Index: src/x64/codegen-x64.h |
=================================================================== |
--- src/x64/codegen-x64.h (revision 1881) |
+++ src/x64/codegen-x64.h (working copy) |
@@ -25,3 +25,594 @@ |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+#ifndef V8_X64_CODEGEN_X64_H_ |
+#define V8_X64_CODEGEN_X64_H_ |
+ |
+namespace v8 { namespace internal { |
+ |
+// Forward declarations |
+class DeferredCode; |
+class RegisterAllocator; |
+class RegisterFile; |
+ |
+enum InitState { CONST_INIT, NOT_CONST_INIT }; |
+enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// Reference support |
+ |
+// A reference is a C++ stack-allocated object that keeps an ECMA |
+// reference on the execution stack while in scope. For variables |
+// the reference is empty, indicating that it isn't necessary to |
+// store state on the stack for keeping track of references to those. |
+// For properties, we keep either one (named) or two (indexed) values |
+// on the execution stack to represent the reference. |
+ |
+class Reference BASE_EMBEDDED { |
+ public: |
+ // The values of the types is important, see size(). |
+ enum Type { ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 }; |
+ Reference(CodeGenerator* cgen, Expression* expression); |
+ ~Reference(); |
+ |
+ Expression* expression() const { return expression_; } |
+ Type type() const { return type_; } |
+ void set_type(Type value) { |
+ ASSERT(type_ == ILLEGAL); |
+ type_ = value; |
+ } |
+ |
+ // The size the reference takes up on the stack. |
+ int size() const { return (type_ == ILLEGAL) ? 0 : type_; } |
+ |
+ bool is_illegal() const { return type_ == ILLEGAL; } |
+ bool is_slot() const { return type_ == SLOT; } |
+ bool is_property() const { return type_ == NAMED || type_ == KEYED; } |
+ |
+ // Return the name. Only valid for named property references. |
+ Handle<String> GetName(); |
+ |
+ // Generate code to push the value of the reference on top of the |
+ // expression stack. The reference is expected to be already on top of |
+ // the expression stack, and it is left in place with its value above it. |
+ void GetValue(TypeofState typeof_state); |
+ |
+ // Like GetValue except that the slot is expected to be written to before |
+ // being read from again. Thae value of the reference may be invalidated, |
+ // causing subsequent attempts to read it to fail. |
+ void TakeValue(TypeofState typeof_state); |
+ |
+ // Generate code to store the value on top of the expression stack in the |
+ // reference. The reference is expected to be immediately below the value |
+ // on the expression stack. The stored value is left in place (with the |
+ // reference intact below it) to support chained assignments. |
+ void SetValue(InitState init_state); |
+ |
+ private: |
+ CodeGenerator* cgen_; |
+ Expression* expression_; |
+ Type type_; |
+}; |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// Control destinations. |
+ |
+// A control destination encapsulates a pair of jump targets and a |
+// flag indicating which one is the preferred fall-through. The |
+// preferred fall-through must be unbound, the other may be already |
+// bound (ie, a backward target). |
+// |
+// The true and false targets may be jumped to unconditionally or |
+// control may split conditionally. Unconditional jumping and |
+// splitting should be emitted in tail position (as the last thing |
+// when compiling an expression) because they can cause either label |
+// to be bound or the non-fall through to be jumped to leaving an |
+// invalid virtual frame. |
+// |
+// The labels in the control destination can be extracted and |
+// manipulated normally without affecting the state of the |
+// destination. |
+ |
+class ControlDestination BASE_EMBEDDED { |
+ public: |
+ ControlDestination(JumpTarget* true_target, |
+ JumpTarget* false_target, |
+ bool true_is_fall_through) |
+ : true_target_(true_target), |
+ false_target_(false_target), |
+ true_is_fall_through_(true_is_fall_through), |
+ is_used_(false) { |
+ ASSERT(true_is_fall_through ? !true_target->is_bound() |
+ : !false_target->is_bound()); |
+ } |
+ |
+ // Accessors for the jump targets. Directly jumping or branching to |
+ // or binding the targets will not update the destination's state. |
+ JumpTarget* true_target() const { return true_target_; } |
+ JumpTarget* false_target() const { return false_target_; } |
+ |
+ // True if the the destination has been jumped to unconditionally or |
+ // control has been split to both targets. This predicate does not |
+ // test whether the targets have been extracted and manipulated as |
+ // raw jump targets. |
+ bool is_used() const { return is_used_; } |
+ |
+ // True if the destination is used and the true target (respectively |
+ // false target) was the fall through. If the target is backward, |
+ // "fall through" included jumping unconditionally to it. |
+ bool true_was_fall_through() const { |
+ return is_used_ && true_is_fall_through_; |
+ } |
+ |
+ bool false_was_fall_through() const { |
+ return is_used_ && !true_is_fall_through_; |
+ } |
+ |
+ // Emit a branch to one of the true or false targets, and bind the |
+ // other target. Because this binds the fall-through target, it |
+ // should be emitted in tail position (as the last thing when |
+ // compiling an expression). |
+ void Split(Condition cc) { |
+ ASSERT(!is_used_); |
+ if (true_is_fall_through_) { |
+ false_target_->Branch(NegateCondition(cc)); |
+ true_target_->Bind(); |
+ } else { |
+ true_target_->Branch(cc); |
+ false_target_->Bind(); |
+ } |
+ is_used_ = true; |
+ } |
+ |
+ // Emit an unconditional jump in tail position, to the true target |
+ // (if the argument is true) or the false target. The "jump" will |
+ // actually bind the jump target if it is forward, jump to it if it |
+ // is backward. |
+ void Goto(bool where) { |
+ ASSERT(!is_used_); |
+ JumpTarget* target = where ? true_target_ : false_target_; |
+ if (target->is_bound()) { |
+ target->Jump(); |
+ } else { |
+ target->Bind(); |
+ } |
+ is_used_ = true; |
+ true_is_fall_through_ = where; |
+ } |
+ |
+ // Mark this jump target as used as if Goto had been called, but |
+ // without generating a jump or binding a label (the control effect |
+ // should have already happened). This is used when the left |
+ // subexpression of the short-circuit boolean operators are |
+ // compiled. |
+ void Use(bool where) { |
+ ASSERT(!is_used_); |
+ ASSERT((where ? true_target_ : false_target_)->is_bound()); |
+ is_used_ = true; |
+ true_is_fall_through_ = where; |
+ } |
+ |
+ // Swap the true and false targets but keep the same actual label as |
+ // the fall through. This is used when compiling negated |
+ // expressions, where we want to swap the targets but preserve the |
+ // state. |
+ void Invert() { |
+ JumpTarget* temp_target = true_target_; |
+ true_target_ = false_target_; |
+ false_target_ = temp_target; |
+ |
+ true_is_fall_through_ = !true_is_fall_through_; |
+ } |
+ |
+ private: |
+ // True and false jump targets. |
+ JumpTarget* true_target_; |
+ JumpTarget* false_target_; |
+ |
+ // Before using the destination: true if the true target is the |
+ // preferred fall through, false if the false target is. After |
+ // using the destination: true if the true target was actually used |
+ // as the fall through, false if the false target was. |
+ bool true_is_fall_through_; |
+ |
+ // True if the Split or Goto functions have been called. |
+ bool is_used_; |
+}; |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// Code generation state |
+ |
+// The state is passed down the AST by the code generator (and back up, in |
+// the form of the state of the jump target pair). It is threaded through |
+// the call stack. Constructing a state implicitly pushes it on the owning |
+// code generator's stack of states, and destroying one implicitly pops it. |
+// |
+// The code generator state is only used for expressions, so statements have |
+// the initial state. |
+ |
+class CodeGenState BASE_EMBEDDED { |
+ public: |
+ // Create an initial code generator state. Destroying the initial state |
+ // leaves the code generator with a NULL state. |
+ explicit CodeGenState(CodeGenerator* owner); |
+ |
+ // Create a code generator state based on a code generator's current |
+ // state. The new state may or may not be inside a typeof, and has its |
+ // own control destination. |
+ CodeGenState(CodeGenerator* owner, |
+ TypeofState typeof_state, |
+ ControlDestination* destination); |
+ |
+ // Destroy a code generator state and restore the owning code generator's |
+ // previous state. |
+ ~CodeGenState(); |
+ |
+ // Accessors for the state. |
+ TypeofState typeof_state() const { return typeof_state_; } |
+ ControlDestination* destination() const { return destination_; } |
+ |
+ private: |
+ // The owning code generator. |
+ CodeGenerator* owner_; |
+ |
+ // A flag indicating whether we are compiling the immediate subexpression |
+ // of a typeof expression. |
+ TypeofState typeof_state_; |
+ |
+ // A control destination in case the expression has a control-flow |
+ // effect. |
+ ControlDestination* destination_; |
+ |
+ // The previous state of the owning code generator, restored when |
+ // this state is destroyed. |
+ CodeGenState* previous_; |
+}; |
+ |
+ |
+ |
+ |
+// ------------------------------------------------------------------------- |
+// CodeGenerator |
+ |
+class CodeGenerator: public AstVisitor { |
+ public: |
+ // Takes a function literal, generates code for it. This function should only |
+ // be called by compiler.cc. |
+ static Handle<Code> MakeCode(FunctionLiteral* fun, |
+ Handle<Script> script, |
+ bool is_eval); |
+ |
+#ifdef ENABLE_LOGGING_AND_PROFILING |
+ static bool ShouldGenerateLog(Expression* type); |
+#endif |
+ |
+ static void SetFunctionInfo(Handle<JSFunction> fun, |
+ int length, |
+ int function_token_position, |
+ int start_position, |
+ int end_position, |
+ bool is_expression, |
+ bool is_toplevel, |
+ Handle<Script> script, |
+ Handle<String> inferred_name); |
+ |
+ // Accessors |
+ MacroAssembler* masm() { return masm_; } |
+ |
+ VirtualFrame* frame() const { return frame_; } |
+ |
+ bool has_valid_frame() const { return frame_ != NULL; } |
+ |
+ // Set the virtual frame to be new_frame, with non-frame register |
+ // reference counts given by non_frame_registers. The non-frame |
+ // register reference counts of the old frame are returned in |
+ // non_frame_registers. |
+ void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers); |
+ |
+ void DeleteFrame(); |
+ |
+ RegisterAllocator* allocator() const { return allocator_; } |
+ |
+ CodeGenState* state() { return state_; } |
+ void set_state(CodeGenState* state) { state_ = state; } |
+ |
+ void AddDeferred(DeferredCode* code) { deferred_.Add(code); } |
+ |
+ bool in_spilled_code() const { return in_spilled_code_; } |
+ void set_in_spilled_code(bool flag) { in_spilled_code_ = flag; } |
+ |
+ private: |
+ // Construction/Destruction |
+ CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval); |
+ virtual ~CodeGenerator() { delete masm_; } |
+ |
+ // Accessors |
+ Scope* scope() const { return scope_; } |
+ |
+ // Clearing and generating deferred code. |
+ void ClearDeferred(); |
+ void ProcessDeferred(); |
+ |
+ bool is_eval() { return is_eval_; } |
+ |
+ // State |
+ TypeofState typeof_state() const { return state_->typeof_state(); } |
+ ControlDestination* destination() const { return state_->destination(); } |
+ |
+ // Track loop nesting level. |
+ int loop_nesting() const { return loop_nesting_; } |
+ void IncrementLoopNesting() { loop_nesting_++; } |
+ void DecrementLoopNesting() { loop_nesting_--; } |
+ |
+ |
+ // Node visitors. |
+ void VisitStatements(ZoneList<Statement*>* statements); |
+ |
+#define DEF_VISIT(type) \ |
+ void Visit##type(type* node); |
+ NODE_LIST(DEF_VISIT) |
+#undef DEF_VISIT |
+ |
+ // Visit a statement and then spill the virtual frame if control flow can |
+ // reach the end of the statement (ie, it does not exit via break, |
+ // continue, return, or throw). This function is used temporarily while |
+ // the code generator is being transformed. |
+ void VisitAndSpill(Statement* statement); |
+ |
+ // Visit a list of statements and then spill the virtual frame if control |
+ // flow can reach the end of the list. |
+ void VisitStatementsAndSpill(ZoneList<Statement*>* statements); |
+ |
+ // Main code generation function |
+ void GenCode(FunctionLiteral* fun); |
+ |
+ // Generate the return sequence code. Should be called no more than |
+ // once per compiled function, immediately after binding the return |
+ // target (which can not be done more than once). |
+ void GenerateReturnSequence(Result* return_value); |
+ |
+ // The following are used by class Reference. |
+ void LoadReference(Reference* ref); |
+ void UnloadReference(Reference* ref); |
+ |
+ Operand ContextOperand(Register context, int index) const { |
+ return Operand(context, Context::SlotOffset(index)); |
+ } |
+ |
+ Operand SlotOperand(Slot* slot, Register tmp); |
+ |
+ Operand ContextSlotOperandCheckExtensions(Slot* slot, |
+ Result tmp, |
+ JumpTarget* slow); |
+ |
+ // Expressions |
+ Operand GlobalObject() const { |
+ return ContextOperand(rsi, Context::GLOBAL_INDEX); |
+ } |
+ |
+ void LoadCondition(Expression* x, |
+ TypeofState typeof_state, |
+ ControlDestination* destination, |
+ bool force_control); |
+ void Load(Expression* x, TypeofState typeof_state = NOT_INSIDE_TYPEOF); |
+ void LoadGlobal(); |
+ void LoadGlobalReceiver(); |
+ |
+ // Generate code to push the value of an expression on top of the frame |
+ // and then spill the frame fully to memory. This function is used |
+ // temporarily while the code generator is being transformed. |
+ void LoadAndSpill(Expression* expression, |
+ TypeofState typeof_state = NOT_INSIDE_TYPEOF); |
+ |
+ // Read a value from a slot and leave it on top of the expression stack. |
+ void LoadFromSlot(Slot* slot, TypeofState typeof_state); |
+ Result LoadFromGlobalSlotCheckExtensions(Slot* slot, |
+ TypeofState typeof_state, |
+ JumpTarget* slow); |
+ |
+ // Store the value on top of the expression stack into a slot, leaving the |
+ // value in place. |
+ void StoreToSlot(Slot* slot, InitState init_state); |
+ |
+ // Special code for typeof expressions: Unfortunately, we must |
+ // be careful when loading the expression in 'typeof' |
+ // expressions. We are not allowed to throw reference errors for |
+ // non-existing properties of the global object, so we must make it |
+ // look like an explicit property access, instead of an access |
+ // through the context chain. |
+ void LoadTypeofExpression(Expression* x); |
+ |
+ // Translate the value on top of the frame into control flow to the |
+ // control destination. |
+ void ToBoolean(ControlDestination* destination); |
+ |
+ void GenericBinaryOperation( |
+ Token::Value op, |
+ SmiAnalysis* type, |
+ OverwriteMode overwrite_mode); |
+ |
+ // If possible, combine two constant smi values using op to produce |
+ // a smi result, and push it on the virtual frame, all at compile time. |
+ // Returns true if it succeeds. Otherwise it has no effect. |
+ bool FoldConstantSmis(Token::Value op, int left, int right); |
+ |
+ // Emit code to perform a binary operation on a constant |
+ // smi and a likely smi. Consumes the Result *operand. |
+ void ConstantSmiBinaryOperation(Token::Value op, |
+ Result* operand, |
+ Handle<Object> constant_operand, |
+ SmiAnalysis* type, |
+ bool reversed, |
+ OverwriteMode overwrite_mode); |
+ |
+ // Emit code to perform a binary operation on two likely smis. |
+ // The code to handle smi arguments is produced inline. |
+ // Consumes the Results *left and *right. |
+ void LikelySmiBinaryOperation(Token::Value op, |
+ Result* left, |
+ Result* right, |
+ OverwriteMode overwrite_mode); |
+ |
+ void Comparison(Condition cc, |
+ bool strict, |
+ ControlDestination* destination); |
+ |
+ // To prevent long attacker-controlled byte sequences, integer constants |
+ // from the JavaScript source are loaded in two parts if they are larger |
+ // than 16 bits. |
+ static const int kMaxSmiInlinedBits = 16; |
+ bool IsUnsafeSmi(Handle<Object> value); |
+ // Load an integer constant x into a register target using |
+ // at most 16 bits of user-controlled data per assembly operation. |
+ void LoadUnsafeSmi(Register target, Handle<Object> value); |
+ |
+ void CallWithArguments(ZoneList<Expression*>* arguments, int position); |
+ |
+ void CheckStack(); |
+ |
+ bool CheckForInlineRuntimeCall(CallRuntime* node); |
+ Handle<JSFunction> BuildBoilerplate(FunctionLiteral* node); |
+ void ProcessDeclarations(ZoneList<Declaration*>* declarations); |
+ |
+ Handle<Code> ComputeCallInitialize(int argc); |
+ Handle<Code> ComputeCallInitializeInLoop(int argc); |
+ |
+ // Declare global variables and functions in the given array of |
+ // name/value pairs. |
+ void DeclareGlobals(Handle<FixedArray> pairs); |
+ |
+ // Instantiate the function boilerplate. |
+ void InstantiateBoilerplate(Handle<JSFunction> boilerplate); |
+ |
+ // Support for type checks. |
+ void GenerateIsSmi(ZoneList<Expression*>* args); |
+ void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args); |
+ void GenerateIsArray(ZoneList<Expression*>* args); |
+ |
+ // Support for arguments.length and arguments[?]. |
+ void GenerateArgumentsLength(ZoneList<Expression*>* args); |
+ void GenerateArgumentsAccess(ZoneList<Expression*>* args); |
+ |
+ // Support for accessing the value field of an object (used by Date). |
+ void GenerateValueOf(ZoneList<Expression*>* args); |
+ void GenerateSetValueOf(ZoneList<Expression*>* args); |
+ |
+ // Fast support for charCodeAt(n). |
+ void GenerateFastCharCodeAt(ZoneList<Expression*>* args); |
+ |
+ // Fast support for object equality testing. |
+ void GenerateObjectEquals(ZoneList<Expression*>* args); |
+ |
+ void GenerateLog(ZoneList<Expression*>* args); |
+ |
+ |
+ // Methods and constants for fast case switch statement support. |
+ // |
+ // Only allow fast-case switch if the range of labels is at most |
+ // this factor times the number of case labels. |
+ // Value is derived from comparing the size of code generated by the normal |
+ // switch code for Smi-labels to the size of a single pointer. If code |
+ // quality increases this number should be decreased to match. |
+ static const int kFastSwitchMaxOverheadFactor = 5; |
+ |
+ // Minimal number of switch cases required before we allow jump-table |
+ // optimization. |
+ static const int kFastSwitchMinCaseCount = 5; |
+ |
+ // The limit of the range of a fast-case switch, as a factor of the number |
+ // of cases of the switch. Each platform should return a value that |
+ // is optimal compared to the default code generated for a switch statement |
+ // on that platform. |
+ int FastCaseSwitchMaxOverheadFactor(); |
+ |
+ // The minimal number of cases in a switch before the fast-case switch |
+ // optimization is enabled. Each platform should return a value that |
+ // is optimal compared to the default code generated for a switch statement |
+ // on that platform. |
+ int FastCaseSwitchMinCaseCount(); |
+ |
+ // Allocate a jump table and create code to jump through it. |
+ // Should call GenerateFastCaseSwitchCases to generate the code for |
+ // all the cases at the appropriate point. |
+ void GenerateFastCaseSwitchJumpTable(SwitchStatement* node, |
+ int min_index, |
+ int range, |
+ Label* fail_label, |
+ Vector<Label*> case_targets, |
+ Vector<Label> case_labels); |
+ |
+ // Generate the code for cases for the fast case switch. |
+ // Called by GenerateFastCaseSwitchJumpTable. |
+ void GenerateFastCaseSwitchCases(SwitchStatement* node, |
+ Vector<Label> case_labels, |
+ VirtualFrame* start_frame); |
+ |
+ // Fast support for constant-Smi switches. |
+ void GenerateFastCaseSwitchStatement(SwitchStatement* node, |
+ int min_index, |
+ int range, |
+ int default_index); |
+ |
+ // Fast support for constant-Smi switches. Tests whether switch statement |
+ // permits optimization and calls GenerateFastCaseSwitch if it does. |
+ // Returns true if the fast-case switch was generated, and false if not. |
+ bool TryGenerateFastCaseSwitchStatement(SwitchStatement* node); |
+ |
+ // Methods used to indicate which source code is generated for. Source |
+ // positions are collected by the assembler and emitted with the relocation |
+ // information. |
+ void CodeForFunctionPosition(FunctionLiteral* fun); |
+ void CodeForReturnPosition(FunctionLiteral* fun); |
+ void CodeForStatementPosition(Node* node); |
+ void CodeForSourcePosition(int pos); |
+ |
+#ifdef DEBUG |
+ // True if the registers are valid for entry to a block. There should be |
+ // no frame-external references to eax, ebx, ecx, edx, or edi. |
+ bool HasValidEntryRegisters(); |
+#endif |
+ |
+ bool is_eval_; // Tells whether code is generated for eval. |
+ Handle<Script> script_; |
+ List<DeferredCode*> deferred_; |
+ |
+ // Assembler |
+ MacroAssembler* masm_; // to generate code |
+ |
+ // Code generation state |
+ Scope* scope_; |
+ VirtualFrame* frame_; |
+ RegisterAllocator* allocator_; |
+ CodeGenState* state_; |
+ int loop_nesting_; |
+ |
+ // Jump targets. |
+ // The target of the return from the function. |
+ BreakTarget function_return_; |
+ |
+ // True if the function return is shadowed (ie, jumping to the target |
+ // function_return_ does not jump to the true function return, but rather |
+ // to some unlinking code). |
+ bool function_return_is_shadowed_; |
+ |
+ // True when we are in code that expects the virtual frame to be fully |
+ // spilled. Some virtual frame function are disabled in DEBUG builds when |
+ // called from spilled code, because they do not leave the virtual frame |
+ // in a spilled state. |
+ bool in_spilled_code_; |
+ |
+ friend class VirtualFrame; |
+ friend class JumpTarget; |
+ friend class Reference; |
+ friend class Result; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(CodeGenerator); |
+}; |
+ |
+ |
+} } // namespace v8::internal |
+ |
+#endif // V8_X64_CODEGEN_X64_H_ |