Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(174)

Side by Side Diff: testing/gmock/include/gmock/gmock-matchers.h

Issue 113807: Checkin a version of gmock, modified to use our boost_tuple in VS2005. (Closed)
Patch Set: Fix grammar issue. Created 11 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // Author: wan@google.com (Zhanyong Wan)
31
32 // Google Mock - a framework for writing C++ mock classes.
33 //
34 // This file implements some commonly used argument matchers. More
35 // matchers can be defined by the user implementing the
36 // MatcherInterface<T> interface if necessary.
37
38 #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
39 #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
40
41 #include <algorithm>
42 #include <limits>
43 #include <ostream> // NOLINT
44 #include <sstream>
45 #include <string>
46 #include <vector>
47
48 #include <gmock/gmock-printers.h>
49 #include <gmock/internal/gmock-internal-utils.h>
50 #include <gmock/internal/gmock-port.h>
51 #include <gtest/gtest.h>
52
53 namespace testing {
54
55 // To implement a matcher Foo for type T, define:
56 // 1. a class FooMatcherImpl that implements the
57 // MatcherInterface<T> interface, and
58 // 2. a factory function that creates a Matcher<T> object from a
59 // FooMatcherImpl*.
60 //
61 // The two-level delegation design makes it possible to allow a user
62 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
63 // is impossible if we pass matchers by pointers. It also eases
64 // ownership management as Matcher objects can now be copied like
65 // plain values.
66
67 // The implementation of a matcher.
68 template <typename T>
69 class MatcherInterface {
70 public:
71 virtual ~MatcherInterface() {}
72
73 // Returns true iff the matcher matches x.
74 virtual bool Matches(T x) const = 0;
75
76 // Describes this matcher to an ostream.
77 virtual void DescribeTo(::std::ostream* os) const = 0;
78
79 // Describes the negation of this matcher to an ostream. For
80 // example, if the description of this matcher is "is greater than
81 // 7", the negated description could be "is not greater than 7".
82 // You are not required to override this when implementing
83 // MatcherInterface, but it is highly advised so that your matcher
84 // can produce good error messages.
85 virtual void DescribeNegationTo(::std::ostream* os) const {
86 *os << "not (";
87 DescribeTo(os);
88 *os << ")";
89 }
90
91 // Explains why x matches, or doesn't match, the matcher. Override
92 // this to provide any additional information that helps a user
93 // understand the match result.
94 virtual void ExplainMatchResultTo(T /* x */, ::std::ostream* /* os */) const {
95 // By default, nothing more needs to be explained, as Google Mock
96 // has already printed the value of x when this function is
97 // called.
98 }
99 };
100
101 namespace internal {
102
103 // An internal class for implementing Matcher<T>, which will derive
104 // from it. We put functionalities common to all Matcher<T>
105 // specializations here to avoid code duplication.
106 template <typename T>
107 class MatcherBase {
108 public:
109 // Returns true iff this matcher matches x.
110 bool Matches(T x) const { return impl_->Matches(x); }
111
112 // Describes this matcher to an ostream.
113 void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
114
115 // Describes the negation of this matcher to an ostream.
116 void DescribeNegationTo(::std::ostream* os) const {
117 impl_->DescribeNegationTo(os);
118 }
119
120 // Explains why x matches, or doesn't match, the matcher.
121 void ExplainMatchResultTo(T x, ::std::ostream* os) const {
122 impl_->ExplainMatchResultTo(x, os);
123 }
124 protected:
125 MatcherBase() {}
126
127 // Constructs a matcher from its implementation.
128 explicit MatcherBase(const MatcherInterface<T>* impl)
129 : impl_(impl) {}
130
131 virtual ~MatcherBase() {}
132 private:
133 // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
134 // interfaces. The former dynamically allocates a chunk of memory
135 // to hold the reference count, while the latter tracks all
136 // references using a circular linked list without allocating
137 // memory. It has been observed that linked_ptr performs better in
138 // typical scenarios. However, shared_ptr can out-perform
139 // linked_ptr when there are many more uses of the copy constructor
140 // than the default constructor.
141 //
142 // If performance becomes a problem, we should see if using
143 // shared_ptr helps.
144 ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
145 };
146
147 // The default implementation of ExplainMatchResultTo() for
148 // polymorphic matchers.
149 template <typename PolymorphicMatcherImpl, typename T>
150 inline void ExplainMatchResultTo(const PolymorphicMatcherImpl& /* impl */,
151 const T& /* x */,
152 ::std::ostream* /* os */) {
153 // By default, nothing more needs to be said, as Google Mock already
154 // prints the value of x elsewhere.
155 }
156
157 } // namespace internal
158
159 // A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
160 // object that can check whether a value of type T matches. The
161 // implementation of Matcher<T> is just a linked_ptr to const
162 // MatcherInterface<T>, so copying is fairly cheap. Don't inherit
163 // from Matcher!
164 template <typename T>
165 class Matcher : public internal::MatcherBase<T> {
166 public:
167 // Constructs a null matcher. Needed for storing Matcher objects in
168 // STL containers.
169 Matcher() {}
170
171 // Constructs a matcher from its implementation.
172 explicit Matcher(const MatcherInterface<T>* impl)
173 : internal::MatcherBase<T>(impl) {}
174
175 // Implicit constructor here allows people to write
176 // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
177 Matcher(T value); // NOLINT
178 };
179
180 // The following two specializations allow the user to write str
181 // instead of Eq(str) and "foo" instead of Eq("foo") when a string
182 // matcher is expected.
183 template <>
184 class Matcher<const internal::string&>
185 : public internal::MatcherBase<const internal::string&> {
186 public:
187 Matcher() {}
188
189 explicit Matcher(const MatcherInterface<const internal::string&>* impl)
190 : internal::MatcherBase<const internal::string&>(impl) {}
191
192 // Allows the user to write str instead of Eq(str) sometimes, where
193 // str is a string object.
194 Matcher(const internal::string& s); // NOLINT
195
196 // Allows the user to write "foo" instead of Eq("foo") sometimes.
197 Matcher(const char* s); // NOLINT
198 };
199
200 template <>
201 class Matcher<internal::string>
202 : public internal::MatcherBase<internal::string> {
203 public:
204 Matcher() {}
205
206 explicit Matcher(const MatcherInterface<internal::string>* impl)
207 : internal::MatcherBase<internal::string>(impl) {}
208
209 // Allows the user to write str instead of Eq(str) sometimes, where
210 // str is a string object.
211 Matcher(const internal::string& s); // NOLINT
212
213 // Allows the user to write "foo" instead of Eq("foo") sometimes.
214 Matcher(const char* s); // NOLINT
215 };
216
217 // The PolymorphicMatcher class template makes it easy to implement a
218 // polymorphic matcher (i.e. a matcher that can match values of more
219 // than one type, e.g. Eq(n) and NotNull()).
220 //
221 // To define a polymorphic matcher, a user first provides a Impl class
222 // that has a Matches() method, a DescribeTo() method, and a
223 // DescribeNegationTo() method. The Matches() method is usually a
224 // method template (such that it works with multiple types). Then the
225 // user creates the polymorphic matcher using
226 // MakePolymorphicMatcher(). To provide additional explanation to the
227 // match result, define a FREE function (or function template)
228 //
229 // void ExplainMatchResultTo(const Impl& matcher, const Value& value,
230 // ::std::ostream* os);
231 //
232 // in the SAME NAME SPACE where Impl is defined. See the definition
233 // of NotNull() for a complete example.
234 template <class Impl>
235 class PolymorphicMatcher {
236 public:
237 explicit PolymorphicMatcher(const Impl& impl) : impl_(impl) {}
238
239 template <typename T>
240 operator Matcher<T>() const {
241 return Matcher<T>(new MonomorphicImpl<T>(impl_));
242 }
243 private:
244 template <typename T>
245 class MonomorphicImpl : public MatcherInterface<T> {
246 public:
247 explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
248
249 virtual bool Matches(T x) const { return impl_.Matches(x); }
250
251 virtual void DescribeTo(::std::ostream* os) const {
252 impl_.DescribeTo(os);
253 }
254
255 virtual void DescribeNegationTo(::std::ostream* os) const {
256 impl_.DescribeNegationTo(os);
257 }
258
259 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
260 using ::testing::internal::ExplainMatchResultTo;
261
262 // C++ uses Argument-Dependent Look-up (aka Koenig Look-up) to
263 // resolve the call to ExplainMatchResultTo() here. This
264 // means that if there's a ExplainMatchResultTo() function
265 // defined in the name space where class Impl is defined, it
266 // will be picked by the compiler as the better match.
267 // Otherwise the default implementation of it in
268 // ::testing::internal will be picked.
269 //
270 // This look-up rule lets a writer of a polymorphic matcher
271 // customize the behavior of ExplainMatchResultTo() when he
272 // cares to. Nothing needs to be done by the writer if he
273 // doesn't need to customize it.
274 ExplainMatchResultTo(impl_, x, os);
275 }
276 private:
277 const Impl impl_;
278 };
279
280 const Impl impl_;
281 };
282
283 // Creates a matcher from its implementation. This is easier to use
284 // than the Matcher<T> constructor as it doesn't require you to
285 // explicitly write the template argument, e.g.
286 //
287 // MakeMatcher(foo);
288 // vs
289 // Matcher<const string&>(foo);
290 template <typename T>
291 inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
292 return Matcher<T>(impl);
293 };
294
295 // Creates a polymorphic matcher from its implementation. This is
296 // easier to use than the PolymorphicMatcher<Impl> constructor as it
297 // doesn't require you to explicitly write the template argument, e.g.
298 //
299 // MakePolymorphicMatcher(foo);
300 // vs
301 // PolymorphicMatcher<TypeOfFoo>(foo);
302 template <class Impl>
303 inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
304 return PolymorphicMatcher<Impl>(impl);
305 }
306
307 // In order to be safe and clear, casting between different matcher
308 // types is done explicitly via MatcherCast<T>(m), which takes a
309 // matcher m and returns a Matcher<T>. It compiles only when T can be
310 // statically converted to the argument type of m.
311 template <typename T, typename M>
312 Matcher<T> MatcherCast(M m);
313
314 // TODO(vladl@google.com): Modify the implementation to reject casting
315 // Matcher<int> to Matcher<double>.
316 // Implements SafeMatcherCast().
317 //
318 // This overload handles polymorphic matchers only since monomorphic
319 // matchers are handled by the next one.
320 template <typename T, typename M>
321 inline Matcher<T> SafeMatcherCast(M polymorphic_matcher) {
322 return Matcher<T>(polymorphic_matcher);
323 }
324
325 // This overload handles monomorphic matchers.
326 //
327 // In general, if type T can be implicitly converted to type U, we can
328 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
329 // contravariant): just keep a copy of the original Matcher<U>, convert the
330 // argument from type T to U, and then pass it to the underlying Matcher<U>.
331 // The only exception is when U is a reference and T is not, as the
332 // underlying Matcher<U> may be interested in the argument's address, which
333 // is not preserved in the conversion from T to U.
334 template <typename T, typename U>
335 Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
336 // Enforce that T can be implicitly converted to U.
337 GMOCK_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
338 T_must_be_implicitly_convertible_to_U);
339 // Enforce that we are not converting a non-reference type T to a reference
340 // type U.
341 GMOCK_COMPILE_ASSERT_(
342 internal::is_reference<T>::value || !internal::is_reference<U>::value,
343 cannot_convert_non_referentce_arg_to_reference);
344 // In case both T and U are arithmetic types, enforce that the
345 // conversion is not lossy.
346 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT;
347 typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU;
348 const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
349 const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
350 GMOCK_COMPILE_ASSERT_(
351 kTIsOther || kUIsOther ||
352 (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
353 conversion_of_arithmetic_types_must_be_lossless);
354 return MatcherCast<T>(matcher);
355 }
356
357 // A<T>() returns a matcher that matches any value of type T.
358 template <typename T>
359 Matcher<T> A();
360
361 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
362 // and MUST NOT BE USED IN USER CODE!!!
363 namespace internal {
364
365 // Appends the explanation on the result of matcher.Matches(value) to
366 // os iff the explanation is not empty.
367 template <typename T>
368 void ExplainMatchResultAsNeededTo(const Matcher<T>& matcher, T value,
369 ::std::ostream* os) {
370 ::std::stringstream reason;
371 matcher.ExplainMatchResultTo(value, &reason);
372 const internal::string s = reason.str();
373 if (s != "") {
374 *os << " (" << s << ")";
375 }
376 }
377
378 // An internal helper class for doing compile-time loop on a tuple's
379 // fields.
380 template <size_t N>
381 class TuplePrefix {
382 public:
383 // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
384 // iff the first N fields of matcher_tuple matches the first N
385 // fields of value_tuple, respectively.
386 template <typename MatcherTuple, typename ValueTuple>
387 static bool Matches(const MatcherTuple& matcher_tuple,
388 const ValueTuple& value_tuple) {
389 using ::std::tr1::get;
390 return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
391 && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
392 }
393
394 // TuplePrefix<N>::DescribeMatchFailuresTo(matchers, values, os)
395 // describes failures in matching the first N fields of matchers
396 // against the first N fields of values. If there is no failure,
397 // nothing will be streamed to os.
398 template <typename MatcherTuple, typename ValueTuple>
399 static void DescribeMatchFailuresTo(const MatcherTuple& matchers,
400 const ValueTuple& values,
401 ::std::ostream* os) {
402 using ::std::tr1::tuple_element;
403 using ::std::tr1::get;
404
405 // First, describes failures in the first N - 1 fields.
406 TuplePrefix<N - 1>::DescribeMatchFailuresTo(matchers, values, os);
407
408 // Then describes the failure (if any) in the (N - 1)-th (0-based)
409 // field.
410 typename tuple_element<N - 1, MatcherTuple>::type matcher =
411 get<N - 1>(matchers);
412 typedef typename tuple_element<N - 1, ValueTuple>::type Value;
413 Value value = get<N - 1>(values);
414 if (!matcher.Matches(value)) {
415 // TODO(wan): include in the message the name of the parameter
416 // as used in MOCK_METHOD*() when possible.
417 *os << " Expected arg #" << N - 1 << ": ";
418 get<N - 1>(matchers).DescribeTo(os);
419 *os << "\n Actual: ";
420 // We remove the reference in type Value to prevent the
421 // universal printer from printing the address of value, which
422 // isn't interesting to the user most of the time. The
423 // matcher's ExplainMatchResultTo() method handles the case when
424 // the address is interesting.
425 internal::UniversalPrinter<GMOCK_REMOVE_REFERENCE_(Value)>::
426 Print(value, os);
427 ExplainMatchResultAsNeededTo<Value>(matcher, value, os);
428 *os << "\n";
429 }
430 }
431 };
432
433 // The base case.
434 template <>
435 class TuplePrefix<0> {
436 public:
437 template <typename MatcherTuple, typename ValueTuple>
438 static bool Matches(const MatcherTuple& /* matcher_tuple */,
439 const ValueTuple& /* value_tuple */) {
440 return true;
441 }
442
443 template <typename MatcherTuple, typename ValueTuple>
444 static void DescribeMatchFailuresTo(const MatcherTuple& /* matchers */,
445 const ValueTuple& /* values */,
446 ::std::ostream* /* os */) {}
447 };
448
449 // TupleMatches(matcher_tuple, value_tuple) returns true iff all
450 // matchers in matcher_tuple match the corresponding fields in
451 // value_tuple. It is a compiler error if matcher_tuple and
452 // value_tuple have different number of fields or incompatible field
453 // types.
454 template <typename MatcherTuple, typename ValueTuple>
455 bool TupleMatches(const MatcherTuple& matcher_tuple,
456 const ValueTuple& value_tuple) {
457 using ::std::tr1::tuple_size;
458 // Makes sure that matcher_tuple and value_tuple have the same
459 // number of fields.
460 GMOCK_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
461 tuple_size<ValueTuple>::value,
462 matcher_and_value_have_different_numbers_of_fields);
463 return TuplePrefix<tuple_size<ValueTuple>::value>::
464 Matches(matcher_tuple, value_tuple);
465 }
466
467 // Describes failures in matching matchers against values. If there
468 // is no failure, nothing will be streamed to os.
469 template <typename MatcherTuple, typename ValueTuple>
470 void DescribeMatchFailureTupleTo(const MatcherTuple& matchers,
471 const ValueTuple& values,
472 ::std::ostream* os) {
473 using ::std::tr1::tuple_size;
474 TuplePrefix<tuple_size<MatcherTuple>::value>::DescribeMatchFailuresTo(
475 matchers, values, os);
476 }
477
478 // The MatcherCastImpl class template is a helper for implementing
479 // MatcherCast(). We need this helper in order to partially
480 // specialize the implementation of MatcherCast() (C++ allows
481 // class/struct templates to be partially specialized, but not
482 // function templates.).
483
484 // This general version is used when MatcherCast()'s argument is a
485 // polymorphic matcher (i.e. something that can be converted to a
486 // Matcher but is not one yet; for example, Eq(value)).
487 template <typename T, typename M>
488 class MatcherCastImpl {
489 public:
490 static Matcher<T> Cast(M polymorphic_matcher) {
491 return Matcher<T>(polymorphic_matcher);
492 }
493 };
494
495 // This more specialized version is used when MatcherCast()'s argument
496 // is already a Matcher. This only compiles when type T can be
497 // statically converted to type U.
498 template <typename T, typename U>
499 class MatcherCastImpl<T, Matcher<U> > {
500 public:
501 static Matcher<T> Cast(const Matcher<U>& source_matcher) {
502 return Matcher<T>(new Impl(source_matcher));
503 }
504 private:
505 class Impl : public MatcherInterface<T> {
506 public:
507 explicit Impl(const Matcher<U>& source_matcher)
508 : source_matcher_(source_matcher) {}
509
510 // We delegate the matching logic to the source matcher.
511 virtual bool Matches(T x) const {
512 return source_matcher_.Matches(static_cast<U>(x));
513 }
514
515 virtual void DescribeTo(::std::ostream* os) const {
516 source_matcher_.DescribeTo(os);
517 }
518
519 virtual void DescribeNegationTo(::std::ostream* os) const {
520 source_matcher_.DescribeNegationTo(os);
521 }
522
523 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
524 source_matcher_.ExplainMatchResultTo(static_cast<U>(x), os);
525 }
526 private:
527 const Matcher<U> source_matcher_;
528 };
529 };
530
531 // This even more specialized version is used for efficiently casting
532 // a matcher to its own type.
533 template <typename T>
534 class MatcherCastImpl<T, Matcher<T> > {
535 public:
536 static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
537 };
538
539 // Implements A<T>().
540 template <typename T>
541 class AnyMatcherImpl : public MatcherInterface<T> {
542 public:
543 virtual bool Matches(T /* x */) const { return true; }
544 virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
545 virtual void DescribeNegationTo(::std::ostream* os) const {
546 // This is mostly for completeness' safe, as it's not very useful
547 // to write Not(A<bool>()). However we cannot completely rule out
548 // such a possibility, and it doesn't hurt to be prepared.
549 *os << "never matches";
550 }
551 };
552
553 // Implements _, a matcher that matches any value of any
554 // type. This is a polymorphic matcher, so we need a template type
555 // conversion operator to make it appearing as a Matcher<T> for any
556 // type T.
557 class AnythingMatcher {
558 public:
559 template <typename T>
560 operator Matcher<T>() const { return A<T>(); }
561 };
562
563 // Implements a matcher that compares a given value with a
564 // pre-supplied value using one of the ==, <=, <, etc, operators. The
565 // two values being compared don't have to have the same type.
566 //
567 // The matcher defined here is polymorphic (for example, Eq(5) can be
568 // used to match an int, a short, a double, etc). Therefore we use
569 // a template type conversion operator in the implementation.
570 //
571 // We define this as a macro in order to eliminate duplicated source
572 // code.
573 //
574 // The following template definition assumes that the Rhs parameter is
575 // a "bare" type (i.e. neither 'const T' nor 'T&').
576 #define GMOCK_IMPLEMENT_COMPARISON_MATCHER_(name, op, relation) \
577 template <typename Rhs> class name##Matcher { \
578 public: \
579 explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
580 template <typename Lhs> \
581 operator Matcher<Lhs>() const { \
582 return MakeMatcher(new Impl<Lhs>(rhs_)); \
583 } \
584 private: \
585 template <typename Lhs> \
586 class Impl : public MatcherInterface<Lhs> { \
587 public: \
588 explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
589 virtual bool Matches(Lhs lhs) const { return lhs op rhs_; } \
590 virtual void DescribeTo(::std::ostream* os) const { \
591 *os << "is " relation " "; \
592 UniversalPrinter<Rhs>::Print(rhs_, os); \
593 } \
594 virtual void DescribeNegationTo(::std::ostream* os) const { \
595 *os << "is not " relation " "; \
596 UniversalPrinter<Rhs>::Print(rhs_, os); \
597 } \
598 private: \
599 Rhs rhs_; \
600 }; \
601 Rhs rhs_; \
602 }
603
604 // Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
605 // respectively.
606 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "equal to");
607 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "greater than or equal to");
608 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "greater than");
609 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "less than or equal to");
610 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "less than");
611 GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "not equal to");
612
613 #undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
614
615 // Implements the polymorphic NotNull() matcher, which matches any
616 // pointer that is not NULL.
617 class NotNullMatcher {
618 public:
619 template <typename T>
620 bool Matches(T* p) const { return p != NULL; }
621
622 void DescribeTo(::std::ostream* os) const { *os << "is not NULL"; }
623 void DescribeNegationTo(::std::ostream* os) const {
624 *os << "is NULL";
625 }
626 };
627
628 // Ref(variable) matches any argument that is a reference to
629 // 'variable'. This matcher is polymorphic as it can match any
630 // super type of the type of 'variable'.
631 //
632 // The RefMatcher template class implements Ref(variable). It can
633 // only be instantiated with a reference type. This prevents a user
634 // from mistakenly using Ref(x) to match a non-reference function
635 // argument. For example, the following will righteously cause a
636 // compiler error:
637 //
638 // int n;
639 // Matcher<int> m1 = Ref(n); // This won't compile.
640 // Matcher<int&> m2 = Ref(n); // This will compile.
641 template <typename T>
642 class RefMatcher;
643
644 template <typename T>
645 class RefMatcher<T&> {
646 // Google Mock is a generic framework and thus needs to support
647 // mocking any function types, including those that take non-const
648 // reference arguments. Therefore the template parameter T (and
649 // Super below) can be instantiated to either a const type or a
650 // non-const type.
651 public:
652 // RefMatcher() takes a T& instead of const T&, as we want the
653 // compiler to catch using Ref(const_value) as a matcher for a
654 // non-const reference.
655 explicit RefMatcher(T& x) : object_(x) {} // NOLINT
656
657 template <typename Super>
658 operator Matcher<Super&>() const {
659 // By passing object_ (type T&) to Impl(), which expects a Super&,
660 // we make sure that Super is a super type of T. In particular,
661 // this catches using Ref(const_value) as a matcher for a
662 // non-const reference, as you cannot implicitly convert a const
663 // reference to a non-const reference.
664 return MakeMatcher(new Impl<Super>(object_));
665 }
666 private:
667 template <typename Super>
668 class Impl : public MatcherInterface<Super&> {
669 public:
670 explicit Impl(Super& x) : object_(x) {} // NOLINT
671
672 // Matches() takes a Super& (as opposed to const Super&) in
673 // order to match the interface MatcherInterface<Super&>.
674 virtual bool Matches(Super& x) const { return &x == &object_; } // NOLINT
675
676 virtual void DescribeTo(::std::ostream* os) const {
677 *os << "references the variable ";
678 UniversalPrinter<Super&>::Print(object_, os);
679 }
680
681 virtual void DescribeNegationTo(::std::ostream* os) const {
682 *os << "does not reference the variable ";
683 UniversalPrinter<Super&>::Print(object_, os);
684 }
685
686 virtual void ExplainMatchResultTo(Super& x, // NOLINT
687 ::std::ostream* os) const {
688 *os << "is located @" << static_cast<const void*>(&x);
689 }
690 private:
691 const Super& object_;
692 };
693
694 T& object_;
695 };
696
697 // Polymorphic helper functions for narrow and wide string matchers.
698 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
699 return String::CaseInsensitiveCStringEquals(lhs, rhs);
700 }
701
702 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
703 const wchar_t* rhs) {
704 return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
705 }
706
707 // String comparison for narrow or wide strings that can have embedded NUL
708 // characters.
709 template <typename StringType>
710 bool CaseInsensitiveStringEquals(const StringType& s1,
711 const StringType& s2) {
712 // Are the heads equal?
713 if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
714 return false;
715 }
716
717 // Skip the equal heads.
718 const typename StringType::value_type nul = 0;
719 const size_t i1 = s1.find(nul), i2 = s2.find(nul);
720
721 // Are we at the end of either s1 or s2?
722 if (i1 == StringType::npos || i2 == StringType::npos) {
723 return i1 == i2;
724 }
725
726 // Are the tails equal?
727 return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
728 }
729
730 // String matchers.
731
732 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
733 template <typename StringType>
734 class StrEqualityMatcher {
735 public:
736 typedef typename StringType::const_pointer ConstCharPointer;
737
738 StrEqualityMatcher(const StringType& str, bool expect_eq,
739 bool case_sensitive)
740 : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
741
742 // When expect_eq_ is true, returns true iff s is equal to string_;
743 // otherwise returns true iff s is not equal to string_.
744 bool Matches(ConstCharPointer s) const {
745 if (s == NULL) {
746 return !expect_eq_;
747 }
748 return Matches(StringType(s));
749 }
750
751 bool Matches(const StringType& s) const {
752 const bool eq = case_sensitive_ ? s == string_ :
753 CaseInsensitiveStringEquals(s, string_);
754 return expect_eq_ == eq;
755 }
756
757 void DescribeTo(::std::ostream* os) const {
758 DescribeToHelper(expect_eq_, os);
759 }
760
761 void DescribeNegationTo(::std::ostream* os) const {
762 DescribeToHelper(!expect_eq_, os);
763 }
764 private:
765 void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
766 *os << "is ";
767 if (!expect_eq) {
768 *os << "not ";
769 }
770 *os << "equal to ";
771 if (!case_sensitive_) {
772 *os << "(ignoring case) ";
773 }
774 UniversalPrinter<StringType>::Print(string_, os);
775 }
776
777 const StringType string_;
778 const bool expect_eq_;
779 const bool case_sensitive_;
780 };
781
782 // Implements the polymorphic HasSubstr(substring) matcher, which
783 // can be used as a Matcher<T> as long as T can be converted to a
784 // string.
785 template <typename StringType>
786 class HasSubstrMatcher {
787 public:
788 typedef typename StringType::const_pointer ConstCharPointer;
789
790 explicit HasSubstrMatcher(const StringType& substring)
791 : substring_(substring) {}
792
793 // These overloaded methods allow HasSubstr(substring) to be used as a
794 // Matcher<T> as long as T can be converted to string. Returns true
795 // iff s contains substring_ as a substring.
796 bool Matches(ConstCharPointer s) const {
797 return s != NULL && Matches(StringType(s));
798 }
799
800 bool Matches(const StringType& s) const {
801 return s.find(substring_) != StringType::npos;
802 }
803
804 // Describes what this matcher matches.
805 void DescribeTo(::std::ostream* os) const {
806 *os << "has substring ";
807 UniversalPrinter<StringType>::Print(substring_, os);
808 }
809
810 void DescribeNegationTo(::std::ostream* os) const {
811 *os << "has no substring ";
812 UniversalPrinter<StringType>::Print(substring_, os);
813 }
814 private:
815 const StringType substring_;
816 };
817
818 // Implements the polymorphic StartsWith(substring) matcher, which
819 // can be used as a Matcher<T> as long as T can be converted to a
820 // string.
821 template <typename StringType>
822 class StartsWithMatcher {
823 public:
824 typedef typename StringType::const_pointer ConstCharPointer;
825
826 explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
827 }
828
829 // These overloaded methods allow StartsWith(prefix) to be used as a
830 // Matcher<T> as long as T can be converted to string. Returns true
831 // iff s starts with prefix_.
832 bool Matches(ConstCharPointer s) const {
833 return s != NULL && Matches(StringType(s));
834 }
835
836 bool Matches(const StringType& s) const {
837 return s.length() >= prefix_.length() &&
838 s.substr(0, prefix_.length()) == prefix_;
839 }
840
841 void DescribeTo(::std::ostream* os) const {
842 *os << "starts with ";
843 UniversalPrinter<StringType>::Print(prefix_, os);
844 }
845
846 void DescribeNegationTo(::std::ostream* os) const {
847 *os << "doesn't start with ";
848 UniversalPrinter<StringType>::Print(prefix_, os);
849 }
850 private:
851 const StringType prefix_;
852 };
853
854 // Implements the polymorphic EndsWith(substring) matcher, which
855 // can be used as a Matcher<T> as long as T can be converted to a
856 // string.
857 template <typename StringType>
858 class EndsWithMatcher {
859 public:
860 typedef typename StringType::const_pointer ConstCharPointer;
861
862 explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
863
864 // These overloaded methods allow EndsWith(suffix) to be used as a
865 // Matcher<T> as long as T can be converted to string. Returns true
866 // iff s ends with suffix_.
867 bool Matches(ConstCharPointer s) const {
868 return s != NULL && Matches(StringType(s));
869 }
870
871 bool Matches(const StringType& s) const {
872 return s.length() >= suffix_.length() &&
873 s.substr(s.length() - suffix_.length()) == suffix_;
874 }
875
876 void DescribeTo(::std::ostream* os) const {
877 *os << "ends with ";
878 UniversalPrinter<StringType>::Print(suffix_, os);
879 }
880
881 void DescribeNegationTo(::std::ostream* os) const {
882 *os << "doesn't end with ";
883 UniversalPrinter<StringType>::Print(suffix_, os);
884 }
885 private:
886 const StringType suffix_;
887 };
888
889 #if GMOCK_HAS_REGEX
890
891 // Implements polymorphic matchers MatchesRegex(regex) and
892 // ContainsRegex(regex), which can be used as a Matcher<T> as long as
893 // T can be converted to a string.
894 class MatchesRegexMatcher {
895 public:
896 MatchesRegexMatcher(const RE* regex, bool full_match)
897 : regex_(regex), full_match_(full_match) {}
898
899 // These overloaded methods allow MatchesRegex(regex) to be used as
900 // a Matcher<T> as long as T can be converted to string. Returns
901 // true iff s matches regular expression regex. When full_match_ is
902 // true, a full match is done; otherwise a partial match is done.
903 bool Matches(const char* s) const {
904 return s != NULL && Matches(internal::string(s));
905 }
906
907 bool Matches(const internal::string& s) const {
908 return full_match_ ? RE::FullMatch(s, *regex_) :
909 RE::PartialMatch(s, *regex_);
910 }
911
912 void DescribeTo(::std::ostream* os) const {
913 *os << (full_match_ ? "matches" : "contains")
914 << " regular expression ";
915 UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
916 }
917
918 void DescribeNegationTo(::std::ostream* os) const {
919 *os << "doesn't " << (full_match_ ? "match" : "contain")
920 << " regular expression ";
921 UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
922 }
923 private:
924 const internal::linked_ptr<const RE> regex_;
925 const bool full_match_;
926 };
927
928 #endif // GMOCK_HAS_REGEX
929
930 // Implements a matcher that compares the two fields of a 2-tuple
931 // using one of the ==, <=, <, etc, operators. The two fields being
932 // compared don't have to have the same type.
933 //
934 // The matcher defined here is polymorphic (for example, Eq() can be
935 // used to match a tuple<int, short>, a tuple<const long&, double>,
936 // etc). Therefore we use a template type conversion operator in the
937 // implementation.
938 //
939 // We define this as a macro in order to eliminate duplicated source
940 // code.
941 #define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \
942 class name##2Matcher { \
943 public: \
944 template <typename T1, typename T2> \
945 operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
946 return MakeMatcher(new Impl<T1, T2>); \
947 } \
948 private: \
949 template <typename T1, typename T2> \
950 class Impl : public MatcherInterface<const ::std::tr1::tuple<T1, T2>&> { \
951 public: \
952 virtual bool Matches(const ::std::tr1::tuple<T1, T2>& args) const { \
953 return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
954 } \
955 virtual void DescribeTo(::std::ostream* os) const { \
956 *os << "argument #0 is " relation " argument #1"; \
957 } \
958 virtual void DescribeNegationTo(::std::ostream* os) const { \
959 *os << "argument #0 is not " relation " argument #1"; \
960 } \
961 }; \
962 }
963
964 // Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
965 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "equal to");
966 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ge, >=, "greater than or equal to");
967 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Gt, >, "greater than");
968 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Le, <=, "less than or equal to");
969 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Lt, <, "less than");
970 GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "not equal to");
971
972 #undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
973
974 // Implements the Not(...) matcher for a particular argument type T.
975 // We do not nest it inside the NotMatcher class template, as that
976 // will prevent different instantiations of NotMatcher from sharing
977 // the same NotMatcherImpl<T> class.
978 template <typename T>
979 class NotMatcherImpl : public MatcherInterface<T> {
980 public:
981 explicit NotMatcherImpl(const Matcher<T>& matcher)
982 : matcher_(matcher) {}
983
984 virtual bool Matches(T x) const {
985 return !matcher_.Matches(x);
986 }
987
988 virtual void DescribeTo(::std::ostream* os) const {
989 matcher_.DescribeNegationTo(os);
990 }
991
992 virtual void DescribeNegationTo(::std::ostream* os) const {
993 matcher_.DescribeTo(os);
994 }
995
996 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
997 matcher_.ExplainMatchResultTo(x, os);
998 }
999 private:
1000 const Matcher<T> matcher_;
1001 };
1002
1003 // Implements the Not(m) matcher, which matches a value that doesn't
1004 // match matcher m.
1005 template <typename InnerMatcher>
1006 class NotMatcher {
1007 public:
1008 explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1009
1010 // This template type conversion operator allows Not(m) to be used
1011 // to match any type m can match.
1012 template <typename T>
1013 operator Matcher<T>() const {
1014 return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1015 }
1016 private:
1017 InnerMatcher matcher_;
1018 };
1019
1020 // Implements the AllOf(m1, m2) matcher for a particular argument type
1021 // T. We do not nest it inside the BothOfMatcher class template, as
1022 // that will prevent different instantiations of BothOfMatcher from
1023 // sharing the same BothOfMatcherImpl<T> class.
1024 template <typename T>
1025 class BothOfMatcherImpl : public MatcherInterface<T> {
1026 public:
1027 BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1028 : matcher1_(matcher1), matcher2_(matcher2) {}
1029
1030 virtual bool Matches(T x) const {
1031 return matcher1_.Matches(x) && matcher2_.Matches(x);
1032 }
1033
1034 virtual void DescribeTo(::std::ostream* os) const {
1035 *os << "(";
1036 matcher1_.DescribeTo(os);
1037 *os << ") and (";
1038 matcher2_.DescribeTo(os);
1039 *os << ")";
1040 }
1041
1042 virtual void DescribeNegationTo(::std::ostream* os) const {
1043 *os << "not ";
1044 DescribeTo(os);
1045 }
1046
1047 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
1048 if (Matches(x)) {
1049 // When both matcher1_ and matcher2_ match x, we need to
1050 // explain why *both* of them match.
1051 ::std::stringstream ss1;
1052 matcher1_.ExplainMatchResultTo(x, &ss1);
1053 const internal::string s1 = ss1.str();
1054
1055 ::std::stringstream ss2;
1056 matcher2_.ExplainMatchResultTo(x, &ss2);
1057 const internal::string s2 = ss2.str();
1058
1059 if (s1 == "") {
1060 *os << s2;
1061 } else {
1062 *os << s1;
1063 if (s2 != "") {
1064 *os << "; " << s2;
1065 }
1066 }
1067 } else {
1068 // Otherwise we only need to explain why *one* of them fails
1069 // to match.
1070 if (!matcher1_.Matches(x)) {
1071 matcher1_.ExplainMatchResultTo(x, os);
1072 } else {
1073 matcher2_.ExplainMatchResultTo(x, os);
1074 }
1075 }
1076 }
1077 private:
1078 const Matcher<T> matcher1_;
1079 const Matcher<T> matcher2_;
1080 };
1081
1082 // Used for implementing the AllOf(m_1, ..., m_n) matcher, which
1083 // matches a value that matches all of the matchers m_1, ..., and m_n.
1084 template <typename Matcher1, typename Matcher2>
1085 class BothOfMatcher {
1086 public:
1087 BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1088 : matcher1_(matcher1), matcher2_(matcher2) {}
1089
1090 // This template type conversion operator allows a
1091 // BothOfMatcher<Matcher1, Matcher2> object to match any type that
1092 // both Matcher1 and Matcher2 can match.
1093 template <typename T>
1094 operator Matcher<T>() const {
1095 return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
1096 SafeMatcherCast<T>(matcher2_)));
1097 }
1098 private:
1099 Matcher1 matcher1_;
1100 Matcher2 matcher2_;
1101 };
1102
1103 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1104 // T. We do not nest it inside the AnyOfMatcher class template, as
1105 // that will prevent different instantiations of AnyOfMatcher from
1106 // sharing the same EitherOfMatcherImpl<T> class.
1107 template <typename T>
1108 class EitherOfMatcherImpl : public MatcherInterface<T> {
1109 public:
1110 EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
1111 : matcher1_(matcher1), matcher2_(matcher2) {}
1112
1113 virtual bool Matches(T x) const {
1114 return matcher1_.Matches(x) || matcher2_.Matches(x);
1115 }
1116
1117 virtual void DescribeTo(::std::ostream* os) const {
1118 *os << "(";
1119 matcher1_.DescribeTo(os);
1120 *os << ") or (";
1121 matcher2_.DescribeTo(os);
1122 *os << ")";
1123 }
1124
1125 virtual void DescribeNegationTo(::std::ostream* os) const {
1126 *os << "not ";
1127 DescribeTo(os);
1128 }
1129
1130 virtual void ExplainMatchResultTo(T x, ::std::ostream* os) const {
1131 if (Matches(x)) {
1132 // If either matcher1_ or matcher2_ matches x, we just need
1133 // to explain why *one* of them matches.
1134 if (matcher1_.Matches(x)) {
1135 matcher1_.ExplainMatchResultTo(x, os);
1136 } else {
1137 matcher2_.ExplainMatchResultTo(x, os);
1138 }
1139 } else {
1140 // Otherwise we need to explain why *neither* matches.
1141 ::std::stringstream ss1;
1142 matcher1_.ExplainMatchResultTo(x, &ss1);
1143 const internal::string s1 = ss1.str();
1144
1145 ::std::stringstream ss2;
1146 matcher2_.ExplainMatchResultTo(x, &ss2);
1147 const internal::string s2 = ss2.str();
1148
1149 if (s1 == "") {
1150 *os << s2;
1151 } else {
1152 *os << s1;
1153 if (s2 != "") {
1154 *os << "; " << s2;
1155 }
1156 }
1157 }
1158 }
1159 private:
1160 const Matcher<T> matcher1_;
1161 const Matcher<T> matcher2_;
1162 };
1163
1164 // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
1165 // matches a value that matches at least one of the matchers m_1, ...,
1166 // and m_n.
1167 template <typename Matcher1, typename Matcher2>
1168 class EitherOfMatcher {
1169 public:
1170 EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
1171 : matcher1_(matcher1), matcher2_(matcher2) {}
1172
1173 // This template type conversion operator allows a
1174 // EitherOfMatcher<Matcher1, Matcher2> object to match any type that
1175 // both Matcher1 and Matcher2 can match.
1176 template <typename T>
1177 operator Matcher<T>() const {
1178 return Matcher<T>(new EitherOfMatcherImpl<T>(
1179 SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
1180 }
1181 private:
1182 Matcher1 matcher1_;
1183 Matcher2 matcher2_;
1184 };
1185
1186 // Used for implementing Truly(pred), which turns a predicate into a
1187 // matcher.
1188 template <typename Predicate>
1189 class TrulyMatcher {
1190 public:
1191 explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1192
1193 // This method template allows Truly(pred) to be used as a matcher
1194 // for type T where T is the argument type of predicate 'pred'. The
1195 // argument is passed by reference as the predicate may be
1196 // interested in the address of the argument.
1197 template <typename T>
1198 bool Matches(T& x) const { // NOLINT
1199 #if GTEST_OS_WINDOWS
1200 // MSVC warns about converting a value into bool (warning 4800).
1201 #pragma warning(push) // Saves the current warning state.
1202 #pragma warning(disable:4800) // Temporarily disables warning 4800.
1203 #endif // GTEST_OS_WINDOWS
1204 return predicate_(x);
1205 #if GTEST_OS_WINDOWS
1206 #pragma warning(pop) // Restores the warning state.
1207 #endif // GTEST_OS_WINDOWS
1208 }
1209
1210 void DescribeTo(::std::ostream* os) const {
1211 *os << "satisfies the given predicate";
1212 }
1213
1214 void DescribeNegationTo(::std::ostream* os) const {
1215 *os << "doesn't satisfy the given predicate";
1216 }
1217 private:
1218 Predicate predicate_;
1219 };
1220
1221 // Used for implementing Matches(matcher), which turns a matcher into
1222 // a predicate.
1223 template <typename M>
1224 class MatcherAsPredicate {
1225 public:
1226 explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1227
1228 // This template operator() allows Matches(m) to be used as a
1229 // predicate on type T where m is a matcher on type T.
1230 //
1231 // The argument x is passed by reference instead of by value, as
1232 // some matcher may be interested in its address (e.g. as in
1233 // Matches(Ref(n))(x)).
1234 template <typename T>
1235 bool operator()(const T& x) const {
1236 // We let matcher_ commit to a particular type here instead of
1237 // when the MatcherAsPredicate object was constructed. This
1238 // allows us to write Matches(m) where m is a polymorphic matcher
1239 // (e.g. Eq(5)).
1240 //
1241 // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1242 // compile when matcher_ has type Matcher<const T&>; if we write
1243 // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1244 // when matcher_ has type Matcher<T>; if we just write
1245 // matcher_.Matches(x), it won't compile when matcher_ is
1246 // polymorphic, e.g. Eq(5).
1247 //
1248 // MatcherCast<const T&>() is necessary for making the code work
1249 // in all of the above situations.
1250 return MatcherCast<const T&>(matcher_).Matches(x);
1251 }
1252 private:
1253 M matcher_;
1254 };
1255
1256 // For implementing ASSERT_THAT() and EXPECT_THAT(). The template
1257 // argument M must be a type that can be converted to a matcher.
1258 template <typename M>
1259 class PredicateFormatterFromMatcher {
1260 public:
1261 explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
1262
1263 // This template () operator allows a PredicateFormatterFromMatcher
1264 // object to act as a predicate-formatter suitable for using with
1265 // Google Test's EXPECT_PRED_FORMAT1() macro.
1266 template <typename T>
1267 AssertionResult operator()(const char* value_text, const T& x) const {
1268 // We convert matcher_ to a Matcher<const T&> *now* instead of
1269 // when the PredicateFormatterFromMatcher object was constructed,
1270 // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1271 // know which type to instantiate it to until we actually see the
1272 // type of x here.
1273 //
1274 // We write MatcherCast<const T&>(matcher_) instead of
1275 // Matcher<const T&>(matcher_), as the latter won't compile when
1276 // matcher_ has type Matcher<T> (e.g. An<int>()).
1277 const Matcher<const T&> matcher = MatcherCast<const T&>(matcher_);
1278 if (matcher.Matches(x)) {
1279 return AssertionSuccess();
1280 } else {
1281 ::std::stringstream ss;
1282 ss << "Value of: " << value_text << "\n"
1283 << "Expected: ";
1284 matcher.DescribeTo(&ss);
1285 ss << "\n Actual: ";
1286 UniversalPrinter<T>::Print(x, &ss);
1287 ExplainMatchResultAsNeededTo<const T&>(matcher, x, &ss);
1288 return AssertionFailure(Message() << ss.str());
1289 }
1290 }
1291 private:
1292 const M matcher_;
1293 };
1294
1295 // A helper function for converting a matcher to a predicate-formatter
1296 // without the user needing to explicitly write the type. This is
1297 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1298 template <typename M>
1299 inline PredicateFormatterFromMatcher<M>
1300 MakePredicateFormatterFromMatcher(const M& matcher) {
1301 return PredicateFormatterFromMatcher<M>(matcher);
1302 }
1303
1304 // Implements the polymorphic floating point equality matcher, which
1305 // matches two float values using ULP-based approximation. The
1306 // template is meant to be instantiated with FloatType being either
1307 // float or double.
1308 template <typename FloatType>
1309 class FloatingEqMatcher {
1310 public:
1311 // Constructor for FloatingEqMatcher.
1312 // The matcher's input will be compared with rhs. The matcher treats two
1313 // NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
1314 // equality comparisons between NANs will always return false.
1315 FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
1316 rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1317
1318 // Implements floating point equality matcher as a Matcher<T>.
1319 template <typename T>
1320 class Impl : public MatcherInterface<T> {
1321 public:
1322 Impl(FloatType rhs, bool nan_eq_nan) :
1323 rhs_(rhs), nan_eq_nan_(nan_eq_nan) {}
1324
1325 virtual bool Matches(T value) const {
1326 const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
1327
1328 // Compares NaNs first, if nan_eq_nan_ is true.
1329 if (nan_eq_nan_ && lhs.is_nan()) {
1330 return rhs.is_nan();
1331 }
1332
1333 return lhs.AlmostEquals(rhs);
1334 }
1335
1336 virtual void DescribeTo(::std::ostream* os) const {
1337 // os->precision() returns the previously set precision, which we
1338 // store to restore the ostream to its original configuration
1339 // after outputting.
1340 const ::std::streamsize old_precision = os->precision(
1341 ::std::numeric_limits<FloatType>::digits10 + 2);
1342 if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1343 if (nan_eq_nan_) {
1344 *os << "is NaN";
1345 } else {
1346 *os << "never matches";
1347 }
1348 } else {
1349 *os << "is approximately " << rhs_;
1350 }
1351 os->precision(old_precision);
1352 }
1353
1354 virtual void DescribeNegationTo(::std::ostream* os) const {
1355 // As before, get original precision.
1356 const ::std::streamsize old_precision = os->precision(
1357 ::std::numeric_limits<FloatType>::digits10 + 2);
1358 if (FloatingPoint<FloatType>(rhs_).is_nan()) {
1359 if (nan_eq_nan_) {
1360 *os << "is not NaN";
1361 } else {
1362 *os << "is anything";
1363 }
1364 } else {
1365 *os << "is not approximately " << rhs_;
1366 }
1367 // Restore original precision.
1368 os->precision(old_precision);
1369 }
1370
1371 private:
1372 const FloatType rhs_;
1373 const bool nan_eq_nan_;
1374 };
1375
1376 // The following 3 type conversion operators allow FloatEq(rhs) and
1377 // NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
1378 // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1379 // (While Google's C++ coding style doesn't allow arguments passed
1380 // by non-const reference, we may see them in code not conforming to
1381 // the style. Therefore Google Mock needs to support them.)
1382 operator Matcher<FloatType>() const {
1383 return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_));
1384 }
1385
1386 operator Matcher<const FloatType&>() const {
1387 return MakeMatcher(new Impl<const FloatType&>(rhs_, nan_eq_nan_));
1388 }
1389
1390 operator Matcher<FloatType&>() const {
1391 return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_));
1392 }
1393 private:
1394 const FloatType rhs_;
1395 const bool nan_eq_nan_;
1396 };
1397
1398 // Implements the Pointee(m) matcher for matching a pointer whose
1399 // pointee matches matcher m. The pointer can be either raw or smart.
1400 template <typename InnerMatcher>
1401 class PointeeMatcher {
1402 public:
1403 explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1404
1405 // This type conversion operator template allows Pointee(m) to be
1406 // used as a matcher for any pointer type whose pointee type is
1407 // compatible with the inner matcher, where type Pointer can be
1408 // either a raw pointer or a smart pointer.
1409 //
1410 // The reason we do this instead of relying on
1411 // MakePolymorphicMatcher() is that the latter is not flexible
1412 // enough for implementing the DescribeTo() method of Pointee().
1413 template <typename Pointer>
1414 operator Matcher<Pointer>() const {
1415 return MakeMatcher(new Impl<Pointer>(matcher_));
1416 }
1417 private:
1418 // The monomorphic implementation that works for a particular pointer type.
1419 template <typename Pointer>
1420 class Impl : public MatcherInterface<Pointer> {
1421 public:
1422 typedef typename PointeeOf<GMOCK_REMOVE_CONST_( // NOLINT
1423 GMOCK_REMOVE_REFERENCE_(Pointer))>::type Pointee;
1424
1425 explicit Impl(const InnerMatcher& matcher)
1426 : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1427
1428 virtual bool Matches(Pointer p) const {
1429 return GetRawPointer(p) != NULL && matcher_.Matches(*p);
1430 }
1431
1432 virtual void DescribeTo(::std::ostream* os) const {
1433 *os << "points to a value that ";
1434 matcher_.DescribeTo(os);
1435 }
1436
1437 virtual void DescribeNegationTo(::std::ostream* os) const {
1438 *os << "does not point to a value that ";
1439 matcher_.DescribeTo(os);
1440 }
1441
1442 virtual void ExplainMatchResultTo(Pointer pointer,
1443 ::std::ostream* os) const {
1444 if (GetRawPointer(pointer) == NULL)
1445 return;
1446
1447 ::std::stringstream ss;
1448 matcher_.ExplainMatchResultTo(*pointer, &ss);
1449 const internal::string s = ss.str();
1450 if (s != "") {
1451 *os << "points to a value that " << s;
1452 }
1453 }
1454 private:
1455 const Matcher<const Pointee&> matcher_;
1456 };
1457
1458 const InnerMatcher matcher_;
1459 };
1460
1461 // Implements the Field() matcher for matching a field (i.e. member
1462 // variable) of an object.
1463 template <typename Class, typename FieldType>
1464 class FieldMatcher {
1465 public:
1466 FieldMatcher(FieldType Class::*field,
1467 const Matcher<const FieldType&>& matcher)
1468 : field_(field), matcher_(matcher) {}
1469
1470 // Returns true iff the inner matcher matches obj.field.
1471 bool Matches(const Class& obj) const {
1472 return matcher_.Matches(obj.*field_);
1473 }
1474
1475 // Returns true iff the inner matcher matches obj->field.
1476 bool Matches(const Class* p) const {
1477 return (p != NULL) && matcher_.Matches(p->*field_);
1478 }
1479
1480 void DescribeTo(::std::ostream* os) const {
1481 *os << "the given field ";
1482 matcher_.DescribeTo(os);
1483 }
1484
1485 void DescribeNegationTo(::std::ostream* os) const {
1486 *os << "the given field ";
1487 matcher_.DescribeNegationTo(os);
1488 }
1489
1490 // The first argument of ExplainMatchResultTo() is needed to help
1491 // Symbian's C++ compiler choose which overload to use. Its type is
1492 // true_type iff the Field() matcher is used to match a pointer.
1493 void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj,
1494 ::std::ostream* os) const {
1495 ::std::stringstream ss;
1496 matcher_.ExplainMatchResultTo(obj.*field_, &ss);
1497 const internal::string s = ss.str();
1498 if (s != "") {
1499 *os << "the given field " << s;
1500 }
1501 }
1502
1503 void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p,
1504 ::std::ostream* os) const {
1505 if (p != NULL) {
1506 // Since *p has a field, it must be a class/struct/union type
1507 // and thus cannot be a pointer. Therefore we pass false_type()
1508 // as the first argument.
1509 ExplainMatchResultTo(false_type(), *p, os);
1510 }
1511 }
1512 private:
1513 const FieldType Class::*field_;
1514 const Matcher<const FieldType&> matcher_;
1515 };
1516
1517 // Explains the result of matching an object or pointer against a field matcher.
1518 template <typename Class, typename FieldType, typename T>
1519 void ExplainMatchResultTo(const FieldMatcher<Class, FieldType>& matcher,
1520 const T& value, ::std::ostream* os) {
1521 matcher.ExplainMatchResultTo(
1522 typename ::testing::internal::is_pointer<T>::type(), value, os);
1523 }
1524
1525 // Implements the Property() matcher for matching a property
1526 // (i.e. return value of a getter method) of an object.
1527 template <typename Class, typename PropertyType>
1528 class PropertyMatcher {
1529 public:
1530 // The property may have a reference type, so 'const PropertyType&'
1531 // may cause double references and fail to compile. That's why we
1532 // need GMOCK_REFERENCE_TO_CONST, which works regardless of
1533 // PropertyType being a reference or not.
1534 typedef GMOCK_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
1535
1536 PropertyMatcher(PropertyType (Class::*property)() const,
1537 const Matcher<RefToConstProperty>& matcher)
1538 : property_(property), matcher_(matcher) {}
1539
1540 // Returns true iff obj.property() matches the inner matcher.
1541 bool Matches(const Class& obj) const {
1542 return matcher_.Matches((obj.*property_)());
1543 }
1544
1545 // Returns true iff p->property() matches the inner matcher.
1546 bool Matches(const Class* p) const {
1547 return (p != NULL) && matcher_.Matches((p->*property_)());
1548 }
1549
1550 void DescribeTo(::std::ostream* os) const {
1551 *os << "the given property ";
1552 matcher_.DescribeTo(os);
1553 }
1554
1555 void DescribeNegationTo(::std::ostream* os) const {
1556 *os << "the given property ";
1557 matcher_.DescribeNegationTo(os);
1558 }
1559
1560 // The first argument of ExplainMatchResultTo() is needed to help
1561 // Symbian's C++ compiler choose which overload to use. Its type is
1562 // true_type iff the Property() matcher is used to match a pointer.
1563 void ExplainMatchResultTo(false_type /* is_not_pointer */, const Class& obj,
1564 ::std::ostream* os) const {
1565 ::std::stringstream ss;
1566 matcher_.ExplainMatchResultTo((obj.*property_)(), &ss);
1567 const internal::string s = ss.str();
1568 if (s != "") {
1569 *os << "the given property " << s;
1570 }
1571 }
1572
1573 void ExplainMatchResultTo(true_type /* is_pointer */, const Class* p,
1574 ::std::ostream* os) const {
1575 if (p != NULL) {
1576 // Since *p has a property method, it must be a
1577 // class/struct/union type and thus cannot be a pointer.
1578 // Therefore we pass false_type() as the first argument.
1579 ExplainMatchResultTo(false_type(), *p, os);
1580 }
1581 }
1582 private:
1583 PropertyType (Class::*property_)() const;
1584 const Matcher<RefToConstProperty> matcher_;
1585 };
1586
1587 // Explains the result of matching an object or pointer against a
1588 // property matcher.
1589 template <typename Class, typename PropertyType, typename T>
1590 void ExplainMatchResultTo(const PropertyMatcher<Class, PropertyType>& matcher,
1591 const T& value, ::std::ostream* os) {
1592 matcher.ExplainMatchResultTo(
1593 typename ::testing::internal::is_pointer<T>::type(), value, os);
1594 }
1595
1596 // Type traits specifying various features of different functors for ResultOf.
1597 // The default template specifies features for functor objects.
1598 // Functor classes have to typedef argument_type and result_type
1599 // to be compatible with ResultOf.
1600 template <typename Functor>
1601 struct CallableTraits {
1602 typedef typename Functor::result_type ResultType;
1603 typedef Functor StorageType;
1604
1605 static void CheckIsValid(Functor functor) {}
1606 template <typename T>
1607 static ResultType Invoke(Functor f, T arg) { return f(arg); }
1608 };
1609
1610 // Specialization for function pointers.
1611 template <typename ArgType, typename ResType>
1612 struct CallableTraits<ResType(*)(ArgType)> {
1613 typedef ResType ResultType;
1614 typedef ResType(*StorageType)(ArgType);
1615
1616 static void CheckIsValid(ResType(*f)(ArgType)) {
1617 GMOCK_CHECK_(f != NULL)
1618 << "NULL function pointer is passed into ResultOf().";
1619 }
1620 template <typename T>
1621 static ResType Invoke(ResType(*f)(ArgType), T arg) {
1622 return (*f)(arg);
1623 }
1624 };
1625
1626 // Implements the ResultOf() matcher for matching a return value of a
1627 // unary function of an object.
1628 template <typename Callable>
1629 class ResultOfMatcher {
1630 public:
1631 typedef typename CallableTraits<Callable>::ResultType ResultType;
1632
1633 ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
1634 : callable_(callable), matcher_(matcher) {
1635 CallableTraits<Callable>::CheckIsValid(callable_);
1636 }
1637
1638 template <typename T>
1639 operator Matcher<T>() const {
1640 return Matcher<T>(new Impl<T>(callable_, matcher_));
1641 }
1642
1643 private:
1644 typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
1645
1646 template <typename T>
1647 class Impl : public MatcherInterface<T> {
1648 public:
1649 Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
1650 : callable_(callable), matcher_(matcher) {}
1651 // Returns true iff callable_(obj) matches the inner matcher.
1652 // The calling syntax is different for different types of callables
1653 // so we abstract it in CallableTraits<Callable>::Invoke().
1654 virtual bool Matches(T obj) const {
1655 return matcher_.Matches(
1656 CallableTraits<Callable>::template Invoke<T>(callable_, obj));
1657 }
1658
1659 virtual void DescribeTo(::std::ostream* os) const {
1660 *os << "result of the given callable ";
1661 matcher_.DescribeTo(os);
1662 }
1663
1664 virtual void DescribeNegationTo(::std::ostream* os) const {
1665 *os << "result of the given callable ";
1666 matcher_.DescribeNegationTo(os);
1667 }
1668
1669 virtual void ExplainMatchResultTo(T obj, ::std::ostream* os) const {
1670 ::std::stringstream ss;
1671 matcher_.ExplainMatchResultTo(
1672 CallableTraits<Callable>::template Invoke<T>(callable_, obj),
1673 &ss);
1674 const internal::string s = ss.str();
1675 if (s != "")
1676 *os << "result of the given callable " << s;
1677 }
1678 private:
1679 // Functors often define operator() as non-const method even though
1680 // they are actualy stateless. But we need to use them even when
1681 // 'this' is a const pointer. It's the user's responsibility not to
1682 // use stateful callables with ResultOf(), which does't guarantee
1683 // how many times the callable will be invoked.
1684 mutable CallableStorageType callable_;
1685 const Matcher<ResultType> matcher_;
1686 }; // class Impl
1687
1688 const CallableStorageType callable_;
1689 const Matcher<ResultType> matcher_;
1690 };
1691
1692 // Explains the result of matching a value against a functor matcher.
1693 template <typename T, typename Callable>
1694 void ExplainMatchResultTo(const ResultOfMatcher<Callable>& matcher,
1695 T obj, ::std::ostream* os) {
1696 matcher.ExplainMatchResultTo(obj, os);
1697 }
1698
1699 // Implements an equality matcher for any STL-style container whose elements
1700 // support ==. This matcher is like Eq(), but its failure explanations provide
1701 // more detailed information that is useful when the container is used as a set.
1702 // The failure message reports elements that are in one of the operands but not
1703 // the other. The failure messages do not report duplicate or out-of-order
1704 // elements in the containers (which don't properly matter to sets, but can
1705 // occur if the containers are vectors or lists, for example).
1706 //
1707 // Uses the container's const_iterator, value_type, operator ==,
1708 // begin(), and end().
1709 template <typename Container>
1710 class ContainerEqMatcher {
1711 public:
1712 explicit ContainerEqMatcher(const Container& rhs) : rhs_(rhs) {}
1713 bool Matches(const Container& lhs) const { return lhs == rhs_; }
1714 void DescribeTo(::std::ostream* os) const {
1715 *os << "equals ";
1716 UniversalPrinter<Container>::Print(rhs_, os);
1717 }
1718 void DescribeNegationTo(::std::ostream* os) const {
1719 *os << "does not equal ";
1720 UniversalPrinter<Container>::Print(rhs_, os);
1721 }
1722
1723 void ExplainMatchResultTo(const Container& lhs,
1724 ::std::ostream* os) const {
1725 // Something is different. Check for missing values first.
1726 bool printed_header = false;
1727 for (typename Container::const_iterator it = lhs.begin();
1728 it != lhs.end(); ++it) {
1729 if (std::find(rhs_.begin(), rhs_.end(), *it) == rhs_.end()) {
1730 if (printed_header) {
1731 *os << ", ";
1732 } else {
1733 *os << "Only in actual: ";
1734 printed_header = true;
1735 }
1736 UniversalPrinter<typename Container::value_type>::Print(*it, os);
1737 }
1738 }
1739
1740 // Now check for extra values.
1741 bool printed_header2 = false;
1742 for (typename Container::const_iterator it = rhs_.begin();
1743 it != rhs_.end(); ++it) {
1744 if (std::find(lhs.begin(), lhs.end(), *it) == lhs.end()) {
1745 if (printed_header2) {
1746 *os << ", ";
1747 } else {
1748 *os << (printed_header ? "; not" : "Not") << " in actual: ";
1749 printed_header2 = true;
1750 }
1751 UniversalPrinter<typename Container::value_type>::Print(*it, os);
1752 }
1753 }
1754 }
1755 private:
1756 const Container rhs_;
1757 };
1758
1759 template <typename Container>
1760 void ExplainMatchResultTo(const ContainerEqMatcher<Container>& matcher,
1761 const Container& lhs,
1762 ::std::ostream* os) {
1763 matcher.ExplainMatchResultTo(lhs, os);
1764 }
1765
1766 } // namespace internal
1767
1768 // Implements MatcherCast().
1769 template <typename T, typename M>
1770 inline Matcher<T> MatcherCast(M matcher) {
1771 return internal::MatcherCastImpl<T, M>::Cast(matcher);
1772 }
1773
1774 // _ is a matcher that matches anything of any type.
1775 //
1776 // This definition is fine as:
1777 //
1778 // 1. The C++ standard permits using the name _ in a namespace that
1779 // is not the global namespace or ::std.
1780 // 2. The AnythingMatcher class has no data member or constructor,
1781 // so it's OK to create global variables of this type.
1782 // 3. c-style has approved of using _ in this case.
1783 const internal::AnythingMatcher _ = {};
1784 // Creates a matcher that matches any value of the given type T.
1785 template <typename T>
1786 inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
1787
1788 // Creates a matcher that matches any value of the given type T.
1789 template <typename T>
1790 inline Matcher<T> An() { return A<T>(); }
1791
1792 // Creates a polymorphic matcher that matches anything equal to x.
1793 // Note: if the parameter of Eq() were declared as const T&, Eq("foo")
1794 // wouldn't compile.
1795 template <typename T>
1796 inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
1797
1798 // Constructs a Matcher<T> from a 'value' of type T. The constructed
1799 // matcher matches any value that's equal to 'value'.
1800 template <typename T>
1801 Matcher<T>::Matcher(T value) { *this = Eq(value); }
1802
1803 // Creates a monomorphic matcher that matches anything with type Lhs
1804 // and equal to rhs. A user may need to use this instead of Eq(...)
1805 // in order to resolve an overloading ambiguity.
1806 //
1807 // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
1808 // or Matcher<T>(x), but more readable than the latter.
1809 //
1810 // We could define similar monomorphic matchers for other comparison
1811 // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
1812 // it yet as those are used much less than Eq() in practice. A user
1813 // can always write Matcher<T>(Lt(5)) to be explicit about the type,
1814 // for example.
1815 template <typename Lhs, typename Rhs>
1816 inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
1817
1818 // Creates a polymorphic matcher that matches anything >= x.
1819 template <typename Rhs>
1820 inline internal::GeMatcher<Rhs> Ge(Rhs x) {
1821 return internal::GeMatcher<Rhs>(x);
1822 }
1823
1824 // Creates a polymorphic matcher that matches anything > x.
1825 template <typename Rhs>
1826 inline internal::GtMatcher<Rhs> Gt(Rhs x) {
1827 return internal::GtMatcher<Rhs>(x);
1828 }
1829
1830 // Creates a polymorphic matcher that matches anything <= x.
1831 template <typename Rhs>
1832 inline internal::LeMatcher<Rhs> Le(Rhs x) {
1833 return internal::LeMatcher<Rhs>(x);
1834 }
1835
1836 // Creates a polymorphic matcher that matches anything < x.
1837 template <typename Rhs>
1838 inline internal::LtMatcher<Rhs> Lt(Rhs x) {
1839 return internal::LtMatcher<Rhs>(x);
1840 }
1841
1842 // Creates a polymorphic matcher that matches anything != x.
1843 template <typename Rhs>
1844 inline internal::NeMatcher<Rhs> Ne(Rhs x) {
1845 return internal::NeMatcher<Rhs>(x);
1846 }
1847
1848 // Creates a polymorphic matcher that matches any non-NULL pointer.
1849 // This is convenient as Not(NULL) doesn't compile (the compiler
1850 // thinks that that expression is comparing a pointer with an integer).
1851 inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
1852 return MakePolymorphicMatcher(internal::NotNullMatcher());
1853 }
1854
1855 // Creates a polymorphic matcher that matches any argument that
1856 // references variable x.
1857 template <typename T>
1858 inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
1859 return internal::RefMatcher<T&>(x);
1860 }
1861
1862 // Creates a matcher that matches any double argument approximately
1863 // equal to rhs, where two NANs are considered unequal.
1864 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
1865 return internal::FloatingEqMatcher<double>(rhs, false);
1866 }
1867
1868 // Creates a matcher that matches any double argument approximately
1869 // equal to rhs, including NaN values when rhs is NaN.
1870 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
1871 return internal::FloatingEqMatcher<double>(rhs, true);
1872 }
1873
1874 // Creates a matcher that matches any float argument approximately
1875 // equal to rhs, where two NANs are considered unequal.
1876 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
1877 return internal::FloatingEqMatcher<float>(rhs, false);
1878 }
1879
1880 // Creates a matcher that matches any double argument approximately
1881 // equal to rhs, including NaN values when rhs is NaN.
1882 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
1883 return internal::FloatingEqMatcher<float>(rhs, true);
1884 }
1885
1886 // Creates a matcher that matches a pointer (raw or smart) that points
1887 // to a value that matches inner_matcher.
1888 template <typename InnerMatcher>
1889 inline internal::PointeeMatcher<InnerMatcher> Pointee(
1890 const InnerMatcher& inner_matcher) {
1891 return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
1892 }
1893
1894 // Creates a matcher that matches an object whose given field matches
1895 // 'matcher'. For example,
1896 // Field(&Foo::number, Ge(5))
1897 // matches a Foo object x iff x.number >= 5.
1898 template <typename Class, typename FieldType, typename FieldMatcher>
1899 inline PolymorphicMatcher<
1900 internal::FieldMatcher<Class, FieldType> > Field(
1901 FieldType Class::*field, const FieldMatcher& matcher) {
1902 return MakePolymorphicMatcher(
1903 internal::FieldMatcher<Class, FieldType>(
1904 field, MatcherCast<const FieldType&>(matcher)));
1905 // The call to MatcherCast() is required for supporting inner
1906 // matchers of compatible types. For example, it allows
1907 // Field(&Foo::bar, m)
1908 // to compile where bar is an int32 and m is a matcher for int64.
1909 }
1910
1911 // Creates a matcher that matches an object whose given property
1912 // matches 'matcher'. For example,
1913 // Property(&Foo::str, StartsWith("hi"))
1914 // matches a Foo object x iff x.str() starts with "hi".
1915 template <typename Class, typename PropertyType, typename PropertyMatcher>
1916 inline PolymorphicMatcher<
1917 internal::PropertyMatcher<Class, PropertyType> > Property(
1918 PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
1919 return MakePolymorphicMatcher(
1920 internal::PropertyMatcher<Class, PropertyType>(
1921 property,
1922 MatcherCast<GMOCK_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
1923 // The call to MatcherCast() is required for supporting inner
1924 // matchers of compatible types. For example, it allows
1925 // Property(&Foo::bar, m)
1926 // to compile where bar() returns an int32 and m is a matcher for int64.
1927 }
1928
1929 // Creates a matcher that matches an object iff the result of applying
1930 // a callable to x matches 'matcher'.
1931 // For example,
1932 // ResultOf(f, StartsWith("hi"))
1933 // matches a Foo object x iff f(x) starts with "hi".
1934 // callable parameter can be a function, function pointer, or a functor.
1935 // Callable has to satisfy the following conditions:
1936 // * It is required to keep no state affecting the results of
1937 // the calls on it and make no assumptions about how many calls
1938 // will be made. Any state it keeps must be protected from the
1939 // concurrent access.
1940 // * If it is a function object, it has to define type result_type.
1941 // We recommend deriving your functor classes from std::unary_function.
1942 template <typename Callable, typename ResultOfMatcher>
1943 internal::ResultOfMatcher<Callable> ResultOf(
1944 Callable callable, const ResultOfMatcher& matcher) {
1945 return internal::ResultOfMatcher<Callable>(
1946 callable,
1947 MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
1948 matcher));
1949 // The call to MatcherCast() is required for supporting inner
1950 // matchers of compatible types. For example, it allows
1951 // ResultOf(Function, m)
1952 // to compile where Function() returns an int32 and m is a matcher for int64.
1953 }
1954
1955 // String matchers.
1956
1957 // Matches a string equal to str.
1958 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
1959 StrEq(const internal::string& str) {
1960 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
1961 str, true, true));
1962 }
1963
1964 // Matches a string not equal to str.
1965 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
1966 StrNe(const internal::string& str) {
1967 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
1968 str, false, true));
1969 }
1970
1971 // Matches a string equal to str, ignoring case.
1972 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
1973 StrCaseEq(const internal::string& str) {
1974 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
1975 str, true, false));
1976 }
1977
1978 // Matches a string not equal to str, ignoring case.
1979 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
1980 StrCaseNe(const internal::string& str) {
1981 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
1982 str, false, false));
1983 }
1984
1985 // Creates a matcher that matches any string, std::string, or C string
1986 // that contains the given substring.
1987 inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
1988 HasSubstr(const internal::string& substring) {
1989 return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
1990 substring));
1991 }
1992
1993 // Matches a string that starts with 'prefix' (case-sensitive).
1994 inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
1995 StartsWith(const internal::string& prefix) {
1996 return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
1997 prefix));
1998 }
1999
2000 // Matches a string that ends with 'suffix' (case-sensitive).
2001 inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
2002 EndsWith(const internal::string& suffix) {
2003 return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
2004 suffix));
2005 }
2006
2007 #ifdef GMOCK_HAS_REGEX
2008
2009 // Matches a string that fully matches regular expression 'regex'.
2010 // The matcher takes ownership of 'regex'.
2011 inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2012 const internal::RE* regex) {
2013 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
2014 }
2015 inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
2016 const internal::string& regex) {
2017 return MatchesRegex(new internal::RE(regex));
2018 }
2019
2020 // Matches a string that contains regular expression 'regex'.
2021 // The matcher takes ownership of 'regex'.
2022 inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2023 const internal::RE* regex) {
2024 return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
2025 }
2026 inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
2027 const internal::string& regex) {
2028 return ContainsRegex(new internal::RE(regex));
2029 }
2030
2031 #endif // GMOCK_HAS_REGEX
2032
2033 #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2034 // Wide string matchers.
2035
2036 // Matches a string equal to str.
2037 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2038 StrEq(const internal::wstring& str) {
2039 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2040 str, true, true));
2041 }
2042
2043 // Matches a string not equal to str.
2044 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2045 StrNe(const internal::wstring& str) {
2046 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2047 str, false, true));
2048 }
2049
2050 // Matches a string equal to str, ignoring case.
2051 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2052 StrCaseEq(const internal::wstring& str) {
2053 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2054 str, true, false));
2055 }
2056
2057 // Matches a string not equal to str, ignoring case.
2058 inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
2059 StrCaseNe(const internal::wstring& str) {
2060 return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
2061 str, false, false));
2062 }
2063
2064 // Creates a matcher that matches any wstring, std::wstring, or C wide string
2065 // that contains the given substring.
2066 inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
2067 HasSubstr(const internal::wstring& substring) {
2068 return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
2069 substring));
2070 }
2071
2072 // Matches a string that starts with 'prefix' (case-sensitive).
2073 inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
2074 StartsWith(const internal::wstring& prefix) {
2075 return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
2076 prefix));
2077 }
2078
2079 // Matches a string that ends with 'suffix' (case-sensitive).
2080 inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
2081 EndsWith(const internal::wstring& suffix) {
2082 return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
2083 suffix));
2084 }
2085
2086 #endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
2087
2088 // Creates a polymorphic matcher that matches a 2-tuple where the
2089 // first field == the second field.
2090 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
2091
2092 // Creates a polymorphic matcher that matches a 2-tuple where the
2093 // first field >= the second field.
2094 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
2095
2096 // Creates a polymorphic matcher that matches a 2-tuple where the
2097 // first field > the second field.
2098 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
2099
2100 // Creates a polymorphic matcher that matches a 2-tuple where the
2101 // first field <= the second field.
2102 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
2103
2104 // Creates a polymorphic matcher that matches a 2-tuple where the
2105 // first field < the second field.
2106 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
2107
2108 // Creates a polymorphic matcher that matches a 2-tuple where the
2109 // first field != the second field.
2110 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
2111
2112 // Creates a matcher that matches any value of type T that m doesn't
2113 // match.
2114 template <typename InnerMatcher>
2115 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
2116 return internal::NotMatcher<InnerMatcher>(m);
2117 }
2118
2119 // Creates a matcher that matches any value that matches all of the
2120 // given matchers.
2121 //
2122 // For now we only support up to 5 matchers. Support for more
2123 // matchers can be added as needed, or the user can use nested
2124 // AllOf()s.
2125 template <typename Matcher1, typename Matcher2>
2126 inline internal::BothOfMatcher<Matcher1, Matcher2>
2127 AllOf(Matcher1 m1, Matcher2 m2) {
2128 return internal::BothOfMatcher<Matcher1, Matcher2>(m1, m2);
2129 }
2130
2131 template <typename Matcher1, typename Matcher2, typename Matcher3>
2132 inline internal::BothOfMatcher<Matcher1,
2133 internal::BothOfMatcher<Matcher2, Matcher3> >
2134 AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2135 return AllOf(m1, AllOf(m2, m3));
2136 }
2137
2138 template <typename Matcher1, typename Matcher2, typename Matcher3,
2139 typename Matcher4>
2140 inline internal::BothOfMatcher<Matcher1,
2141 internal::BothOfMatcher<Matcher2,
2142 internal::BothOfMatcher<Matcher3, Matcher4> > >
2143 AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2144 return AllOf(m1, AllOf(m2, m3, m4));
2145 }
2146
2147 template <typename Matcher1, typename Matcher2, typename Matcher3,
2148 typename Matcher4, typename Matcher5>
2149 inline internal::BothOfMatcher<Matcher1,
2150 internal::BothOfMatcher<Matcher2,
2151 internal::BothOfMatcher<Matcher3,
2152 internal::BothOfMatcher<Matcher4, Matcher5> > > >
2153 AllOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2154 return AllOf(m1, AllOf(m2, m3, m4, m5));
2155 }
2156
2157 // Creates a matcher that matches any value that matches at least one
2158 // of the given matchers.
2159 //
2160 // For now we only support up to 5 matchers. Support for more
2161 // matchers can be added as needed, or the user can use nested
2162 // AnyOf()s.
2163 template <typename Matcher1, typename Matcher2>
2164 inline internal::EitherOfMatcher<Matcher1, Matcher2>
2165 AnyOf(Matcher1 m1, Matcher2 m2) {
2166 return internal::EitherOfMatcher<Matcher1, Matcher2>(m1, m2);
2167 }
2168
2169 template <typename Matcher1, typename Matcher2, typename Matcher3>
2170 inline internal::EitherOfMatcher<Matcher1,
2171 internal::EitherOfMatcher<Matcher2, Matcher3> >
2172 AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3) {
2173 return AnyOf(m1, AnyOf(m2, m3));
2174 }
2175
2176 template <typename Matcher1, typename Matcher2, typename Matcher3,
2177 typename Matcher4>
2178 inline internal::EitherOfMatcher<Matcher1,
2179 internal::EitherOfMatcher<Matcher2,
2180 internal::EitherOfMatcher<Matcher3, Matcher4> > >
2181 AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4) {
2182 return AnyOf(m1, AnyOf(m2, m3, m4));
2183 }
2184
2185 template <typename Matcher1, typename Matcher2, typename Matcher3,
2186 typename Matcher4, typename Matcher5>
2187 inline internal::EitherOfMatcher<Matcher1,
2188 internal::EitherOfMatcher<Matcher2,
2189 internal::EitherOfMatcher<Matcher3,
2190 internal::EitherOfMatcher<Matcher4, Matcher5> > > >
2191 AnyOf(Matcher1 m1, Matcher2 m2, Matcher3 m3, Matcher4 m4, Matcher5 m5) {
2192 return AnyOf(m1, AnyOf(m2, m3, m4, m5));
2193 }
2194
2195 // Returns a matcher that matches anything that satisfies the given
2196 // predicate. The predicate can be any unary function or functor
2197 // whose return type can be implicitly converted to bool.
2198 template <typename Predicate>
2199 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
2200 Truly(Predicate pred) {
2201 return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
2202 }
2203
2204 // Returns a matcher that matches an equal container.
2205 // This matcher behaves like Eq(), but in the event of mismatch lists the
2206 // values that are included in one container but not the other. (Duplicate
2207 // values and order differences are not explained.)
2208 template <typename Container>
2209 inline PolymorphicMatcher<internal::ContainerEqMatcher<Container> >
2210 ContainerEq(const Container& rhs) {
2211 return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
2212 }
2213
2214 // Returns a predicate that is satisfied by anything that matches the
2215 // given matcher.
2216 template <typename M>
2217 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
2218 return internal::MatcherAsPredicate<M>(matcher);
2219 }
2220
2221 // These macros allow using matchers to check values in Google Test
2222 // tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
2223 // succeed iff the value matches the matcher. If the assertion fails,
2224 // the value and the description of the matcher will be printed.
2225 #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
2226 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2227 #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
2228 ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
2229
2230 } // namespace testing
2231
2232 #endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
OLDNEW
« no previous file with comments | « testing/gmock/include/gmock/gmock-generated-nice-strict.h.pump ('k') | testing/gmock/include/gmock/gmock-printers.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698