Index: third_party/courgette/image_info.cc |
=================================================================== |
--- third_party/courgette/image_info.cc (revision 0) |
+++ third_party/courgette/image_info.cc (revision 0) |
@@ -0,0 +1,392 @@ |
+// Copyright (c) 2009 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "third_party/courgette/image_info.h" |
+ |
+#include <memory.h> |
+#include <algorithm> |
+#include <map> |
+#include <set> |
+#include <sstream> |
+#include <vector> |
+ |
+#include "base/logging.h" |
+ |
+namespace courgette { |
+ |
+std::string SectionName(const Section* section) { |
+ if (section == NULL) |
+ return "<none>"; |
+ char name[9]; |
+ memcpy(name, section->name, 8); |
+ name[8] = '\0'; // Ensure termination. |
+ return name; |
+} |
+ |
+PEInfo::PEInfo() |
+ : failure_reason_("uninitialized"), |
+ start_(0), end_(0), length_(0), |
+ is_PE32_plus_(0), file_length_(0), has_text_section_(false) { |
+} |
+ |
+void PEInfo::Init(const void* start, size_t length) { |
+ start_ = reinterpret_cast<const uint8*>(start); |
+ length_ = length; |
+ end_ = start_ + length_; |
+ failure_reason_ = "unparsed"; |
+} |
+ |
+// DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except |
+// that during development I'm finding I need to call it when compiled in |
+// Release mode. Hence: |
+// TODO(sra): make this compile only for debug mode. |
+std::string PEInfo::DescribeRVA(RVA rva) const { |
+ const Section* section = RVAToSection(rva); |
+ std::ostringstream s; |
+ s << std::hex << rva; |
+ if (section) { |
+ s << " ("; |
+ s << SectionName(section) << "+" |
+ << std::hex << (rva - section->virtual_address) |
+ << ")"; |
+ } |
+ return s.str(); |
+} |
+ |
+const Section* PEInfo::FindNextSection(uint32 fileOffset) const { |
+ const Section* best = 0; |
+ for (int i = 0; i < number_of_sections_; i++) { |
+ const Section* section = §ions_[i]; |
+ if (fileOffset <= section->file_offset_of_raw_data) { |
+ if (best == 0 || |
+ section->file_offset_of_raw_data < best->file_offset_of_raw_data) { |
+ best = section; |
+ } |
+ } |
+ } |
+ return best; |
+} |
+ |
+const Section* PEInfo::RVAToSection(RVA rva) const { |
+ for (int i = 0; i < number_of_sections_; i++) { |
+ const Section* section = §ions_[i]; |
+ uint32 offset = rva - section->virtual_address; |
+ if (offset < section->virtual_size) { |
+ return section; |
+ } |
+ } |
+ return NULL; |
+} |
+ |
+int PEInfo::RVAToFileOffset(RVA rva) const { |
+ const Section* section = RVAToSection(rva); |
+ if (section) { |
+ uint32 offset = rva - section->virtual_address; |
+ if (offset < section->size_of_raw_data) { |
+ return section->file_offset_of_raw_data + offset; |
+ } else { |
+ return kNoOffset; // In section but not in file (e.g. uninit data). |
+ } |
+ } |
+ |
+ // Small RVA values point into the file header in the loaded image. |
+ // RVA 0 is the module load address which Windows uses as the module handle. |
+ // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the |
+ // DOS header. |
+ if (rva == 0 || rva == 2) |
+ return rva; |
+ |
+ NOTREACHED(); |
+ return kNoOffset; |
+} |
+ |
+const uint8* PEInfo::RVAToPointer(RVA rva) const { |
+ int file_offset = RVAToFileOffset(rva); |
+ if (file_offset == kNoOffset) |
+ return NULL; |
+ else |
+ return start_ + file_offset; |
+} |
+ |
+RVA PEInfo::FileOffsetToRVA(uint32 file_offset) const { |
+ for (int i = 0; i < number_of_sections_; i++) { |
+ const Section* section = §ions_[i]; |
+ uint32 offset = file_offset - section->file_offset_of_raw_data; |
+ if (offset < section->size_of_raw_data) { |
+ return section->virtual_address + offset; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
+namespace { |
+ |
+// Constants and offsets gleaned from WINNT.H and various articles on the |
+// format of Windows PE executables. |
+ |
+// This is FIELD_OFFSET(IMAGE_DOS_HEADER, e_lfanew): |
+const size_t kOffsetOfFileAddressOfNewExeHeader = 0x3c; |
+ |
+const uint16 kImageNtOptionalHdr32Magic = 0x10b; |
+const uint16 kImageNtOptionalHdr64Magic = 0x20b; |
+ |
+const size_t kSizeOfCoffHeader = 20; |
+const size_t kOffsetOfDataDirectoryFromImageOptionalHeader32 = 96; |
+const size_t kOffsetOfDataDirectoryFromImageOptionalHeader64 = 112; |
+ |
+// These helper functions avoid the need for casts in the main code. |
+inline uint16 ReadU16(const uint8* address, size_t offset) { |
+ return *reinterpret_cast<const uint16*>(address + offset); |
+} |
+ |
+inline uint32 ReadU32(const uint8* address, size_t offset) { |
+ return *reinterpret_cast<const uint32*>(address + offset); |
+} |
+ |
+inline uint64 ReadU64(const uint8* address, size_t offset) { |
+ return *reinterpret_cast<const uint64*>(address + offset); |
+} |
+ |
+} // namespace |
+ |
+// ParseHeader attempts to match up the buffer with the Windows data |
+// structures that exist within a Windows 'Portable Executable' format file. |
+// Returns 'true' if the buffer matches, and 'false' if the data looks |
+// suspicious. Rather than try to 'map' the buffer to the numerous windows |
+// structures, we extract the information we need into the courgette::PEInfo |
+// structure. |
+// |
+bool PEInfo::ParseHeader() { |
+ if (length_ < kOffsetOfFileAddressOfNewExeHeader + 4 /*size*/) |
+ return Bad("Too small"); |
+ |
+ // Have 'MZ' magic for a DOS header? |
+ if (start_[0] != 'M' || start_[1] != 'Z') |
+ return Bad("Not MZ"); |
+ |
+ // offset from DOS header to PE header is stored in DOS header. |
+ uint32 offset = ReadU32(start_, kOffsetOfFileAddressOfNewExeHeader); |
+ |
+ const uint8* const pe_header = start_ + offset; |
+ const size_t kMinPEHeaderSize = 4 /*signature*/ + kSizeOfCoffHeader; |
+ if (pe_header <= start_ || pe_header >= end_ - kMinPEHeaderSize) |
+ return Bad("Bad offset to PE header"); |
+ |
+ if (offset % 8 != 0) |
+ return Bad("Misaligned PE header"); |
+ |
+ // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H. |
+ // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx |
+ // |
+ // The first field of the IMAGE_NT_HEADERS is the signature. |
+ if (!(pe_header[0] == 'P' && |
+ pe_header[1] == 'E' && |
+ pe_header[2] == 0 && |
+ pe_header[3] == 0)) |
+ return Bad("no PE signature"); |
+ |
+ // The second field of the IMAGE_NT_HEADERS is the COFF header. |
+ // The COFF header is also called an IMAGE_FILE_HEADER |
+ // http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx |
+ const uint8* const coff_header = pe_header + 4; |
+ machine_type_ = ReadU16(coff_header, 0); |
+ number_of_sections_ = ReadU16(coff_header, 2); |
+ size_of_optional_header_ = ReadU16(coff_header, 16); |
+ |
+ // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64) |
+ const uint8* const optional_header = coff_header + kSizeOfCoffHeader; |
+ optional_header_ = optional_header; |
+ |
+ if (optional_header + size_of_optional_header_ >= end_) |
+ return Bad("optional header past end of file"); |
+ |
+ // Check we can read the magic. |
+ if (size_of_optional_header_ < 2) |
+ return Bad("optional header no magic"); |
+ |
+ uint16 magic = ReadU16(optional_header, 0); |
+ |
+ if (magic == kImageNtOptionalHdr32Magic) { |
+ is_PE32_plus_ = false; |
+ offset_of_data_directories_ = |
+ kOffsetOfDataDirectoryFromImageOptionalHeader32; |
+ } else if (magic == kImageNtOptionalHdr64Magic) { |
+ is_PE32_plus_ = true; |
+ offset_of_data_directories_ = |
+ kOffsetOfDataDirectoryFromImageOptionalHeader64; |
+ } else { |
+ return Bad("unrecognized magic"); |
+ } |
+ |
+ // Check that we can read the rest of the the fixed fields. Data directories |
+ // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER. |
+ if (size_of_optional_header_ < offset_of_data_directories_) |
+ return Bad("optional header too short"); |
+ |
+ // The optional header is either an IMAGE_OPTIONAL_HEADER32 or |
+ // IMAGE_OPTIONAL_HEADER64 |
+ // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx |
+ // |
+ // Copy the fields we care about. |
+ size_of_code_ = ReadU32(optional_header, 4); |
+ size_of_initialized_data_ = ReadU32(optional_header, 8); |
+ size_of_uninitialized_data_ = ReadU32(optional_header, 12); |
+ base_of_code_ = ReadU32(optional_header, 20); |
+ if (is_PE32_plus_) { |
+ base_of_data_ = 0; |
+ image_base_ = ReadU64(optional_header, 24); |
+ } else { |
+ base_of_data_ = ReadU32(optional_header, 24); |
+ image_base_ = ReadU32(optional_header, 28); |
+ } |
+ size_of_image_ = ReadU32(optional_header, 56); |
+ number_of_data_directories_ = |
+ ReadU32(optional_header, (is_PE32_plus_ ? 108 : 92)); |
+ |
+ if (size_of_code_ >= length_ || |
+ size_of_initialized_data_ >= length_ || |
+ size_of_code_ + size_of_initialized_data_ >= length_) { |
+ // This validation fires on some perfectly fine executables. |
+ // return Bad("code or initialized data too big"); |
+ } |
+ |
+ // TODO(sra): we can probably get rid of most of the data directories. |
+ bool b = true; |
+ // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary |
+ // for correctness and it compiles smaller this way. |
+ b &= ReadDataDirectory(0, &export_table_); |
+ b &= ReadDataDirectory(1, &import_table_); |
+ b &= ReadDataDirectory(2, &resource_table_); |
+ b &= ReadDataDirectory(3, &exception_table_); |
+ b &= ReadDataDirectory(5, &base_relocation_table_); |
+ b &= ReadDataDirectory(11, &bound_import_table_); |
+ b &= ReadDataDirectory(12, &import_address_table_); |
+ b &= ReadDataDirectory(13, &delay_import_descriptor_); |
+ b &= ReadDataDirectory(14, &clr_runtime_header_); |
+ if (!b) { |
+ return Bad("malformed data directory"); |
+ } |
+ |
+ // Sections follow the optional header. |
+ sections_ = |
+ reinterpret_cast<const Section*>(optional_header + |
+ size_of_optional_header_); |
+ file_length_ = 0; |
+ |
+ for (int i = 0; i < number_of_sections_; ++i) { |
+ const Section* section = §ions_[i]; |
+ |
+ // TODO(sra): consider using the 'characteristics' field of the section |
+ // header to see if the section contains instructions. |
+ if (memcmp(section->name, ".text", 6) == 0) |
+ has_text_section_ = true; |
+ |
+ uint32 section_end = |
+ section->file_offset_of_raw_data + section->size_of_raw_data; |
+ if (section_end > file_length_) |
+ file_length_ = section_end; |
+ } |
+ |
+ failure_reason_ = NULL; |
+ return true; |
+} |
+ |
+bool PEInfo::ReadDataDirectory(int index, ImageDataDirectory* directory) { |
+ if (index < number_of_data_directories_) { |
+ size_t offset = index * 8 + offset_of_data_directories_; |
+ if (offset >= size_of_optional_header_) |
+ return Bad("number of data directories inconsistent"); |
+ const uint8* data_directory = optional_header_ + offset; |
+ if (data_directory < start_ || data_directory + 8 >= end_) |
+ return Bad("data directory outside image"); |
+ RVA rva = ReadU32(data_directory, 0); |
+ size_t size = ReadU32(data_directory, 4); |
+ if (size > size_of_image_) |
+ return Bad("data directory size too big"); |
+ |
+ // TODO(sra): validate RVA. |
+ directory->address_ = rva; |
+ directory->size_ = size; |
+ return true; |
+ } else { |
+ directory->address_ = 0; |
+ directory->size_ = 0; |
+ return true; |
+ } |
+} |
+ |
+bool PEInfo::Bad(const char* reason) { |
+ failure_reason_ = reason; |
+ return false; |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
+bool PEInfo::ParseRelocs(std::vector<RVA> *relocs) { |
+ relocs->clear(); |
+ |
+ size_t relocs_size = base_relocation_table_.size_; |
+ if (relocs_size == 0) |
+ return true; |
+ |
+ // The format of the base relocation table is a sequence of variable sized |
+ // IMAGE_BASE_RELOCATION blocks. Search for |
+ // "The format of the base relocation data is somewhat quirky" |
+ // at http://msdn.microsoft.com/en-us/library/ms809762.aspx |
+ |
+ const uint8* start = RVAToPointer(base_relocation_table_.address_); |
+ const uint8* end = start + relocs_size; |
+ |
+ // Make sure entire base relocation table is within the buffer. |
+ if (start < start_ || |
+ start >= end_ || |
+ end <= start_ || |
+ end > end_) { |
+ return Bad(".relocs outside image"); |
+ } |
+ |
+ const uint8* block = start; |
+ |
+ // Walk the variable sized blocks. |
+ while (block + 8 < end) { |
+ RVA page_rva = ReadU32(block, 0); |
+ uint32 size = ReadU32(block, 4); |
+ if (size < 8 || // Size includes header ... |
+ size % 4 != 0) // ... and is word aligned. |
+ return Bad("unreasonable relocs block"); |
+ |
+ const uint8* end_entries = block + size; |
+ |
+ if (end_entries <= block || end_entries <= start_ || end_entries > end_) |
+ return Bad(".relocs block outside image"); |
+ |
+ // Walk through the two-byte entries. |
+ for (const uint8* p = block + 8; p < end_entries; p += 2) { |
+ uint16 entry = ReadU16(p, 0); |
+ int type = entry >> 12; |
+ int offset = entry & 0xFFF; |
+ |
+ RVA rva = page_rva + offset; |
+ if (type == 3) { // IMAGE_REL_BASED_HIGHLOW |
+ relocs->push_back(rva); |
+ } else if (type == 0) { // IMAGE_REL_BASED_ABSOLUTE |
+ // Ignore, used as padding. |
+ } else { |
+ // Does not occur in Windows x86 executables. |
+ return Bad("unknown type of reloc"); |
+ } |
+ } |
+ |
+ block += size; |
+ } |
+ |
+ std::sort(relocs->begin(), relocs->end()); |
+ |
+ return true; |
+} |
+ |
+} // namespace courgette |
+ |