| Index: testing/gmock/include/gmock/gmock-generated-actions.h.pump
|
| diff --git a/testing/gmock/include/gmock/gmock-generated-actions.h.pump b/testing/gmock/include/gmock/gmock-generated-actions.h.pump
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..b5223a34b158495f0edb760d47ce682f4a2ad665
|
| --- /dev/null
|
| +++ b/testing/gmock/include/gmock/gmock-generated-actions.h.pump
|
| @@ -0,0 +1,1008 @@
|
| +$$ -*- mode: c++; -*-
|
| +$$ This is a Pump source file. Please use Pump to convert it to
|
| +$$ gmock-generated-variadic-actions.h.
|
| +$$
|
| +$var n = 10 $$ The maximum arity we support.
|
| +$$}} This meta comment fixes auto-indentation in editors.
|
| +// Copyright 2007, Google Inc.
|
| +// All rights reserved.
|
| +//
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following disclaimer
|
| +// in the documentation and/or other materials provided with the
|
| +// distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived from
|
| +// this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +//
|
| +// Author: wan@google.com (Zhanyong Wan)
|
| +
|
| +// Google Mock - a framework for writing C++ mock classes.
|
| +//
|
| +// This file implements some commonly used variadic actions.
|
| +
|
| +#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
|
| +#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
|
| +
|
| +#include <gmock/gmock-actions.h>
|
| +#include <gmock/internal/gmock-port.h>
|
| +
|
| +namespace testing {
|
| +namespace internal {
|
| +
|
| +// InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary
|
| +// function or method with the unpacked values, where F is a function
|
| +// type that takes N arguments.
|
| +template <typename Result, typename ArgumentTuple>
|
| +class InvokeHelper;
|
| +
|
| +
|
| +$range i 0..n
|
| +$for i [[
|
| +$range j 1..i
|
| +$var types = [[$for j [[, typename A$j]]]]
|
| +$var as = [[$for j, [[A$j]]]]
|
| +$var args = [[$if i==0 [[]] $else [[ args]]]]
|
| +$var import = [[$if i==0 [[]] $else [[
|
| + using ::std::tr1::get;
|
| +
|
| +]]]]
|
| +$var gets = [[$for j, [[get<$(j - 1)>(args)]]]]
|
| +template <typename R$types>
|
| +class InvokeHelper<R, ::std::tr1::tuple<$as> > {
|
| + public:
|
| + template <typename Function>
|
| + static R Invoke(Function function, const ::std::tr1::tuple<$as>&$args) {
|
| +$import return function($gets);
|
| + }
|
| +
|
| + template <class Class, typename MethodPtr>
|
| + static R InvokeMethod(Class* obj_ptr,
|
| + MethodPtr method_ptr,
|
| + const ::std::tr1::tuple<$as>&$args) {
|
| +$import return (obj_ptr->*method_ptr)($gets);
|
| + }
|
| +};
|
| +
|
| +
|
| +]]
|
| +
|
| +// Implements the Invoke(f) action. The template argument
|
| +// FunctionImpl is the implementation type of f, which can be either a
|
| +// function pointer or a functor. Invoke(f) can be used as an
|
| +// Action<F> as long as f's type is compatible with F (i.e. f can be
|
| +// assigned to a tr1::function<F>).
|
| +template <typename FunctionImpl>
|
| +class InvokeAction {
|
| + public:
|
| + // The c'tor makes a copy of function_impl (either a function
|
| + // pointer or a functor).
|
| + explicit InvokeAction(FunctionImpl function_impl)
|
| + : function_impl_(function_impl) {}
|
| +
|
| + template <typename Result, typename ArgumentTuple>
|
| + Result Perform(const ArgumentTuple& args) {
|
| + return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args);
|
| + }
|
| + private:
|
| + FunctionImpl function_impl_;
|
| +};
|
| +
|
| +// Implements the Invoke(object_ptr, &Class::Method) action.
|
| +template <class Class, typename MethodPtr>
|
| +class InvokeMethodAction {
|
| + public:
|
| + InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr)
|
| + : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
|
| +
|
| + template <typename Result, typename ArgumentTuple>
|
| + Result Perform(const ArgumentTuple& args) const {
|
| + return InvokeHelper<Result, ArgumentTuple>::InvokeMethod(
|
| + obj_ptr_, method_ptr_, args);
|
| + }
|
| + private:
|
| + Class* const obj_ptr_;
|
| + const MethodPtr method_ptr_;
|
| +};
|
| +
|
| +// A ReferenceWrapper<T> object represents a reference to type T,
|
| +// which can be either const or not. It can be explicitly converted
|
| +// from, and implicitly converted to, a T&. Unlike a reference,
|
| +// ReferenceWrapper<T> can be copied and can survive template type
|
| +// inference. This is used to support by-reference arguments in the
|
| +// InvokeArgument<N>(...) action. The idea was from "reference
|
| +// wrappers" in tr1, which we don't have in our source tree yet.
|
| +template <typename T>
|
| +class ReferenceWrapper {
|
| + public:
|
| + // Constructs a ReferenceWrapper<T> object from a T&.
|
| + explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
|
| +
|
| + // Allows a ReferenceWrapper<T> object to be implicitly converted to
|
| + // a T&.
|
| + operator T&() const { return *pointer_; }
|
| + private:
|
| + T* pointer_;
|
| +};
|
| +
|
| +// CallableHelper has static methods for invoking "callables",
|
| +// i.e. function pointers and functors. It uses overloading to
|
| +// provide a uniform interface for invoking different kinds of
|
| +// callables. In particular, you can use:
|
| +//
|
| +// CallableHelper<R>::Call(callable, a1, a2, ..., an)
|
| +//
|
| +// to invoke an n-ary callable, where R is its return type. If an
|
| +// argument, say a2, needs to be passed by reference, you should write
|
| +// ByRef(a2) instead of a2 in the above expression.
|
| +template <typename R>
|
| +class CallableHelper {
|
| + public:
|
| + // Calls a nullary callable.
|
| + template <typename Function>
|
| + static R Call(Function function) { return function(); }
|
| +
|
| + // Calls a unary callable.
|
| +
|
| + // We deliberately pass a1 by value instead of const reference here
|
| + // in case it is a C-string literal. If we had declared the
|
| + // parameter as 'const A1& a1' and write Call(function, "Hi"), the
|
| + // compiler would've thought A1 is 'char[3]', which causes trouble
|
| + // when you need to copy a value of type A1. By declaring the
|
| + // parameter as 'A1 a1', the compiler will correctly infer that A1
|
| + // is 'const char*' when it sees Call(function, "Hi").
|
| + //
|
| + // Since this function is defined inline, the compiler can get rid
|
| + // of the copying of the arguments. Therefore the performance won't
|
| + // be hurt.
|
| + template <typename Function, typename A1>
|
| + static R Call(Function function, A1 a1) { return function(a1); }
|
| +
|
| +$range i 2..n
|
| +$for i
|
| +[[
|
| +$var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]]
|
| +
|
| + // Calls a $arity callable.
|
| +
|
| +$range j 1..i
|
| +$var typename_As = [[$for j, [[typename A$j]]]]
|
| +$var Aas = [[$for j, [[A$j a$j]]]]
|
| +$var as = [[$for j, [[a$j]]]]
|
| +$var typename_Ts = [[$for j, [[typename T$j]]]]
|
| +$var Ts = [[$for j, [[T$j]]]]
|
| + template <typename Function, $typename_As>
|
| + static R Call(Function function, $Aas) {
|
| + return function($as);
|
| + }
|
| +
|
| +]]
|
| +
|
| +}; // class CallableHelper
|
| +
|
| +// An INTERNAL macro for extracting the type of a tuple field. It's
|
| +// subject to change without notice - DO NOT USE IN USER CODE!
|
| +#define GMOCK_FIELD_(Tuple, N) \
|
| + typename ::std::tr1::tuple_element<N, Tuple>::type
|
| +
|
| +$range i 1..n
|
| +
|
| +// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the
|
| +// type of an n-ary function whose i-th (1-based) argument type is the
|
| +// k{i}-th (0-based) field of ArgumentTuple, which must be a tuple
|
| +// type, and whose return type is Result. For example,
|
| +// SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type
|
| +// is int(bool, long).
|
| +//
|
| +// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args)
|
| +// returns the selected fields (k1, k2, ..., k_n) of args as a tuple.
|
| +// For example,
|
| +// SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select(
|
| +// ::std::tr1::make_tuple(true, 'a', 2.5))
|
| +// returns ::std::tr1::tuple (2.5, true).
|
| +//
|
| +// The numbers in list k1, k2, ..., k_n must be >= 0, where n can be
|
| +// in the range [0, $n]. Duplicates are allowed and they don't have
|
| +// to be in an ascending or descending order.
|
| +
|
| +template <typename Result, typename ArgumentTuple, $for i, [[int k$i]]>
|
| +class SelectArgs {
|
| + public:
|
| + typedef Result type($for i, [[GMOCK_FIELD_(ArgumentTuple, k$i)]]);
|
| + typedef typename Function<type>::ArgumentTuple SelectedArgs;
|
| + static SelectedArgs Select(const ArgumentTuple& args) {
|
| + using ::std::tr1::get;
|
| + return SelectedArgs($for i, [[get<k$i>(args)]]);
|
| + }
|
| +};
|
| +
|
| +
|
| +$for i [[
|
| +$range j 1..n
|
| +$range j1 1..i-1
|
| +template <typename Result, typename ArgumentTuple$for j1[[, int k$j1]]>
|
| +class SelectArgs<Result, ArgumentTuple,
|
| + $for j, [[$if j <= i-1 [[k$j]] $else [[-1]]]]> {
|
| + public:
|
| + typedef Result type($for j1, [[GMOCK_FIELD_(ArgumentTuple, k$j1)]]);
|
| + typedef typename Function<type>::ArgumentTuple SelectedArgs;
|
| + static SelectedArgs Select(const ArgumentTuple& [[]]
|
| +$if i == 1 [[/* args */]] $else [[args]]) {
|
| + using ::std::tr1::get;
|
| + return SelectedArgs($for j1, [[get<k$j1>(args)]]);
|
| + }
|
| +};
|
| +
|
| +
|
| +]]
|
| +#undef GMOCK_FIELD_
|
| +
|
| +$var ks = [[$for i, [[k$i]]]]
|
| +
|
| +// Implements the WithArgs action.
|
| +template <typename InnerAction, $for i, [[int k$i = -1]]>
|
| +class WithArgsAction {
|
| + public:
|
| + explicit WithArgsAction(const InnerAction& action) : action_(action) {}
|
| +
|
| + template <typename F>
|
| + operator Action<F>() const { return MakeAction(new Impl<F>(action_)); }
|
| +
|
| + private:
|
| + template <typename F>
|
| + class Impl : public ActionInterface<F> {
|
| + public:
|
| + typedef typename Function<F>::Result Result;
|
| + typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
| +
|
| + explicit Impl(const InnerAction& action) : action_(action) {}
|
| +
|
| + virtual Result Perform(const ArgumentTuple& args) {
|
| + return action_.Perform(SelectArgs<Result, ArgumentTuple, $ks>::Select(args));
|
| + }
|
| +
|
| + private:
|
| + typedef typename SelectArgs<Result, ArgumentTuple,
|
| + $ks>::type InnerFunctionType;
|
| +
|
| + Action<InnerFunctionType> action_;
|
| + };
|
| +
|
| + const InnerAction action_;
|
| +};
|
| +
|
| +// Does two actions sequentially. Used for implementing the DoAll(a1,
|
| +// a2, ...) action.
|
| +template <typename Action1, typename Action2>
|
| +class DoBothAction {
|
| + public:
|
| + DoBothAction(Action1 action1, Action2 action2)
|
| + : action1_(action1), action2_(action2) {}
|
| +
|
| + // This template type conversion operator allows DoAll(a1, ..., a_n)
|
| + // to be used in ANY function of compatible type.
|
| + template <typename F>
|
| + operator Action<F>() const {
|
| + return Action<F>(new Impl<F>(action1_, action2_));
|
| + }
|
| +
|
| + private:
|
| + // Implements the DoAll(...) action for a particular function type F.
|
| + template <typename F>
|
| + class Impl : public ActionInterface<F> {
|
| + public:
|
| + typedef typename Function<F>::Result Result;
|
| + typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
| + typedef typename Function<F>::MakeResultVoid VoidResult;
|
| +
|
| + Impl(const Action<VoidResult>& action1, const Action<F>& action2)
|
| + : action1_(action1), action2_(action2) {}
|
| +
|
| + virtual Result Perform(const ArgumentTuple& args) {
|
| + action1_.Perform(args);
|
| + return action2_.Perform(args);
|
| + }
|
| +
|
| + private:
|
| + const Action<VoidResult> action1_;
|
| + const Action<F> action2_;
|
| + };
|
| +
|
| + Action1 action1_;
|
| + Action2 action2_;
|
| +};
|
| +
|
| +// A macro from the ACTION* family (defined later in this file)
|
| +// defines an action that can be used in a mock function. Typically,
|
| +// these actions only care about a subset of the arguments of the mock
|
| +// function. For example, if such an action only uses the second
|
| +// argument, it can be used in any mock function that takes >= 2
|
| +// arguments where the type of the second argument is compatible.
|
| +//
|
| +// Therefore, the action implementation must be prepared to take more
|
| +// arguments than it needs. The ExcessiveArg type is used to
|
| +// represent those excessive arguments. In order to keep the compiler
|
| +// error messages tractable, we define it in the testing namespace
|
| +// instead of testing::internal. However, this is an INTERNAL TYPE
|
| +// and subject to change without notice, so a user MUST NOT USE THIS
|
| +// TYPE DIRECTLY.
|
| +struct ExcessiveArg {};
|
| +
|
| +// A helper class needed for implementing the ACTION* macros.
|
| +template <typename Result, class Impl>
|
| +class ActionHelper {
|
| + public:
|
| +$range i 0..n
|
| +$for i
|
| +
|
| +[[
|
| +$var template = [[$if i==0 [[]] $else [[
|
| +$range j 0..i-1
|
| + template <$for j, [[typename A$j]]>
|
| +]]]]
|
| +$range j 0..i-1
|
| +$var As = [[$for j, [[A$j]]]]
|
| +$var as = [[$for j, [[get<$j>(args)]]]]
|
| +$range k 1..n-i
|
| +$var eas = [[$for k, [[ExcessiveArg()]]]]
|
| +$var arg_list = [[$if (i==0) | (i==n) [[$as$eas]] $else [[$as, $eas]]]]
|
| +$template
|
| + static Result Perform(Impl* impl, const ::std::tr1::tuple<$As>& args) {
|
| + using ::std::tr1::get;
|
| + return impl->template gmock_PerformImpl<$As>(args, $arg_list);
|
| + }
|
| +
|
| +]]
|
| +};
|
| +
|
| +} // namespace internal
|
| +
|
| +// Various overloads for Invoke().
|
| +
|
| +// Creates an action that invokes 'function_impl' with the mock
|
| +// function's arguments.
|
| +template <typename FunctionImpl>
|
| +PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke(
|
| + FunctionImpl function_impl) {
|
| + return MakePolymorphicAction(
|
| + internal::InvokeAction<FunctionImpl>(function_impl));
|
| +}
|
| +
|
| +// Creates an action that invokes the given method on the given object
|
| +// with the mock function's arguments.
|
| +template <class Class, typename MethodPtr>
|
| +PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke(
|
| + Class* obj_ptr, MethodPtr method_ptr) {
|
| + return MakePolymorphicAction(
|
| + internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr));
|
| +}
|
| +
|
| +// Creates a reference wrapper for the given L-value. If necessary,
|
| +// you can explicitly specify the type of the reference. For example,
|
| +// suppose 'derived' is an object of type Derived, ByRef(derived)
|
| +// would wrap a Derived&. If you want to wrap a const Base& instead,
|
| +// where Base is a base class of Derived, just write:
|
| +//
|
| +// ByRef<const Base>(derived)
|
| +template <typename T>
|
| +inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
|
| + return internal::ReferenceWrapper<T>(l_value);
|
| +}
|
| +
|
| +// WithoutArgs(inner_action) can be used in a mock function with a
|
| +// non-empty argument list to perform inner_action, which takes no
|
| +// argument. In other words, it adapts an action accepting no
|
| +// argument to one that accepts (and ignores) arguments.
|
| +template <typename InnerAction>
|
| +inline internal::WithArgsAction<InnerAction>
|
| +WithoutArgs(const InnerAction& action) {
|
| + return internal::WithArgsAction<InnerAction>(action);
|
| +}
|
| +
|
| +// WithArg<k>(an_action) creates an action that passes the k-th
|
| +// (0-based) argument of the mock function to an_action and performs
|
| +// it. It adapts an action accepting one argument to one that accepts
|
| +// multiple arguments. For convenience, we also provide
|
| +// WithArgs<k>(an_action) (defined below) as a synonym.
|
| +template <int k, typename InnerAction>
|
| +inline internal::WithArgsAction<InnerAction, k>
|
| +WithArg(const InnerAction& action) {
|
| + return internal::WithArgsAction<InnerAction, k>(action);
|
| +}
|
| +
|
| +// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
|
| +// the selected arguments of the mock function to an_action and
|
| +// performs it. It serves as an adaptor between actions with
|
| +// different argument lists. C++ doesn't support default arguments for
|
| +// function templates, so we have to overload it.
|
| +
|
| +$range i 1..n
|
| +$for i [[
|
| +$range j 1..i
|
| +template <$for j [[int k$j, ]]typename InnerAction>
|
| +inline internal::WithArgsAction<InnerAction$for j [[, k$j]]>
|
| +WithArgs(const InnerAction& action) {
|
| + return internal::WithArgsAction<InnerAction$for j [[, k$j]]>(action);
|
| +}
|
| +
|
| +
|
| +]]
|
| +// Creates an action that does actions a1, a2, ..., sequentially in
|
| +// each invocation.
|
| +$range i 2..n
|
| +$for i [[
|
| +$range j 2..i
|
| +$var types = [[$for j, [[typename Action$j]]]]
|
| +$var Aas = [[$for j [[, Action$j a$j]]]]
|
| +
|
| +template <typename Action1, $types>
|
| +$range k 1..i-1
|
| +
|
| +inline $for k [[internal::DoBothAction<Action$k, ]]Action$i$for k [[>]]
|
| +
|
| +DoAll(Action1 a1$Aas) {
|
| +$if i==2 [[
|
| +
|
| + return internal::DoBothAction<Action1, Action2>(a1, a2);
|
| +]] $else [[
|
| +$range j2 2..i
|
| +
|
| + return DoAll(a1, DoAll($for j2, [[a$j2]]));
|
| +]]
|
| +
|
| +}
|
| +
|
| +]]
|
| +
|
| +} // namespace testing
|
| +
|
| +// The ACTION* family of macros can be used in a namespace scope to
|
| +// define custom actions easily. The syntax:
|
| +//
|
| +// ACTION(name) { statements; }
|
| +//
|
| +// will define an action with the given name that executes the
|
| +// statements. The value returned by the statements will be used as
|
| +// the return value of the action. Inside the statements, you can
|
| +// refer to the K-th (0-based) argument of the mock function by
|
| +// 'argK', and refer to its type by 'argK_type'. For example:
|
| +//
|
| +// ACTION(IncrementArg1) {
|
| +// arg1_type temp = arg1;
|
| +// return ++(*temp);
|
| +// }
|
| +//
|
| +// allows you to write
|
| +//
|
| +// ...WillOnce(IncrementArg1());
|
| +//
|
| +// You can also refer to the entire argument tuple and its type by
|
| +// 'args' and 'args_type', and refer to the mock function type and its
|
| +// return type by 'function_type' and 'return_type'.
|
| +//
|
| +// Note that you don't need to specify the types of the mock function
|
| +// arguments. However rest assured that your code is still type-safe:
|
| +// you'll get a compiler error if *arg1 doesn't support the ++
|
| +// operator, or if the type of ++(*arg1) isn't compatible with the
|
| +// mock function's return type, for example.
|
| +//
|
| +// Sometimes you'll want to parameterize the action. For that you can use
|
| +// another macro:
|
| +//
|
| +// ACTION_P(name, param_name) { statements; }
|
| +//
|
| +// For example:
|
| +//
|
| +// ACTION_P(Add, n) { return arg0 + n; }
|
| +//
|
| +// will allow you to write:
|
| +//
|
| +// ...WillOnce(Add(5));
|
| +//
|
| +// Note that you don't need to provide the type of the parameter
|
| +// either. If you need to reference the type of a parameter named
|
| +// 'foo', you can write 'foo_type'. For example, in the body of
|
| +// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
|
| +// of 'n'.
|
| +//
|
| +// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P$n to support
|
| +// multi-parameter actions.
|
| +//
|
| +// For the purpose of typing, you can view
|
| +//
|
| +// ACTION_Pk(Foo, p1, ..., pk) { ... }
|
| +//
|
| +// as shorthand for
|
| +//
|
| +// template <typename p1_type, ..., typename pk_type>
|
| +// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
|
| +//
|
| +// In particular, you can provide the template type arguments
|
| +// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
|
| +// although usually you can rely on the compiler to infer the types
|
| +// for you automatically. You can assign the result of expression
|
| +// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
|
| +// pk_type>. This can be useful when composing actions.
|
| +//
|
| +// You can also overload actions with different numbers of parameters:
|
| +//
|
| +// ACTION_P(Plus, a) { ... }
|
| +// ACTION_P2(Plus, a, b) { ... }
|
| +//
|
| +// While it's tempting to always use the ACTION* macros when defining
|
| +// a new action, you should also consider implementing ActionInterface
|
| +// or using MakePolymorphicAction() instead, especially if you need to
|
| +// use the action a lot. While these approaches require more work,
|
| +// they give you more control on the types of the mock function
|
| +// arguments and the action parameters, which in general leads to
|
| +// better compiler error messages that pay off in the long run. They
|
| +// also allow overloading actions based on parameter types (as opposed
|
| +// to just based on the number of parameters).
|
| +//
|
| +// CAVEAT:
|
| +//
|
| +// ACTION*() can only be used in a namespace scope. The reason is
|
| +// that C++ doesn't yet allow function-local types to be used to
|
| +// instantiate templates. The up-coming C++0x standard will fix this.
|
| +// Once that's done, we'll consider supporting using ACTION*() inside
|
| +// a function.
|
| +//
|
| +// MORE INFORMATION:
|
| +//
|
| +// To learn more about using these macros, please search for 'ACTION'
|
| +// on http://code.google.com/p/googlemock/wiki/CookBook.
|
| +
|
| +$range i 0..n
|
| +$range k 0..n-1
|
| +
|
| +// An internal macro needed for implementing ACTION*().
|
| +#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\
|
| + const args_type& args GTEST_ATTRIBUTE_UNUSED_
|
| +$for k [[,\
|
| + arg$k[[]]_type arg$k GTEST_ATTRIBUTE_UNUSED_]]
|
| +
|
| +
|
| +// Sometimes you want to give an action explicit template parameters
|
| +// that cannot be inferred from its value parameters. ACTION() and
|
| +// ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that
|
| +// and can be viewed as an extension to ACTION() and ACTION_P*().
|
| +//
|
| +// The syntax:
|
| +//
|
| +// ACTION_TEMPLATE(ActionName,
|
| +// HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
|
| +// AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
|
| +//
|
| +// defines an action template that takes m explicit template
|
| +// parameters and n value parameters. name_i is the name of the i-th
|
| +// template parameter, and kind_i specifies whether it's a typename,
|
| +// an integral constant, or a template. p_i is the name of the i-th
|
| +// value parameter.
|
| +//
|
| +// Example:
|
| +//
|
| +// // DuplicateArg<k, T>(output) converts the k-th argument of the mock
|
| +// // function to type T and copies it to *output.
|
| +// ACTION_TEMPLATE(DuplicateArg,
|
| +// HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
|
| +// AND_1_VALUE_PARAMS(output)) {
|
| +// *output = T(std::tr1::get<k>(args));
|
| +// }
|
| +// ...
|
| +// int n;
|
| +// EXPECT_CALL(mock, Foo(_, _))
|
| +// .WillOnce(DuplicateArg<1, unsigned char>(&n));
|
| +//
|
| +// To create an instance of an action template, write:
|
| +//
|
| +// ActionName<t1, ..., t_m>(v1, ..., v_n)
|
| +//
|
| +// where the ts are the template arguments and the vs are the value
|
| +// arguments. The value argument types are inferred by the compiler.
|
| +// If you want to explicitly specify the value argument types, you can
|
| +// provide additional template arguments:
|
| +//
|
| +// ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
|
| +//
|
| +// where u_i is the desired type of v_i.
|
| +//
|
| +// ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
|
| +// number of value parameters, but not on the number of template
|
| +// parameters. Without the restriction, the meaning of the following
|
| +// is unclear:
|
| +//
|
| +// OverloadedAction<int, bool>(x);
|
| +//
|
| +// Are we using a single-template-parameter action where 'bool' refers
|
| +// to the type of x, or are we using a two-template-parameter action
|
| +// where the compiler is asked to infer the type of x?
|
| +//
|
| +// Implementation notes:
|
| +//
|
| +// GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
|
| +// GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
|
| +// implementing ACTION_TEMPLATE. The main trick we use is to create
|
| +// new macro invocations when expanding a macro. For example, we have
|
| +//
|
| +// #define ACTION_TEMPLATE(name, template_params, value_params)
|
| +// ... GMOCK_INTERNAL_DECL_##template_params ...
|
| +//
|
| +// which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
|
| +// to expand to
|
| +//
|
| +// ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
|
| +//
|
| +// Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
|
| +// preprocessor will continue to expand it to
|
| +//
|
| +// ... typename T ...
|
| +//
|
| +// This technique conforms to the C++ standard and is portable. It
|
| +// allows us to implement action templates using O(N) code, where N is
|
| +// the maximum number of template/value parameters supported. Without
|
| +// using it, we'd have to devote O(N^2) amount of code to implement all
|
| +// combinations of m and n.
|
| +
|
| +// Declares the template parameters.
|
| +
|
| +$range j 1..n
|
| +$for j [[
|
| +$range m 0..j-1
|
| +#define GMOCK_INTERNAL_DECL_HAS_$j[[]]
|
| +_TEMPLATE_PARAMS($for m, [[kind$m, name$m]]) $for m, [[kind$m name$m]]
|
| +
|
| +
|
| +]]
|
| +
|
| +// Lists the template parameters.
|
| +
|
| +$for j [[
|
| +$range m 0..j-1
|
| +#define GMOCK_INTERNAL_LIST_HAS_$j[[]]
|
| +_TEMPLATE_PARAMS($for m, [[kind$m, name$m]]) $for m, [[name$m]]
|
| +
|
| +
|
| +]]
|
| +
|
| +// Declares the types of value parameters.
|
| +
|
| +$for i [[
|
| +$range j 0..i-1
|
| +#define GMOCK_INTERNAL_DECL_TYPE_AND_$i[[]]
|
| +_VALUE_PARAMS($for j, [[p$j]]) $for j [[, typename p$j##_type]]
|
| +
|
| +
|
| +]]
|
| +
|
| +// Initializes the value parameters.
|
| +
|
| +$for i [[
|
| +$range j 0..i-1
|
| +#define GMOCK_INTERNAL_INIT_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])\
|
| + ($for j, [[p$j##_type gmock_p$j]])$if i>0 [[ : ]]$for j, [[p$j(gmock_p$j)]]
|
| +
|
| +
|
| +]]
|
| +
|
| +// Declares the fields for storing the value parameters.
|
| +
|
| +$for i [[
|
| +$range j 0..i-1
|
| +#define GMOCK_INTERNAL_DEFN_AND_$i[[]]
|
| +_VALUE_PARAMS($for j, [[p$j]]) $for j [[p$j##_type p$j; ]]
|
| +
|
| +
|
| +]]
|
| +
|
| +// Lists the value parameters.
|
| +
|
| +$for i [[
|
| +$range j 0..i-1
|
| +#define GMOCK_INTERNAL_LIST_AND_$i[[]]
|
| +_VALUE_PARAMS($for j, [[p$j]]) $for j, [[p$j]]
|
| +
|
| +
|
| +]]
|
| +
|
| +// Lists the value parameter types.
|
| +
|
| +$for i [[
|
| +$range j 0..i-1
|
| +#define GMOCK_INTERNAL_LIST_TYPE_AND_$i[[]]
|
| +_VALUE_PARAMS($for j, [[p$j]]) $for j [[, p$j##_type]]
|
| +
|
| +
|
| +]]
|
| +
|
| +// Declares the value parameters.
|
| +
|
| +$for i [[
|
| +$range j 0..i-1
|
| +#define GMOCK_INTERNAL_DECL_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]]) [[]]
|
| +$for j, [[p$j##_type p$j]]
|
| +
|
| +
|
| +]]
|
| +
|
| +// The suffix of the class template implementing the action template.
|
| +$for i [[
|
| +
|
| +
|
| +$range j 0..i-1
|
| +#define GMOCK_INTERNAL_COUNT_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]]) [[]]
|
| +$if i==1 [[P]] $elif i>=2 [[P$i]]
|
| +]]
|
| +
|
| +
|
| +// The name of the class template implementing the action template.
|
| +#define GMOCK_ACTION_CLASS_(name, value_params)\
|
| + GMOCK_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
|
| +
|
| +$range k 0..n-1
|
| +
|
| +#define ACTION_TEMPLATE(name, template_params, value_params)\
|
| + template <GMOCK_INTERNAL_DECL_##template_params\
|
| + GMOCK_INTERNAL_DECL_TYPE_##value_params>\
|
| + class GMOCK_ACTION_CLASS_(name, value_params) {\
|
| + public:\
|
| + GMOCK_ACTION_CLASS_(name, value_params)\
|
| + GMOCK_INTERNAL_INIT_##value_params {}\
|
| + template <typename F>\
|
| + class gmock_Impl : public ::testing::ActionInterface<F> {\
|
| + public:\
|
| + typedef F function_type;\
|
| + typedef typename ::testing::internal::Function<F>::Result return_type;\
|
| + typedef typename ::testing::internal::Function<F>::ArgumentTuple\
|
| + args_type;\
|
| + explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}\
|
| + virtual return_type Perform(const args_type& args) {\
|
| + return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
|
| + Perform(this, args);\
|
| + }\
|
| + template <$for k, [[typename arg$k[[]]_type]]>\
|
| + return_type gmock_PerformImpl(const args_type& args[[]]
|
| +$for k [[, arg$k[[]]_type arg$k]]) const;\
|
| + GMOCK_INTERNAL_DEFN_##value_params\
|
| + };\
|
| + template <typename F> operator ::testing::Action<F>() const {\
|
| + return ::testing::Action<F>(\
|
| + new gmock_Impl<F>(GMOCK_INTERNAL_LIST_##value_params));\
|
| + }\
|
| + GMOCK_INTERNAL_DEFN_##value_params\
|
| + };\
|
| + template <GMOCK_INTERNAL_DECL_##template_params\
|
| + GMOCK_INTERNAL_DECL_TYPE_##value_params>\
|
| + inline GMOCK_ACTION_CLASS_(name, value_params)<\
|
| + GMOCK_INTERNAL_LIST_##template_params\
|
| + GMOCK_INTERNAL_LIST_TYPE_##value_params> name(\
|
| + GMOCK_INTERNAL_DECL_##value_params) {\
|
| + return GMOCK_ACTION_CLASS_(name, value_params)<\
|
| + GMOCK_INTERNAL_LIST_##template_params\
|
| + GMOCK_INTERNAL_LIST_TYPE_##value_params>(\
|
| + GMOCK_INTERNAL_LIST_##value_params);\
|
| + }\
|
| + template <GMOCK_INTERNAL_DECL_##template_params\
|
| + GMOCK_INTERNAL_DECL_TYPE_##value_params>\
|
| + template <typename F>\
|
| + template <typename arg0_type, typename arg1_type, typename arg2_type,\
|
| + typename arg3_type, typename arg4_type, typename arg5_type,\
|
| + typename arg6_type, typename arg7_type, typename arg8_type,\
|
| + typename arg9_type>\
|
| + typename ::testing::internal::Function<F>::Result\
|
| + GMOCK_ACTION_CLASS_(name, value_params)<\
|
| + GMOCK_INTERNAL_LIST_##template_params\
|
| + GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl<F>::\
|
| + gmock_PerformImpl(\
|
| + GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
|
| +
|
| +$for i
|
| +
|
| +[[
|
| +$var template = [[$if i==0 [[]] $else [[
|
| +$range j 0..i-1
|
| +
|
| + template <$for j, [[typename p$j##_type]]>\
|
| +]]]]
|
| +$var class_name = [[name##Action[[$if i==0 [[]] $elif i==1 [[P]]
|
| + $else [[P$i]]]]]]
|
| +$range j 0..i-1
|
| +$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
|
| +$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
|
| +$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
|
| +$var param_field_decls = [[$for j
|
| +[[
|
| +
|
| + p$j##_type p$j;\
|
| +]]]]
|
| +$var param_field_decls2 = [[$for j
|
| +[[
|
| +
|
| + p$j##_type p$j;\
|
| +]]]]
|
| +$var params = [[$for j, [[p$j]]]]
|
| +$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
|
| +$var typename_arg_types = [[$for k, [[typename arg$k[[]]_type]]]]
|
| +$var arg_types_and_names = [[$for k, [[arg$k[[]]_type arg$k]]]]
|
| +$var macro_name = [[$if i==0 [[ACTION]] $elif i==1 [[ACTION_P]]
|
| + $else [[ACTION_P$i]]]]
|
| +
|
| +#define $macro_name(name$for j [[, p$j]])\$template
|
| + class $class_name {\
|
| + public:\
|
| + $class_name($ctor_param_list)$inits {}\
|
| + template <typename F>\
|
| + class gmock_Impl : public ::testing::ActionInterface<F> {\
|
| + public:\
|
| + typedef F function_type;\
|
| + typedef typename ::testing::internal::Function<F>::Result return_type;\
|
| + typedef typename ::testing::internal::Function<F>::ArgumentTuple\
|
| + args_type;\
|
| + [[$if i==1 [[explicit ]]]]gmock_Impl($ctor_param_list)$inits {}\
|
| + virtual return_type Perform(const args_type& args) {\
|
| + return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
|
| + Perform(this, args);\
|
| + }\
|
| + template <$typename_arg_types>\
|
| + return_type gmock_PerformImpl(const args_type& args, [[]]
|
| +$arg_types_and_names) const;\$param_field_decls
|
| + };\
|
| + template <typename F> operator ::testing::Action<F>() const {\
|
| + return ::testing::Action<F>(new gmock_Impl<F>($params));\
|
| + }\$param_field_decls2
|
| + };\$template
|
| + inline $class_name$param_types name($param_types_and_names) {\
|
| + return $class_name$param_types($params);\
|
| + }\$template
|
| + template <typename F>\
|
| + template <$typename_arg_types>\
|
| + typename ::testing::internal::Function<F>::Result\
|
| + $class_name$param_types::gmock_Impl<F>::gmock_PerformImpl(\
|
| + GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
|
| +]]
|
| +$$ } // This meta comment fixes auto-indentation in Emacs. It won't
|
| +$$ // show up in the generated code.
|
| +
|
| +
|
| +// TODO(wan@google.com): move the following to a different .h file
|
| +// such that we don't have to run 'pump' every time the code is
|
| +// updated.
|
| +namespace testing {
|
| +
|
| +// Various overloads for InvokeArgument<N>().
|
| +//
|
| +// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
|
| +// (0-based) argument, which must be a k-ary callable, of the mock
|
| +// function, with arguments a1, a2, ..., a_k.
|
| +//
|
| +// Notes:
|
| +//
|
| +// 1. The arguments are passed by value by default. If you need to
|
| +// pass an argument by reference, wrap it inside ByRef(). For
|
| +// example,
|
| +//
|
| +// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
|
| +//
|
| +// passes 5 and string("Hello") by value, and passes foo by
|
| +// reference.
|
| +//
|
| +// 2. If the callable takes an argument by reference but ByRef() is
|
| +// not used, it will receive the reference to a copy of the value,
|
| +// instead of the original value. For example, when the 0-th
|
| +// argument of the mock function takes a const string&, the action
|
| +//
|
| +// InvokeArgument<0>(string("Hello"))
|
| +//
|
| +// makes a copy of the temporary string("Hello") object and passes a
|
| +// reference of the copy, instead of the original temporary object,
|
| +// to the callable. This makes it easy for a user to define an
|
| +// InvokeArgument action from temporary values and have it performed
|
| +// later.
|
| +
|
| +$range i 0..n
|
| +$for i [[
|
| +$range j 0..i-1
|
| +
|
| +ACTION_TEMPLATE(InvokeArgument,
|
| + HAS_1_TEMPLATE_PARAMS(int, k),
|
| + AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])) {
|
| + return internal::CallableHelper<return_type>::Call(
|
| + ::std::tr1::get<k>(args)$for j [[, p$j]]);
|
| +}
|
| +
|
| +]]
|
| +
|
| +// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
|
| +// mock function to *pointer.
|
| +ACTION_TEMPLATE(SaveArg,
|
| + HAS_1_TEMPLATE_PARAMS(int, k),
|
| + AND_1_VALUE_PARAMS(pointer)) {
|
| + *pointer = ::std::tr1::get<k>(args);
|
| +}
|
| +
|
| +// Action SetArgReferee<k>(value) assigns 'value' to the variable
|
| +// referenced by the k-th (0-based) argument of the mock function.
|
| +ACTION_TEMPLATE(SetArgReferee,
|
| + HAS_1_TEMPLATE_PARAMS(int, k),
|
| + AND_1_VALUE_PARAMS(value)) {
|
| + typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type;
|
| + // Ensures that argument #k is a reference. If you get a compiler
|
| + // error on the next line, you are using SetArgReferee<k>(value) in
|
| + // a mock function whose k-th (0-based) argument is not a reference.
|
| + GMOCK_COMPILE_ASSERT_(internal::is_reference<argk_type>::value,
|
| + SetArgReferee_must_be_used_with_a_reference_argument);
|
| + ::std::tr1::get<k>(args) = value;
|
| +}
|
| +
|
| +// Action SetArrayArgument<k>(first, last) copies the elements in
|
| +// source range [first, last) to the array pointed to by the k-th
|
| +// (0-based) argument, which can be either a pointer or an
|
| +// iterator. The action does not take ownership of the elements in the
|
| +// source range.
|
| +ACTION_TEMPLATE(SetArrayArgument,
|
| + HAS_1_TEMPLATE_PARAMS(int, k),
|
| + AND_2_VALUE_PARAMS(first, last)) {
|
| + // Microsoft compiler deprecates ::std::copy, so we want to suppress warning
|
| + // 4996 (Function call with parameters that may be unsafe) there.
|
| +#ifdef _MSC_VER
|
| +#pragma warning(push) // Saves the current warning state.
|
| +#pragma warning(disable:4996) // Temporarily disables warning 4996.
|
| +#endif
|
| + ::std::copy(first, last, ::std::tr1::get<k>(args));
|
| +#ifdef _MSC_VER
|
| +#pragma warning(pop) // Restores the warning state.
|
| +#endif
|
| +}
|
| +
|
| +// Various overloads for ReturnNew<T>().
|
| +//
|
| +// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
|
| +// instance of type T, constructed on the heap with constructor arguments
|
| +// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
|
| +$range i 0..n
|
| +$for i [[
|
| +$range j 0..i-1
|
| +$var ps = [[$for j, [[p$j]]]]
|
| +
|
| +ACTION_TEMPLATE(ReturnNew,
|
| + HAS_1_TEMPLATE_PARAMS(typename, T),
|
| + AND_$i[[]]_VALUE_PARAMS($ps)) {
|
| + return new T($ps);
|
| +}
|
| +
|
| +]]
|
| +
|
| +// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
|
| +// function.
|
| +ACTION_TEMPLATE(DeleteArg,
|
| + HAS_1_TEMPLATE_PARAMS(int, k),
|
| + AND_0_VALUE_PARAMS()) {
|
| + delete ::std::tr1::get<k>(args);
|
| +}
|
| +
|
| +// Action Throw(exception) can be used in a mock function of any type
|
| +// to throw the given exception. Any copyable value can be thrown.
|
| +#if GTEST_HAS_EXCEPTIONS
|
| +ACTION_P(Throw, exception) { throw exception; }
|
| +#endif // GTEST_HAS_EXCEPTIONS
|
| +
|
| +} // namespace testing
|
| +
|
| +#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
|
|
|