Index: courgette/encoded_program.cc |
=================================================================== |
--- courgette/encoded_program.cc (revision 0) |
+++ courgette/encoded_program.cc (revision 0) |
@@ -0,0 +1,573 @@ |
+// Copyright (c) 2009 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "courgette/encoded_program.h" |
+ |
+#include <algorithm> |
+#include <map> |
+#include <string> |
+#include <vector> |
+ |
+#include "base/logging.h" |
+#include "base/sys_info.h" |
+ |
+#include "courgette/courgette.h" |
+#include "courgette/streams.h" |
+ |
+namespace courgette { |
+ |
+// Stream indexes. |
+const int kStreamMisc = 0; |
+const int kStreamOps = 1; |
+const int kStreamBytes = 2; |
+const int kStreamAbs32Indexes = 3; |
+const int kStreamRel32Indexes = 4; |
+const int kStreamAbs32Addresses = 5; |
+const int kStreamRel32Addresses = 6; |
+const int kStreamCopyCounts = 7; |
+const int kStreamOriginAddresses = kStreamMisc; |
+ |
+const int kStreamLimit = 9; |
+ |
+// Binary assembly language operations. |
+enum EncodedProgram::OP { |
+ ORIGIN, // ORIGIN <rva> - set address for subsequent assembly. |
+ COPY, // COPY <count> <bytes> - copy bytes to output. |
+ COPY1, // COPY1 <byte> - same as COPY 1 <byte>. |
+ REL32, // REL32 <index> - emit rel32 encoded reference to address at |
+ // address table offset <index> |
+ ABS32, // ABS32 <index> - emit abs32 encoded reference to address at |
+ // address table offset <index> |
+ MAKE_BASE_RELOCATION_TABLE, // Emit base relocation table blocks. |
+ OP_LAST |
+}; |
+ |
+ |
+// Constructor is here rather than in the header. Although the constructor |
+// appears to do nothing it is fact quite large because of the implict calls to |
+// field constructors. Ditto for the destructor. |
+EncodedProgram::EncodedProgram() {} |
+EncodedProgram::~EncodedProgram() {} |
+ |
+// Serializes a vector of integral values using Varint32 coding. |
+template<typename T> |
+void WriteVector(const std::vector<T>& items, SinkStream* buffer) { |
+ size_t count = items.size(); |
+ buffer->WriteVarint32(count); |
+ for (size_t i = 0; i < count; ++i) { |
+ COMPILE_ASSERT(sizeof(T) <= sizeof(uint32), T_must_fit_in_uint32); |
+ buffer->WriteVarint32(static_cast<uint32>(items[i])); |
+ } |
+} |
+ |
+template<typename T> |
+bool ReadVector(std::vector<T>* items, SourceStream* buffer) { |
+ uint32 count; |
+ if (!buffer->ReadVarint32(&count)) |
+ return false; |
+ |
+ items->clear(); |
+ items->reserve(count); |
+ for (size_t i = 0; i < count; ++i) { |
+ uint32 item; |
+ if (!buffer->ReadVarint32(&item)) |
+ return false; |
+ items->push_back(static_cast<T>(item)); |
+ } |
+ |
+ return true; |
+} |
+ |
+// Serializes a vector, using delta coding followed by Varint32 coding. |
+void WriteU32Delta(const std::vector<uint32>& set, SinkStream* buffer) { |
+ size_t count = set.size(); |
+ buffer->WriteVarint32(count); |
+ uint32 prev = 0; |
+ for (size_t i = 0; i < count; ++i) { |
+ uint32 current = set[i]; |
+ uint32 delta = current - prev; |
+ buffer->WriteVarint32(delta); |
+ prev = current; |
+ } |
+} |
+ |
+static bool ReadU32Delta(std::vector<uint32>* set, SourceStream* buffer) { |
+ uint32 count; |
+ |
+ if (!buffer->ReadVarint32(&count)) |
+ return false; |
+ |
+ set->clear(); |
+ set->reserve(count); |
+ uint32 prev = 0; |
+ |
+ for (size_t i = 0; i < count; ++i) { |
+ uint32 delta; |
+ if (!buffer->ReadVarint32(&delta)) |
+ return false; |
+ uint32 current = prev + delta; |
+ set->push_back(current); |
+ prev = current; |
+ } |
+ |
+ return true; |
+} |
+ |
+// Write a vector as the byte representation of the contents. |
+// |
+// (This only really makes sense for a type T that has sizeof(T)==1, otherwise |
+// serilized representation is not endian-agnositic. But it is useful to keep |
+// the possibility of a greater size for experiments comparing Varint32 encoding |
+// of a vector of larger integrals vs a plain form.) |
+// |
+template<typename T> |
+void WriteVectorU8(const std::vector<T>& items, SinkStream* buffer) { |
+ uint32 count = items.size(); |
+ buffer->WriteVarint32(count); |
+ if (count != 0) { |
+ size_t byte_count = count * sizeof(T); |
+ buffer->Write(static_cast<const void*>(&items[0]), byte_count); |
+ } |
+} |
+ |
+template<typename T> |
+bool ReadVectorU8(std::vector<T>* items, SourceStream* buffer) { |
+ uint32 count; |
+ if (!buffer->ReadVarint32(&count)) |
+ return false; |
+ |
+ items->clear(); |
+ items->resize(count); |
+ if (count != 0) { |
+ size_t byte_count = count * sizeof(T); |
+ return buffer->Read(static_cast<void*>(&((*items)[0])), byte_count); |
+ } |
+ return true; |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
+void EncodedProgram::DefineRel32Label(int index, RVA value) { |
+ DefineLabelCommon(&rel32_rva_, index, value); |
+} |
+ |
+void EncodedProgram::DefineAbs32Label(int index, RVA value) { |
+ DefineLabelCommon(&abs32_rva_, index, value); |
+} |
+ |
+static const RVA kUnassignedRVA = static_cast<RVA>(-1); |
+ |
+void EncodedProgram::DefineLabelCommon(std::vector<RVA>* rvas, |
+ int index, |
+ RVA rva) { |
+ if (static_cast<int>(rvas->size()) <= index) { |
+ rvas->resize(index + 1, kUnassignedRVA); |
+ } |
+ if ((*rvas)[index] != kUnassignedRVA) { |
+ NOTREACHED() << "DefineLabel double assigned " << index; |
+ } |
+ (*rvas)[index] = rva; |
+} |
+ |
+void EncodedProgram::EndLabels() { |
+ FinishLabelsCommon(&abs32_rva_); |
+ FinishLabelsCommon(&rel32_rva_); |
+} |
+ |
+void EncodedProgram::FinishLabelsCommon(std::vector<RVA>* rvas) { |
+ // Replace all unassigned slots with the value at the previous index so they |
+ // delta-encode to zero. (There might be better values than zero. The way to |
+ // get that is have the higher level assembly program assign the unassigned |
+ // slots.) |
+ RVA previous = 0; |
+ size_t size = rvas->size(); |
+ for (size_t i = 0; i < size; ++i) { |
+ if ((*rvas)[i] == kUnassignedRVA) |
+ (*rvas)[i] = previous; |
+ else |
+ previous = (*rvas)[i]; |
+ } |
+} |
+ |
+void EncodedProgram::AddOrigin(RVA origin) { |
+ ops_.push_back(ORIGIN); |
+ origins_.push_back(origin); |
+} |
+ |
+void EncodedProgram::AddCopy(int count, const void* bytes) { |
+ const uint8* source = static_cast<const uint8*>(bytes); |
+ |
+ // Fold adjacent COPY instructions into one. This nearly halves the size of |
+ // an EncodedProgram with only COPY1 instructions since there are approx plain |
+ // 16 bytes per reloc. This has a working-set benefit during decompression. |
+ // For compression of files with large differences this makes a small (4%) |
+ // improvement in size. For files with small differences this degrades the |
+ // compressed size by 1.3% |
+ if (ops_.size() > 0) { |
+ if (ops_.back() == COPY1) { |
+ ops_.back() = COPY; |
+ copy_counts_.push_back(1); |
+ } |
+ if (ops_.back() == COPY) { |
+ copy_counts_.back() += count; |
+ for (int i = 0; i < count; ++i) { |
+ copy_bytes_.push_back(source[i]); |
+ } |
+ return; |
+ } |
+ } |
+ |
+ if (count == 1) { |
+ ops_.push_back(COPY1); |
+ copy_bytes_.push_back(source[0]); |
+ } else { |
+ ops_.push_back(COPY); |
+ copy_counts_.push_back(count); |
+ for (int i = 0; i < count; ++i) { |
+ copy_bytes_.push_back(source[i]); |
+ } |
+ } |
+} |
+ |
+void EncodedProgram::AddAbs32(int label_index) { |
+ ops_.push_back(ABS32); |
+ abs32_ix_.push_back(label_index); |
+} |
+ |
+void EncodedProgram::AddRel32(int label_index) { |
+ ops_.push_back(REL32); |
+ rel32_ix_.push_back(label_index); |
+} |
+ |
+void EncodedProgram::AddMakeRelocs() { |
+ ops_.push_back(MAKE_BASE_RELOCATION_TABLE); |
+} |
+ |
+void EncodedProgram::DebuggingSummary() { |
+ LOG(INFO) << "EncodedProgram Summary"; |
+ LOG(INFO) << " image base " << image_base_; |
+ LOG(INFO) << " abs32 rvas " << abs32_rva_.size(); |
+ LOG(INFO) << " rel32 rvas " << rel32_rva_.size(); |
+ LOG(INFO) << " ops " << ops_.size(); |
+ LOG(INFO) << " origins " << origins_.size(); |
+ LOG(INFO) << " copy_counts " << copy_counts_.size(); |
+ LOG(INFO) << " copy_bytes " << copy_bytes_.size(); |
+ LOG(INFO) << " abs32_ix " << abs32_ix_.size(); |
+ LOG(INFO) << " rel32_ix " << rel32_ix_.size(); |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
+// For algorithm refinement purposes it is useful to write subsets of the file |
+// format. This gives us the ability to estimate the entropy of the |
+// differential compression of the individual streams, which can provide |
+// invaluable insights. The default, of course, is to include all the streams. |
+// |
+enum FieldSelect { |
+ INCLUDE_ABS32_ADDRESSES = 0x0001, |
+ INCLUDE_REL32_ADDRESSES = 0x0002, |
+ INCLUDE_ABS32_INDEXES = 0x0010, |
+ INCLUDE_REL32_INDEXES = 0x0020, |
+ INCLUDE_OPS = 0x0100, |
+ INCLUDE_BYTES = 0x0200, |
+ INCLUDE_COPY_COUNTS = 0x0400, |
+ INCLUDE_MISC = 0x1000 |
+}; |
+ |
+static FieldSelect GetFieldSelect() { |
+#if 1 |
+ // TODO(sra): Use better configuration. |
+ std::wstring s = base::SysInfo::GetEnvVar(L"A_FIELDS"); |
+ if (!s.empty()) { |
+ return static_cast<FieldSelect>(wcstoul(s.c_str(), 0, 0)); |
+ } |
+#endif |
+ return static_cast<FieldSelect>(~0); |
+} |
+ |
+void EncodedProgram::WriteTo(SinkStreamSet* streams) { |
+ FieldSelect select = GetFieldSelect(); |
+ |
+ // The order of fields must be consistent in WriteTo and ReadFrom, regardless |
+ // of the streams used. The code can be configured with all kStreamXXX |
+ // constants the same. |
+ // |
+ // If we change the code to pipeline reading with assembly (to avoid temporary |
+ // storage vectors by consuming operands directly from the stream) then we |
+ // need to read the base address and the random access address tables first, |
+ // the rest can be interleaved. |
+ |
+ if (select & INCLUDE_MISC) { |
+ // TODO(sra): write 64 bits. |
+ streams->stream(kStreamMisc)->WriteVarint32( |
+ static_cast<uint32>(image_base_)); |
+ } |
+ |
+ if (select & INCLUDE_ABS32_ADDRESSES) |
+ WriteU32Delta(abs32_rva_, streams->stream(kStreamAbs32Addresses)); |
+ if (select & INCLUDE_REL32_ADDRESSES) |
+ WriteU32Delta(rel32_rva_, streams->stream(kStreamRel32Addresses)); |
+ if (select & INCLUDE_MISC) |
+ WriteVector(origins_, streams->stream(kStreamOriginAddresses)); |
+ if (select & INCLUDE_OPS) { |
+ streams->stream(kStreamOps)->Reserve(ops_.size() + 5); // 5 for length. |
+ WriteVector(ops_, streams->stream(kStreamOps)); |
+ } |
+ if (select & INCLUDE_COPY_COUNTS) |
+ WriteVector(copy_counts_, streams->stream(kStreamCopyCounts)); |
+ if (select & INCLUDE_BYTES) |
+ WriteVectorU8(copy_bytes_, streams->stream(kStreamBytes)); |
+ if (select & INCLUDE_ABS32_INDEXES) |
+ WriteVector(abs32_ix_, streams->stream(kStreamAbs32Indexes)); |
+ if (select & INCLUDE_REL32_INDEXES) |
+ WriteVector(rel32_ix_, streams->stream(kStreamRel32Indexes)); |
+} |
+ |
+bool EncodedProgram::ReadFrom(SourceStreamSet* streams) { |
+ // TODO(sra): read 64 bits. |
+ uint32 temp; |
+ if (!streams->stream(kStreamMisc)->ReadVarint32(&temp)) |
+ return false; |
+ image_base_ = temp; |
+ |
+ if (!ReadU32Delta(&abs32_rva_, streams->stream(kStreamAbs32Addresses))) |
+ return false; |
+ if (!ReadU32Delta(&rel32_rva_, streams->stream(kStreamRel32Addresses))) |
+ return false; |
+ if (!ReadVector(&origins_, streams->stream(kStreamOriginAddresses))) |
+ return false; |
+ if (!ReadVector(&ops_, streams->stream(kStreamOps))) |
+ return false; |
+ if (!ReadVector(©_counts_, streams->stream(kStreamCopyCounts))) |
+ return false; |
+ if (!ReadVectorU8(©_bytes_, streams->stream(kStreamBytes))) |
+ return false; |
+ if (!ReadVector(&abs32_ix_, streams->stream(kStreamAbs32Indexes))) |
+ return false; |
+ if (!ReadVector(&rel32_ix_, streams->stream(kStreamRel32Indexes))) |
+ return false; |
+ |
+ // Check that streams have been completely consumed. |
+ for (int i = 0; i < kStreamLimit; ++i) { |
+ if (streams->stream(i)->Remaining() > 0) |
+ return false; |
+ } |
+ |
+ return true; |
+} |
+ |
+// Safe, non-throwing version of std::vector::at(). Returns 'true' for success, |
+// 'false' for out-of-bounds index error. |
+template<typename T> |
+bool VectorAt(const std::vector<T>& v, size_t index, T* output) { |
+ if (index >= v.size()) |
+ return false; |
+ *output = v[index]; |
+ return true; |
+} |
+ |
+bool EncodedProgram::AssembleTo(SinkStream* final_buffer) { |
+ // For the most part, the assembly process walks the various tables. |
+ // ix_mumble is the index into the mumble table. |
+ size_t ix_origins = 0; |
+ size_t ix_copy_counts = 0; |
+ size_t ix_copy_bytes = 0; |
+ size_t ix_abs32_ix = 0; |
+ size_t ix_rel32_ix = 0; |
+ |
+ RVA current_rva = 0; |
+ |
+ bool pending_base_relocation_table = false; |
+ SinkStream bytes_following_base_relocation_table; |
+ |
+ SinkStream* output = final_buffer; |
+ |
+ for (size_t ix_ops = 0; ix_ops < ops_.size(); ++ix_ops) { |
+ OP op = ops_[ix_ops]; |
+ |
+ switch (op) { |
+ default: |
+ return false; |
+ |
+ case ORIGIN: { |
+ RVA section_rva; |
+ if (!VectorAt(origins_, ix_origins, §ion_rva)) |
+ return false; |
+ ++ix_origins; |
+ current_rva = section_rva; |
+ break; |
+ } |
+ |
+ case COPY: { |
+ int count; |
+ if (!VectorAt(copy_counts_, ix_copy_counts, &count)) |
+ return false; |
+ ++ix_copy_counts; |
+ for (int i = 0; i < count; ++i) { |
+ uint8 b; |
+ if (!VectorAt(copy_bytes_, ix_copy_bytes, &b)) |
+ return false; |
+ ++ix_copy_bytes; |
+ output->Write(&b, 1); |
+ } |
+ current_rva += count; |
+ break; |
+ } |
+ |
+ case COPY1: { |
+ uint8 b; |
+ if (!VectorAt(copy_bytes_, ix_copy_bytes, &b)) |
+ return false; |
+ ++ix_copy_bytes; |
+ output->Write(&b, 1); |
+ current_rva += 1; |
+ break; |
+ } |
+ |
+ case REL32: { |
+ uint32 index; |
+ if (!VectorAt(rel32_ix_, ix_rel32_ix, &index)) |
+ return false; |
+ ++ix_rel32_ix; |
+ RVA rva; |
+ if (!VectorAt(rel32_rva_, index, &rva)) |
+ return false; |
+ uint32 offset = (rva - (current_rva + 4)); |
+ output->Write(&offset, 4); |
+ current_rva += 4; |
+ break; |
+ } |
+ |
+ case ABS32: { |
+ uint32 index; |
+ if (!VectorAt(abs32_ix_, ix_abs32_ix, &index)) |
+ return false; |
+ ++ix_abs32_ix; |
+ RVA rva; |
+ if (!VectorAt(abs32_rva_, index, &rva)) |
+ return false; |
+ uint32 abs32 = static_cast<uint32>(rva + image_base_); |
+ abs32_relocs_.push_back(current_rva); |
+ output->Write(&abs32, 4); |
+ current_rva += 4; |
+ break; |
+ } |
+ |
+ case MAKE_BASE_RELOCATION_TABLE: { |
+ // We can see the base relocation anywhere, but we only have the |
+ // information to generate it at the very end. So we divert the bytes |
+ // we are generating to a temporary stream. |
+ if (pending_base_relocation_table) // Can't have two base relocation |
+ // tables. |
+ return false; |
+ |
+ pending_base_relocation_table = true; |
+ output = &bytes_following_base_relocation_table; |
+ break; |
+ // There is a potential problem *if* the instruction stream contains |
+ // some REL32 relocations following the base relocation and in the same |
+ // section. We don't know the size of the table, so 'current_rva' will |
+ // be wrong, causing REL32 offsets to be miscalculated. This never |
+ // happens; the base relocation table is usually in a section of its |
+ // own, a data-only section, and following everything else in the |
+ // executable except some padding zero bytes. We could fix this by |
+ // emitting an ORIGIN after the MAKE_BASE_RELOCATION_TABLE. |
+ } |
+ } |
+ } |
+ |
+ if (pending_base_relocation_table) { |
+ GenerateBaseRelocations(final_buffer); |
+ final_buffer->Append(&bytes_following_base_relocation_table); |
+ } |
+ |
+ // Final verification check: did we consume all lists? |
+ if (ix_copy_counts != copy_counts_.size()) |
+ return false; |
+ if (ix_copy_bytes != copy_bytes_.size()) |
+ return false; |
+ if (ix_abs32_ix != abs32_ix_.size()) |
+ return false; |
+ if (ix_rel32_ix != rel32_ix_.size()) |
+ return false; |
+ |
+ return true; |
+} |
+ |
+ |
+// RelocBlock has the layout of a block of relocations in the base relocation |
+// table file format. |
+// |
+class RelocBlock { |
+ public: |
+ uint32 page_rva; |
+ uint32 block_size; |
+ uint16 relocs[4096]; // Allow up to one relocation per byte of a 4k page. |
+ |
+ RelocBlock() : page_rva(~0), block_size(8) {} |
+ |
+ void Add(uint16 item) { |
+ relocs[(block_size-8)/2] = item; |
+ block_size += 2; |
+ } |
+ |
+ void Flush(SinkStream* buffer) { |
+ if (block_size != 8) { |
+ if (block_size % 4 != 0) { // Pad to make size multiple of 4 bytes. |
+ Add(0); |
+ } |
+ buffer->Write(this, block_size); |
+ block_size = 8; |
+ } |
+ } |
+}; |
+ |
+COMPILE_ASSERT(offsetof(RelocBlock, relocs) == 8, reloc_block_header_size); |
+ |
+void EncodedProgram::GenerateBaseRelocations(SinkStream* buffer) { |
+ std::sort(abs32_relocs_.begin(), abs32_relocs_.end()); |
+ |
+ RelocBlock block; |
+ |
+ for (size_t i = 0; i < abs32_relocs_.size(); ++i) { |
+ uint32 rva = abs32_relocs_[i]; |
+ uint32 page_rva = rva & ~0xFFF; |
+ if (page_rva != block.page_rva) { |
+ block.Flush(buffer); |
+ block.page_rva = page_rva; |
+ } |
+ block.Add(0x3000 | (rva & 0xFFF)); |
+ } |
+ block.Flush(buffer); |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
+Status WriteEncodedProgram(EncodedProgram* encoded, SinkStreamSet* sink) { |
+ encoded->WriteTo(sink); |
+ return C_OK; |
+} |
+ |
+Status ReadEncodedProgram(SourceStreamSet* streams, EncodedProgram** output) { |
+ EncodedProgram* encoded = new EncodedProgram(); |
+ if (encoded->ReadFrom(streams)) { |
+ *output = encoded; |
+ return C_OK; |
+ } |
+ delete encoded; |
+ return C_DESERIALIZATION_FAILED; |
+} |
+ |
+Status Assemble(EncodedProgram* encoded, SinkStream* buffer) { |
+ bool assembled = encoded->AssembleTo(buffer); |
+ if (assembled) |
+ return C_OK; |
+ return C_ASSEMBLY_FAILED; |
+} |
+ |
+void DeleteEncodedProgram(EncodedProgram* encoded) { |
+ delete encoded; |
+} |
+ |
+} // end namespace |