OLD | NEW |
| (Empty) |
1 // Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "chrome/common/gfx/icon_util.h" | |
6 #include "base/file_util.h" | |
7 #include "base/gfx/size.h" | |
8 #include "base/logging.h" | |
9 #include "chrome/common/win_util.h" | |
10 #include "skia/ext/image_operations.h" | |
11 #include "skia/include/SkBitmap.h" | |
12 | |
13 // Defining the dimensions for the icon images. We store only one value because | |
14 // we always resize to a square image; that is, the value 48 means that we are | |
15 // going to resize the given bitmap to a 48 by 48 pixels bitmap. | |
16 // | |
17 // The icon images appear in the icon file in same order in which their | |
18 // corresponding dimensions appear in the |icon_dimensions_| array, so it is | |
19 // important to keep this array sorted. Also note that the maximum icon image | |
20 // size we can handle is 255 by 255. | |
21 const int IconUtil::icon_dimensions_[] = { | |
22 8, // Recommended by the MSDN as a nice to have icon size. | |
23 10, // Used by the Shell (e.g. for shortcuts). | |
24 14, // Recommended by the MSDN as a nice to have icon size. | |
25 16, // Toolbar, Application and Shell icon sizes. | |
26 22, // Recommended by the MSDN as a nice to have icon size. | |
27 24, // Used by the Shell (e.g. for shortcuts). | |
28 32, // Toolbar, Dialog and Wizard icon size. | |
29 40, // Quick Launch. | |
30 48, // Alt+Tab icon size. | |
31 64, // Recommended by the MSDN as a nice to have icon size. | |
32 96, // Recommended by the MSDN as a nice to have icon size. | |
33 128 // Used by the Shell (e.g. for shortcuts). | |
34 }; | |
35 | |
36 HICON IconUtil::CreateHICONFromSkBitmap(const SkBitmap& bitmap) { | |
37 // Only 32 bit ARGB bitmaps are supported. We also try to perform as many | |
38 // validations as we can on the bitmap. | |
39 SkAutoLockPixels bitmap_lock(bitmap); | |
40 if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) || | |
41 (bitmap.width() <= 0) || (bitmap.height() <= 0) || | |
42 (bitmap.getPixels() == NULL)) { | |
43 return NULL; | |
44 } | |
45 | |
46 // We start by creating a DIB which we'll use later on in order to create | |
47 // the HICON. We use BITMAPV5HEADER since the bitmap we are about to convert | |
48 // may contain an alpha channel and the V5 header allows us to specify the | |
49 // alpha mask for the DIB. | |
50 BITMAPV5HEADER bitmap_header; | |
51 InitializeBitmapHeader(&bitmap_header, bitmap.width(), bitmap.height()); | |
52 void* bits; | |
53 HDC hdc = ::GetDC(NULL); | |
54 HBITMAP dib; | |
55 dib = ::CreateDIBSection(hdc, reinterpret_cast<BITMAPINFO*>(&bitmap_header), | |
56 DIB_RGB_COLORS, &bits, NULL, 0); | |
57 DCHECK(dib); | |
58 ::ReleaseDC(NULL, hdc); | |
59 memcpy(bits, bitmap.getPixels(), bitmap.width() * bitmap.height() * 4); | |
60 | |
61 // Icons are generally created using an AND and XOR masks where the AND | |
62 // specifies boolean transparency (the pixel is either opaque or | |
63 // transparent) and the XOR mask contains the actual image pixels. However, | |
64 // since our bitmap has an alpha channel, the AND monochrome bitmap won't | |
65 // actually be used for computing the pixel transparency. Since every icon | |
66 // must have an AND mask bitmap, we go ahead and create one so that we can | |
67 // associate it with the ICONINFO structure we'll later pass to | |
68 // ::CreateIconIndirect(). The monochrome bitmap is created such that all the | |
69 // pixels are opaque. | |
70 HBITMAP mono_bitmap = ::CreateBitmap(bitmap.width(), bitmap.height(), | |
71 1, 1, NULL); | |
72 DCHECK(mono_bitmap); | |
73 ICONINFO icon_info; | |
74 icon_info.fIcon = TRUE; | |
75 icon_info.xHotspot = 0; | |
76 icon_info.yHotspot = 0; | |
77 icon_info.hbmMask = mono_bitmap; | |
78 icon_info.hbmColor = dib; | |
79 HICON icon = ::CreateIconIndirect(&icon_info); | |
80 ::DeleteObject(dib); | |
81 ::DeleteObject(mono_bitmap); | |
82 return icon; | |
83 } | |
84 | |
85 SkBitmap* IconUtil::CreateSkBitmapFromHICON(HICON icon, const gfx::Size& s) { | |
86 // We start with validating parameters. | |
87 ICONINFO icon_info; | |
88 if (!icon || !(::GetIconInfo(icon, &icon_info)) || | |
89 !icon_info.fIcon || (s.width() <= 0) || (s.height() <= 0)) { | |
90 return NULL; | |
91 } | |
92 | |
93 // Allocating memory for the SkBitmap object. We are going to create an ARGB | |
94 // bitmap so we should set the configuration appropriately. | |
95 SkBitmap* bitmap = new SkBitmap; | |
96 DCHECK(bitmap); | |
97 bitmap->setConfig(SkBitmap::kARGB_8888_Config, s.width(), s.height()); | |
98 bitmap->allocPixels(); | |
99 SkAutoLockPixels bitmap_lock(*bitmap); | |
100 | |
101 // Now we should create a DIB so that we can use ::DrawIconEx in order to | |
102 // obtain the icon's image. | |
103 BITMAPV5HEADER h; | |
104 InitializeBitmapHeader(&h, s.width(), s.height()); | |
105 HDC dc = ::GetDC(NULL); | |
106 unsigned int* bits; | |
107 HBITMAP dib = ::CreateDIBSection(dc, | |
108 reinterpret_cast<BITMAPINFO*>(&h), | |
109 DIB_RGB_COLORS, | |
110 reinterpret_cast<void**>(&bits), | |
111 NULL, | |
112 0); | |
113 DCHECK(dib); | |
114 HDC dib_dc = CreateCompatibleDC(dc); | |
115 DCHECK(dib_dc); | |
116 ::SelectObject(dib_dc, dib); | |
117 | |
118 // Windows icons are defined using two different masks. The XOR mask, which | |
119 // represents the icon image and an AND mask which is a monochrome bitmap | |
120 // which indicates the transparency of each pixel. | |
121 // | |
122 // To make things more complex, the icon image itself can be an ARGB bitmap | |
123 // and therefore contain an alpha channel which specifies the transparency | |
124 // for each pixel. Unfortunately, there is no easy way to determine whether | |
125 // or not a bitmap has an alpha channel and therefore constructing the bitmap | |
126 // for the icon is nothing but straightforward. | |
127 // | |
128 // The idea is to read the AND mask but use it only if we know for sure that | |
129 // the icon image does not have an alpha channel. The only way to tell if the | |
130 // bitmap has an alpha channel is by looking through the pixels and checking | |
131 // whether there are non-zero alpha bytes. | |
132 // | |
133 // We start by drawing the AND mask into our DIB. | |
134 memset(bits, 0, s.width() * s.height() * 4); | |
135 ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_MASK); | |
136 | |
137 // Capture boolean opacity. We may not use it if we find out the bitmap has | |
138 // an alpha channel. | |
139 bool* opaque = new bool[s.width() * s.height()]; | |
140 DCHECK(opaque); | |
141 int x, y; | |
142 for (y = 0; y < s.height(); ++y) { | |
143 for (x = 0; x < s.width(); ++x) | |
144 opaque[(y * s.width()) + x] = !bits[(y * s.width()) + x]; | |
145 } | |
146 | |
147 // Then draw the image itself which is really the XOR mask. | |
148 memset(bits, 0, s.width() * s.height() * 4); | |
149 ::DrawIconEx(dib_dc, 0, 0, icon, s.width(), s.height(), 0, NULL, DI_NORMAL); | |
150 memcpy(bitmap->getPixels(), | |
151 static_cast<void*>(bits), | |
152 s.width() * s.height() * 4); | |
153 | |
154 // Finding out whether the bitmap has an alpha channel. | |
155 bool bitmap_has_alpha_channel = false; | |
156 unsigned int* p = static_cast<unsigned int*>(bitmap->getPixels()); | |
157 for (y = 0; y < s.height(); ++y) { | |
158 for (x = 0; x < s.width(); ++x) { | |
159 if ((*p & 0xff000000) != 0) { | |
160 bitmap_has_alpha_channel = true; | |
161 break; | |
162 } | |
163 p++; | |
164 } | |
165 | |
166 if (bitmap_has_alpha_channel) { | |
167 break; | |
168 } | |
169 } | |
170 | |
171 // If the bitmap does not have an alpha channel, we need to build it using | |
172 // the previously captured AND mask. Otherwise, we are done. | |
173 if (!bitmap_has_alpha_channel) { | |
174 p = static_cast<unsigned int*>(bitmap->getPixels()); | |
175 for (y = 0; y < s.height(); ++y) { | |
176 for (x = 0; x < s.width(); ++x) { | |
177 DCHECK_EQ((*p & 0xff000000), 0); | |
178 if (opaque[(y * s.width()) + x]) { | |
179 *p |= 0xff000000; | |
180 } else { | |
181 *p &= 0x00ffffff; | |
182 } | |
183 p++; | |
184 } | |
185 } | |
186 } | |
187 | |
188 delete [] opaque; | |
189 ::DeleteDC(dib_dc); | |
190 ::DeleteObject(dib); | |
191 ::ReleaseDC(NULL, dc); | |
192 | |
193 return bitmap; | |
194 } | |
195 | |
196 bool IconUtil::CreateIconFileFromSkBitmap(const SkBitmap& bitmap, | |
197 const std::wstring& icon_file_name) { | |
198 // Only 32 bit ARGB bitmaps are supported. We also make sure the bitmap has | |
199 // been properly initialized. | |
200 SkAutoLockPixels bitmap_lock(bitmap); | |
201 if ((bitmap.getConfig() != SkBitmap::kARGB_8888_Config) || | |
202 (bitmap.height() <= 0) || (bitmap.width() <= 0) || | |
203 (bitmap.getPixels() == NULL)) { | |
204 return false; | |
205 } | |
206 | |
207 // We start by creating the file. | |
208 win_util::ScopedHandle icon_file(::CreateFile(icon_file_name.c_str(), | |
209 GENERIC_WRITE, | |
210 0, | |
211 NULL, | |
212 CREATE_ALWAYS, | |
213 FILE_ATTRIBUTE_NORMAL, | |
214 NULL)); | |
215 | |
216 if (icon_file.Get() == INVALID_HANDLE_VALUE) { | |
217 return false; | |
218 } | |
219 | |
220 // Creating a set of bitmaps corresponding to the icon images we'll end up | |
221 // storing in the icon file. Each bitmap is created by resizing the given | |
222 // bitmap to the desired size. | |
223 std::vector<SkBitmap> bitmaps; | |
224 CreateResizedBitmapSet(bitmap, &bitmaps); | |
225 int bitmap_count = static_cast<int>(bitmaps.size()); | |
226 DCHECK_GT(bitmap_count, 0); | |
227 | |
228 // Computing the total size of the buffer we need in order to store the | |
229 // images in the desired icon format. | |
230 int buffer_size = ComputeIconFileBufferSize(bitmaps); | |
231 unsigned char* buffer = new unsigned char[buffer_size]; | |
232 DCHECK_NE(buffer, static_cast<unsigned char*>(NULL)); | |
233 memset(buffer, 0, buffer_size); | |
234 | |
235 // Setting the information in the structures residing within the buffer. | |
236 // First, we set the information which doesn't require iterating through the | |
237 // bitmap set and then we set the bitmap specific structures. In the latter | |
238 // step we also copy the actual bits. | |
239 ICONDIR* icon_dir = reinterpret_cast<ICONDIR*>(buffer); | |
240 icon_dir->idType = kResourceTypeIcon; | |
241 icon_dir->idCount = bitmap_count; | |
242 int icon_dir_count = bitmap_count - 1; | |
243 int offset = sizeof(ICONDIR) + (sizeof(ICONDIRENTRY) * icon_dir_count); | |
244 for (int i = 0; i < bitmap_count; i++) { | |
245 ICONIMAGE* image = reinterpret_cast<ICONIMAGE*>(buffer + offset); | |
246 DCHECK_LT(offset, buffer_size); | |
247 int icon_image_size = 0; | |
248 SetSingleIconImageInformation(bitmaps[i], | |
249 i, | |
250 icon_dir, | |
251 image, | |
252 offset, | |
253 &icon_image_size); | |
254 DCHECK_GT(icon_image_size, 0); | |
255 offset += icon_image_size; | |
256 } | |
257 DCHECK_EQ(offset, buffer_size); | |
258 | |
259 // Finally, writing the data info the file. | |
260 DWORD bytes_written; | |
261 bool delete_file = false; | |
262 if (!WriteFile(icon_file.Get(), buffer, buffer_size, &bytes_written, NULL) || | |
263 bytes_written != buffer_size) { | |
264 delete_file = true; | |
265 } | |
266 | |
267 ::CloseHandle(icon_file.Take()); | |
268 delete [] buffer; | |
269 if (delete_file) { | |
270 bool success = file_util::Delete(icon_file_name, false); | |
271 DCHECK(success); | |
272 } | |
273 | |
274 return !delete_file; | |
275 } | |
276 | |
277 int IconUtil::GetIconDimensionCount() { | |
278 return sizeof(icon_dimensions_) / sizeof(icon_dimensions_[0]); | |
279 } | |
280 | |
281 void IconUtil::InitializeBitmapHeader(BITMAPV5HEADER* header, int width, | |
282 int height) { | |
283 DCHECK(header); | |
284 memset(header, 0, sizeof(BITMAPV5HEADER)); | |
285 header->bV5Size = sizeof(BITMAPV5HEADER); | |
286 | |
287 // Note that icons are created using top-down DIBs so we must negate the | |
288 // value used for the icon's height. | |
289 header->bV5Width = width; | |
290 header->bV5Height = -height; | |
291 header->bV5Planes = 1; | |
292 header->bV5Compression = BI_RGB; | |
293 | |
294 // Initializing the bitmap format to 32 bit ARGB. | |
295 header->bV5BitCount = 32; | |
296 header->bV5RedMask = 0x00FF0000; | |
297 header->bV5GreenMask = 0x0000FF00; | |
298 header->bV5BlueMask = 0x000000FF; | |
299 header->bV5AlphaMask = 0xFF000000; | |
300 | |
301 // Use the system color space. The default value is LCS_CALIBRATED_RGB, which | |
302 // causes us to crash if we don't specify the approprite gammas, etc. See | |
303 // <http://msdn.microsoft.com/en-us/library/ms536531(VS.85).aspx> and | |
304 // <http://b/1283121>. | |
305 header->bV5CSType = LCS_WINDOWS_COLOR_SPACE; | |
306 } | |
307 | |
308 void IconUtil::SetSingleIconImageInformation(const SkBitmap& bitmap, | |
309 int index, | |
310 ICONDIR* icon_dir, | |
311 ICONIMAGE* icon_image, | |
312 int image_offset, | |
313 int* image_byte_count) { | |
314 DCHECK_GE(index, 0); | |
315 DCHECK_NE(icon_dir, static_cast<ICONDIR*>(NULL)); | |
316 DCHECK_NE(icon_image, static_cast<ICONIMAGE*>(NULL)); | |
317 DCHECK_GT(image_offset, 0); | |
318 DCHECK_NE(image_byte_count, static_cast<int*>(NULL)); | |
319 | |
320 // We start by computing certain image values we'll use later on. | |
321 int xor_mask_size; | |
322 int and_mask_size; | |
323 int bytes_in_resource; | |
324 ComputeBitmapSizeComponents(bitmap, | |
325 &xor_mask_size, | |
326 &and_mask_size, | |
327 &bytes_in_resource); | |
328 | |
329 icon_dir->idEntries[index].bWidth = static_cast<BYTE>(bitmap.width()); | |
330 icon_dir->idEntries[index].bHeight = static_cast<BYTE>(bitmap.height()); | |
331 icon_dir->idEntries[index].wPlanes = 1; | |
332 icon_dir->idEntries[index].wBitCount = 32; | |
333 icon_dir->idEntries[index].dwBytesInRes = bytes_in_resource; | |
334 icon_dir->idEntries[index].dwImageOffset = image_offset; | |
335 icon_image->icHeader.biSize = sizeof(BITMAPINFOHEADER); | |
336 | |
337 // The width field in the BITMAPINFOHEADER structure accounts for the height | |
338 // of both the AND mask and the XOR mask so we need to multiply the bitmap's | |
339 // height by 2. The same does NOT apply to the width field. | |
340 icon_image->icHeader.biHeight = bitmap.height() * 2; | |
341 icon_image->icHeader.biWidth = bitmap.width(); | |
342 icon_image->icHeader.biPlanes = 1; | |
343 icon_image->icHeader.biBitCount = 32; | |
344 | |
345 // We use a helper function for copying to actual bits from the SkBitmap | |
346 // object into the appropriate space in the buffer. We use a helper function | |
347 // (rather than just copying the bits) because there is no way to specify the | |
348 // orientation (bottom-up vs. top-down) of a bitmap residing in a .ico file. | |
349 // Thus, if we just copy the bits, we'll end up with a bottom up bitmap in | |
350 // the .ico file which will result in the icon being displayed upside down. | |
351 // The helper function copies the image into the buffer one scanline at a | |
352 // time. | |
353 // | |
354 // Note that we don't need to initialize the AND mask since the memory | |
355 // allocated for the icon data buffer was initialized to zero. The icon we | |
356 // create will therefore use an AND mask containing only zeros, which is OK | |
357 // because the underlying image has an alpha channel. An AND mask containing | |
358 // only zeros essentially means we'll initially treat all the pixels as | |
359 // opaque. | |
360 unsigned char* image_addr = reinterpret_cast<unsigned char*>(icon_image); | |
361 unsigned char* xor_mask_addr = image_addr + sizeof(BITMAPINFOHEADER); | |
362 CopySkBitmapBitsIntoIconBuffer(bitmap, xor_mask_addr, xor_mask_size); | |
363 *image_byte_count = bytes_in_resource; | |
364 } | |
365 | |
366 void IconUtil::CopySkBitmapBitsIntoIconBuffer(const SkBitmap& bitmap, | |
367 unsigned char* buffer, | |
368 int buffer_size) { | |
369 SkAutoLockPixels bitmap_lock(bitmap); | |
370 unsigned char* bitmap_ptr = static_cast<unsigned char*>(bitmap.getPixels()); | |
371 int bitmap_size = bitmap.height() * bitmap.width() * 4; | |
372 DCHECK_EQ(buffer_size, bitmap_size); | |
373 for (int i = 0; i < bitmap_size; i += bitmap.width() * 4) { | |
374 memcpy(buffer + bitmap_size - bitmap.width() * 4 - i, | |
375 bitmap_ptr + i, | |
376 bitmap.width() * 4); | |
377 } | |
378 } | |
379 | |
380 void IconUtil::CreateResizedBitmapSet(const SkBitmap& bitmap_to_resize, | |
381 std::vector<SkBitmap>* bitmaps) { | |
382 DCHECK_NE(bitmaps, static_cast<std::vector<SkBitmap>* >(NULL)); | |
383 DCHECK_EQ(static_cast<int>(bitmaps->size()), 0); | |
384 | |
385 bool inserted_original_bitmap = false; | |
386 for (int i = 0; i < GetIconDimensionCount(); i++) { | |
387 // If the dimensions of the bitmap we are resizing are the same as the | |
388 // current dimensions, then we should insert the bitmap and not a resized | |
389 // bitmap. If the bitmap's dimensions are smaller, we insert our bitmap | |
390 // first so that the bitmaps we return in the vector are sorted based on | |
391 // their dimensions. | |
392 if (!inserted_original_bitmap) { | |
393 if ((bitmap_to_resize.width() == icon_dimensions_[i]) && | |
394 (bitmap_to_resize.height() == icon_dimensions_[i])) { | |
395 bitmaps->push_back(bitmap_to_resize); | |
396 inserted_original_bitmap = true; | |
397 continue; | |
398 } | |
399 | |
400 if ((bitmap_to_resize.width() < icon_dimensions_[i]) && | |
401 (bitmap_to_resize.height() < icon_dimensions_[i])) { | |
402 bitmaps->push_back(bitmap_to_resize); | |
403 inserted_original_bitmap = true; | |
404 } | |
405 } | |
406 bitmaps->push_back(skia::ImageOperations::Resize( | |
407 bitmap_to_resize, skia::ImageOperations::RESIZE_LANCZOS3, | |
408 icon_dimensions_[i], icon_dimensions_[i])); | |
409 } | |
410 | |
411 if (!inserted_original_bitmap) { | |
412 bitmaps->push_back(bitmap_to_resize); | |
413 } | |
414 } | |
415 | |
416 int IconUtil::ComputeIconFileBufferSize(const std::vector<SkBitmap>& set) { | |
417 // We start by counting the bytes for the structures that don't depend on the | |
418 // number of icon images. Note that sizeof(ICONDIR) already accounts for a | |
419 // single ICONDIRENTRY structure, which is why we subtract one from the | |
420 // number of bitmaps. | |
421 int total_buffer_size = 0; | |
422 total_buffer_size += sizeof(ICONDIR); | |
423 int bitmap_count = static_cast<int>(set.size()); | |
424 total_buffer_size += sizeof(ICONDIRENTRY) * (bitmap_count - 1); | |
425 int dimension_count = GetIconDimensionCount(); | |
426 DCHECK_GE(bitmap_count, dimension_count); | |
427 | |
428 // Add the bitmap specific structure sizes. | |
429 for (int i = 0; i < bitmap_count; i++) { | |
430 int xor_mask_size; | |
431 int and_mask_size; | |
432 int bytes_in_resource; | |
433 ComputeBitmapSizeComponents(set[i], | |
434 &xor_mask_size, | |
435 &and_mask_size, | |
436 &bytes_in_resource); | |
437 total_buffer_size += bytes_in_resource; | |
438 } | |
439 return total_buffer_size; | |
440 } | |
441 | |
442 void IconUtil::ComputeBitmapSizeComponents(const SkBitmap& bitmap, | |
443 int* xor_mask_size, | |
444 int* and_mask_size, | |
445 int* bytes_in_resource) { | |
446 // The XOR mask size is easy to calculate since we only deal with 32bpp | |
447 // images. | |
448 *xor_mask_size = bitmap.width() * bitmap.height() * 4; | |
449 | |
450 // Computing the AND mask is a little trickier since it is a monochrome | |
451 // bitmap (regardless of the number of bits per pixels used in the XOR mask). | |
452 // There are two things we must make sure we do when computing the AND mask | |
453 // size: | |
454 // | |
455 // 1. Make sure the right number of bytes is allocated for each AND mask | |
456 // scan line in case the number of pixels in the image is not divisible by | |
457 // 8. For example, in a 15X15 image, 15 / 8 is one byte short of | |
458 // containing the number of bits we need in order to describe a single | |
459 // image scan line so we need to add a byte. Thus, we need 2 bytes instead | |
460 // of 1 for each scan line. | |
461 // | |
462 // 2. Make sure each scan line in the AND mask is 4 byte aligned (so that the | |
463 // total icon image has a 4 byte alignment). In the 15X15 image example | |
464 // above, we can not use 2 bytes so we increase it to the next multiple of | |
465 // 4 which is 4. | |
466 // | |
467 // Once we compute the size for a singe AND mask scan line, we multiply that | |
468 // number by the image height in order to get the total number of bytes for | |
469 // the AND mask. Thus, for a 15X15 image, we need 15 * 4 which is 60 bytes | |
470 // for the monochrome bitmap representing the AND mask. | |
471 int and_line_length = (bitmap.width() + 7) >> 3; | |
472 and_line_length = (and_line_length + 3) & ~3; | |
473 *and_mask_size = and_line_length * bitmap.height(); | |
474 int masks_size = *xor_mask_size + *and_mask_size; | |
475 *bytes_in_resource = masks_size + sizeof(BITMAPINFOHEADER); | |
476 } | |
OLD | NEW |