Index: base/memory/scoped_ptr.h |
diff --git a/base/memory/scoped_ptr.h b/base/memory/scoped_ptr.h |
index 3547b7a15397f9c58f3c5193401d6d9defae333d..a4d27a399d305d618b5f17ba0be5636cf5867b7a 100644 |
--- a/base/memory/scoped_ptr.h |
+++ b/base/memory/scoped_ptr.h |
@@ -95,6 +95,8 @@ |
#include <stddef.h> |
#include <stdlib.h> |
+#include <utility> |
+ |
#include "base/basictypes.h" |
#include "base/compiler_specific.h" |
#include "base/move.h" |
@@ -107,6 +109,47 @@ class RefCountedBase; |
class RefCountedThreadSafeBase; |
} // namespace subtle |
+// Function object which deletes its parameter, which must be a pointer. |
+// If C is an array type, invokes 'delete[]' on the parameter; otherwise, |
+// invokes 'delete'. The default deleter for scoped_ptr<T>. |
+template <class C> |
+struct DefaultDeleter { |
+ DefaultDeleter() {} |
+ template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) { |
+ // All default single-object deleters can trivially convert to one another. |
+ } |
+ inline void operator()(C* ptr) const { |
+ enum { type_must_be_complete = sizeof(C) }; |
+ delete ptr; |
+ } |
+}; |
+ |
+// Specialization of DefaultDeleter for array types. |
+template <class C> |
+struct DefaultDeleter<C[]> { |
+ inline void operator()(C* ptr) const { |
+ enum { type_must_be_complete = sizeof(C) }; |
+ delete[] ptr; |
+ } |
+ |
+ private: |
+ // Disable this operator for any U != C because it is unsafe to execute |
+ // an array delete when the static type of the array mismatches the dynamic |
+ // type. |
+ template <typename U> void operator()(U* array) const; |
+}; |
+ |
+// Function object which invokes 'free' on its parameter, which must be |
+// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: |
+// |
+// scoped_ptr<int, base::FreeDeleter> foo_ptr( |
+// static_cast<int>(malloc(sizeof(int)))); |
+struct FreeDeleter { |
+ inline void operator()(void* ptr) const { |
+ free(ptr); |
+ } |
+}; |
+ |
namespace internal { |
template <typename T> struct IsNotRefCounted { |
@@ -117,7 +160,101 @@ template <typename T> struct IsNotRefCounted { |
}; |
}; |
+// Minimal implementation of the core logic of scoped_ptr, suitable for |
+// reuse in both scoped_ptr and its specialization. |
+template <class Element, class Deleter> |
Ryan Sleevi
2012/10/18 03:17:10
Why not keep the naming consistent with std::, in
awong
2012/10/18 18:08:02
I don't have a strong preference.
We already have
gromer
2012/10/18 20:45:20
Note that unique_ptr has element_type and deleter_
awong
2012/11/27 22:36:16
Went back to T and D.
|
+class scoped_ptr_impl { |
+ MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_impl, RValue) |
+ |
+ public: |
+ explicit scoped_ptr_impl(Element* p) : data_(p) { } |
+ |
+ template <typename U, typename V> |
+ scoped_ptr_impl(scoped_ptr_impl<U, V> other) : data_(NULL) { |
+ // TODO(ajwong): This needs to respect move only deleters rather than doing |
+ // a copy to be consistent with unique_ptr. But we don't have a general |
+ // "move()" function. Do I need to use SFINAE to make this work? Or should |
Jeffrey Yasskin
2012/10/18 04:14:29
I'd like to get a general move() function, which c
awong
2012/10/18 18:08:02
It could be useful in specifically this situation.
|
+ // I modify how RValue works so we have a base::subtle::move() with a |
+ // base::suble::rvalue<> template rather than a private RValue struct? |
+ reset(other.release()); |
+ get_deleter() = other.get_deleter(); |
Ryan Sleevi
2012/10/18 03:17:10
So I'm not misreading - you're intentionally relyi
awong
2012/10/18 18:08:02
Yep. Credit gromer@.
|
+ } |
+ |
+ template <typename U, typename V> |
+ const scoped_ptr_impl& operator=(scoped_ptr_impl<U, V> rhs) { |
+ // TODO(ajwong): Same problem as in the constructor above. |
+ reset(rhs.release()); |
+ get_deleter() = rhs.get_deleter(); |
+ return *this; |
+ } |
+ |
+ scoped_ptr_impl(RValue rvalue) : data_(NULL) { |
+ swap(*rvalue.object); |
+ } |
+ |
+ ~scoped_ptr_impl() { |
+ if (data_.ptr != NULL) { |
+ get_deleter()(data_.ptr); |
+ } |
+ } |
+ |
+ void reset(Element* p) { |
+ // This self-reset check is deprecated. |
+ // this->reset(this->get()) currently works, but it is DEPRECATED, and |
+ // will be removed once we verify that no one depends on it. |
+ // |
+ // TODO(ajwong): File bug for the deprecation and ordering issue below. |
+ if (p != data_.ptr) { |
+ if (data_.ptr != NULL) { |
+ // Note that this can lead to undefined behavior and memory leaks |
+ // in the unlikely but possible case that get_deleter()(get()) |
+ // indirectly deletes this. The fix is to reset ptr_ before deleting |
+ // its old value, but first we need to clean up the code that relies |
+ // on the current sequencing. |
+ get_deleter()(data_.ptr); |
+ } |
+ data_.ptr = p; |
+ } |
+ } |
+ |
+ Element* get() const { return data_.ptr; } |
+ |
+ Deleter& get_deleter() { return data_; } |
+ const Deleter& get_deleter() const { return data_; } |
+ |
+ void swap(scoped_ptr_impl& p2) { |
+ // Standard swap idiom: 'using std::swap' ensures that std::swap is |
+ // present in the overload set, but we call swap unqualified so that |
+ // any more-specific overloads can be used, if available. |
+ using std::swap; |
Ryan Sleevi
2012/10/18 03:17:10
I seem to recall (and of course, without citable r
Jeffrey Yasskin
2012/10/18 04:14:29
Yep. swap methods that people want found need to b
|
+ swap(static_cast<Deleter&>(data_), static_cast<Deleter&>(p2.data_)); |
+ swap(data_.ptr, p2.data_.ptr); |
+ } |
+ |
+ Element* release() { |
+ Element* retVal = data_.ptr; |
+ data_.ptr = NULL; |
+ return retVal; |
+ } |
+ |
+ private: |
+ // Needed to allow type-converting constructor. |
+ template <typename U, typename V> friend class scoped_ptr_impl; |
Ryan Sleevi
2012/10/18 03:17:10
I didn't think MSVC let you get away with this.
awong
2012/10/18 18:08:02
Okay, will test. Worst case, I just merge scoped_p
|
+ |
+ // Use the empty base class optimization to allow us to have a Deleter |
+ // member, while avoiding any space overhead for it when Deleter is an |
+ // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good |
+ // discussion of this technique. |
+ struct Data : public Deleter { |
+ explicit Data(Element* ptr_in) : ptr(ptr_in) {} |
+ Element* ptr; |
+ }; |
+ |
+ Data data_; |
+}; |
+ |
} // namespace internal |
+ |
} // namespace base |
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
@@ -129,45 +266,41 @@ template <typename T> struct IsNotRefCounted { |
// |
// The size of a scoped_ptr is small: |
// sizeof(scoped_ptr<C>) == sizeof(C*) |
-template <class C> |
+template <class Element, class Deleter = base::DefaultDeleter<Element> > |
class scoped_ptr { |
MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
- COMPILE_ASSERT(base::internal::IsNotRefCounted<C>::value, |
- C_is_refcounted_type_and_needs_scoped_refptr); |
+ COMPILE_ASSERT(base::internal::IsNotRefCounted<Element>::value, |
+ Element_is_refcounted_type_and_needs_scoped_refptr); |
public: |
- |
- // The element type |
- typedef C element_type; |
+ // The element and deleter types. |
+ typedef Element element_type; |
+ typedef Deleter deleter_type; |
// Constructor. Defaults to initializing with NULL. |
// There is no way to create an uninitialized scoped_ptr. |
- // The input parameter must be allocated with new. |
- explicit scoped_ptr(C* p = NULL) : ptr_(p) { } |
+ // |
+ // TODO(ajwong): REVIEWER QUESTION: is it work breaking out the default |
+ // constructor here, and a 0-arity reset() function below to get rid of the |
+ // default arguments? |
+ explicit scoped_ptr(element_type* p = NULL) : impl_(p) { } |
Ryan Sleevi
2012/10/18 03:17:10
This is the ONE place that I actually like default
Jeffrey Yasskin
2012/10/18 04:14:29
Yeah. Meh on my part.
awong
2012/10/18 18:08:02
I guess I'll stick with the style guide. The C++ r
gromer
2012/10/18 20:45:20
FWIW the standard specifies the 0- and 1-arg const
awong
2012/11/27 22:36:16
All the more reason to avoid default arguments :-/
|
// Constructor. Allows construction from a scoped_ptr rvalue for a |
- // convertible type. |
- template <typename U> |
- scoped_ptr(scoped_ptr<U> other) : ptr_(other.release()) { } |
+ // convertible type and deleter. |
+ template <typename U, typename V> |
+ scoped_ptr(scoped_ptr<U, V> other) : impl_(other.impl_.Pass()) { } |
// Constructor. Move constructor for C++03 move emulation of this type. |
- scoped_ptr(RValue rvalue) |
- : ptr_(rvalue.object->release()) { |
- } |
- |
- // Destructor. If there is a C object, delete it. |
- // We don't need to test ptr_ == NULL because C++ does that for us. |
- ~scoped_ptr() { |
- enum { type_must_be_complete = sizeof(C) }; |
- delete ptr_; |
- } |
+ // |
+ // TODO(ajwong): REVIEWER QUESTION: is it cleaner to use the swap() idiom? |
Jeffrey Yasskin
2012/10/18 04:14:29
The "swap idiom" means to me the operator= techniq
awong
2012/10/18 18:08:02
Yes, I was thinking exactly
scoped_ptr(RValue rva
Jeffrey Yasskin
2012/10/18 18:33:45
I somewhat prefer the current implementation.
awong
2012/11/27 22:36:16
Done.
|
+ scoped_ptr(RValue rvalue) : impl_(rvalue.object->release()) { } |
// operator=. Allows assignment from a scoped_ptr rvalue for a convertible |
- // type. |
- template <typename U> |
- scoped_ptr& operator=(scoped_ptr<U> rhs) { |
- reset(rhs.release()); |
+ // type and deleter. |
+ template <typename U, typename V> |
+ scoped_ptr& operator=(scoped_ptr<U, V> rhs) { |
+ impl_ = rhs.impl_.Pass(); |
return *this; |
} |
@@ -179,43 +312,40 @@ class scoped_ptr { |
// Reset. Deletes the current owned object, if any. |
// Then takes ownership of a new object, if given. |
- // this->reset(this->get()) works. |
- void reset(C* p = NULL) { |
- if (p != ptr_) { |
- enum { type_must_be_complete = sizeof(C) }; |
- delete ptr_; |
- ptr_ = p; |
- } |
+ void reset(element_type* p = NULL) { |
+ impl_.reset(p); |
} |
// Accessors to get the owned object. |
// operator* and operator-> will assert() if there is no current object. |
- C& operator*() const { |
- assert(ptr_ != NULL); |
- return *ptr_; |
+ element_type& operator*() const { |
+ assert(impl_.get() != NULL); |
+ return *impl_.get(); |
} |
- C* operator->() const { |
- assert(ptr_ != NULL); |
- return ptr_; |
+ element_type* operator->() const { |
+ assert(impl_.get() != NULL); |
+ return impl_.get(); |
} |
- C* get() const { return ptr_; } |
+ element_type* get() const { return impl_.get(); } |
- // Allow scoped_ptr<C> to be used in boolean expressions, but not |
+ // Access to the deleter. |
+ deleter_type& get_deleter() { return impl_.get_deleter(); } |
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
+ |
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
// implicitly convertible to a real bool (which is dangerous). |
- typedef C* scoped_ptr::*Testable; |
- operator Testable() const { return ptr_ ? &scoped_ptr::ptr_ : NULL; } |
+ typedef element_type* scoped_ptr::*Testable; |
+ operator Testable() const { return impl_.get() ? &impl_.get() : NULL; } |
// Comparison operators. |
// These return whether two scoped_ptr refer to the same object, not just to |
// two different but equal objects. |
- bool operator==(C* p) const { return ptr_ == p; } |
- bool operator!=(C* p) const { return ptr_ != p; } |
+ bool operator==(element_type* p) const { return impl_.get() == p; } |
+ bool operator!=(element_type* p) const { return impl_.get() != p; } |
// Swap two scoped pointers. |
void swap(scoped_ptr& p2) { |
- C* tmp = ptr_; |
- ptr_ = p2.ptr_; |
- p2.ptr_ = tmp; |
+ impl_.swap(p2.impl_); |
} |
// Release a pointer. |
@@ -223,41 +353,159 @@ class scoped_ptr { |
// If this object holds a NULL pointer, the return value is NULL. |
// After this operation, this object will hold a NULL pointer, |
// and will not own the object any more. |
- C* release() WARN_UNUSED_RESULT { |
- C* retVal = ptr_; |
- ptr_ = NULL; |
- return retVal; |
+ element_type* release() WARN_UNUSED_RESULT { |
+ return impl_.release(); |
} |
- template <typename PassAsType> |
- scoped_ptr<PassAsType> PassAs() { |
- return scoped_ptr<PassAsType>(release()); |
+ template <typename PassAsType, |
+ typename PasAsDeleter = base::DefaultDeleter<PassAsType> > |
+ scoped_ptr<PassAsType, PasAsDeleter> PassAs() { |
Ryan Sleevi
2012/10/18 03:17:10
Did you accidentally an S? ( Pas*s*AsDeleter )
awong
2012/10/18 18:08:02
heh...yes I did. But I also just had to remove del
|
+ return scoped_ptr<PassAsType, PasAsDeleter>(Pass()); |
} |
private: |
- C* ptr_; |
+ // Needed to reach into |impl_| in the constructor. |
+ template <typename U, typename V> friend class scoped_ptr; |
+ base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
+ |
+ // Forbid comparison of scoped_ptr types. If U != Element, it totally |
+ // doesn't make sense, and if U == Element, it still doesn't make sense |
+ // because you should never have the same object owned by two different |
+ // scoped_ptrs. |
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
+}; |
+ |
+template <class Element, class Deleter> |
+class scoped_ptr<Element[], Deleter> { |
+ MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) |
+ |
+ COMPILE_ASSERT(base::internal::IsNotRefCounted<Element>::value, |
+ Element_is_refcounted_type_and_needs_scoped_refptr); |
+ |
+ public: |
+ // The element and deleter types. |
+ typedef Element element_type; |
+ typedef Deleter deleter_type; |
+ |
+ // Constructor. Defaults to initializing with NULL. |
+ // There is no way to create an uninitialized scoped_ptr. |
Ryan Sleevi
2012/10/18 03:17:10
line 392 seems superflous
awong
2012/10/18 18:08:02
Yeah. It was just keeping in line with the old imp
|
+ scoped_ptr() : impl_(NULL) { } |
+ |
+ // Constructor. Stores the given array. Note that the argument's type |
+ // must exactly match Element*. In particular: |
+ // - it cannot be a pointer to a type derived from Element, because it is |
+ // inherently unsafe to access an array through a pointer whose |
Jeffrey Yasskin
2012/10/18 04:14:29
There's vague wording on subscripting at [expr.add
awong
2012/10/18 18:08:02
Let me ask gromer@ for pointers. This is really hi
gromer
2012/10/18 20:45:20
From [basic.compound]p3: "If an object of type T i
awong
2012/11/27 22:36:16
I don't think I understand this quite enough to wr
|
+ // dynamic type does not match its static type. If you're doing this, |
+ // fix your code. |
+ // - it cannot be NULL, because NULL is an integral expression, not a |
+ // pointer to Element. Use the no-argument version instead of explicitly |
+ // passing NULL. |
+ // - it cannot be const-qualified differently from Element. You can work |
Jeffrey Yasskin
2012/10/18 04:14:29
Interesting. What goes wrong with this?
awong
2012/10/18 18:08:02
Will ask gromer@
gromer
2012/10/18 20:45:20
Nothing; it's perfectly safe, but forbidden by uni
willchan no longer on Chromium
2012/10/18 21:28:42
We actually do hope to switch to using unique_ptr
awong
2012/11/27 22:36:16
I added the citation, and removed the reference to
|
+ // around this using implicit_cast (from base/casts.h): |
+ // |
+ // int* i; |
+ // scoped_ptr<const int[]> arr(implicit_cast<const int[]>(i)); |
+ // |
+ // TODO(ajwong): Find citations for the above. Also see if we want to keep |
+ // the implicit_cast<> comment. |
+ explicit scoped_ptr(element_type* array = NULL) : impl_(array) { } |
+ |
+ // Constructor. Move constructor for C++03 move emulation of this type. |
+ // |
+ // TODO(ajwong): reviewer question: is it cleaner to use the swap() idiom? |
+ scoped_ptr(RValue rvalue) : impl_(rvalue.object->release()) { } |
- // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't |
- // make sense, and if C2 == C, it still doesn't make sense because you should |
- // never have the same object owned by two different scoped_ptrs. |
- template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; |
- template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; |
+ // operator=. Move operator= for C++03 move emulation of this type. |
+ scoped_ptr& operator=(RValue rhs) { |
+ swap(*rhs->object); |
+ return *this; |
+ } |
+ // Reset. Deletes the current owned object, if any. |
+ // Then takes ownership of a new object, if given. |
+ void reset(element_type* array = NULL) { |
+ impl_.reset(array); |
+ } |
+ |
+ // Accessors to get the owned object. |
+ // operator* and operator-> will assert() if there is no current object. |
+ element_type& operator[](size_t i) const { |
+ assert(impl_.get() != NULL); |
+ return impl_.get()[i]; |
+ } |
+ element_type* get() const { return impl_.get(); } |
+ |
+ // Access to the deleter. |
+ deleter_type& get_deleter() { return impl_.get_deleter(); } |
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); } |
+ |
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not |
+ // implicitly convertible to a real bool (which is dangerous). |
+ typedef element_type* scoped_ptr::*Testable; |
+ operator Testable() const { return impl_.get() ? &impl_.get() : NULL; } |
+ |
+ // Comparison operators. |
+ // These return whether two scoped_ptr refer to the same object, not just to |
+ // two different but equal objects. |
+ bool operator==(element_type* array) const { return impl_.get() == array; } |
+ bool operator!=(element_type* array) const { return impl_.get() != array; } |
+ |
+ // Swap two scoped pointers. |
+ void swap(scoped_ptr& p2) { |
+ impl_.swap(p2.impl_); |
+ } |
+ |
+ // Release a pointer. |
+ // The return value is the current pointer held by this object. |
+ // If this object holds a NULL pointer, the return value is NULL. |
+ // After this operation, this object will hold a NULL pointer, |
+ // and will not own the object any more. |
+ element_type* release() WARN_UNUSED_RESULT { |
+ return impl_.release(); |
+ } |
+ |
+ private: |
+ // Force element_type to be a complete type. |
+ enum { type_must_be_complete = sizeof(element_type) }; |
+ |
+ // Actually hold the data. |
+ base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; |
+ |
+ // Disable initialization from any type other than element_type*, by |
+ // providing a constructor that matches such an initialization, but is |
+ // private and has no definition. This is disabled because it is not safe to |
+ // call delete[] on an array whose static type does not match its dynamic |
+ // type. |
+ template <typename T> |
+ explicit scoped_ptr(T* array); |
+ |
+ // Disable reset() from any type other than element_type*, for the same |
+ // reasons as the constructor above. |
+ template <typename T> |
+ void reset(T* array); |
+ |
+ // Forbid comparison of scoped_ptr types. If U != Element, it totally |
+ // doesn't make sense, and if U == Element, it still doesn't make sense |
+ // because you should never have the same object owned by two different |
+ // scoped_ptrs. |
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const; |
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const; |
}; |
// Free functions |
-template <class C> |
-void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) { |
+template <class C, class D> |
+void swap(scoped_ptr<C, D>& p1, scoped_ptr<C, D>& p2) { |
p1.swap(p2); |
} |
-template <class C> |
-bool operator==(C* p1, const scoped_ptr<C>& p2) { |
+template <class C, class D> |
+bool operator==(C* p1, const scoped_ptr<C, D>& p2) { |
return p1 == p2.get(); |
} |
-template <class C> |
-bool operator!=(C* p1, const scoped_ptr<C>& p2) { |
+template <class C, class D> |
+bool operator!=(C* p1, const scoped_ptr<C, D>& p2) { |
return p1 != p2.get(); |
} |