Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(90)

Side by Side Diff: testing/gmock/include/gmock/gmock-generated-actions.h.pump

Issue 115846: Retry to checkin a version of gmock, modified to use our boost_tuple in VS2005. (Closed)
Patch Set: Created 11 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 $$ -*- mode: c++; -*-
2 $$ This is a Pump source file. Please use Pump to convert it to
3 $$ gmock-generated-variadic-actions.h.
4 $$
5 $var n = 10 $$ The maximum arity we support.
6 $$}} This meta comment fixes auto-indentation in editors.
7 // Copyright 2007, Google Inc.
8 // All rights reserved.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are
12 // met:
13 //
14 // * Redistributions of source code must retain the above copyright
15 // notice, this list of conditions and the following disclaimer.
16 // * Redistributions in binary form must reproduce the above
17 // copyright notice, this list of conditions and the following disclaimer
18 // in the documentation and/or other materials provided with the
19 // distribution.
20 // * Neither the name of Google Inc. nor the names of its
21 // contributors may be used to endorse or promote products derived from
22 // this software without specific prior written permission.
23 //
24 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 //
36 // Author: wan@google.com (Zhanyong Wan)
37
38 // Google Mock - a framework for writing C++ mock classes.
39 //
40 // This file implements some commonly used variadic actions.
41
42 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
43 #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
44
45 #include <gmock/gmock-actions.h>
46 #include <gmock/internal/gmock-port.h>
47
48 namespace testing {
49 namespace internal {
50
51 // InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary
52 // function or method with the unpacked values, where F is a function
53 // type that takes N arguments.
54 template <typename Result, typename ArgumentTuple>
55 class InvokeHelper;
56
57
58 $range i 0..n
59 $for i [[
60 $range j 1..i
61 $var types = [[$for j [[, typename A$j]]]]
62 $var as = [[$for j, [[A$j]]]]
63 $var args = [[$if i==0 [[]] $else [[ args]]]]
64 $var import = [[$if i==0 [[]] $else [[
65 using ::std::tr1::get;
66
67 ]]]]
68 $var gets = [[$for j, [[get<$(j - 1)>(args)]]]]
69 template <typename R$types>
70 class InvokeHelper<R, ::std::tr1::tuple<$as> > {
71 public:
72 template <typename Function>
73 static R Invoke(Function function, const ::std::tr1::tuple<$as>&$args) {
74 $import return function($gets);
75 }
76
77 template <class Class, typename MethodPtr>
78 static R InvokeMethod(Class* obj_ptr,
79 MethodPtr method_ptr,
80 const ::std::tr1::tuple<$as>&$args) {
81 $import return (obj_ptr->*method_ptr)($gets);
82 }
83 };
84
85
86 ]]
87
88 // Implements the Invoke(f) action. The template argument
89 // FunctionImpl is the implementation type of f, which can be either a
90 // function pointer or a functor. Invoke(f) can be used as an
91 // Action<F> as long as f's type is compatible with F (i.e. f can be
92 // assigned to a tr1::function<F>).
93 template <typename FunctionImpl>
94 class InvokeAction {
95 public:
96 // The c'tor makes a copy of function_impl (either a function
97 // pointer or a functor).
98 explicit InvokeAction(FunctionImpl function_impl)
99 : function_impl_(function_impl) {}
100
101 template <typename Result, typename ArgumentTuple>
102 Result Perform(const ArgumentTuple& args) {
103 return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args);
104 }
105 private:
106 FunctionImpl function_impl_;
107 };
108
109 // Implements the Invoke(object_ptr, &Class::Method) action.
110 template <class Class, typename MethodPtr>
111 class InvokeMethodAction {
112 public:
113 InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr)
114 : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
115
116 template <typename Result, typename ArgumentTuple>
117 Result Perform(const ArgumentTuple& args) const {
118 return InvokeHelper<Result, ArgumentTuple>::InvokeMethod(
119 obj_ptr_, method_ptr_, args);
120 }
121 private:
122 Class* const obj_ptr_;
123 const MethodPtr method_ptr_;
124 };
125
126 // A ReferenceWrapper<T> object represents a reference to type T,
127 // which can be either const or not. It can be explicitly converted
128 // from, and implicitly converted to, a T&. Unlike a reference,
129 // ReferenceWrapper<T> can be copied and can survive template type
130 // inference. This is used to support by-reference arguments in the
131 // InvokeArgument<N>(...) action. The idea was from "reference
132 // wrappers" in tr1, which we don't have in our source tree yet.
133 template <typename T>
134 class ReferenceWrapper {
135 public:
136 // Constructs a ReferenceWrapper<T> object from a T&.
137 explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
138
139 // Allows a ReferenceWrapper<T> object to be implicitly converted to
140 // a T&.
141 operator T&() const { return *pointer_; }
142 private:
143 T* pointer_;
144 };
145
146 // CallableHelper has static methods for invoking "callables",
147 // i.e. function pointers and functors. It uses overloading to
148 // provide a uniform interface for invoking different kinds of
149 // callables. In particular, you can use:
150 //
151 // CallableHelper<R>::Call(callable, a1, a2, ..., an)
152 //
153 // to invoke an n-ary callable, where R is its return type. If an
154 // argument, say a2, needs to be passed by reference, you should write
155 // ByRef(a2) instead of a2 in the above expression.
156 template <typename R>
157 class CallableHelper {
158 public:
159 // Calls a nullary callable.
160 template <typename Function>
161 static R Call(Function function) { return function(); }
162
163 // Calls a unary callable.
164
165 // We deliberately pass a1 by value instead of const reference here
166 // in case it is a C-string literal. If we had declared the
167 // parameter as 'const A1& a1' and write Call(function, "Hi"), the
168 // compiler would've thought A1 is 'char[3]', which causes trouble
169 // when you need to copy a value of type A1. By declaring the
170 // parameter as 'A1 a1', the compiler will correctly infer that A1
171 // is 'const char*' when it sees Call(function, "Hi").
172 //
173 // Since this function is defined inline, the compiler can get rid
174 // of the copying of the arguments. Therefore the performance won't
175 // be hurt.
176 template <typename Function, typename A1>
177 static R Call(Function function, A1 a1) { return function(a1); }
178
179 $range i 2..n
180 $for i
181 [[
182 $var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]]
183
184 // Calls a $arity callable.
185
186 $range j 1..i
187 $var typename_As = [[$for j, [[typename A$j]]]]
188 $var Aas = [[$for j, [[A$j a$j]]]]
189 $var as = [[$for j, [[a$j]]]]
190 $var typename_Ts = [[$for j, [[typename T$j]]]]
191 $var Ts = [[$for j, [[T$j]]]]
192 template <typename Function, $typename_As>
193 static R Call(Function function, $Aas) {
194 return function($as);
195 }
196
197 ]]
198
199 }; // class CallableHelper
200
201 // An INTERNAL macro for extracting the type of a tuple field. It's
202 // subject to change without notice - DO NOT USE IN USER CODE!
203 #define GMOCK_FIELD_(Tuple, N) \
204 typename ::std::tr1::tuple_element<N, Tuple>::type
205
206 $range i 1..n
207
208 // SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the
209 // type of an n-ary function whose i-th (1-based) argument type is the
210 // k{i}-th (0-based) field of ArgumentTuple, which must be a tuple
211 // type, and whose return type is Result. For example,
212 // SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type
213 // is int(bool, long).
214 //
215 // SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args)
216 // returns the selected fields (k1, k2, ..., k_n) of args as a tuple.
217 // For example,
218 // SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select(
219 // ::std::tr1::make_tuple(true, 'a', 2.5))
220 // returns ::std::tr1::tuple (2.5, true).
221 //
222 // The numbers in list k1, k2, ..., k_n must be >= 0, where n can be
223 // in the range [0, $n]. Duplicates are allowed and they don't have
224 // to be in an ascending or descending order.
225
226 template <typename Result, typename ArgumentTuple, $for i, [[int k$i]]>
227 class SelectArgs {
228 public:
229 typedef Result type($for i, [[GMOCK_FIELD_(ArgumentTuple, k$i)]]);
230 typedef typename Function<type>::ArgumentTuple SelectedArgs;
231 static SelectedArgs Select(const ArgumentTuple& args) {
232 using ::std::tr1::get;
233 return SelectedArgs($for i, [[get<k$i>(args)]]);
234 }
235 };
236
237
238 $for i [[
239 $range j 1..n
240 $range j1 1..i-1
241 template <typename Result, typename ArgumentTuple$for j1[[, int k$j1]]>
242 class SelectArgs<Result, ArgumentTuple,
243 $for j, [[$if j <= i-1 [[k$j]] $else [[-1]]]]> {
244 public:
245 typedef Result type($for j1, [[GMOCK_FIELD_(ArgumentTuple, k$j1)]]);
246 typedef typename Function<type>::ArgumentTuple SelectedArgs;
247 static SelectedArgs Select(const ArgumentTuple& [[]]
248 $if i == 1 [[/* args */]] $else [[args]]) {
249 using ::std::tr1::get;
250 return SelectedArgs($for j1, [[get<k$j1>(args)]]);
251 }
252 };
253
254
255 ]]
256 #undef GMOCK_FIELD_
257
258 $var ks = [[$for i, [[k$i]]]]
259
260 // Implements the WithArgs action.
261 template <typename InnerAction, $for i, [[int k$i = -1]]>
262 class WithArgsAction {
263 public:
264 explicit WithArgsAction(const InnerAction& action) : action_(action) {}
265
266 template <typename F>
267 operator Action<F>() const { return MakeAction(new Impl<F>(action_)); }
268
269 private:
270 template <typename F>
271 class Impl : public ActionInterface<F> {
272 public:
273 typedef typename Function<F>::Result Result;
274 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
275
276 explicit Impl(const InnerAction& action) : action_(action) {}
277
278 virtual Result Perform(const ArgumentTuple& args) {
279 return action_.Perform(SelectArgs<Result, ArgumentTuple, $ks>::Select(args ));
280 }
281
282 private:
283 typedef typename SelectArgs<Result, ArgumentTuple,
284 $ks>::type InnerFunctionType;
285
286 Action<InnerFunctionType> action_;
287 };
288
289 const InnerAction action_;
290 };
291
292 // Does two actions sequentially. Used for implementing the DoAll(a1,
293 // a2, ...) action.
294 template <typename Action1, typename Action2>
295 class DoBothAction {
296 public:
297 DoBothAction(Action1 action1, Action2 action2)
298 : action1_(action1), action2_(action2) {}
299
300 // This template type conversion operator allows DoAll(a1, ..., a_n)
301 // to be used in ANY function of compatible type.
302 template <typename F>
303 operator Action<F>() const {
304 return Action<F>(new Impl<F>(action1_, action2_));
305 }
306
307 private:
308 // Implements the DoAll(...) action for a particular function type F.
309 template <typename F>
310 class Impl : public ActionInterface<F> {
311 public:
312 typedef typename Function<F>::Result Result;
313 typedef typename Function<F>::ArgumentTuple ArgumentTuple;
314 typedef typename Function<F>::MakeResultVoid VoidResult;
315
316 Impl(const Action<VoidResult>& action1, const Action<F>& action2)
317 : action1_(action1), action2_(action2) {}
318
319 virtual Result Perform(const ArgumentTuple& args) {
320 action1_.Perform(args);
321 return action2_.Perform(args);
322 }
323
324 private:
325 const Action<VoidResult> action1_;
326 const Action<F> action2_;
327 };
328
329 Action1 action1_;
330 Action2 action2_;
331 };
332
333 // A macro from the ACTION* family (defined later in this file)
334 // defines an action that can be used in a mock function. Typically,
335 // these actions only care about a subset of the arguments of the mock
336 // function. For example, if such an action only uses the second
337 // argument, it can be used in any mock function that takes >= 2
338 // arguments where the type of the second argument is compatible.
339 //
340 // Therefore, the action implementation must be prepared to take more
341 // arguments than it needs. The ExcessiveArg type is used to
342 // represent those excessive arguments. In order to keep the compiler
343 // error messages tractable, we define it in the testing namespace
344 // instead of testing::internal. However, this is an INTERNAL TYPE
345 // and subject to change without notice, so a user MUST NOT USE THIS
346 // TYPE DIRECTLY.
347 struct ExcessiveArg {};
348
349 // A helper class needed for implementing the ACTION* macros.
350 template <typename Result, class Impl>
351 class ActionHelper {
352 public:
353 $range i 0..n
354 $for i
355
356 [[
357 $var template = [[$if i==0 [[]] $else [[
358 $range j 0..i-1
359 template <$for j, [[typename A$j]]>
360 ]]]]
361 $range j 0..i-1
362 $var As = [[$for j, [[A$j]]]]
363 $var as = [[$for j, [[get<$j>(args)]]]]
364 $range k 1..n-i
365 $var eas = [[$for k, [[ExcessiveArg()]]]]
366 $var arg_list = [[$if (i==0) | (i==n) [[$as$eas]] $else [[$as, $eas]]]]
367 $template
368 static Result Perform(Impl* impl, const ::std::tr1::tuple<$As>& args) {
369 using ::std::tr1::get;
370 return impl->template gmock_PerformImpl<$As>(args, $arg_list);
371 }
372
373 ]]
374 };
375
376 } // namespace internal
377
378 // Various overloads for Invoke().
379
380 // Creates an action that invokes 'function_impl' with the mock
381 // function's arguments.
382 template <typename FunctionImpl>
383 PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke(
384 FunctionImpl function_impl) {
385 return MakePolymorphicAction(
386 internal::InvokeAction<FunctionImpl>(function_impl));
387 }
388
389 // Creates an action that invokes the given method on the given object
390 // with the mock function's arguments.
391 template <class Class, typename MethodPtr>
392 PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke(
393 Class* obj_ptr, MethodPtr method_ptr) {
394 return MakePolymorphicAction(
395 internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr));
396 }
397
398 // Creates a reference wrapper for the given L-value. If necessary,
399 // you can explicitly specify the type of the reference. For example,
400 // suppose 'derived' is an object of type Derived, ByRef(derived)
401 // would wrap a Derived&. If you want to wrap a const Base& instead,
402 // where Base is a base class of Derived, just write:
403 //
404 // ByRef<const Base>(derived)
405 template <typename T>
406 inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
407 return internal::ReferenceWrapper<T>(l_value);
408 }
409
410 // WithoutArgs(inner_action) can be used in a mock function with a
411 // non-empty argument list to perform inner_action, which takes no
412 // argument. In other words, it adapts an action accepting no
413 // argument to one that accepts (and ignores) arguments.
414 template <typename InnerAction>
415 inline internal::WithArgsAction<InnerAction>
416 WithoutArgs(const InnerAction& action) {
417 return internal::WithArgsAction<InnerAction>(action);
418 }
419
420 // WithArg<k>(an_action) creates an action that passes the k-th
421 // (0-based) argument of the mock function to an_action and performs
422 // it. It adapts an action accepting one argument to one that accepts
423 // multiple arguments. For convenience, we also provide
424 // WithArgs<k>(an_action) (defined below) as a synonym.
425 template <int k, typename InnerAction>
426 inline internal::WithArgsAction<InnerAction, k>
427 WithArg(const InnerAction& action) {
428 return internal::WithArgsAction<InnerAction, k>(action);
429 }
430
431 // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
432 // the selected arguments of the mock function to an_action and
433 // performs it. It serves as an adaptor between actions with
434 // different argument lists. C++ doesn't support default arguments for
435 // function templates, so we have to overload it.
436
437 $range i 1..n
438 $for i [[
439 $range j 1..i
440 template <$for j [[int k$j, ]]typename InnerAction>
441 inline internal::WithArgsAction<InnerAction$for j [[, k$j]]>
442 WithArgs(const InnerAction& action) {
443 return internal::WithArgsAction<InnerAction$for j [[, k$j]]>(action);
444 }
445
446
447 ]]
448 // Creates an action that does actions a1, a2, ..., sequentially in
449 // each invocation.
450 $range i 2..n
451 $for i [[
452 $range j 2..i
453 $var types = [[$for j, [[typename Action$j]]]]
454 $var Aas = [[$for j [[, Action$j a$j]]]]
455
456 template <typename Action1, $types>
457 $range k 1..i-1
458
459 inline $for k [[internal::DoBothAction<Action$k, ]]Action$i$for k [[>]]
460
461 DoAll(Action1 a1$Aas) {
462 $if i==2 [[
463
464 return internal::DoBothAction<Action1, Action2>(a1, a2);
465 ]] $else [[
466 $range j2 2..i
467
468 return DoAll(a1, DoAll($for j2, [[a$j2]]));
469 ]]
470
471 }
472
473 ]]
474
475 } // namespace testing
476
477 // The ACTION* family of macros can be used in a namespace scope to
478 // define custom actions easily. The syntax:
479 //
480 // ACTION(name) { statements; }
481 //
482 // will define an action with the given name that executes the
483 // statements. The value returned by the statements will be used as
484 // the return value of the action. Inside the statements, you can
485 // refer to the K-th (0-based) argument of the mock function by
486 // 'argK', and refer to its type by 'argK_type'. For example:
487 //
488 // ACTION(IncrementArg1) {
489 // arg1_type temp = arg1;
490 // return ++(*temp);
491 // }
492 //
493 // allows you to write
494 //
495 // ...WillOnce(IncrementArg1());
496 //
497 // You can also refer to the entire argument tuple and its type by
498 // 'args' and 'args_type', and refer to the mock function type and its
499 // return type by 'function_type' and 'return_type'.
500 //
501 // Note that you don't need to specify the types of the mock function
502 // arguments. However rest assured that your code is still type-safe:
503 // you'll get a compiler error if *arg1 doesn't support the ++
504 // operator, or if the type of ++(*arg1) isn't compatible with the
505 // mock function's return type, for example.
506 //
507 // Sometimes you'll want to parameterize the action. For that you can use
508 // another macro:
509 //
510 // ACTION_P(name, param_name) { statements; }
511 //
512 // For example:
513 //
514 // ACTION_P(Add, n) { return arg0 + n; }
515 //
516 // will allow you to write:
517 //
518 // ...WillOnce(Add(5));
519 //
520 // Note that you don't need to provide the type of the parameter
521 // either. If you need to reference the type of a parameter named
522 // 'foo', you can write 'foo_type'. For example, in the body of
523 // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
524 // of 'n'.
525 //
526 // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P$n to support
527 // multi-parameter actions.
528 //
529 // For the purpose of typing, you can view
530 //
531 // ACTION_Pk(Foo, p1, ..., pk) { ... }
532 //
533 // as shorthand for
534 //
535 // template <typename p1_type, ..., typename pk_type>
536 // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
537 //
538 // In particular, you can provide the template type arguments
539 // explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
540 // although usually you can rely on the compiler to infer the types
541 // for you automatically. You can assign the result of expression
542 // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
543 // pk_type>. This can be useful when composing actions.
544 //
545 // You can also overload actions with different numbers of parameters:
546 //
547 // ACTION_P(Plus, a) { ... }
548 // ACTION_P2(Plus, a, b) { ... }
549 //
550 // While it's tempting to always use the ACTION* macros when defining
551 // a new action, you should also consider implementing ActionInterface
552 // or using MakePolymorphicAction() instead, especially if you need to
553 // use the action a lot. While these approaches require more work,
554 // they give you more control on the types of the mock function
555 // arguments and the action parameters, which in general leads to
556 // better compiler error messages that pay off in the long run. They
557 // also allow overloading actions based on parameter types (as opposed
558 // to just based on the number of parameters).
559 //
560 // CAVEAT:
561 //
562 // ACTION*() can only be used in a namespace scope. The reason is
563 // that C++ doesn't yet allow function-local types to be used to
564 // instantiate templates. The up-coming C++0x standard will fix this.
565 // Once that's done, we'll consider supporting using ACTION*() inside
566 // a function.
567 //
568 // MORE INFORMATION:
569 //
570 // To learn more about using these macros, please search for 'ACTION'
571 // on http://code.google.com/p/googlemock/wiki/CookBook.
572
573 $range i 0..n
574 $range k 0..n-1
575
576 // An internal macro needed for implementing ACTION*().
577 #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\
578 const args_type& args GTEST_ATTRIBUTE_UNUSED_
579 $for k [[,\
580 arg$k[[]]_type arg$k GTEST_ATTRIBUTE_UNUSED_]]
581
582
583 // Sometimes you want to give an action explicit template parameters
584 // that cannot be inferred from its value parameters. ACTION() and
585 // ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that
586 // and can be viewed as an extension to ACTION() and ACTION_P*().
587 //
588 // The syntax:
589 //
590 // ACTION_TEMPLATE(ActionName,
591 // HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
592 // AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
593 //
594 // defines an action template that takes m explicit template
595 // parameters and n value parameters. name_i is the name of the i-th
596 // template parameter, and kind_i specifies whether it's a typename,
597 // an integral constant, or a template. p_i is the name of the i-th
598 // value parameter.
599 //
600 // Example:
601 //
602 // // DuplicateArg<k, T>(output) converts the k-th argument of the mock
603 // // function to type T and copies it to *output.
604 // ACTION_TEMPLATE(DuplicateArg,
605 // HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
606 // AND_1_VALUE_PARAMS(output)) {
607 // *output = T(std::tr1::get<k>(args));
608 // }
609 // ...
610 // int n;
611 // EXPECT_CALL(mock, Foo(_, _))
612 // .WillOnce(DuplicateArg<1, unsigned char>(&n));
613 //
614 // To create an instance of an action template, write:
615 //
616 // ActionName<t1, ..., t_m>(v1, ..., v_n)
617 //
618 // where the ts are the template arguments and the vs are the value
619 // arguments. The value argument types are inferred by the compiler.
620 // If you want to explicitly specify the value argument types, you can
621 // provide additional template arguments:
622 //
623 // ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
624 //
625 // where u_i is the desired type of v_i.
626 //
627 // ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
628 // number of value parameters, but not on the number of template
629 // parameters. Without the restriction, the meaning of the following
630 // is unclear:
631 //
632 // OverloadedAction<int, bool>(x);
633 //
634 // Are we using a single-template-parameter action where 'bool' refers
635 // to the type of x, or are we using a two-template-parameter action
636 // where the compiler is asked to infer the type of x?
637 //
638 // Implementation notes:
639 //
640 // GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
641 // GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
642 // implementing ACTION_TEMPLATE. The main trick we use is to create
643 // new macro invocations when expanding a macro. For example, we have
644 //
645 // #define ACTION_TEMPLATE(name, template_params, value_params)
646 // ... GMOCK_INTERNAL_DECL_##template_params ...
647 //
648 // which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
649 // to expand to
650 //
651 // ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
652 //
653 // Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
654 // preprocessor will continue to expand it to
655 //
656 // ... typename T ...
657 //
658 // This technique conforms to the C++ standard and is portable. It
659 // allows us to implement action templates using O(N) code, where N is
660 // the maximum number of template/value parameters supported. Without
661 // using it, we'd have to devote O(N^2) amount of code to implement all
662 // combinations of m and n.
663
664 // Declares the template parameters.
665
666 $range j 1..n
667 $for j [[
668 $range m 0..j-1
669 #define GMOCK_INTERNAL_DECL_HAS_$j[[]]
670 _TEMPLATE_PARAMS($for m, [[kind$m, name$m]]) $for m, [[kind$m name$m]]
671
672
673 ]]
674
675 // Lists the template parameters.
676
677 $for j [[
678 $range m 0..j-1
679 #define GMOCK_INTERNAL_LIST_HAS_$j[[]]
680 _TEMPLATE_PARAMS($for m, [[kind$m, name$m]]) $for m, [[name$m]]
681
682
683 ]]
684
685 // Declares the types of value parameters.
686
687 $for i [[
688 $range j 0..i-1
689 #define GMOCK_INTERNAL_DECL_TYPE_AND_$i[[]]
690 _VALUE_PARAMS($for j, [[p$j]]) $for j [[, typename p$j##_type]]
691
692
693 ]]
694
695 // Initializes the value parameters.
696
697 $for i [[
698 $range j 0..i-1
699 #define GMOCK_INTERNAL_INIT_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])\
700 ($for j, [[p$j##_type gmock_p$j]])$if i>0 [[ : ]]$for j, [[p$j(gmock_p$j)]]
701
702
703 ]]
704
705 // Declares the fields for storing the value parameters.
706
707 $for i [[
708 $range j 0..i-1
709 #define GMOCK_INTERNAL_DEFN_AND_$i[[]]
710 _VALUE_PARAMS($for j, [[p$j]]) $for j [[p$j##_type p$j; ]]
711
712
713 ]]
714
715 // Lists the value parameters.
716
717 $for i [[
718 $range j 0..i-1
719 #define GMOCK_INTERNAL_LIST_AND_$i[[]]
720 _VALUE_PARAMS($for j, [[p$j]]) $for j, [[p$j]]
721
722
723 ]]
724
725 // Lists the value parameter types.
726
727 $for i [[
728 $range j 0..i-1
729 #define GMOCK_INTERNAL_LIST_TYPE_AND_$i[[]]
730 _VALUE_PARAMS($for j, [[p$j]]) $for j [[, p$j##_type]]
731
732
733 ]]
734
735 // Declares the value parameters.
736
737 $for i [[
738 $range j 0..i-1
739 #define GMOCK_INTERNAL_DECL_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]]) [[]]
740 $for j, [[p$j##_type p$j]]
741
742
743 ]]
744
745 // The suffix of the class template implementing the action template.
746 $for i [[
747
748
749 $range j 0..i-1
750 #define GMOCK_INTERNAL_COUNT_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]]) [[]]
751 $if i==1 [[P]] $elif i>=2 [[P$i]]
752 ]]
753
754
755 // The name of the class template implementing the action template.
756 #define GMOCK_ACTION_CLASS_(name, value_params)\
757 GMOCK_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
758
759 $range k 0..n-1
760
761 #define ACTION_TEMPLATE(name, template_params, value_params)\
762 template <GMOCK_INTERNAL_DECL_##template_params\
763 GMOCK_INTERNAL_DECL_TYPE_##value_params>\
764 class GMOCK_ACTION_CLASS_(name, value_params) {\
765 public:\
766 GMOCK_ACTION_CLASS_(name, value_params)\
767 GMOCK_INTERNAL_INIT_##value_params {}\
768 template <typename F>\
769 class gmock_Impl : public ::testing::ActionInterface<F> {\
770 public:\
771 typedef F function_type;\
772 typedef typename ::testing::internal::Function<F>::Result return_type;\
773 typedef typename ::testing::internal::Function<F>::ArgumentTuple\
774 args_type;\
775 explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}\
776 virtual return_type Perform(const args_type& args) {\
777 return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
778 Perform(this, args);\
779 }\
780 template <$for k, [[typename arg$k[[]]_type]]>\
781 return_type gmock_PerformImpl(const args_type& args[[]]
782 $for k [[, arg$k[[]]_type arg$k]]) const;\
783 GMOCK_INTERNAL_DEFN_##value_params\
784 };\
785 template <typename F> operator ::testing::Action<F>() const {\
786 return ::testing::Action<F>(\
787 new gmock_Impl<F>(GMOCK_INTERNAL_LIST_##value_params));\
788 }\
789 GMOCK_INTERNAL_DEFN_##value_params\
790 };\
791 template <GMOCK_INTERNAL_DECL_##template_params\
792 GMOCK_INTERNAL_DECL_TYPE_##value_params>\
793 inline GMOCK_ACTION_CLASS_(name, value_params)<\
794 GMOCK_INTERNAL_LIST_##template_params\
795 GMOCK_INTERNAL_LIST_TYPE_##value_params> name(\
796 GMOCK_INTERNAL_DECL_##value_params) {\
797 return GMOCK_ACTION_CLASS_(name, value_params)<\
798 GMOCK_INTERNAL_LIST_##template_params\
799 GMOCK_INTERNAL_LIST_TYPE_##value_params>(\
800 GMOCK_INTERNAL_LIST_##value_params);\
801 }\
802 template <GMOCK_INTERNAL_DECL_##template_params\
803 GMOCK_INTERNAL_DECL_TYPE_##value_params>\
804 template <typename F>\
805 template <typename arg0_type, typename arg1_type, typename arg2_type,\
806 typename arg3_type, typename arg4_type, typename arg5_type,\
807 typename arg6_type, typename arg7_type, typename arg8_type,\
808 typename arg9_type>\
809 typename ::testing::internal::Function<F>::Result\
810 GMOCK_ACTION_CLASS_(name, value_params)<\
811 GMOCK_INTERNAL_LIST_##template_params\
812 GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl<F>::\
813 gmock_PerformImpl(\
814 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
815
816 $for i
817
818 [[
819 $var template = [[$if i==0 [[]] $else [[
820 $range j 0..i-1
821
822 template <$for j, [[typename p$j##_type]]>\
823 ]]]]
824 $var class_name = [[name##Action[[$if i==0 [[]] $elif i==1 [[P]]
825 $else [[P$i]]]]]]
826 $range j 0..i-1
827 $var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
828 $var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
829 $var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
830 $var param_field_decls = [[$for j
831 [[
832
833 p$j##_type p$j;\
834 ]]]]
835 $var param_field_decls2 = [[$for j
836 [[
837
838 p$j##_type p$j;\
839 ]]]]
840 $var params = [[$for j, [[p$j]]]]
841 $var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
842 $var typename_arg_types = [[$for k, [[typename arg$k[[]]_type]]]]
843 $var arg_types_and_names = [[$for k, [[arg$k[[]]_type arg$k]]]]
844 $var macro_name = [[$if i==0 [[ACTION]] $elif i==1 [[ACTION_P]]
845 $else [[ACTION_P$i]]]]
846
847 #define $macro_name(name$for j [[, p$j]])\$template
848 class $class_name {\
849 public:\
850 $class_name($ctor_param_list)$inits {}\
851 template <typename F>\
852 class gmock_Impl : public ::testing::ActionInterface<F> {\
853 public:\
854 typedef F function_type;\
855 typedef typename ::testing::internal::Function<F>::Result return_type;\
856 typedef typename ::testing::internal::Function<F>::ArgumentTuple\
857 args_type;\
858 [[$if i==1 [[explicit ]]]]gmock_Impl($ctor_param_list)$inits {}\
859 virtual return_type Perform(const args_type& args) {\
860 return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
861 Perform(this, args);\
862 }\
863 template <$typename_arg_types>\
864 return_type gmock_PerformImpl(const args_type& args, [[]]
865 $arg_types_and_names) const;\$param_field_decls
866 };\
867 template <typename F> operator ::testing::Action<F>() const {\
868 return ::testing::Action<F>(new gmock_Impl<F>($params));\
869 }\$param_field_decls2
870 };\$template
871 inline $class_name$param_types name($param_types_and_names) {\
872 return $class_name$param_types($params);\
873 }\$template
874 template <typename F>\
875 template <$typename_arg_types>\
876 typename ::testing::internal::Function<F>::Result\
877 $class_name$param_types::gmock_Impl<F>::gmock_PerformImpl(\
878 GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
879 ]]
880 $$ } // This meta comment fixes auto-indentation in Emacs. It won't
881 $$ // show up in the generated code.
882
883
884 // TODO(wan@google.com): move the following to a different .h file
885 // such that we don't have to run 'pump' every time the code is
886 // updated.
887 namespace testing {
888
889 // Various overloads for InvokeArgument<N>().
890 //
891 // The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
892 // (0-based) argument, which must be a k-ary callable, of the mock
893 // function, with arguments a1, a2, ..., a_k.
894 //
895 // Notes:
896 //
897 // 1. The arguments are passed by value by default. If you need to
898 // pass an argument by reference, wrap it inside ByRef(). For
899 // example,
900 //
901 // InvokeArgument<1>(5, string("Hello"), ByRef(foo))
902 //
903 // passes 5 and string("Hello") by value, and passes foo by
904 // reference.
905 //
906 // 2. If the callable takes an argument by reference but ByRef() is
907 // not used, it will receive the reference to a copy of the value,
908 // instead of the original value. For example, when the 0-th
909 // argument of the mock function takes a const string&, the action
910 //
911 // InvokeArgument<0>(string("Hello"))
912 //
913 // makes a copy of the temporary string("Hello") object and passes a
914 // reference of the copy, instead of the original temporary object,
915 // to the callable. This makes it easy for a user to define an
916 // InvokeArgument action from temporary values and have it performed
917 // later.
918
919 $range i 0..n
920 $for i [[
921 $range j 0..i-1
922
923 ACTION_TEMPLATE(InvokeArgument,
924 HAS_1_TEMPLATE_PARAMS(int, k),
925 AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])) {
926 return internal::CallableHelper<return_type>::Call(
927 ::std::tr1::get<k>(args)$for j [[, p$j]]);
928 }
929
930 ]]
931
932 // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
933 // mock function to *pointer.
934 ACTION_TEMPLATE(SaveArg,
935 HAS_1_TEMPLATE_PARAMS(int, k),
936 AND_1_VALUE_PARAMS(pointer)) {
937 *pointer = ::std::tr1::get<k>(args);
938 }
939
940 // Action SetArgReferee<k>(value) assigns 'value' to the variable
941 // referenced by the k-th (0-based) argument of the mock function.
942 ACTION_TEMPLATE(SetArgReferee,
943 HAS_1_TEMPLATE_PARAMS(int, k),
944 AND_1_VALUE_PARAMS(value)) {
945 typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type;
946 // Ensures that argument #k is a reference. If you get a compiler
947 // error on the next line, you are using SetArgReferee<k>(value) in
948 // a mock function whose k-th (0-based) argument is not a reference.
949 GMOCK_COMPILE_ASSERT_(internal::is_reference<argk_type>::value,
950 SetArgReferee_must_be_used_with_a_reference_argument);
951 ::std::tr1::get<k>(args) = value;
952 }
953
954 // Action SetArrayArgument<k>(first, last) copies the elements in
955 // source range [first, last) to the array pointed to by the k-th
956 // (0-based) argument, which can be either a pointer or an
957 // iterator. The action does not take ownership of the elements in the
958 // source range.
959 ACTION_TEMPLATE(SetArrayArgument,
960 HAS_1_TEMPLATE_PARAMS(int, k),
961 AND_2_VALUE_PARAMS(first, last)) {
962 // Microsoft compiler deprecates ::std::copy, so we want to suppress warning
963 // 4996 (Function call with parameters that may be unsafe) there.
964 #ifdef _MSC_VER
965 #pragma warning(push) // Saves the current warning state.
966 #pragma warning(disable:4996) // Temporarily disables warning 4996.
967 #endif
968 ::std::copy(first, last, ::std::tr1::get<k>(args));
969 #ifdef _MSC_VER
970 #pragma warning(pop) // Restores the warning state.
971 #endif
972 }
973
974 // Various overloads for ReturnNew<T>().
975 //
976 // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
977 // instance of type T, constructed on the heap with constructor arguments
978 // a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
979 $range i 0..n
980 $for i [[
981 $range j 0..i-1
982 $var ps = [[$for j, [[p$j]]]]
983
984 ACTION_TEMPLATE(ReturnNew,
985 HAS_1_TEMPLATE_PARAMS(typename, T),
986 AND_$i[[]]_VALUE_PARAMS($ps)) {
987 return new T($ps);
988 }
989
990 ]]
991
992 // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
993 // function.
994 ACTION_TEMPLATE(DeleteArg,
995 HAS_1_TEMPLATE_PARAMS(int, k),
996 AND_0_VALUE_PARAMS()) {
997 delete ::std::tr1::get<k>(args);
998 }
999
1000 // Action Throw(exception) can be used in a mock function of any type
1001 // to throw the given exception. Any copyable value can be thrown.
1002 #if GTEST_HAS_EXCEPTIONS
1003 ACTION_P(Throw, exception) { throw exception; }
1004 #endif // GTEST_HAS_EXCEPTIONS
1005
1006 } // namespace testing
1007
1008 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
OLDNEW
« no previous file with comments | « testing/gmock/include/gmock/gmock-generated-actions.h ('k') | testing/gmock/include/gmock/gmock-generated-function-mockers.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698