
| + // We build up the output in reverse order to prevent having to do copies to
|
| + // figure out the length.
|
| + PrependInteger(coefficient, coefficient_size, &content);
|
| + PrependInteger(exponent2, exponents_size, &content);
|
| + PrependInteger(exponent1, exponents_size, &content);
|
| + PrependInteger(prime2, primes_size, &content);
|
| + PrependInteger(prime1, primes_size, &content);
|
| + PrependInteger(private_exponent, private_exponent_size, &content);
|
| + PrependInteger(reinterpret_cast<uint8*>(&rsa_pub_key->pubexp), 4, &content);
|
| + PrependInteger(modulus, mod_size, &content);
|
| + PrependInteger(&version, 1, &content);
|
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
| + PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);
|
| +
|
| + // RSA algorithm OID
|
| + for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
|
| + content.push_front(kRsaAlgorithmIdentifier[i - 1]);
|
| +
|
| + PrependInteger(&version, 1, &content);
|
| + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
|
| +
|
| + // Copy everying into the output.
|
| + output->reserve(content.size());
|
| + for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i)
|
| + output->push_back(*i);
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool RSAPrivateKey::ExportPublicKey(std::vector<uint8>* output) {
|
| + DWORD key_info_len;
|
| + if (!CryptExportPublicKeyInfo(
|
| + provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,
|
| + NULL, &key_info_len)) {
|
| + NOTREACHED();
|
| + return false;
|
| + }
|
| +
|
| + scoped_array<uint8> key_info(new uint8[key_info_len]);
|
| + if (!CryptExportPublicKeyInfo(
|
| + provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING,
|
| + reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), &key_info_len)) {
|
| + NOTREACHED();
|
| + return false;
|
| + }
|
| +
|
| + DWORD encoded_length;
|
| + if (!CryptEncodeObject(
|
| + X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO,
|
| + reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), NULL,
|
| + &encoded_length)) {
|
| + NOTREACHED();
|
| + return false;
|
| + }
|
| +
|
| + scoped_array<BYTE> encoded(new BYTE[encoded_length]);
|
| + if (!CryptEncodeObject(
|
| + X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO,
|
| + reinterpret_cast<CERT_PUBLIC_KEY_INFO*>(key_info.get()), encoded.get(),
|
| + &encoded_length)) {
|
| + NOTREACHED();
|
| + return false;
|
| + }
|
| +
|
| + for (size_t i = 0; i < encoded_length; ++i)
|
| + output->push_back(encoded[i]);
|
| +
|
| + return true;
|
| +}
|
| +
|
| +} // namespace base
|
|
|