| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "chrome/common/gfx/icon_util.h" | |
| 6 #include "base/file_util.h" | |
| 7 #include "base/gfx/size.h" | |
| 8 #include "base/logging.h" | |
| 9 #include "chrome/common/win_util.h" | |
| 10 #include "skia/ext/image_operations.h" | |
| 11 #include "skia/include/SkBitmap.h" | |
| 12 | |
| 13 // Defining the dimensions for the icon images. We store only one value because | |
| 14 // we always resize to a square image; that is, the value 48 means that we are | |
| 15 // going to resize the given bitmap to a 48 by 48 pixels bitmap. | |
| 16 // | |
| 17 // The icon images appear in the icon file in same order in which their | |
| 18 // corresponding dimensions appear in the |icon_dimensions_| array, so it is | |
| 19 // important to keep this array sorted. Also note that the maximum icon image | |
| 20 // size we can handle is 255 by 255. | |
| 21 const int IconUtil::icon_dimensions_[] = { | |
| 22 8, // Recommended by the MSDN as a nice to have icon size. | |
| 23 10, // Used by the Shell (e.g. for shortcuts). | |
| 24 14, // Recommended by the MSDN as a nice to have icon size. | |
| 25 16, // Toolbar, Application and Shell icon sizes. | |
| 26 22, // Recommended by the MSDN as a nice to have icon size. | |
| 27 24, // Used by the Shell (e.g. for shortcuts). | |
| 28 32, // Toolbar, Dialog and Wizard icon size. | |
| 29 40, // Quick Launch. | |
| 30 48, // Alt+Tab icon size. | |
| 31 64, // Recommended by the MSDN as a nice to have icon size. | |
| 32 96, // Recommended by the MSDN as a nice to have icon size. | |
| 33 128 // Used by the Shell (e.g. for shortcuts). | |
| 34 }; | |
| 35 | |
| 36 HICON IconUtil::CreateHICONFromSkBitmap(const SkBitmap& bitmap) { | |
| 37 // Only 32 bit ARGB bitmaps are supported. We also try to perform as many | |
| 38 // validations as we can on the bitmap. | |
| 39 SkAutoLockPixels bitmap_lock(bitmap); | |
| 40 if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) || | |
| 41 (bitmap.width() <= 0) || (bitmap.height() <= 0) || | |
| 42 (bitmap.getPixels() == NULL)) { | |
| 43 return NULL; | |
| 44 } | |
| 45 | |
| 46 // We start by creating a DIB which we'll use later on in order to create | |
| 47 // the HICON. We use BITMAPV5HEADER since the bitmap we are about to convert | |
| 48 // may contain an alpha channel and the V5 header allows us to specify the | |
| 49 // alpha mask for the DIB. | |
| 50 BITMAPV5HEADER bitmap_header; | |
| 51 InitializeBitmapHeader(&bitmap_header, bitmap.width(), bitmap.height()); | |
| 52 void* bits; | |
| 53 HDC hdc = ::GetDC(NULL); | |
| 54 HBITMAP dib; | |
| 55 dib = ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&bitmap_header), | |
| 56 DIB_RGB_COLORS, &bits, NULL, 0); | |
| 57 DCHECK(dib); | |
| 58 ::ReleaseDC(NULL, hdc); | |
| 59 memcpy(bits, bitmap.getPixels(), bitmap.width() * bitmap.height() * 4); | |
| 60 | |
| 61 // Icons are generally created using an AND and XOR masks where the AND | |
| 62 // specifies boolean transparency (the pixel is either opaque or | |
| 63 // transparent) and the XOR mask contains the actual image pixels. However, | |
| 64 // since our bitmap has an alpha channel, the AND monochrome bitmap won't | |
| 65 // actually be used for computing the pixel transparency. Since every icon | |
| 66 // must have an AND mask bitmap, we go ahead and create one so that we can | |
| 67 // associate it with the ICONINFO structure we'll later pass to | |
| 68 // ::CreateIconIndirect(). The monochrome bitmap is created such that all the | |
| 69 // pixels are opaque. | |
| 70 HBITMAP mono_bitmap = ::CreateBitmap(bitmap.width(), bitmap.height(), | |
| 71 1, 1, NULL); | |
| 72 DCHECK(mono_bitmap); | |
| 73 ICONINFO icon_info; | |
| 74 icon_info.fIcon = TRUE; | |
| 75 icon_info.xHotspot = 0; | |
| 76 icon_info.yHotspot = 0; | |
| 77 icon_info.hbmMask = mono_bitmap; | |
| 78 icon_info.hbmColor = dib; | |
| 79 HICON icon = ::CreateIconIndirect(&icon_info); | |
| 80 ::DeleteObject(dib); | |
| 81 ::DeleteObject(mono_bitmap); | |
| 82 return icon; | |
| 83 } | |
| 84 | |
| 85 SkBitmap* IconUtil::CreateSkBitmapFromHICON(HICON icon, const gfx::Size& s) { | |
| 86 // We start with validating parameters. | |
| 87 ICONINFO icon_info; | |
| 88 if (!icon || !(::GetIconInfo(icon, &icon_info)) || | |
| 89 !icon_info.fIcon || (s.width() <= 0) || (s.height() <= 0)) { | |
| 90 return NULL; | |
| 91 } | |
| 92 | |
| 93 // Allocating memory for the SkBitmap object. We are going to create an ARGB | |
| 94 // bitmap so we should set the configuration appropriately. | |
| 95 SkBitmap* bitmap = new SkBitmap; | |
| 96 DCHECK(bitmap); | |
| 97 bitmap->setConfig(SkBitmap::kARGB_8888_Config, s.width(), s.height()); | |
| 98 bitmap->allocPixels(); | |
| 99 SkAutoLockPixels bitmap_lock(*bitmap); | |
| 100 | |
| 101 // Now we should create a DIB so that we can use ::DrawIconEx in order to | |
| 102 // obtain the icon's image. | |
| 103 BITMAPV5HEADER h; | |
| 104 InitializeBitmapHeader(&h, s.width(), s.height()); | |
| 105 HDC dc = ::GetDC(NULL); | |
| 106 unsigned int* bits; | |
| 107 HBITMAP dib = ::CreateDIBSection(dc, | |
| 108 reinterpret_cast<BITMAPINFO*>(&h), | |
| 109 DIB_RGB_COLORS, | |
| 110 reinterpret_cast<void**>(&bits), | |
| 111 NULL, | |
| 112 0); | |
| 113 DCHECK(dib); | |
| 114 HDC dib_dc = CreateCompatibleDC(dc); | |
| 115 DCHECK(dib_dc); | |
| 116 ::SelectObject(dib_dc, dib); | |
| 117 | |
| 118 // Windows icons are defined using two different masks. The XOR mask, which | |
| 119 // represents the icon image and an AND mask which is a monochrome bitmap | |
| 120 // which indicates the transparency of each pixel. | |
| 121 // | |
| 122 // To make things more complex, the icon image itself can be an ARGB bitmap | |
| 123 // and therefore contain an alpha channel which specifies the transparency | |
| 124 // for each pixel. Unfortunately, there is no easy way to determine whether | |
| 125 // or not a bitmap has an alpha channel and therefore constructing the bitmap | |
| 126 // for the icon is nothing but straightforward. | |
| 127 // | |
| 128 // The idea is to read the AND mask but use it only if we know for sure that | |
| 129 // the icon image does not have an alpha channel. The only way to tell if the | |
| 130 // bitmap has an alpha channel is by looking through the pixels and checking | |
| 131 // whether there are non-zero alpha bytes. | |
| 132 // | |
| 133 // We start by drawing the AND mask into our DIB. | |
| 134 memset(bits, 0, s.width() * s.height() * 4); | |
| 135 ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_MASK); | |
| 136 | |
| 137 // Capture boolean opacity. We may not use it if we find out the bitmap has | |
| 138 // an alpha channel. | |
| 139 bool* opaque = new bool[s.width() * s.height()]; | |
| 140 DCHECK(opaque); | |
| 141 int x, y; | |
| 142 for (y = 0; y < s.height(); ++y) { | |
| 143 for (x = 0; x < s.width(); ++x) | |
| 144 opaque[(y * s.width()) + x] = !bits[(y * s.width()) + x]; | |
| 145 } | |
| 146 | |
| 147 // Then draw the image itself which is really the XOR mask. | |
| 148 memset(bits, 0, s.width() * s.height() * 4); | |
| 149 ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_NORMAL); | |
| 150 memcpy(bitmap->getPixels(), | |
| 151 static_cast<void*>(bits), | |
| 152 s.width() * s.height() * 4); | |
| 153 | |
| 154 // Finding out whether the bitmap has an alpha channel. | |
| 155 bool bitmap_has_alpha_channel = false; | |
| 156 unsigned int* p = static_cast<unsigned int*>(bitmap->getPixels()); | |
| 157 for (y = 0; y < s.height(); ++y) { | |
| 158 for (x = 0; x < s.width(); ++x) { | |
| 159 if ((*p & 0xff000000) != 0) { | |
| 160 bitmap_has_alpha_channel = true; | |
| 161 break; | |
| 162 } | |
| 163 p++; | |
| 164 } | |
| 165 | |
| 166 if (bitmap_has_alpha_channel) { | |
| 167 break; | |
| 168 } | |
| 169 } | |
| 170 | |
| 171 // If the bitmap does not have an alpha channel, we need to build it using | |
| 172 // the previously captured AND mask. Otherwise, we are done. | |
| 173 if (!bitmap_has_alpha_channel) { | |
| 174 p = static_cast<unsigned int*>(bitmap->getPixels()); | |
| 175 for (y = 0; y < s.height(); ++y) { | |
| 176 for (x = 0; x < s.width(); ++x) { | |
| 177 DCHECK_EQ((*p & 0xff000000), 0); | |
| 178 if (opaque[(y * s.width()) + x]) { | |
| 179 *p |= 0xff000000; | |
| 180 } else { | |
| 181 *p &= 0x00ffffff; | |
| 182 } | |
| 183 p++; | |
| 184 } | |
| 185 } | |
| 186 } | |
| 187 | |
| 188 delete [] opaque; | |
| 189 ::DeleteDC(dib_dc); | |
| 190 ::DeleteObject(dib); | |
| 191 ::ReleaseDC(NULL, dc); | |
| 192 | |
| 193 return bitmap; | |
| 194 } | |
| 195 | |
| 196 bool IconUtil::CreateIconFileFromSkBitmap(const SkBitmap& bitmap, | |
| 197 const std::wstring& icon_file_name) { | |
| 198 // Only 32 bit ARGB bitmaps are supported. We also make sure the bitmap has | |
| 199 // been properly initialized. | |
| 200 SkAutoLockPixels bitmap_lock(bitmap); | |
| 201 if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) || | |
| 202 (bitmap.height() <= 0) || (bitmap.width() <= 0) || | |
| 203 (bitmap.getPixels() == NULL)) { | |
| 204 return false; | |
| 205 } | |
| 206 | |
| 207 // We start by creating the file. | |
| 208 win_util::ScopedHandle icon_file(::CreateFile(icon_file_name.c_str(), | |
| 209 GENERIC_WRITE, | |
| 210 0, | |
| 211 NULL, | |
| 212 CREATE_ALWAYS, | |
| 213 FILE_ATTRIBUTE_NORMAL, | |
| 214 NULL)); | |
| 215 | |
| 216 if (icon_file.Get() == INVALID_HANDLE_VALUE) { | |
| 217 return false; | |
| 218 } | |
| 219 | |
| 220 // Creating a set of bitmaps corresponding to the icon images we'll end up | |
| 221 // storing in the icon file. Each bitmap is created by resizing the given | |
| 222 // bitmap to the desired size. | |
| 223 std::vector<SkBitmap> bitmaps; | |
| 224 CreateResizedBitmapSet(bitmap, &bitmaps); | |
| 225 int bitmap_count = static_cast<int>(bitmaps.size()); | |
| 226 DCHECK_GT(bitmap_count, 0); | |
| 227 | |
| 228 // Computing the total size of the buffer we need in order to store the | |
| 229 // images in the desired icon format. | |
| 230 int buffer_size = ComputeIconFileBufferSize(bitmaps); | |
| 231 unsigned char* buffer = new unsigned char[buffer_size]; | |
| 232 DCHECK_NE(buffer, static_cast<unsigned char*>(NULL)); | |
| 233 memset(buffer, 0, buffer_size); | |
| 234 | |
| 235 // Setting the information in the structures residing within the buffer. | |
| 236 // First, we set the information which doesn't require iterating through the | |
| 237 // bitmap set and then we set the bitmap specific structures. In the latter | |
| 238 // step we also copy the actual bits. | |
| 239 ICONDIR* icon_dir = reinterpret_cast<ICONDIR*>(buffer); | |
| 240 icon_dir->idType = kResourceTypeIcon; | |
| 241 icon_dir->idCount = bitmap_count; | |
| 242 int icon_dir_count = bitmap_count - 1; | |
| 243 int offset = sizeof(ICONDIR) + (sizeof(ICONDIRENTRY) * icon_dir_count); | |
| 244 for (int i = 0; i < bitmap_count; i++) { | |
| 245 ICONIMAGE* image = reinterpret_cast<ICONIMAGE*>(buffer + offset); | |
| 246 DCHECK_LT(offset, buffer_size); | |
| 247 int icon_image_size = 0; | |
| 248 SetSingleIconImageInformation(bitmaps[i], | |
| 249 i, | |
| 250 icon_dir, | |
| 251 image, | |
| 252 offset, | |
| 253 &icon_image_size); | |
| 254 DCHECK_GT(icon_image_size, 0); | |
| 255 offset += icon_image_size; | |
| 256 } | |
| 257 DCHECK_EQ(offset, buffer_size); | |
| 258 | |
| 259 // Finally, writing the data info the file. | |
| 260 DWORD bytes_written; | |
| 261 bool delete_file = false; | |
| 262 if (!WriteFile(icon_file.Get(), buffer, buffer_size, &bytes_written, NULL) || | |
| 263 bytes_written != buffer_size) { | |
| 264 delete_file = true; | |
| 265 } | |
| 266 | |
| 267 ::CloseHandle(icon_file.Take()); | |
| 268 delete [] buffer; | |
| 269 if (delete_file) { | |
| 270 bool success = file_util::Delete(icon_file_name, false); | |
| 271 DCHECK(success); | |
| 272 } | |
| 273 | |
| 274 return !delete_file; | |
| 275 } | |
| 276 | |
| 277 int IconUtil::GetIconDimensionCount() { | |
| 278 return sizeof(icon_dimensions_) / sizeof(icon_dimensions_[0]); | |
| 279 } | |
| 280 | |
| 281 void IconUtil::InitializeBitmapHeader(BITMAPV5HEADER* header, int width, | |
| 282 int height) { | |
| 283 DCHECK(header); | |
| 284 memset(header, 0, sizeof(BITMAPV5HEADER)); | |
| 285 header->bV5Size = sizeof(BITMAPV5HEADER); | |
| 286 | |
| 287 // Note that icons are created using top-down DIBs so we must negate the | |
| 288 // value used for the icon's height. | |
| 289 header->bV5Width = width; | |
| 290 header->bV5Height = -height; | |
| 291 header->bV5Planes = 1; | |
| 292 header->bV5Compression = BI_RGB; | |
| 293 | |
| 294 // Initializing the bitmap format to 32 bit ARGB. | |
| 295 header->bV5BitCount = 32; | |
| 296 header->bV5RedMask = 0x00FF0000; | |
| 297 header->bV5GreenMask = 0x0000FF00; | |
| 298 header->bV5BlueMask = 0x000000FF; | |
| 299 header->bV5AlphaMask = 0xFF000000; | |
| 300 | |
| 301 // Use the system color space. The default value is LCS_CALIBRATED_RGB, which | |
| 302 // causes us to crash if we don't specify the approprite gammas, etc. See | |
| 303 // <http://msdn.microsoft.com/en-us/library/ms536531(VS.85).aspx> and | |
| 304 // <http://b/1283121>. | |
| 305 header->bV5CSType = LCS_WINDOWS_COLOR_SPACE; | |
| 306 } | |
| 307 | |
| 308 void IconUtil::SetSingleIconImageInformation(const SkBitmap& bitmap, | |
| 309 int index, | |
| 310 ICONDIR* icon_dir, | |
| 311 ICONIMAGE* icon_image, | |
| 312 int image_offset, | |
| 313 int* image_byte_count) { | |
| 314 DCHECK_GE(index, 0); | |
| 315 DCHECK_NE(icon_dir, static_cast<ICONDIR*>(NULL)); | |
| 316 DCHECK_NE(icon_image, static_cast<ICONIMAGE*>(NULL)); | |
| 317 DCHECK_GT(image_offset, 0); | |
| 318 DCHECK_NE(image_byte_count, static_cast<int*>(NULL)); | |
| 319 | |
| 320 // We start by computing certain image values we'll use later on. | |
| 321 int xor_mask_size; | |
| 322 int and_mask_size; | |
| 323 int bytes_in_resource; | |
| 324 ComputeBitmapSizeComponents(bitmap, | |
| 325 &xor_mask_size, | |
| 326 &and_mask_size, | |
| 327 &bytes_in_resource); | |
| 328 | |
| 329 icon_dir->idEntries[index].bWidth = static_cast<BYTE>(bitmap.width()); | |
| 330 icon_dir->idEntries[index].bHeight = static_cast<BYTE>(bitmap.height()); | |
| 331 icon_dir->idEntries[index].wPlanes = 1; | |
| 332 icon_dir->idEntries[index].wBitCount = 32; | |
| 333 icon_dir->idEntries[index].dwBytesInRes = bytes_in_resource; | |
| 334 icon_dir->idEntries[index].dwImageOffset = image_offset; | |
| 335 icon_image->icHeader.biSize = sizeof(BITMAPINFOHEADER); | |
| 336 | |
| 337 // The width field in the BITMAPINFOHEADER structure accounts for the height | |
| 338 // of both the AND mask and the XOR mask so we need to multiply the bitmap's | |
| 339 // height by 2. The same does NOT apply to the width field. | |
| 340 icon_image->icHeader.biHeight = bitmap.height() * 2; | |
| 341 icon_image->icHeader.biWidth = bitmap.width(); | |
| 342 icon_image->icHeader.biPlanes = 1; | |
| 343 icon_image->icHeader.biBitCount = 32; | |
| 344 | |
| 345 // We use a helper function for copying to actual bits from the SkBitmap | |
| 346 // object into the appropriate space in the buffer. We use a helper function | |
| 347 // (rather than just copying the bits) because there is no way to specify the | |
| 348 // orientation (bottom-up vs. top-down) of a bitmap residing in a .ico file. | |
| 349 // Thus, if we just copy the bits, we'll end up with a bottom up bitmap in | |
| 350 // the .ico file which will result in the icon being displayed upside down. | |
| 351 // The helper function copies the image into the buffer one scanline at a | |
| 352 // time. | |
| 353 // | |
| 354 // Note that we don't need to initialize the AND mask since the memory | |
| 355 // allocated for the icon data buffer was initialized to zero. The icon we | |
| 356 // create will therefore use an AND mask containing only zeros, which is OK | |
| 357 // because the underlying image has an alpha channel. An AND mask containing | |
| 358 // only zeros essentially means we'll initially treat all the pixels as | |
| 359 // opaque. | |
| 360 unsigned char* image_addr = reinterpret_cast<unsigned char*>(icon_image); | |
| 361 unsigned char* xor_mask_addr = image_addr + sizeof(BITMAPINFOHEADER); | |
| 362 CopySkBitmapBitsIntoIconBuffer(bitmap, xor_mask_addr, xor_mask_size); | |
| 363 *image_byte_count = bytes_in_resource; | |
| 364 } | |
| 365 | |
| 366 void IconUtil::CopySkBitmapBitsIntoIconBuffer(const SkBitmap& bitmap, | |
| 367 unsigned char* buffer, | |
| 368 int buffer_size) { | |
| 369 SkAutoLockPixels bitmap_lock(bitmap); | |
| 370 unsigned char* bitmap_ptr = static_cast<unsigned char*>(bitmap.getPixels()); | |
| 371 int bitmap_size = bitmap.height() * bitmap.width() * 4; | |
| 372 DCHECK_EQ(buffer_size, bitmap_size); | |
| 373 for (int i = 0; i < bitmap_size; i += bitmap.width() * 4) { | |
| 374 memcpy(buffer + bitmap_size - bitmap.width() * 4 - i, | |
| 375 bitmap_ptr + i, | |
| 376 bitmap.width() * 4); | |
| 377 } | |
| 378 } | |
| 379 | |
| 380 void IconUtil::CreateResizedBitmapSet(const SkBitmap& bitmap_to_resize, | |
| 381 std::vector<SkBitmap>* bitmaps) { | |
| 382 DCHECK_NE(bitmaps, static_cast<std::vector<SkBitmap>* >(NULL)); | |
| 383 DCHECK_EQ(static_cast<int>(bitmaps->size()), 0); | |
| 384 | |
| 385 bool inserted_original_bitmap = false; | |
| 386 for (int i = 0; i < GetIconDimensionCount(); i++) { | |
| 387 // If the dimensions of the bitmap we are resizing are the same as the | |
| 388 // current dimensions, then we should insert the bitmap and not a resized | |
| 389 // bitmap. If the bitmap's dimensions are smaller, we insert our bitmap | |
| 390 // first so that the bitmaps we return in the vector are sorted based on | |
| 391 // their dimensions. | |
| 392 if (!inserted_original_bitmap) { | |
| 393 if ((bitmap_to_resize.width() == icon_dimensions_[i]) && | |
| 394 (bitmap_to_resize.height() == icon_dimensions_[i])) { | |
| 395 bitmaps->push_back(bitmap_to_resize); | |
| 396 inserted_original_bitmap = true; | |
| 397 continue; | |
| 398 } | |
| 399 | |
| 400 if ((bitmap_to_resize.width() < icon_dimensions_[i]) && | |
| 401 (bitmap_to_resize.height() < icon_dimensions_[i])) { | |
| 402 bitmaps->push_back(bitmap_to_resize); | |
| 403 inserted_original_bitmap = true; | |
| 404 } | |
| 405 } | |
| 406 bitmaps->push_back(skia::ImageOperations::Resize( | |
| 407 bitmap_to_resize, skia::ImageOperations::RESIZE_LANCZOS3, | |
| 408 icon_dimensions_[i], icon_dimensions_[i])); | |
| 409 } | |
| 410 | |
| 411 if (!inserted_original_bitmap) { | |
| 412 bitmaps->push_back(bitmap_to_resize); | |
| 413 } | |
| 414 } | |
| 415 | |
| 416 int IconUtil::ComputeIconFileBufferSize(const std::vector<SkBitmap>& set) { | |
| 417 // We start by counting the bytes for the structures that don't depend on the | |
| 418 // number of icon images. Note that sizeof(ICONDIR) already accounts for a | |
| 419 // single ICONDIRENTRY structure, which is why we subtract one from the | |
| 420 // number of bitmaps. | |
| 421 int total_buffer_size = 0; | |
| 422 total_buffer_size += sizeof(ICONDIR); | |
| 423 int bitmap_count = static_cast<int>(set.size()); | |
| 424 total_buffer_size += sizeof(ICONDIRENTRY) * (bitmap_count - 1); | |
| 425 int dimension_count = GetIconDimensionCount(); | |
| 426 DCHECK_GE(bitmap_count, dimension_count); | |
| 427 | |
| 428 // Add the bitmap specific structure sizes. | |
| 429 for (int i = 0; i < bitmap_count; i++) { | |
| 430 int xor_mask_size; | |
| 431 int and_mask_size; | |
| 432 int bytes_in_resource; | |
| 433 ComputeBitmapSizeComponents(set[i], | |
| 434 &xor_mask_size, | |
| 435 &and_mask_size, | |
| 436 &bytes_in_resource); | |
| 437 total_buffer_size += bytes_in_resource; | |
| 438 } | |
| 439 return total_buffer_size; | |
| 440 } | |
| 441 | |
| 442 void IconUtil::ComputeBitmapSizeComponents(const SkBitmap& bitmap, | |
| 443 int* xor_mask_size, | |
| 444 int* and_mask_size, | |
| 445 int* bytes_in_resource) { | |
| 446 // The XOR mask size is easy to calculate since we only deal with 32bpp | |
| 447 // images. | |
| 448 *xor_mask_size = bitmap.width() * bitmap.height() * 4; | |
| 449 | |
| 450 // Computing the AND mask is a little trickier since it is a monochrome | |
| 451 // bitmap (regardless of the number of bits per pixels used in the XOR mask). | |
| 452 // There are two things we must make sure we do when computing the AND mask | |
| 453 // size: | |
| 454 // | |
| 455 // 1. Make sure the right number of bytes is allocated for each AND mask | |
| 456 // scan line in case the number of pixels in the image is not divisible by | |
| 457 // 8. For example, in a 15X15 image, 15 / 8 is one byte short of | |
| 458 // containing the number of bits we need in order to describe a single | |
| 459 // image scan line so we need to add a byte. Thus, we need 2 bytes instead | |
| 460 // of 1 for each scan line. | |
| 461 // | |
| 462 // 2. Make sure each scan line in the AND mask is 4 byte aligned (so that the | |
| 463 // total icon image has a 4 byte alignment). In the 15X15 image example | |
| 464 // above, we can not use 2 bytes so we increase it to the next multiple of | |
| 465 // 4 which is 4. | |
| 466 // | |
| 467 // Once we compute the size for a singe AND mask scan line, we multiply that | |
| 468 // number by the image height in order to get the total number of bytes for | |
| 469 // the AND mask. Thus, for a 15X15 image, we need 15 * 4 which is 60 bytes | |
| 470 // for the monochrome bitmap representing the AND mask. | |
| 471 int and_line_length = (bitmap.width() + 7) >> 3; | |
| 472 and_line_length = (and_line_length + 3) & ~3; | |
| 473 *and_mask_size = and_line_length * bitmap.height(); | |
| 474 int masks_size = *xor_mask_size + *and_mask_size; | |
| 475 *bytes_in_resource = masks_size + sizeof(BITMAPINFOHEADER); | |
| 476 } | |
| OLD | NEW |