Index: testing/gmock/include/gmock/gmock-generated-actions.h.pump |
diff --git a/testing/gmock/include/gmock/gmock-generated-actions.h.pump b/testing/gmock/include/gmock/gmock-generated-actions.h.pump |
new file mode 100644 |
index 0000000000000000000000000000000000000000..b5223a34b158495f0edb760d47ce682f4a2ad665 |
--- /dev/null |
+++ b/testing/gmock/include/gmock/gmock-generated-actions.h.pump |
@@ -0,0 +1,1008 @@ |
+$$ -*- mode: c++; -*- |
+$$ This is a Pump source file. Please use Pump to convert it to |
+$$ gmock-generated-variadic-actions.h. |
+$$ |
+$var n = 10 $$ The maximum arity we support. |
+$$}} This meta comment fixes auto-indentation in editors. |
+// Copyright 2007, Google Inc. |
+// All rights reserved. |
+// |
+// Redistribution and use in source and binary forms, with or without |
+// modification, are permitted provided that the following conditions are |
+// met: |
+// |
+// * Redistributions of source code must retain the above copyright |
+// notice, this list of conditions and the following disclaimer. |
+// * Redistributions in binary form must reproduce the above |
+// copyright notice, this list of conditions and the following disclaimer |
+// in the documentation and/or other materials provided with the |
+// distribution. |
+// * Neither the name of Google Inc. nor the names of its |
+// contributors may be used to endorse or promote products derived from |
+// this software without specific prior written permission. |
+// |
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+// |
+// Author: wan@google.com (Zhanyong Wan) |
+ |
+// Google Mock - a framework for writing C++ mock classes. |
+// |
+// This file implements some commonly used variadic actions. |
+ |
+#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |
+#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |
+ |
+#include <gmock/gmock-actions.h> |
+#include <gmock/internal/gmock-port.h> |
+ |
+namespace testing { |
+namespace internal { |
+ |
+// InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary |
+// function or method with the unpacked values, where F is a function |
+// type that takes N arguments. |
+template <typename Result, typename ArgumentTuple> |
+class InvokeHelper; |
+ |
+ |
+$range i 0..n |
+$for i [[ |
+$range j 1..i |
+$var types = [[$for j [[, typename A$j]]]] |
+$var as = [[$for j, [[A$j]]]] |
+$var args = [[$if i==0 [[]] $else [[ args]]]] |
+$var import = [[$if i==0 [[]] $else [[ |
+ using ::std::tr1::get; |
+ |
+]]]] |
+$var gets = [[$for j, [[get<$(j - 1)>(args)]]]] |
+template <typename R$types> |
+class InvokeHelper<R, ::std::tr1::tuple<$as> > { |
+ public: |
+ template <typename Function> |
+ static R Invoke(Function function, const ::std::tr1::tuple<$as>&$args) { |
+$import return function($gets); |
+ } |
+ |
+ template <class Class, typename MethodPtr> |
+ static R InvokeMethod(Class* obj_ptr, |
+ MethodPtr method_ptr, |
+ const ::std::tr1::tuple<$as>&$args) { |
+$import return (obj_ptr->*method_ptr)($gets); |
+ } |
+}; |
+ |
+ |
+]] |
+ |
+// Implements the Invoke(f) action. The template argument |
+// FunctionImpl is the implementation type of f, which can be either a |
+// function pointer or a functor. Invoke(f) can be used as an |
+// Action<F> as long as f's type is compatible with F (i.e. f can be |
+// assigned to a tr1::function<F>). |
+template <typename FunctionImpl> |
+class InvokeAction { |
+ public: |
+ // The c'tor makes a copy of function_impl (either a function |
+ // pointer or a functor). |
+ explicit InvokeAction(FunctionImpl function_impl) |
+ : function_impl_(function_impl) {} |
+ |
+ template <typename Result, typename ArgumentTuple> |
+ Result Perform(const ArgumentTuple& args) { |
+ return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args); |
+ } |
+ private: |
+ FunctionImpl function_impl_; |
+}; |
+ |
+// Implements the Invoke(object_ptr, &Class::Method) action. |
+template <class Class, typename MethodPtr> |
+class InvokeMethodAction { |
+ public: |
+ InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr) |
+ : obj_ptr_(obj_ptr), method_ptr_(method_ptr) {} |
+ |
+ template <typename Result, typename ArgumentTuple> |
+ Result Perform(const ArgumentTuple& args) const { |
+ return InvokeHelper<Result, ArgumentTuple>::InvokeMethod( |
+ obj_ptr_, method_ptr_, args); |
+ } |
+ private: |
+ Class* const obj_ptr_; |
+ const MethodPtr method_ptr_; |
+}; |
+ |
+// A ReferenceWrapper<T> object represents a reference to type T, |
+// which can be either const or not. It can be explicitly converted |
+// from, and implicitly converted to, a T&. Unlike a reference, |
+// ReferenceWrapper<T> can be copied and can survive template type |
+// inference. This is used to support by-reference arguments in the |
+// InvokeArgument<N>(...) action. The idea was from "reference |
+// wrappers" in tr1, which we don't have in our source tree yet. |
+template <typename T> |
+class ReferenceWrapper { |
+ public: |
+ // Constructs a ReferenceWrapper<T> object from a T&. |
+ explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT |
+ |
+ // Allows a ReferenceWrapper<T> object to be implicitly converted to |
+ // a T&. |
+ operator T&() const { return *pointer_; } |
+ private: |
+ T* pointer_; |
+}; |
+ |
+// CallableHelper has static methods for invoking "callables", |
+// i.e. function pointers and functors. It uses overloading to |
+// provide a uniform interface for invoking different kinds of |
+// callables. In particular, you can use: |
+// |
+// CallableHelper<R>::Call(callable, a1, a2, ..., an) |
+// |
+// to invoke an n-ary callable, where R is its return type. If an |
+// argument, say a2, needs to be passed by reference, you should write |
+// ByRef(a2) instead of a2 in the above expression. |
+template <typename R> |
+class CallableHelper { |
+ public: |
+ // Calls a nullary callable. |
+ template <typename Function> |
+ static R Call(Function function) { return function(); } |
+ |
+ // Calls a unary callable. |
+ |
+ // We deliberately pass a1 by value instead of const reference here |
+ // in case it is a C-string literal. If we had declared the |
+ // parameter as 'const A1& a1' and write Call(function, "Hi"), the |
+ // compiler would've thought A1 is 'char[3]', which causes trouble |
+ // when you need to copy a value of type A1. By declaring the |
+ // parameter as 'A1 a1', the compiler will correctly infer that A1 |
+ // is 'const char*' when it sees Call(function, "Hi"). |
+ // |
+ // Since this function is defined inline, the compiler can get rid |
+ // of the copying of the arguments. Therefore the performance won't |
+ // be hurt. |
+ template <typename Function, typename A1> |
+ static R Call(Function function, A1 a1) { return function(a1); } |
+ |
+$range i 2..n |
+$for i |
+[[ |
+$var arity = [[$if i==2 [[binary]] $elif i==3 [[ternary]] $else [[$i-ary]]]] |
+ |
+ // Calls a $arity callable. |
+ |
+$range j 1..i |
+$var typename_As = [[$for j, [[typename A$j]]]] |
+$var Aas = [[$for j, [[A$j a$j]]]] |
+$var as = [[$for j, [[a$j]]]] |
+$var typename_Ts = [[$for j, [[typename T$j]]]] |
+$var Ts = [[$for j, [[T$j]]]] |
+ template <typename Function, $typename_As> |
+ static R Call(Function function, $Aas) { |
+ return function($as); |
+ } |
+ |
+]] |
+ |
+}; // class CallableHelper |
+ |
+// An INTERNAL macro for extracting the type of a tuple field. It's |
+// subject to change without notice - DO NOT USE IN USER CODE! |
+#define GMOCK_FIELD_(Tuple, N) \ |
+ typename ::std::tr1::tuple_element<N, Tuple>::type |
+ |
+$range i 1..n |
+ |
+// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the |
+// type of an n-ary function whose i-th (1-based) argument type is the |
+// k{i}-th (0-based) field of ArgumentTuple, which must be a tuple |
+// type, and whose return type is Result. For example, |
+// SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type |
+// is int(bool, long). |
+// |
+// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args) |
+// returns the selected fields (k1, k2, ..., k_n) of args as a tuple. |
+// For example, |
+// SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select( |
+// ::std::tr1::make_tuple(true, 'a', 2.5)) |
+// returns ::std::tr1::tuple (2.5, true). |
+// |
+// The numbers in list k1, k2, ..., k_n must be >= 0, where n can be |
+// in the range [0, $n]. Duplicates are allowed and they don't have |
+// to be in an ascending or descending order. |
+ |
+template <typename Result, typename ArgumentTuple, $for i, [[int k$i]]> |
+class SelectArgs { |
+ public: |
+ typedef Result type($for i, [[GMOCK_FIELD_(ArgumentTuple, k$i)]]); |
+ typedef typename Function<type>::ArgumentTuple SelectedArgs; |
+ static SelectedArgs Select(const ArgumentTuple& args) { |
+ using ::std::tr1::get; |
+ return SelectedArgs($for i, [[get<k$i>(args)]]); |
+ } |
+}; |
+ |
+ |
+$for i [[ |
+$range j 1..n |
+$range j1 1..i-1 |
+template <typename Result, typename ArgumentTuple$for j1[[, int k$j1]]> |
+class SelectArgs<Result, ArgumentTuple, |
+ $for j, [[$if j <= i-1 [[k$j]] $else [[-1]]]]> { |
+ public: |
+ typedef Result type($for j1, [[GMOCK_FIELD_(ArgumentTuple, k$j1)]]); |
+ typedef typename Function<type>::ArgumentTuple SelectedArgs; |
+ static SelectedArgs Select(const ArgumentTuple& [[]] |
+$if i == 1 [[/* args */]] $else [[args]]) { |
+ using ::std::tr1::get; |
+ return SelectedArgs($for j1, [[get<k$j1>(args)]]); |
+ } |
+}; |
+ |
+ |
+]] |
+#undef GMOCK_FIELD_ |
+ |
+$var ks = [[$for i, [[k$i]]]] |
+ |
+// Implements the WithArgs action. |
+template <typename InnerAction, $for i, [[int k$i = -1]]> |
+class WithArgsAction { |
+ public: |
+ explicit WithArgsAction(const InnerAction& action) : action_(action) {} |
+ |
+ template <typename F> |
+ operator Action<F>() const { return MakeAction(new Impl<F>(action_)); } |
+ |
+ private: |
+ template <typename F> |
+ class Impl : public ActionInterface<F> { |
+ public: |
+ typedef typename Function<F>::Result Result; |
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
+ |
+ explicit Impl(const InnerAction& action) : action_(action) {} |
+ |
+ virtual Result Perform(const ArgumentTuple& args) { |
+ return action_.Perform(SelectArgs<Result, ArgumentTuple, $ks>::Select(args)); |
+ } |
+ |
+ private: |
+ typedef typename SelectArgs<Result, ArgumentTuple, |
+ $ks>::type InnerFunctionType; |
+ |
+ Action<InnerFunctionType> action_; |
+ }; |
+ |
+ const InnerAction action_; |
+}; |
+ |
+// Does two actions sequentially. Used for implementing the DoAll(a1, |
+// a2, ...) action. |
+template <typename Action1, typename Action2> |
+class DoBothAction { |
+ public: |
+ DoBothAction(Action1 action1, Action2 action2) |
+ : action1_(action1), action2_(action2) {} |
+ |
+ // This template type conversion operator allows DoAll(a1, ..., a_n) |
+ // to be used in ANY function of compatible type. |
+ template <typename F> |
+ operator Action<F>() const { |
+ return Action<F>(new Impl<F>(action1_, action2_)); |
+ } |
+ |
+ private: |
+ // Implements the DoAll(...) action for a particular function type F. |
+ template <typename F> |
+ class Impl : public ActionInterface<F> { |
+ public: |
+ typedef typename Function<F>::Result Result; |
+ typedef typename Function<F>::ArgumentTuple ArgumentTuple; |
+ typedef typename Function<F>::MakeResultVoid VoidResult; |
+ |
+ Impl(const Action<VoidResult>& action1, const Action<F>& action2) |
+ : action1_(action1), action2_(action2) {} |
+ |
+ virtual Result Perform(const ArgumentTuple& args) { |
+ action1_.Perform(args); |
+ return action2_.Perform(args); |
+ } |
+ |
+ private: |
+ const Action<VoidResult> action1_; |
+ const Action<F> action2_; |
+ }; |
+ |
+ Action1 action1_; |
+ Action2 action2_; |
+}; |
+ |
+// A macro from the ACTION* family (defined later in this file) |
+// defines an action that can be used in a mock function. Typically, |
+// these actions only care about a subset of the arguments of the mock |
+// function. For example, if such an action only uses the second |
+// argument, it can be used in any mock function that takes >= 2 |
+// arguments where the type of the second argument is compatible. |
+// |
+// Therefore, the action implementation must be prepared to take more |
+// arguments than it needs. The ExcessiveArg type is used to |
+// represent those excessive arguments. In order to keep the compiler |
+// error messages tractable, we define it in the testing namespace |
+// instead of testing::internal. However, this is an INTERNAL TYPE |
+// and subject to change without notice, so a user MUST NOT USE THIS |
+// TYPE DIRECTLY. |
+struct ExcessiveArg {}; |
+ |
+// A helper class needed for implementing the ACTION* macros. |
+template <typename Result, class Impl> |
+class ActionHelper { |
+ public: |
+$range i 0..n |
+$for i |
+ |
+[[ |
+$var template = [[$if i==0 [[]] $else [[ |
+$range j 0..i-1 |
+ template <$for j, [[typename A$j]]> |
+]]]] |
+$range j 0..i-1 |
+$var As = [[$for j, [[A$j]]]] |
+$var as = [[$for j, [[get<$j>(args)]]]] |
+$range k 1..n-i |
+$var eas = [[$for k, [[ExcessiveArg()]]]] |
+$var arg_list = [[$if (i==0) | (i==n) [[$as$eas]] $else [[$as, $eas]]]] |
+$template |
+ static Result Perform(Impl* impl, const ::std::tr1::tuple<$As>& args) { |
+ using ::std::tr1::get; |
+ return impl->template gmock_PerformImpl<$As>(args, $arg_list); |
+ } |
+ |
+]] |
+}; |
+ |
+} // namespace internal |
+ |
+// Various overloads for Invoke(). |
+ |
+// Creates an action that invokes 'function_impl' with the mock |
+// function's arguments. |
+template <typename FunctionImpl> |
+PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke( |
+ FunctionImpl function_impl) { |
+ return MakePolymorphicAction( |
+ internal::InvokeAction<FunctionImpl>(function_impl)); |
+} |
+ |
+// Creates an action that invokes the given method on the given object |
+// with the mock function's arguments. |
+template <class Class, typename MethodPtr> |
+PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke( |
+ Class* obj_ptr, MethodPtr method_ptr) { |
+ return MakePolymorphicAction( |
+ internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr)); |
+} |
+ |
+// Creates a reference wrapper for the given L-value. If necessary, |
+// you can explicitly specify the type of the reference. For example, |
+// suppose 'derived' is an object of type Derived, ByRef(derived) |
+// would wrap a Derived&. If you want to wrap a const Base& instead, |
+// where Base is a base class of Derived, just write: |
+// |
+// ByRef<const Base>(derived) |
+template <typename T> |
+inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT |
+ return internal::ReferenceWrapper<T>(l_value); |
+} |
+ |
+// WithoutArgs(inner_action) can be used in a mock function with a |
+// non-empty argument list to perform inner_action, which takes no |
+// argument. In other words, it adapts an action accepting no |
+// argument to one that accepts (and ignores) arguments. |
+template <typename InnerAction> |
+inline internal::WithArgsAction<InnerAction> |
+WithoutArgs(const InnerAction& action) { |
+ return internal::WithArgsAction<InnerAction>(action); |
+} |
+ |
+// WithArg<k>(an_action) creates an action that passes the k-th |
+// (0-based) argument of the mock function to an_action and performs |
+// it. It adapts an action accepting one argument to one that accepts |
+// multiple arguments. For convenience, we also provide |
+// WithArgs<k>(an_action) (defined below) as a synonym. |
+template <int k, typename InnerAction> |
+inline internal::WithArgsAction<InnerAction, k> |
+WithArg(const InnerAction& action) { |
+ return internal::WithArgsAction<InnerAction, k>(action); |
+} |
+ |
+// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes |
+// the selected arguments of the mock function to an_action and |
+// performs it. It serves as an adaptor between actions with |
+// different argument lists. C++ doesn't support default arguments for |
+// function templates, so we have to overload it. |
+ |
+$range i 1..n |
+$for i [[ |
+$range j 1..i |
+template <$for j [[int k$j, ]]typename InnerAction> |
+inline internal::WithArgsAction<InnerAction$for j [[, k$j]]> |
+WithArgs(const InnerAction& action) { |
+ return internal::WithArgsAction<InnerAction$for j [[, k$j]]>(action); |
+} |
+ |
+ |
+]] |
+// Creates an action that does actions a1, a2, ..., sequentially in |
+// each invocation. |
+$range i 2..n |
+$for i [[ |
+$range j 2..i |
+$var types = [[$for j, [[typename Action$j]]]] |
+$var Aas = [[$for j [[, Action$j a$j]]]] |
+ |
+template <typename Action1, $types> |
+$range k 1..i-1 |
+ |
+inline $for k [[internal::DoBothAction<Action$k, ]]Action$i$for k [[>]] |
+ |
+DoAll(Action1 a1$Aas) { |
+$if i==2 [[ |
+ |
+ return internal::DoBothAction<Action1, Action2>(a1, a2); |
+]] $else [[ |
+$range j2 2..i |
+ |
+ return DoAll(a1, DoAll($for j2, [[a$j2]])); |
+]] |
+ |
+} |
+ |
+]] |
+ |
+} // namespace testing |
+ |
+// The ACTION* family of macros can be used in a namespace scope to |
+// define custom actions easily. The syntax: |
+// |
+// ACTION(name) { statements; } |
+// |
+// will define an action with the given name that executes the |
+// statements. The value returned by the statements will be used as |
+// the return value of the action. Inside the statements, you can |
+// refer to the K-th (0-based) argument of the mock function by |
+// 'argK', and refer to its type by 'argK_type'. For example: |
+// |
+// ACTION(IncrementArg1) { |
+// arg1_type temp = arg1; |
+// return ++(*temp); |
+// } |
+// |
+// allows you to write |
+// |
+// ...WillOnce(IncrementArg1()); |
+// |
+// You can also refer to the entire argument tuple and its type by |
+// 'args' and 'args_type', and refer to the mock function type and its |
+// return type by 'function_type' and 'return_type'. |
+// |
+// Note that you don't need to specify the types of the mock function |
+// arguments. However rest assured that your code is still type-safe: |
+// you'll get a compiler error if *arg1 doesn't support the ++ |
+// operator, or if the type of ++(*arg1) isn't compatible with the |
+// mock function's return type, for example. |
+// |
+// Sometimes you'll want to parameterize the action. For that you can use |
+// another macro: |
+// |
+// ACTION_P(name, param_name) { statements; } |
+// |
+// For example: |
+// |
+// ACTION_P(Add, n) { return arg0 + n; } |
+// |
+// will allow you to write: |
+// |
+// ...WillOnce(Add(5)); |
+// |
+// Note that you don't need to provide the type of the parameter |
+// either. If you need to reference the type of a parameter named |
+// 'foo', you can write 'foo_type'. For example, in the body of |
+// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type |
+// of 'n'. |
+// |
+// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P$n to support |
+// multi-parameter actions. |
+// |
+// For the purpose of typing, you can view |
+// |
+// ACTION_Pk(Foo, p1, ..., pk) { ... } |
+// |
+// as shorthand for |
+// |
+// template <typename p1_type, ..., typename pk_type> |
+// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } |
+// |
+// In particular, you can provide the template type arguments |
+// explicitly when invoking Foo(), as in Foo<long, bool>(5, false); |
+// although usually you can rely on the compiler to infer the types |
+// for you automatically. You can assign the result of expression |
+// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., |
+// pk_type>. This can be useful when composing actions. |
+// |
+// You can also overload actions with different numbers of parameters: |
+// |
+// ACTION_P(Plus, a) { ... } |
+// ACTION_P2(Plus, a, b) { ... } |
+// |
+// While it's tempting to always use the ACTION* macros when defining |
+// a new action, you should also consider implementing ActionInterface |
+// or using MakePolymorphicAction() instead, especially if you need to |
+// use the action a lot. While these approaches require more work, |
+// they give you more control on the types of the mock function |
+// arguments and the action parameters, which in general leads to |
+// better compiler error messages that pay off in the long run. They |
+// also allow overloading actions based on parameter types (as opposed |
+// to just based on the number of parameters). |
+// |
+// CAVEAT: |
+// |
+// ACTION*() can only be used in a namespace scope. The reason is |
+// that C++ doesn't yet allow function-local types to be used to |
+// instantiate templates. The up-coming C++0x standard will fix this. |
+// Once that's done, we'll consider supporting using ACTION*() inside |
+// a function. |
+// |
+// MORE INFORMATION: |
+// |
+// To learn more about using these macros, please search for 'ACTION' |
+// on http://code.google.com/p/googlemock/wiki/CookBook. |
+ |
+$range i 0..n |
+$range k 0..n-1 |
+ |
+// An internal macro needed for implementing ACTION*(). |
+#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\ |
+ const args_type& args GTEST_ATTRIBUTE_UNUSED_ |
+$for k [[,\ |
+ arg$k[[]]_type arg$k GTEST_ATTRIBUTE_UNUSED_]] |
+ |
+ |
+// Sometimes you want to give an action explicit template parameters |
+// that cannot be inferred from its value parameters. ACTION() and |
+// ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that |
+// and can be viewed as an extension to ACTION() and ACTION_P*(). |
+// |
+// The syntax: |
+// |
+// ACTION_TEMPLATE(ActionName, |
+// HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m), |
+// AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; } |
+// |
+// defines an action template that takes m explicit template |
+// parameters and n value parameters. name_i is the name of the i-th |
+// template parameter, and kind_i specifies whether it's a typename, |
+// an integral constant, or a template. p_i is the name of the i-th |
+// value parameter. |
+// |
+// Example: |
+// |
+// // DuplicateArg<k, T>(output) converts the k-th argument of the mock |
+// // function to type T and copies it to *output. |
+// ACTION_TEMPLATE(DuplicateArg, |
+// HAS_2_TEMPLATE_PARAMS(int, k, typename, T), |
+// AND_1_VALUE_PARAMS(output)) { |
+// *output = T(std::tr1::get<k>(args)); |
+// } |
+// ... |
+// int n; |
+// EXPECT_CALL(mock, Foo(_, _)) |
+// .WillOnce(DuplicateArg<1, unsigned char>(&n)); |
+// |
+// To create an instance of an action template, write: |
+// |
+// ActionName<t1, ..., t_m>(v1, ..., v_n) |
+// |
+// where the ts are the template arguments and the vs are the value |
+// arguments. The value argument types are inferred by the compiler. |
+// If you want to explicitly specify the value argument types, you can |
+// provide additional template arguments: |
+// |
+// ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n) |
+// |
+// where u_i is the desired type of v_i. |
+// |
+// ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the |
+// number of value parameters, but not on the number of template |
+// parameters. Without the restriction, the meaning of the following |
+// is unclear: |
+// |
+// OverloadedAction<int, bool>(x); |
+// |
+// Are we using a single-template-parameter action where 'bool' refers |
+// to the type of x, or are we using a two-template-parameter action |
+// where the compiler is asked to infer the type of x? |
+// |
+// Implementation notes: |
+// |
+// GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and |
+// GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for |
+// implementing ACTION_TEMPLATE. The main trick we use is to create |
+// new macro invocations when expanding a macro. For example, we have |
+// |
+// #define ACTION_TEMPLATE(name, template_params, value_params) |
+// ... GMOCK_INTERNAL_DECL_##template_params ... |
+// |
+// which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...) |
+// to expand to |
+// |
+// ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ... |
+// |
+// Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the |
+// preprocessor will continue to expand it to |
+// |
+// ... typename T ... |
+// |
+// This technique conforms to the C++ standard and is portable. It |
+// allows us to implement action templates using O(N) code, where N is |
+// the maximum number of template/value parameters supported. Without |
+// using it, we'd have to devote O(N^2) amount of code to implement all |
+// combinations of m and n. |
+ |
+// Declares the template parameters. |
+ |
+$range j 1..n |
+$for j [[ |
+$range m 0..j-1 |
+#define GMOCK_INTERNAL_DECL_HAS_$j[[]] |
+_TEMPLATE_PARAMS($for m, [[kind$m, name$m]]) $for m, [[kind$m name$m]] |
+ |
+ |
+]] |
+ |
+// Lists the template parameters. |
+ |
+$for j [[ |
+$range m 0..j-1 |
+#define GMOCK_INTERNAL_LIST_HAS_$j[[]] |
+_TEMPLATE_PARAMS($for m, [[kind$m, name$m]]) $for m, [[name$m]] |
+ |
+ |
+]] |
+ |
+// Declares the types of value parameters. |
+ |
+$for i [[ |
+$range j 0..i-1 |
+#define GMOCK_INTERNAL_DECL_TYPE_AND_$i[[]] |
+_VALUE_PARAMS($for j, [[p$j]]) $for j [[, typename p$j##_type]] |
+ |
+ |
+]] |
+ |
+// Initializes the value parameters. |
+ |
+$for i [[ |
+$range j 0..i-1 |
+#define GMOCK_INTERNAL_INIT_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])\ |
+ ($for j, [[p$j##_type gmock_p$j]])$if i>0 [[ : ]]$for j, [[p$j(gmock_p$j)]] |
+ |
+ |
+]] |
+ |
+// Declares the fields for storing the value parameters. |
+ |
+$for i [[ |
+$range j 0..i-1 |
+#define GMOCK_INTERNAL_DEFN_AND_$i[[]] |
+_VALUE_PARAMS($for j, [[p$j]]) $for j [[p$j##_type p$j; ]] |
+ |
+ |
+]] |
+ |
+// Lists the value parameters. |
+ |
+$for i [[ |
+$range j 0..i-1 |
+#define GMOCK_INTERNAL_LIST_AND_$i[[]] |
+_VALUE_PARAMS($for j, [[p$j]]) $for j, [[p$j]] |
+ |
+ |
+]] |
+ |
+// Lists the value parameter types. |
+ |
+$for i [[ |
+$range j 0..i-1 |
+#define GMOCK_INTERNAL_LIST_TYPE_AND_$i[[]] |
+_VALUE_PARAMS($for j, [[p$j]]) $for j [[, p$j##_type]] |
+ |
+ |
+]] |
+ |
+// Declares the value parameters. |
+ |
+$for i [[ |
+$range j 0..i-1 |
+#define GMOCK_INTERNAL_DECL_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]]) [[]] |
+$for j, [[p$j##_type p$j]] |
+ |
+ |
+]] |
+ |
+// The suffix of the class template implementing the action template. |
+$for i [[ |
+ |
+ |
+$range j 0..i-1 |
+#define GMOCK_INTERNAL_COUNT_AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]]) [[]] |
+$if i==1 [[P]] $elif i>=2 [[P$i]] |
+]] |
+ |
+ |
+// The name of the class template implementing the action template. |
+#define GMOCK_ACTION_CLASS_(name, value_params)\ |
+ GMOCK_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params) |
+ |
+$range k 0..n-1 |
+ |
+#define ACTION_TEMPLATE(name, template_params, value_params)\ |
+ template <GMOCK_INTERNAL_DECL_##template_params\ |
+ GMOCK_INTERNAL_DECL_TYPE_##value_params>\ |
+ class GMOCK_ACTION_CLASS_(name, value_params) {\ |
+ public:\ |
+ GMOCK_ACTION_CLASS_(name, value_params)\ |
+ GMOCK_INTERNAL_INIT_##value_params {}\ |
+ template <typename F>\ |
+ class gmock_Impl : public ::testing::ActionInterface<F> {\ |
+ public:\ |
+ typedef F function_type;\ |
+ typedef typename ::testing::internal::Function<F>::Result return_type;\ |
+ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
+ args_type;\ |
+ explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}\ |
+ virtual return_type Perform(const args_type& args) {\ |
+ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
+ Perform(this, args);\ |
+ }\ |
+ template <$for k, [[typename arg$k[[]]_type]]>\ |
+ return_type gmock_PerformImpl(const args_type& args[[]] |
+$for k [[, arg$k[[]]_type arg$k]]) const;\ |
+ GMOCK_INTERNAL_DEFN_##value_params\ |
+ };\ |
+ template <typename F> operator ::testing::Action<F>() const {\ |
+ return ::testing::Action<F>(\ |
+ new gmock_Impl<F>(GMOCK_INTERNAL_LIST_##value_params));\ |
+ }\ |
+ GMOCK_INTERNAL_DEFN_##value_params\ |
+ };\ |
+ template <GMOCK_INTERNAL_DECL_##template_params\ |
+ GMOCK_INTERNAL_DECL_TYPE_##value_params>\ |
+ inline GMOCK_ACTION_CLASS_(name, value_params)<\ |
+ GMOCK_INTERNAL_LIST_##template_params\ |
+ GMOCK_INTERNAL_LIST_TYPE_##value_params> name(\ |
+ GMOCK_INTERNAL_DECL_##value_params) {\ |
+ return GMOCK_ACTION_CLASS_(name, value_params)<\ |
+ GMOCK_INTERNAL_LIST_##template_params\ |
+ GMOCK_INTERNAL_LIST_TYPE_##value_params>(\ |
+ GMOCK_INTERNAL_LIST_##value_params);\ |
+ }\ |
+ template <GMOCK_INTERNAL_DECL_##template_params\ |
+ GMOCK_INTERNAL_DECL_TYPE_##value_params>\ |
+ template <typename F>\ |
+ template <typename arg0_type, typename arg1_type, typename arg2_type,\ |
+ typename arg3_type, typename arg4_type, typename arg5_type,\ |
+ typename arg6_type, typename arg7_type, typename arg8_type,\ |
+ typename arg9_type>\ |
+ typename ::testing::internal::Function<F>::Result\ |
+ GMOCK_ACTION_CLASS_(name, value_params)<\ |
+ GMOCK_INTERNAL_LIST_##template_params\ |
+ GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl<F>::\ |
+ gmock_PerformImpl(\ |
+ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
+ |
+$for i |
+ |
+[[ |
+$var template = [[$if i==0 [[]] $else [[ |
+$range j 0..i-1 |
+ |
+ template <$for j, [[typename p$j##_type]]>\ |
+]]]] |
+$var class_name = [[name##Action[[$if i==0 [[]] $elif i==1 [[P]] |
+ $else [[P$i]]]]]] |
+$range j 0..i-1 |
+$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]] |
+$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]] |
+$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]] |
+$var param_field_decls = [[$for j |
+[[ |
+ |
+ p$j##_type p$j;\ |
+]]]] |
+$var param_field_decls2 = [[$for j |
+[[ |
+ |
+ p$j##_type p$j;\ |
+]]]] |
+$var params = [[$for j, [[p$j]]]] |
+$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]] |
+$var typename_arg_types = [[$for k, [[typename arg$k[[]]_type]]]] |
+$var arg_types_and_names = [[$for k, [[arg$k[[]]_type arg$k]]]] |
+$var macro_name = [[$if i==0 [[ACTION]] $elif i==1 [[ACTION_P]] |
+ $else [[ACTION_P$i]]]] |
+ |
+#define $macro_name(name$for j [[, p$j]])\$template |
+ class $class_name {\ |
+ public:\ |
+ $class_name($ctor_param_list)$inits {}\ |
+ template <typename F>\ |
+ class gmock_Impl : public ::testing::ActionInterface<F> {\ |
+ public:\ |
+ typedef F function_type;\ |
+ typedef typename ::testing::internal::Function<F>::Result return_type;\ |
+ typedef typename ::testing::internal::Function<F>::ArgumentTuple\ |
+ args_type;\ |
+ [[$if i==1 [[explicit ]]]]gmock_Impl($ctor_param_list)$inits {}\ |
+ virtual return_type Perform(const args_type& args) {\ |
+ return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\ |
+ Perform(this, args);\ |
+ }\ |
+ template <$typename_arg_types>\ |
+ return_type gmock_PerformImpl(const args_type& args, [[]] |
+$arg_types_and_names) const;\$param_field_decls |
+ };\ |
+ template <typename F> operator ::testing::Action<F>() const {\ |
+ return ::testing::Action<F>(new gmock_Impl<F>($params));\ |
+ }\$param_field_decls2 |
+ };\$template |
+ inline $class_name$param_types name($param_types_and_names) {\ |
+ return $class_name$param_types($params);\ |
+ }\$template |
+ template <typename F>\ |
+ template <$typename_arg_types>\ |
+ typename ::testing::internal::Function<F>::Result\ |
+ $class_name$param_types::gmock_Impl<F>::gmock_PerformImpl(\ |
+ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const |
+]] |
+$$ } // This meta comment fixes auto-indentation in Emacs. It won't |
+$$ // show up in the generated code. |
+ |
+ |
+// TODO(wan@google.com): move the following to a different .h file |
+// such that we don't have to run 'pump' every time the code is |
+// updated. |
+namespace testing { |
+ |
+// Various overloads for InvokeArgument<N>(). |
+// |
+// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th |
+// (0-based) argument, which must be a k-ary callable, of the mock |
+// function, with arguments a1, a2, ..., a_k. |
+// |
+// Notes: |
+// |
+// 1. The arguments are passed by value by default. If you need to |
+// pass an argument by reference, wrap it inside ByRef(). For |
+// example, |
+// |
+// InvokeArgument<1>(5, string("Hello"), ByRef(foo)) |
+// |
+// passes 5 and string("Hello") by value, and passes foo by |
+// reference. |
+// |
+// 2. If the callable takes an argument by reference but ByRef() is |
+// not used, it will receive the reference to a copy of the value, |
+// instead of the original value. For example, when the 0-th |
+// argument of the mock function takes a const string&, the action |
+// |
+// InvokeArgument<0>(string("Hello")) |
+// |
+// makes a copy of the temporary string("Hello") object and passes a |
+// reference of the copy, instead of the original temporary object, |
+// to the callable. This makes it easy for a user to define an |
+// InvokeArgument action from temporary values and have it performed |
+// later. |
+ |
+$range i 0..n |
+$for i [[ |
+$range j 0..i-1 |
+ |
+ACTION_TEMPLATE(InvokeArgument, |
+ HAS_1_TEMPLATE_PARAMS(int, k), |
+ AND_$i[[]]_VALUE_PARAMS($for j, [[p$j]])) { |
+ return internal::CallableHelper<return_type>::Call( |
+ ::std::tr1::get<k>(args)$for j [[, p$j]]); |
+} |
+ |
+]] |
+ |
+// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the |
+// mock function to *pointer. |
+ACTION_TEMPLATE(SaveArg, |
+ HAS_1_TEMPLATE_PARAMS(int, k), |
+ AND_1_VALUE_PARAMS(pointer)) { |
+ *pointer = ::std::tr1::get<k>(args); |
+} |
+ |
+// Action SetArgReferee<k>(value) assigns 'value' to the variable |
+// referenced by the k-th (0-based) argument of the mock function. |
+ACTION_TEMPLATE(SetArgReferee, |
+ HAS_1_TEMPLATE_PARAMS(int, k), |
+ AND_1_VALUE_PARAMS(value)) { |
+ typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type; |
+ // Ensures that argument #k is a reference. If you get a compiler |
+ // error on the next line, you are using SetArgReferee<k>(value) in |
+ // a mock function whose k-th (0-based) argument is not a reference. |
+ GMOCK_COMPILE_ASSERT_(internal::is_reference<argk_type>::value, |
+ SetArgReferee_must_be_used_with_a_reference_argument); |
+ ::std::tr1::get<k>(args) = value; |
+} |
+ |
+// Action SetArrayArgument<k>(first, last) copies the elements in |
+// source range [first, last) to the array pointed to by the k-th |
+// (0-based) argument, which can be either a pointer or an |
+// iterator. The action does not take ownership of the elements in the |
+// source range. |
+ACTION_TEMPLATE(SetArrayArgument, |
+ HAS_1_TEMPLATE_PARAMS(int, k), |
+ AND_2_VALUE_PARAMS(first, last)) { |
+ // Microsoft compiler deprecates ::std::copy, so we want to suppress warning |
+ // 4996 (Function call with parameters that may be unsafe) there. |
+#ifdef _MSC_VER |
+#pragma warning(push) // Saves the current warning state. |
+#pragma warning(disable:4996) // Temporarily disables warning 4996. |
+#endif |
+ ::std::copy(first, last, ::std::tr1::get<k>(args)); |
+#ifdef _MSC_VER |
+#pragma warning(pop) // Restores the warning state. |
+#endif |
+} |
+ |
+// Various overloads for ReturnNew<T>(). |
+// |
+// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new |
+// instance of type T, constructed on the heap with constructor arguments |
+// a1, a2, ..., and a_k. The caller assumes ownership of the returned value. |
+$range i 0..n |
+$for i [[ |
+$range j 0..i-1 |
+$var ps = [[$for j, [[p$j]]]] |
+ |
+ACTION_TEMPLATE(ReturnNew, |
+ HAS_1_TEMPLATE_PARAMS(typename, T), |
+ AND_$i[[]]_VALUE_PARAMS($ps)) { |
+ return new T($ps); |
+} |
+ |
+]] |
+ |
+// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock |
+// function. |
+ACTION_TEMPLATE(DeleteArg, |
+ HAS_1_TEMPLATE_PARAMS(int, k), |
+ AND_0_VALUE_PARAMS()) { |
+ delete ::std::tr1::get<k>(args); |
+} |
+ |
+// Action Throw(exception) can be used in a mock function of any type |
+// to throw the given exception. Any copyable value can be thrown. |
+#if GTEST_HAS_EXCEPTIONS |
+ACTION_P(Throw, exception) { throw exception; } |
+#endif // GTEST_HAS_EXCEPTIONS |
+ |
+} // namespace testing |
+ |
+#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_ |