Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(300)

Side by Side Diff: mozilla/security/nss/lib/freebl/pqg.c

Issue 10961060: Update NSS to NSS 3.14 Beta 1. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/nss/
Patch Set: Merge nss-static2.patch into nss-static.patch Created 8 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 /* This Source Code Form is subject to the terms of the Mozilla Public 1 /* This Source Code Form is subject to the terms of the Mozilla Public
2 * License, v. 2.0. If a copy of the MPL was not distributed with this 2 * License, v. 2.0. If a copy of the MPL was not distributed with this
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
4 4
5 /* 5 /*
6 * PQG parameter generation/verification. Based on FIPS 186-1. 6 * PQG parameter generation/verification. Based on FIPS 186-3.
7 * 7 *
8 * $Id: pqg.c,v 1.18 2012/04/25 14:49:43 gerv%gerv.net Exp $ 8 * $Id: pqg.c,v 1.21 2012/06/25 17:30:17 rrelyea%redhat.com Exp $
9 */ 9 */
10 #ifdef FREEBL_NO_DEPEND 10 #ifdef FREEBL_NO_DEPEND
11 #include "stubs.h" 11 #include "stubs.h"
12 #endif 12 #endif
13 13
14 #include "prerr.h" 14 #include "prerr.h"
15 #include "secerr.h" 15 #include "secerr.h"
16 16
17 #include "prtypes.h" 17 #include "prtypes.h"
18 #include "blapi.h" 18 #include "blapi.h"
19 #include "secitem.h" 19 #include "secitem.h"
20 #include "mpi.h" 20 #include "mpi.h"
21 #include "mpprime.h" 21 #include "mpprime.h"
22 #include "mplogic.h" 22 #include "mplogic.h"
23 #include "secmpi.h" 23 #include "secmpi.h"
24 24
25 #define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */ 25 #define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */
26 #define PQG_Q_PRIMALITY_TESTS 18 /* from HAC table 4.4 */ 26
27 #define PQG_P_PRIMALITY_TESTS 5 /* from HAC table 4.4 */ 27 typedef enum {
28 28 FIPS186_1_TYPE,» » /* Probablistic */
29 /* XXX to be replaced by define in blapit.h */ 29 FIPS186_3_TYPE,» » /* Probablistic */
30 #define BITS_IN_Q 160 30 FIPS186_3_ST_TYPE» » /* Shawe-Taylor provable */
31 31 } pqgGenType;
32 /* For FIPS-compliance testing. 32
33 ** The following array holds the seed defined in FIPS 186-1 appendix 5. 33 /*
34 ** This seed is used to generate P and Q according to appendix 2; use of 34 * These test iterations are quite a bit larger than we previously had.
35 ** this seed will exactly generate the PQG specified in appendix 2. 35 * This is because FIPS 186-3 is worried about the primes in PQG generation.
36 */ 36 * It may be possible to purposefully construct composites which more
37 #ifdef FIPS_186_1_A5_TEST 37 * iterations of Miller-Rabin than the for your normal randomly selected
wtc 2012/09/26 00:21:09 This sentence also has typos. I don't know how to
38 static const unsigned char fips_186_1_a5_pqseed[] = { 38 * numbers.There are 3 ways to counter this: 1) use one of the cool provably
Ryan Sleevi 2012/09/25 21:56:55 typo: numbers.There -> numbers. There
39 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 39 * prime algorithms (which would require a lot more work than DSA-2 deservers.
40 0xb6, 0x21, 0x1b, 0x40, 0x62, 0xba, 0x32, 0x24, 40 * 2) add a Lucas primality test (which requires coding a Lucas primality test,
41 0xe0, 0x42, 0x7d, 0xd3 41 * or 3) use a larger M-R test count. I chose the latter. It increases the time
Ryan Sleevi 2012/09/25 21:56:55 nit: "latter" in lists with > 2 items = weird way
wtc 2012/09/26 00:21:09 Should I change this to "the last"?
42 }; 42 * that it takes to prove the selected prime, but it shouldn't increase the
43 #endif 43 * overall time to run the algorithm (non-primes should still faile M-R
44 * realively quickly). If you want to get that last bit of performance,
45 * implement Lucas and adjust these two functions. See FIPS 186-3 Appendix C
46 * and F for more information.
47 */
48 int prime_testcount_p(int L, int N)
49 {
50 switch (L) {
51 case 1024:
52 » return 40;
53 case 2048:
54 » return 56;
55 case 3072:
56 » return 64;
57 default:
58 » break;
59 }
60 return 50; /* L = 512-960 */
61 }
62
63 /* The q numbers are different if you run M-R followd by Lucas. I created
64 * a separate function so if someone wanted to add the Lucas check, they
65 * could do so fairly easily */
66 int prime_testcount_q(int L, int N)
67 {
68 return prime_testcount_p(L,N);
69 }
70
71 /*
72 * generic function to make sure our input matches DSA2 requirements
73 * this gives us one place to go if we need to bump the requirements in the
74 * future.
75 */
76 SECStatus static
77 pqg_validate_dsa2(unsigned int L, unsigned int N)
78 {
79
80 switch (L) {
81 case 1024:
82 » if (N != DSA1_Q_BITS) {
83 » PORT_SetError(SEC_ERROR_INVALID_ARGS);
84 » return SECFailure;
85 » }
86 » break;
87 case 2048:
88 » if ((N != 224) && (N != 256)) {
89 » PORT_SetError(SEC_ERROR_INVALID_ARGS);
90 » return SECFailure;
91 » }
92 » break;
93 case 3072:
94 » if (N != 256) {
95 » PORT_SetError(SEC_ERROR_INVALID_ARGS);
96 » return SECFailure;
97 » }
98 » break;
99 default:
100 » PORT_SetError(SEC_ERROR_INVALID_ARGS);
101 » return SECFailure;
102 }
103 return SECSuccess;
104 }
105
106 /*
107 * Select the lowest hash algorithm usable
108 */
109 static HASH_HashType
110 getFirstHash(unsigned int L, unsigned int N)
111 {
112 if (N < 224) {
113 » return HASH_AlgSHA1;
114 }
115 if (N < 256) {
116 » return HASH_AlgSHA224;
117 }
118 if (N < 384) {
119 » return HASH_AlgSHA256;
120 }
121 if (N < 512) {
122 » return HASH_AlgSHA384;
123 }
124 return HASH_AlgSHA512;
125 }
126
127 /*
128 * find the next usable hash algorthim
129 */
130 static HASH_HashType
131 getNextHash(HASH_HashType hashtype)
132 {
133 switch (hashtype) {
134 case HASH_AlgSHA1:
135 » hashtype = HASH_AlgSHA224;
136 » break;
137 case HASH_AlgSHA224:
138 » hashtype = HASH_AlgSHA256;
139 » break;
140 case HASH_AlgSHA256:
141 » hashtype = HASH_AlgSHA384;
142 » break;
143 case HASH_AlgSHA384:
144 » hashtype = HASH_AlgSHA512;
145 » break;
146 case HASH_AlgSHA512:
147 default:
148 » hashtype = HASH_AlgTOTAL;
149 » break;
150 }
151 return hashtype;
152 }
153
154
155 unsigned int
156 PQG_GetLength(const SECItem *obj)
157 {
158 unsigned int len = obj->len;
159
160 if (obj->data == NULL) {
161 » return 0;
162 }
163 if (len > 1 && obj->data[0] == 0) {
164 » len--;
165 }
166 return len;
167 }
168
169 SECStatus
170 PQG_Check(const PQGParams *params)
171 {
172 unsigned int L,N;
173 SECStatus rv = SECSuccess;
174
175 if (params == NULL) {
176 » PORT_SetError(SEC_ERROR_INVALID_ARGS);
177 » return SECFailure;
178 }
179
180 L = PQG_GetLength(&params->prime)*BITS_PER_BYTE;
181 N = PQG_GetLength(&params->subPrime)*BITS_PER_BYTE;
182
183 if (L < 1024) {
184 » int j;
185
186 » /* handle DSA1 pqg parameters with less thatn 1024 bits*/
187 » if ( N != DSA1_Q_BITS ) {
188 » PORT_SetError(SEC_ERROR_INVALID_ARGS);
189 » return SECFailure;
190 » }
191 » j = PQG_PBITS_TO_INDEX(L);
192 » if ( j >= 0 && j <= 8 ) {
193 » PORT_SetError(SEC_ERROR_INVALID_ARGS);
194 » rv = SECFailure;
195 » }
196 } else {
197 » /* handle DSA2 parameters (includes DSA1, 1024 bits) */
198 » rv = pqg_validate_dsa2(L, N);
199 }
200 return rv;
201 }
202
203 HASH_HashType
204 PQG_GetHashType(const PQGParams *params)
205 {
206 unsigned int L,N;
207
208 if (params == NULL) {
209 » PORT_SetError(SEC_ERROR_INVALID_ARGS);
210 » return SECFailure;
211 }
212
213 L = PQG_GetLength(&params->prime)*BITS_PER_BYTE;
214 N = PQG_GetLength(&params->subPrime)*BITS_PER_BYTE;
215 return getFirstHash(L, N);
216 }
217
218 static unsigned int
219 HASH_ResultLen(HASH_HashType type)
220 {
221 const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
222 if (hash_obj == NULL) {
223 » return 0;
224 }
225 return hash_obj->length;
226 }
227
228 static SECStatus
229 HASH_HashBuf(HASH_HashType type, unsigned char *dest,
230 » const unsigned char *src, PRUint32 src_len)
231 {
232 const SECHashObject *hash_obj = HASH_GetRawHashObject(type);
233 void *hashcx = NULL;
234 unsigned int dummy;
235
236 if (hash_obj == NULL) {
237 » return SECFailure;
238 }
239
240 hashcx = hash_obj->create();
241 if (hashcx == NULL) {
242 » return SECFailure;
243 }
244 hash_obj->begin(hashcx);
245 hash_obj->update(hashcx,src,src_len);
246 hash_obj->end(hashcx,dest, &dummy, hash_obj->length);
247 hash_obj->destroy(hashcx, PR_TRUE);
248 return SECSuccess;
249 }
44 250
45 /* Get a seed for generating P and Q. If in testing mode, copy in the 251 /* Get a seed for generating P and Q. If in testing mode, copy in the
46 ** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the 252 ** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the
47 ** global random number generator. 253 ** global random number generator.
48 */ 254 */
49 static SECStatus 255 static SECStatus
50 getPQseed(SECItem *seed, PRArenaPool* arena) 256 getPQseed(SECItem *seed, PRArenaPool* arena)
51 { 257 {
52 SECStatus rv; 258 SECStatus rv;
53 259
54 if (!seed->data) { 260 if (!seed->data) {
55 seed->data = (unsigned char*)PORT_ArenaZAlloc(arena, seed->len); 261 seed->data = (unsigned char*)PORT_ArenaZAlloc(arena, seed->len);
56 } 262 }
57 if (!seed->data) { 263 if (!seed->data) {
58 PORT_SetError(SEC_ERROR_NO_MEMORY); 264 PORT_SetError(SEC_ERROR_NO_MEMORY);
59 return SECFailure; 265 return SECFailure;
60 } 266 }
61 #ifdef FIPS_186_1_A5_TEST
62 memcpy(seed->data, fips_186_1_a5_pqseed, seed->len);
63 return SECSuccess;
64 #else
65 rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len); 267 rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len);
66 /* 268 /*
67 * NIST CMVP disallows a sequence of 20 bytes with the most 269 * NIST CMVP disallows a sequence of 20 bytes with the most
68 * significant byte equal to 0. Perhaps they interpret 270 * significant byte equal to 0. Perhaps they interpret
69 * "a sequence of at least 160 bits" as "a number >= 2^159". 271 * "a sequence of at least 160 bits" as "a number >= 2^159".
70 * So we always set the most significant bit to 1. (bug 334533) 272 * So we always set the most significant bit to 1. (bug 334533)
71 */ 273 */
72 seed->data[0] |= 0x80; 274 seed->data[0] |= 0x80;
73 return rv; 275 return rv;
74 #endif
75 } 276 }
76 277
77 /* Generate a candidate h value. If in testing mode, use the h value 278 /* Generate a candidate h value. If in testing mode, use the h value
78 ** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes 279 ** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes
79 ** from the global random number generator. 280 ** from the global random number generator.
80 */ 281 */
81 static SECStatus 282 static SECStatus
82 generate_h_candidate(SECItem *hit, mp_int *H) 283 generate_h_candidate(SECItem *hit, mp_int *H)
83 { 284 {
84 SECStatus rv = SECSuccess; 285 SECStatus rv = SECSuccess;
85 mp_err err = MP_OKAY; 286 mp_err err = MP_OKAY;
86 #ifdef FIPS_186_1_A5_TEST 287 #ifdef FIPS_186_1_A5_TEST
87 memset(hit->data, 0, hit->len); 288 memset(hit->data, 0, hit->len);
88 hit->data[hit->len-1] = 0x02; 289 hit->data[hit->len-1] = 0x02;
89 #else 290 #else
90 rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len); 291 rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len);
91 #endif 292 #endif
92 if (rv) 293 if (rv)
93 return SECFailure; 294 return SECFailure;
94 err = mp_read_unsigned_octets(H, hit->data, hit->len); 295 err = mp_read_unsigned_octets(H, hit->data, hit->len);
95 if (err) { 296 if (err) {
96 MP_TO_SEC_ERROR(err); 297 MP_TO_SEC_ERROR(err);
97 return SECFailure; 298 return SECFailure;
98 } 299 }
99 return SECSuccess; 300 return SECSuccess;
100 } 301 }
101 302
102 /* Compute SHA[(SEED + addend) mod 2**g]
103 ** Result is placed in shaOutBuf.
104 ** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 .
105 */
106 static SECStatus 303 static SECStatus
107 addToSeedThenSHA(const SECItem * seed, 304 addToSeed(const SECItem * seed,
108 unsigned long addend, 305 unsigned long addend,
109 int g, 306 int seedlen, /* g in 186-1 */
110 unsigned char * shaOutBuf) 307 SECItem * seedout)
111 { 308 {
112 SECItem str = { 0, 0, 0 };
113 mp_int s, sum, modulus, tmp; 309 mp_int s, sum, modulus, tmp;
114 mp_err err = MP_OKAY; 310 mp_err err = MP_OKAY;
115 SECStatus rv = SECSuccess; 311 SECStatus rv = SECSuccess;
116 MP_DIGITS(&s) = 0; 312 MP_DIGITS(&s) = 0;
117 MP_DIGITS(&sum) = 0; 313 MP_DIGITS(&sum) = 0;
118 MP_DIGITS(&modulus) = 0; 314 MP_DIGITS(&modulus) = 0;
119 MP_DIGITS(&tmp) = 0; 315 MP_DIGITS(&tmp) = 0;
120 CHECK_MPI_OK( mp_init(&s) ); 316 CHECK_MPI_OK( mp_init(&s) );
121 CHECK_MPI_OK( mp_init(&sum) ); 317 CHECK_MPI_OK( mp_init(&sum) );
122 CHECK_MPI_OK( mp_init(&modulus) ); 318 CHECK_MPI_OK( mp_init(&modulus) );
123 SECITEM_TO_MPINT(*seed, &s); /* s = seed */ 319 SECITEM_TO_MPINT(*seed, &s); /* s = seed */
124 /* seed += addend */ 320 /* seed += addend */
125 if (addend < MP_DIGIT_MAX) { 321 if (addend < MP_DIGIT_MAX) {
126 CHECK_MPI_OK( mp_add_d(&s, (mp_digit)addend, &s) ); 322 CHECK_MPI_OK( mp_add_d(&s, (mp_digit)addend, &s) );
127 } else { 323 } else {
128 CHECK_MPI_OK( mp_init(&tmp) ); 324 CHECK_MPI_OK( mp_init(&tmp) );
129 CHECK_MPI_OK( mp_set_ulong(&tmp, addend) ); 325 CHECK_MPI_OK( mp_set_ulong(&tmp, addend) );
130 CHECK_MPI_OK( mp_add(&s, &tmp, &s) ); 326 CHECK_MPI_OK( mp_add(&s, &tmp, &s) );
131 } 327 }
132 CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)g, NULL, &sum) );/*sum = s mod 2**g */ 328 /*sum = s mod 2**seedlen */
133 MPINT_TO_SECITEM(&sum, &str, NULL); 329 CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)seedlen, NULL, &sum) );
134 rv = SHA1_HashBuf(shaOutBuf, str.data, str.len); /* SHA1 hash result */ 330 if (seedout->data != NULL) {
331 » SECITEM_ZfreeItem(seedout, PR_FALSE);
332 }
333 MPINT_TO_SECITEM(&sum, seedout, NULL);
135 cleanup: 334 cleanup:
136 mp_clear(&s); 335 mp_clear(&s);
137 mp_clear(&sum); 336 mp_clear(&sum);
138 mp_clear(&modulus); 337 mp_clear(&modulus);
139 mp_clear(&tmp); 338 mp_clear(&tmp);
140 if (str.data)
141 SECITEM_ZfreeItem(&str, PR_FALSE);
142 if (err) { 339 if (err) {
143 MP_TO_SEC_ERROR(err); 340 MP_TO_SEC_ERROR(err);
144 return SECFailure; 341 return SECFailure;
145 } 342 }
146 return rv; 343 return rv;
147 } 344 }
148 345
346 /* Compute Hash[(SEED + addend) mod 2**g]
347 ** Result is placed in shaOutBuf.
348 ** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 and
349 ** step 11.2 of FIPS 186-3 Appendix A.1.1.2 .
350 */
351 static SECStatus
352 addToSeedThenHash( HASH_HashType hashtype,
353 const SECItem * seed,
354 unsigned long addend,
355 int seedlen, /* g in 186-1 */
356 unsigned char * hashOutBuf)
357 {
358 SECItem str = { 0, 0, 0 };
359 SECStatus rv;
360 rv = addToSeed(seed, addend, seedlen, &str);
361 if (rv != SECSuccess) {
362 return rv;
363 }
364 rv = HASH_HashBuf(hashtype, hashOutBuf, str.data, str.len);/* hash result */
365 if (str.data)
366 SECITEM_ZfreeItem(&str, PR_FALSE);
367 return rv;
368 }
369
149 /* 370 /*
150 ** Perform steps 2 and 3 of FIPS 186, appendix 2.2. 371 ** Perform steps 2 and 3 of FIPS 186-1, appendix 2.2.
151 ** Generate Q from seed. 372 ** Generate Q from seed.
152 */ 373 */
153 static SECStatus 374 static SECStatus
154 makeQfromSeed( 375 makeQfromSeed(
155 unsigned int g, /* input. Length of seed in bits. */ 376 unsigned int g, /* input. Length of seed in bits. */
156 const SECItem * seed, /* input. */ 377 const SECItem * seed, /* input. */
157 mp_int * Q) /* output. */ 378 mp_int * Q) /* output. */
158 { 379 {
159 unsigned char sha1[SHA1_LENGTH]; 380 unsigned char sha1[SHA1_LENGTH];
160 unsigned char sha2[SHA1_LENGTH]; 381 unsigned char sha2[SHA1_LENGTH];
161 unsigned char U[SHA1_LENGTH]; 382 unsigned char U[SHA1_LENGTH];
162 SECStatus rv = SECSuccess; 383 SECStatus rv = SECSuccess;
163 mp_err err = MP_OKAY; 384 mp_err err = MP_OKAY;
164 int i; 385 int i;
165 /* ****************************************************************** 386 /* ******************************************************************
166 ** Step 2. 387 ** Step 2.
167 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]." 388 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]."
168 **/ 389 **/
169 CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) ); 390 CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) );
170 CHECK_SEC_OK( addToSeedThenSHA(seed, 1, g, sha2) ); 391 CHECK_SEC_OK( addToSeedThenHash(HASH_AlgSHA1, seed, 1, g, sha2) );
171 for (i=0; i<SHA1_LENGTH; ++i) 392 for (i=0; i<SHA1_LENGTH; ++i)
172 U[i] = sha1[i] ^ sha2[i]; 393 U[i] = sha1[i] ^ sha2[i];
173 /* ****************************************************************** 394 /* ******************************************************************
174 ** Step 3. 395 ** Step 3.
175 ** "Form Q from U by setting the most signficant bit (the 2**159 bit) 396 ** "Form Q from U by setting the most signficant bit (the 2**159 bit)
176 ** and the least signficant bit to 1. In terms of boolean operations, 397 ** and the least signficant bit to 1. In terms of boolean operations,
177 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160." 398 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160."
178 */ 399 */
179 U[0] |= 0x80; /* U is MSB first */ 400 U[0] |= 0x80; /* U is MSB first */
180 U[SHA1_LENGTH-1] |= 0x01; 401 U[SHA1_LENGTH-1] |= 0x01;
181 err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH); 402 err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH);
182 cleanup: 403 cleanup:
183 memset(U, 0, SHA1_LENGTH); 404 memset(U, 0, SHA1_LENGTH);
184 memset(sha1, 0, SHA1_LENGTH); 405 memset(sha1, 0, SHA1_LENGTH);
185 memset(sha2, 0, SHA1_LENGTH); 406 memset(sha2, 0, SHA1_LENGTH);
186 if (err) { 407 if (err) {
187 MP_TO_SEC_ERROR(err); 408 MP_TO_SEC_ERROR(err);
188 return SECFailure; 409 return SECFailure;
189 } 410 }
190 return rv; 411 return rv;
191 } 412 }
192 413
193 /* Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2. 414 /*
415 ** Perform steps 6 and 7 of FIPS 186-3, appendix A.1.1.2.
416 ** Generate Q from seed.
417 */
418 static SECStatus
419 makeQ2fromSeed(
420 HASH_HashType hashtype, /* selected Hashing algorithm */
421 unsigned int N, /* input. Length of q in bits. */
422 const SECItem * seed, /* input. */
423 mp_int * Q) /* output. */
424 {
425 unsigned char U[HASH_LENGTH_MAX];
426 SECStatus rv = SECSuccess;
427 mp_err err = MP_OKAY;
428 int N_bytes = N/BITS_PER_BYTE; /* length of N in bytes rather than bits */
429 int hashLen = HASH_ResultLen(hashtype);
430 int offset = 0;
431
432 /* ******************************************************************
433 ** Step 6.
434 ** "Compute U = hash[SEED] mod 2**N-1]."
435 **/
436 CHECK_SEC_OK( HASH_HashBuf(hashtype, U, seed->data, seed->len) );
437 /* mod 2**N . Step 7 will explicitly set the top bit to 1, so no need
438 * to handle mod 2**N-1 */
439 if (hashLen > N_bytes) {
440 offset = hashLen - N_bytes;
441 }
442 /* ******************************************************************
443 ** Step 7.
444 ** computed_q = 2**(N-1) + U + 1 - (U mod 2)
445 **
446 ** This is the same as:
447 ** computed_q = 2**(N-1) | U | 1;
448 */
449 U[offset] |= 0x80; /* U is MSB first */
450 U[hashLen-1] |= 0x01;
451 err = mp_read_unsigned_octets(Q, &U[offset], N_bytes);
452 cleanup:
453 memset(U, 0, HASH_LENGTH_MAX);
454 if (err) {
455 MP_TO_SEC_ERROR(err);
456 return SECFailure;
457 }
458 return rv;
459 }
460
461 /*
462 ** Perform steps from FIPS 186-3, Appendix A.1.2.1 and Appendix C.6
463 **
464 ** This generates a provable prime from two smaller prime. The resulting
465 ** prime p will have q0 as a multiple of p-1. q0 can be 1.
466 **
467 ** This implments steps 4 thorough 22 of FIPS 186-3 A.1.2.1 and
468 ** steps 16 through 34 of FIPS 186-2 C.6
469 */
470 #define MAX_ST_SEED_BITS HASH_LENGTH_MAX*BITS_PER_BYTE
471 SECStatus
472 makePrimefromPrimesShaweTaylor(
473 HASH_HashType hashtype, /* selected Hashing algorithm */
474 unsigned int length, /* input. Length of prime in bits. */
475 mp_int * c0, /* seed prime */
476 mp_int * q, /* sub prime, can be 1 */
477 mp_int * prime, /* output. */
478 SECItem * prime_seed, /* input/output. */
479 int * prime_gen_counter) /* input/output. */
480 {
481 mp_int c;
482 mp_int c0_2;
483 mp_int t;
484 mp_int a;
485 mp_int z;
486 mp_int two_length_minus_1;
487 SECStatus rv = SECFailure;
488 int hashlen = HASH_ResultLen(hashtype);
489 int outlen = hashlen*BITS_PER_BYTE;
490 int offset;
491 unsigned char bit, mask;
492 /* x needs to hold roundup(L/outlen)*outlen.
493 * This can be no larger than L+outlen-1, So we set it's size to
494 * our max L + max outlen and know we are safe */
495 unsigned char x[DSA_MAX_P_BITS/8+HASH_LENGTH_MAX];
496 mp_err err = MP_OKAY;
497 int i;
498 int iterations;
499 int old_counter;
500
501 MP_DIGITS(&c) = 0;
502 MP_DIGITS(&c0_2) = 0;
503 MP_DIGITS(&t) = 0;
504 MP_DIGITS(&a) = 0;
505 MP_DIGITS(&z) = 0;
506 MP_DIGITS(&two_length_minus_1) = 0;
507 CHECK_MPI_OK( mp_init(&c) );
508 CHECK_MPI_OK( mp_init(&c0_2) );
509 CHECK_MPI_OK( mp_init(&t) );
510 CHECK_MPI_OK( mp_init(&a) );
511 CHECK_MPI_OK( mp_init(&z) );
512 CHECK_MPI_OK( mp_init(&two_length_minus_1) );
513
514
515 /*
516 ** There is a slight mapping of variable names depending on which
517 ** FIPS 186 steps are being carried out. The mapping is as follows:
518 ** variable A.1.2.1 C.6
519 ** c0 p0 c0
520 ** q q 1
521 ** c p c
522 ** c0_2 2*p0*q 2*c0
523 ** length L length
524 ** prime_seed pseed prime_seed
525 ** prime_gen_counter pgen_counter prime_gen_counter
526 **
527 ** Also note: or iterations variable is actually iterations+1, since
528 ** iterations+1 works better in C.
529 */
530
531 /* Step 4/16 iterations = ceiling(length/outlen)-1 */
532 iterations = (length+outlen-1)/outlen; /* NOTE: iterations +1 */
533 /* Step 5/17 old_counter = prime_gen_counter */
534 old_counter = *prime_gen_counter;
535 /*
536 ** Comment: Generate a pseudorandom integer x in the interval
537 ** [2**(lenght-1), 2**length].
538 **
539 ** Step 6/18 x = 0
540 */
541 PORT_Memset(x, 0, sizeof(x));
542 /*
543 ** Step 7/19 for i = 0 to iterations do
544 ** x = x + (HASH(prime_seed + i) * 2^(i*outlen))
545 */
546 for (i=0; i < iterations; i++) {
547 /* is bigger than prime_seed should get to */
548 CHECK_SEC_OK( addToSeedThenHash(hashtype, prime_seed, i,
549 MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen]));
550 }
551 /* Step 8/20 prime_seed = prime_seed + iterations + 1 */
552 CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS,
553 prime_seed));
554 /*
555 ** Step 9/21 x = 2 ** (length-1) + x mod 2 ** (length-1)
556 **
557 ** This step mathematically sets the high bit and clears out
558 ** all the other bits higher than length. 'x' is stored
559 ** in the x array, MSB first. The above formula gives us an 'x'
560 ** which is length bytes long and has the high bit set. We also know
561 ** that length <= iterations*outlen since
562 ** iterations=ceiling(length/outlen). First we find the offset in
563 ** bytes into the array where the high bit is.
564 */
565 offset = (outlen*iterations - length)/BITS_PER_BYTE;
566 /* now we want to set the 'high bit', since length may not be a
567 * multiple of 8,*/
568 bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */
569 /* we need to zero out the rest of the bits in the byte above */
570 mask = (bit-1);
571 /* now we set it */
572 x[offset] = (mask & x[offset]) | bit;
573 /*
574 ** Comment: Generate a candidate prime c in the interval
575 ** [2**(lenght-1), 2**length].
576 **
577 ** Step 10 t = ceiling(x/(2q(p0)))
578 ** Step 22 t = ceiling(x/(2(c0)))
579 */
580 CHECK_MPI_OK( mp_read_unsigned_octets(&t, &x[offset],
581 hashlen*iterations - offset ) ); /* t = x */
582 CHECK_MPI_OK( mp_mul(c0, q, &c0_2) ); /* c0_2 is now c0*q */
583 CHECK_MPI_OK( mp_add(&c0_2, &c0_2, &c0_2) ); /* c0_2 is now 2*q*c0 */
584 CHECK_MPI_OK( mp_add(&t, &c0_2, &t) ); /* t = x+2*q*c0 */
585 CHECK_MPI_OK( mp_sub_d(&t, (mp_digit) 1, &t) ); /* t = x+2*q*c0 -1 */
586 /* t = floor((x+2qc0-1)/2qc0) = ceil(x/2qc0) */
587 CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) );
588 /*
589 ** step 11: if (2tqp0 +1 > 2**length), then t = ceiling(2**(length-1)/2qp0)
590 ** step 12: t = 2tqp0 +1.
591 **
592 ** step 23: if (2tc0 +1 > 2**length), then t = ceiling(2**(length-1)/2c0)
593 ** step 24: t = 2tc0 +1.
594 */
595 CHECK_MPI_OK( mp_2expt(&two_length_minus_1, length-1) );
596 step_23:
597 CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); /* c = t*2qc0 */
598 CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/
599 if (mpl_significant_bits(&c) > length) { /* if c > 2**length */
600 CHECK_MPI_OK( mp_sub_d(&c0_2, (mp_digit) 1, &t) ); /* t = 2qc0-1 */
601 /* t = 2**(length-1) + 2qc0 -1 */
602 CHECK_MPI_OK( mp_add(&two_length_minus_1,&t, &t) );
603 /* t = floor((2**(length-1)+2qc0 -1)/2qco)
604 * = ceil(2**(lenght-2)/2qc0) */
605 CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) );
606 CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) );
607 CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/
608 }
609 /* Step 13/25 prime_gen_counter = prime_gen_counter + 1*/
610 (*prime_gen_counter)++;
611 /*
612 ** Comment: Test the candidate prime c for primality; first pick an
613 ** integer a between 2 and c-2.
614 **
615 ** Step 14/26 a=0
616 */
617 PORT_Memset(x, 0, sizeof(x)); /* use x for a */
618 /*
619 ** Step 15/27 for i = 0 to iterations do
620 ** a = a + (HASH(prime_seed + i) * 2^(i*outlen))
621 **
622 ** NOTE: we reuse the x array for 'a' initially.
623 */
624 for (i=0; i < iterations; i++) {
625 /* MAX_ST_SEED_BITS is bigger than prime_seed should get to */
626 CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, i,
627 MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen]));
628 }
629 /* Step 16/28 prime_seed = prime_seed + iterations + 1 */
630 CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS,
631 prime_seed));
632 /* Step 17/29 a = 2 + (a mod (c-3)). */
633 CHECK_MPI_OK( mp_read_unsigned_octets(&a, x, iterations*hashlen) );
634 CHECK_MPI_OK( mp_sub_d(&c, (mp_digit) 3, &z) ); /* z = c -3 */
635 CHECK_MPI_OK( mp_mod(&a, &z, &a) ); /* a = a mod c -3 */
636 CHECK_MPI_OK( mp_add_d(&a, (mp_digit) 2, &a) ); /* a = 2 + a mod c -3 */
637 /*
638 ** Step 18 z = a**(2tq) mod p.
639 ** Step 30 z = a**(2t) mod c.
640 */
641 CHECK_MPI_OK( mp_mul(&t, q, &z) ); /* z = tq */
642 CHECK_MPI_OK( mp_add(&z, &z, &z) ); /* z = 2tq */
643 CHECK_MPI_OK( mp_exptmod(&a, &z, &c, &z) ); /* z = a**(2tq) mod c */
644 /*
645 ** Step 19 if (( 1 == GCD(z-1,p)) and ( 1 == z**p0 mod p )), then
646 ** Step 31 if (( 1 == GCD(z-1,c)) and ( 1 == z**c0 mod c )), then
647 */
648 CHECK_MPI_OK( mp_sub_d(&z, (mp_digit) 1, &a) );
649 CHECK_MPI_OK( mp_gcd(&a,&c,&a ));
650 if (mp_cmp_d(&a, (mp_digit)1) == 0) {
651 CHECK_MPI_OK( mp_exptmod(&z, c0, &c, &a) );
652 if (mp_cmp_d(&a, (mp_digit)1) == 0) {
653 /* Step 31.1 prime = c */
654 CHECK_MPI_OK( mp_copy(&c, prime) );
655 /*
656 ** Step 31.2 return Success, prime, prime_seed,
657 ** prime_gen_counter
658 */
659 rv = SECSuccess;
660 goto cleanup;
661 }
662 }
663 /*
664 ** Step 20/32 If (prime_gen_counter > 4 * length + old_counter then
665 ** return (FAILURE, 0, 0, 0).
666 ** NOTE: the test is reversed, so we fall through on failure to the
667 ** cleanup routine
668 */
669 if (*prime_gen_counter < (4*length + old_counter)) {
670 /* Step 21/33 t = t + 1 */
671 CHECK_MPI_OK( mp_add_d(&t, (mp_digit) 1, &t) );
672 /* Step 22/34 Go to step 23/11 */
673 goto step_23;
674 }
675
676 /* if (prime_gencont > (4*length + old_counter), fall through to failure */
677 rv = SECFailure; /* really is already set, but paranoia is good */
678
679 cleanup:
680 mp_clear(&c);
681 mp_clear(&c0_2);
682 mp_clear(&t);
683 mp_clear(&a);
684 mp_clear(&z);
685 mp_clear(&two_length_minus_1);
686 if (err) {
687 MP_TO_SEC_ERROR(err);
688 rv = SECFailure;
689 }
690 if (rv == SECFailure) {
691 mp_zero(prime);
692 if (prime_seed->data) {
693 SECITEM_FreeItem(prime_seed, PR_FALSE);
694 }
695 *prime_gen_counter = 0;
696 }
697 return rv;
698 }
699
700 /*
701 ** Perform steps from FIPS 186-3, Appendix C.6
702 **
703 ** This generates a provable prime from a seed
704 */
705 SECStatus
706 makePrimefromSeedShaweTaylor(
707 HASH_HashType hashtype, /* selected Hashing algorithm */
708 unsigned int length, /* input. Length of prime in bits. */
709 const SECItem * input_seed, /* input. */
710 mp_int * prime, /* output. */
711 SECItem * prime_seed, /* output. */
712 int * prime_gen_counter) /* output. */
713 {
714 mp_int c;
715 mp_int c0;
716 mp_int one;
717 SECStatus rv = SECFailure;
718 int hashlen = HASH_ResultLen(hashtype);
719 int outlen = hashlen*BITS_PER_BYTE;
720 int offset;
721 unsigned char bit, mask;
722 unsigned char x[HASH_LENGTH_MAX*2];
723 mp_digit dummy;
724 mp_err err = MP_OKAY;
725 int i;
726
727 MP_DIGITS(&c) = 0;
728 MP_DIGITS(&c0) = 0;
729 MP_DIGITS(&one) = 0;
730 CHECK_MPI_OK( mp_init(&c) );
731 CHECK_MPI_OK( mp_init(&c0) );
732 CHECK_MPI_OK( mp_init(&one) );
733
734 /* Step 1. if length < 2 then return (FAILURE, 0, 0, 0) */
735 if (length < 2) {
736 rv = SECFailure;
737 goto cleanup;
738 }
739 /* Step 2. if length >= 33 then goto step 14 */
740 if (length >= 33) {
741 mp_zero(&one);
742 CHECK_MPI_OK( mp_add_d(&one, (mp_digit) 1, &one) );
743
744 /* Step 14 (status, c0, prime_seed, prime_gen_counter) =
745 ** (ST_Random_Prime((ceil(length/2)+1, input_seed)
746 */
747 rv = makePrimefromSeedShaweTaylor(hashtype, (length+1)/2+1,
748 input_seed, &c0, prime_seed, prime_gen_counter);
749 /* Step 15 if FAILURE is returned, return (FAILURE, 0, 0, 0). */
750 if (rv != SECSuccess) {
751 goto cleanup;
752 }
753 /* Steps 16-34 */
754 rv = makePrimefromPrimesShaweTaylor(hashtype,length, &c0, &one,
755 prime, prime_seed, prime_gen_counter);
756 goto cleanup; /* we're done, one way or the other */
757 }
758 /* Step 3 prime_seed = input_seed */
759 CHECK_SEC_OK(SECITEM_CopyItem(NULL, prime_seed, input_seed));
760 /* Step 4 prime_gen_count = 0 */
761 *prime_gen_counter = 0;
762
763 step_5:
764 /* Step 5 c = Hash(prime_seed) xor Hash(prime_seed+1). */
765 CHECK_SEC_OK(HASH_HashBuf(hashtype, x, prime_seed->data, prime_seed->len) );
766 CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, 1,
767 MAX_ST_SEED_BITS, &x[hashlen]) );
768 for (i=0; i < hashlen; i++) {
769 x[i] = x[i] ^ x[i+hashlen];
770 }
771 /* Step 6 c = 2**length-1 + c mod 2**length-1 */
772 /* This step mathematically sets the high bit and clears out
773 ** all the other bits higher than length. Right now c is stored
774 ** in the x array, MSB first. The above formula gives us a c which
775 ** is length bytes long and has the high bit set. We also know that
776 ** length < outlen since the smallest outlen is 160 bits and the largest
777 ** length at this point is 32 bits. So first we find the offset in bytes
778 ** into the array where the high bit is.
779 */
780 offset = (outlen - length)/BITS_PER_BYTE;
781 /* now we want to set the 'high bit'. We have to calculate this since
782 * length may not be a multiple of 8.*/
783 bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */
784 /* we need to zero out the rest of the bits in the byte above */
785 mask = (bit-1);
786 /* now we set it */
787 x[offset] = (mask & x[offset]) | bit;
788 /* Step 7 c = c*floor(c/2) + 1 */
789 /* set the low bit. much easier to find (the end of the array) */
790 x[hashlen-1] |= 1;
791 /* now that we've set our bits, we can create our candidate "c" */
792 CHECK_MPI_OK( mp_read_unsigned_octets(&c, &x[offset], hashlen-offset) );
793 /* Step 8 prime_gen_counter = prime_gen_counter + 1 */
794 (*prime_gen_counter)++;
795 /* Step 9 prime_seed = prime_seed + 2 */
796 CHECK_SEC_OK(addToSeed(prime_seed, 2, MAX_ST_SEED_BITS, prime_seed));
797 /* Step 10 Perform deterministic primality test on c. For example, since
798 ** c is small, it's primality can be tested by trial division, See
799 ** See Appendic C.7.
800 **
801 ** We in fact test with trial division. mpi has a built int trial divider
802 ** that divides all divisors up to 2^16.
803 */
804 if (prime_tab[prime_tab_size-1] < 0xFFF1) {
805 /* we aren't testing all the primes between 0 and 2^16, we really
806 * can't use this construction. Just fail. */
807 rv = SECFailure;
808 goto cleanup;
809 }
810 dummy = prime_tab_size;
811 err = mpp_divis_primes(&c, &dummy);
812 /* Step 11 if c is prime then */
813 if (err == MP_NO) {
814 /* Step 11.1 prime = c */
815 CHECK_MPI_OK( mp_copy(&c, prime) );
816 /* Step 11.2 return SUCCESS prime, prime_seed, prime_gen_counter */
817 err = MP_OKAY;
818 rv = SECSuccess;
819 goto cleanup;
820 } else if (err != MP_YES) {
821 goto cleanup; /* function failed, bail out */
822 } else {
823 /* reset mp_err */
824 err = MP_OKAY;
825 }
826 /*
827 ** Step 12 if (prime_gen_counter > (4*len))
828 ** then return (FAILURE, 0, 0, 0))
829 ** Step 13 goto step 5
830 */
831 if (*prime_gen_counter <= (4*length)) {
832 goto step_5;
833 }
834 /* if (prime_gencont > 4*length), fall through to failure */
835 rv = SECFailure; /* really is already set, but paranoia is good */
836
837 cleanup:
838 mp_clear(&c);
839 mp_clear(&c0);
840 mp_clear(&one);
841 if (err) {
842 MP_TO_SEC_ERROR(err);
843 rv = SECFailure;
844 }
845 if (rv == SECFailure) {
846 mp_zero(prime);
847 if (prime_seed->data) {
848 SECITEM_FreeItem(prime_seed, PR_FALSE);
849 }
850 *prime_gen_counter = 0;
851 }
852 return rv;
853 }
854
855
856 /*
857 * Find a Q and algorithm from Seed.
858 */
859 static SECStatus
860 findQfromSeed(
861 unsigned int L, /* input. Length of p in bits. */
862 unsigned int N, /* input. Length of q in bits. */
863 unsigned int g, /* input. Length of seed in bits. */
864 const SECItem * seed, /* input. */
865 mp_int * Q, /* input. */
866 mp_int * Q_, /* output. */
867 int * qseed_len, /* output */
868 HASH_HashType *hashtypePtr, /* output. Hash uses */
869 pqgGenType *typePtr) /* output. Generation Type used */
870 {
871 HASH_HashType hashtype;
872 SECItem firstseed = { 0, 0, 0 };
873 SECItem qseed = { 0, 0, 0 };
874 SECStatus rv;
875
876 *qseed_len = 0; /* only set if FIPS186_3_ST_TYPE */
877
878 /* handle legacy small DSA first can only be FIPS186_1_TYPE */
879 if (L < 1024) {
880 rv =makeQfromSeed(g,seed,Q_);
881 if ((rv == SECSuccess) && (mp_cmp(Q,Q_) == 0)) {
882 *hashtypePtr = HASH_AlgSHA1;
883 *typePtr = FIPS186_1_TYPE;
884 return SECSuccess;
885 }
886 return SECFailure;
887 }
888 /* 1024 could use FIPS186_1 or FIPS186_3 algorithms, we need to try
889 * them both */
890 if (L == 1024) {
891 rv = makeQfromSeed(g,seed,Q_);
892 if (rv == SECSuccess) {
893 if (mp_cmp(Q,Q_) == 0) {
894 *hashtypePtr = HASH_AlgSHA1;
895 *typePtr = FIPS186_1_TYPE;
896 return SECSuccess;
897 }
898 }
899 /* fall through for FIPS186_3 types */
900 }
901 /* at this point we know we aren't using FIPS186_1, start trying FIPS186_3
902 * with appropriate hash types */
903 for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL;
904 hashtype=getNextHash(hashtype)) {
905 rv = makeQ2fromSeed(hashtype, N, seed, Q_);
906 if (rv != SECSuccess) {
907 continue;
908 }
909 if (mp_cmp(Q,Q_) == 0) {
910 *hashtypePtr = hashtype;
911 *typePtr = FIPS186_3_TYPE;
912 return SECSuccess;
913 }
914 }
915 /*
916 * OK finally try FIPS186_3 Shawe-Taylor
917 */
918 firstseed = *seed;
919 firstseed.len = seed->len/3;
920 for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL;
921 hashtype=getNextHash(hashtype)) {
922 int count;
923
924 rv = makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, Q_,
925 &qseed, &count);
926 if (rv != SECSuccess) {
927 continue;
928 }
929 if (mp_cmp(Q,Q_) == 0) {
930 /* check qseed as well... */
931 int offset = seed->len - qseed.len;
932 if ((offset < 0) ||
933 (PORT_Memcmp(&seed->data[offset],qseed.data,qseed.len) != 0)) {
934 /* we found q, but the seeds don't match. This isn't an
935 * accident, someone has been tweeking with the seeds, just
936 * fail a this point. */
937 SECITEM_FreeItem(&qseed,PR_FALSE);
938 return SECFailure;
939 }
940 *qseed_len = qseed.len;
941 *hashtypePtr = hashtype;
942 *typePtr = FIPS186_3_ST_TYPE;
943 SECITEM_FreeItem(&qseed, PR_FALSE);
944 return SECSuccess;
945 }
946 SECITEM_FreeItem(&qseed, PR_FALSE);
947 }
948 /* no hash algorithms found which match seed to Q, fail */
949 return SECFailure;
950 }
951
952
953
954 /*
955 ** Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2.
956 ** which are the same as steps 11.1-11.5 of FIPS 186-2, App A.1.1.2
194 ** Generate P from Q, seed, L, and offset. 957 ** Generate P from Q, seed, L, and offset.
195 */ 958 */
196 static SECStatus 959 static SECStatus
197 makePfromQandSeed( 960 makePfromQandSeed(
961 HASH_HashType hashtype, /* selected Hashing algorithm */
198 unsigned int L, /* Length of P in bits. Per FIPS 186. */ 962 unsigned int L, /* Length of P in bits. Per FIPS 186. */
199 unsigned int offset, /* Per FIPS 186, appendix 2.2. */ 963 unsigned int N, /* Length of Q in bits. Per FIPS 186. */
200 unsigned int g, /* input. Length of seed in bits. */ 964 unsigned int offset, /* Per FIPS 186, App 2.2. & 186-3 App A.1.1.2 */
965 unsigned int seedlen, /* input. Length of seed in bits. (g in 186-1)*/
201 const SECItem * seed, /* input. */ 966 const SECItem * seed, /* input. */
202 const mp_int * Q, /* input. */ 967 const mp_int * Q, /* input. */
203 mp_int * P) /* output. */ 968 mp_int * P) /* output. */
204 { 969 {
205 unsigned int k; /* Per FIPS 186, appendix 2.2. */ 970 unsigned int j; /* Per FIPS 186-3 App. A.1.1.2 (k in 186-1)*/
206 unsigned int n; /* Per FIPS 186, appendix 2.2. */ 971 unsigned int n; /* Per FIPS 186, appendix 2.2. */
207 mp_digit b; /* Per FIPS 186, appendix 2.2. */ 972 mp_digit b; /* Per FIPS 186, appendix 2.2. */
208 unsigned char V_k[SHA1_LENGTH]; 973 unsigned int outlen; /* Per FIPS 186-3 App. A.1.1.2 */
974 unsigned int hashlen; /* outlen in bytes */
975 unsigned char V_j[HASH_LENGTH_MAX];
209 mp_int W, X, c, twoQ, V_n, tmp; 976 mp_int W, X, c, twoQ, V_n, tmp;
210 mp_err err = MP_OKAY; 977 mp_err err = MP_OKAY;
211 SECStatus rv = SECSuccess; 978 SECStatus rv = SECSuccess;
212 /* Initialize bignums */ 979 /* Initialize bignums */
213 MP_DIGITS(&W) = 0; 980 MP_DIGITS(&W) = 0;
214 MP_DIGITS(&X) = 0; 981 MP_DIGITS(&X) = 0;
215 MP_DIGITS(&c) = 0; 982 MP_DIGITS(&c) = 0;
216 MP_DIGITS(&twoQ) = 0; 983 MP_DIGITS(&twoQ) = 0;
217 MP_DIGITS(&V_n) = 0; 984 MP_DIGITS(&V_n) = 0;
218 MP_DIGITS(&tmp) = 0; 985 MP_DIGITS(&tmp) = 0;
219 CHECK_MPI_OK( mp_init(&W) ); 986 CHECK_MPI_OK( mp_init(&W) );
220 CHECK_MPI_OK( mp_init(&X) ); 987 CHECK_MPI_OK( mp_init(&X) );
221 CHECK_MPI_OK( mp_init(&c) ); 988 CHECK_MPI_OK( mp_init(&c) );
222 CHECK_MPI_OK( mp_init(&twoQ) ); 989 CHECK_MPI_OK( mp_init(&twoQ) );
223 CHECK_MPI_OK( mp_init(&tmp) ); 990 CHECK_MPI_OK( mp_init(&tmp) );
224 CHECK_MPI_OK( mp_init(&V_n) ); 991 CHECK_MPI_OK( mp_init(&V_n) );
225 /* L - 1 = n*160 + b */ 992
226 n = (L - 1) / BITS_IN_Q; 993 hashlen = HASH_ResultLen(hashtype);
227 b = (L - 1) % BITS_IN_Q; 994 outlen = hashlen*BITS_PER_BYTE;
995
996 /* L - 1 = n*outlen + b */
997 n = (L - 1) / outlen;
998 b = (L - 1) % outlen;
999
228 /* ****************************************************************** 1000 /* ******************************************************************
229 ** Step 7. 1001 ** Step 11.1 (Step 7 in 186-1)
230 ** "for k = 0 ... n let 1002 ** "for j = 0 ... n let
231 ** V_k = SHA[(SEED + offset + k) mod 2**g]." 1003 ** V_j = SHA[(SEED + offset + j) mod 2**seedlen]."
232 ** 1004 **
233 ** Step 8. 1005 ** Step 11.2 (Step 8 in 186-1)
234 ** "Let W be the integer 1006 ** "W = V_0 + (V_1 * 2**outlen) + ... + (V_n-1 * 2**((n-1)*outlen))
235 ** W = V_0 + (V_1 * 2**160) + ... + (V_n-1 * 2**((n-1)*160)) 1007 ** + ((V_n mod 2**b) * 2**(n*outlen))
236 ** + ((V_n mod 2**b) * 2**(n*160))
237 */ 1008 */
238 for (k=0; k<n; ++k) { /* Do the first n terms of V_k */ 1009 for (j=0; j<n; ++j) { /* Do the first n terms of V_j */
239 » /* Do step 7 for iteration k. 1010 » /* Do step 11.1 for iteration j.
240 » ** V_k = SHA[(seed + offset + k) mod 2**g] 1011 » ** V_j = HASH[(seed + offset + j) mod 2**g]
241 */ 1012 */
242 » CHECK_SEC_OK( addToSeedThenSHA(seed, offset + k, g, V_k) ); 1013 » CHECK_SEC_OK( addToSeedThenHash(hashtype,seed,offset+j, seedlen, V_j) );
243 » /* Do step 8 for iteration k. 1014 » /* Do step 11.2 for iteration j.
244 » ** W += V_k * 2**(k*160) 1015 » ** W += V_j * 2**(j*outlen)
245 */ 1016 */
246 » OCTETS_TO_MPINT(V_k, &tmp, SHA1_LENGTH); /* get bignum V_k */ 1017 » OCTETS_TO_MPINT(V_j, &tmp, hashlen); /* get bignum V_j */
247 » CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, k*160) ); /* tmp = V_k << k*160 */ 1018 » CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, j*outlen) );/* tmp=V_j << j*outlen */
248 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ 1019 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
249 } 1020 }
250 /* Step 8, continued. 1021 /* Step 11.2, continued.
251 ** [W += ((V_n mod 2**b) * 2**(n*160))] 1022 ** [W += ((V_n mod 2**b) * 2**(n*outlen))]
252 */ 1023 */
253 CHECK_SEC_OK( addToSeedThenSHA(seed, offset + n, g, V_k) ); 1024 CHECK_SEC_OK( addToSeedThenHash(hashtype, seed, offset + n, seedlen, V_j) );
254 OCTETS_TO_MPINT(V_k, &V_n, SHA1_LENGTH); /* get bignum V_n */ 1025 OCTETS_TO_MPINT(V_j, &V_n, hashlen); /* get bignum V_n */
255 CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */ 1026 CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */
256 CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*160) ); /* tmp = tmp << n*160 */ 1027 CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*outlen) ); /* tmp = tmp << n*outlen */
257 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ 1028 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */
258 /* Step 8, continued. 1029 /* Step 11.3, (Step 8 in 186-1)
259 ** "and let X = W + 2**(L-1). 1030 ** "X = W + 2**(L-1).
260 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L." 1031 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
261 */ 1032 */
262 CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */ 1033 CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */
263 CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */ 1034 CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */
264 /************************************************************* 1035 /*************************************************************
265 ** Step 9. 1036 ** Step 11.4. (Step 9 in 186-1)
266 ** "Let c = X mod 2q and set p = X - (c - 1). 1037 ** "c = X mod 2q"
267 ** Note that p is congruent to 1 mod 2q."
268 */ 1038 */
269 CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */ 1039 CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */
270 CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */ 1040 CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */
1041 /*************************************************************
1042 ** Step 11.5. (Step 9 in 186-1)
1043 ** "p = X - (c - 1).
1044 ** Note that p is congruent to 1 mod 2q."
1045 */
271 CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */ 1046 CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */
272 CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */ 1047 CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */
273 cleanup: 1048 cleanup:
274 mp_clear(&W); 1049 mp_clear(&W);
275 mp_clear(&X); 1050 mp_clear(&X);
276 mp_clear(&c); 1051 mp_clear(&c);
277 mp_clear(&twoQ); 1052 mp_clear(&twoQ);
278 mp_clear(&V_n); 1053 mp_clear(&V_n);
279 mp_clear(&tmp); 1054 mp_clear(&tmp);
280 if (err) { 1055 if (err) {
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after
326 cleanup: 1101 cleanup:
327 mp_clear(&exp); 1102 mp_clear(&exp);
328 mp_clear(&pm1); 1103 mp_clear(&pm1);
329 if (err) { 1104 if (err) {
330 MP_TO_SEC_ERROR(err); 1105 MP_TO_SEC_ERROR(err);
331 rv = SECFailure; 1106 rv = SECFailure;
332 } 1107 }
333 return rv; 1108 return rv;
334 } 1109 }
335 1110
336 SECStatus 1111 /*
337 PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy) 1112 ** Generate G from seed, index, P, and Q.
1113 */
1114 static SECStatus
1115 makeGfromIndex(HASH_HashType hashtype,
1116 » » const mp_int *P,» /* input. */
1117 » const mp_int *Q,» /* input. */
1118 const SECItem *seed,» /* input. */
1119 » » unsigned char index,» /* input. */
1120 » » mp_int *G)» » /* input/output */
338 { 1121 {
339 unsigned int L; /* Length of P in bits. Per FIPS 186. */ 1122 mp_int e, pm1, W;
340 unsigned int seedBytes; 1123 unsigned int count;
1124 unsigned char data[HASH_LENGTH_MAX];
1125 unsigned int len;
1126 mp_err err = MP_OKAY;
1127 SECStatus rv = SECSuccess;
1128 const SECHashObject *hashobj;
1129 void *hashcx = NULL;
341 1130
342 if (j > 8 || !pParams || !pVfy) { 1131 MP_DIGITS(&e) = 0;
343 » PORT_SetError(SEC_ERROR_INVALID_ARGS); 1132 MP_DIGITS(&pm1) = 0;
344 return SECFailure; 1133 MP_DIGITS(&W) = 0;
1134 CHECK_MPI_OK( mp_init(&e) );
1135 CHECK_MPI_OK( mp_init(&pm1) );
1136 CHECK_MPI_OK( mp_init(&W) );
1137
1138 /* initialize our hash stuff */
1139 hashobj = HASH_GetRawHashObject(hashtype);
1140 if (hashobj == NULL) {
1141 » /* shouldn't happen */
1142 » PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
1143 » rv = SECFailure;
1144 » goto cleanup;
345 } 1145 }
346 L = 512 + (j * 64); /* bits in P */ 1146 hashcx = hashobj->create();
347 seedBytes = L/8; 1147 if (hashcx == NULL) {
348 return PQG_ParamGenSeedLen(j, seedBytes, pParams, pVfy); 1148 » rv = SECFailure;
1149 » goto cleanup;
1150 }
1151
1152 CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */
1153 /* Step 3 e = (p-1)/q */
1154 CHECK_MPI_OK( mp_div(&pm1, Q, &e, NULL) ); /* e = (P-1)/Q */
1155 /* Steps 4, 5, and 6 */
1156 /* count is a 16 bit value in the spec. We actually represent count
1157 * as more than 16 bits so we can easily detect the 16 bit overflow */
1158 #define MAX_COUNT 0x10000
1159 for (count = 1; count < MAX_COUNT; count++) {
1160 » /* step 7
1161 » * U = domain_param_seed || "ggen" || index || count
1162 * step 8
1163 » * W = HASH(U)
1164 » */
1165 » hashobj->begin(hashcx);
1166 » hashobj->update(hashcx,seed->data,seed->len);
1167 » hashobj->update(hashcx, (unsigned char *)"ggen", 4);
1168 » hashobj->update(hashcx,&index, 1);
1169 » data[0] = (count >> 8) & 0xff;
1170 » data[1] = count & 0xff;
1171 » hashobj->update(hashcx, data, 2);
1172 » hashobj->end(hashcx, data, &len, sizeof(data));
1173 » OCTETS_TO_MPINT(data, &W, len);
1174 » /* step 9. g = W**e mod p */
1175 » CHECK_MPI_OK( mp_exptmod(&W, &e, P, G) );
1176 » /* step 10. if (g < 2) then goto step 5 */
1177 » /* NOTE: this weird construct is to keep the flow according to the spec.
1178 » * the continue puts us back to step 5 of the for loop */
1179 » if (mp_cmp_d(G, 2) < 0) {
1180 » continue;
1181 » }
1182 » break; /* step 11 follows step 10 if the test condition is false */
1183 }
1184 if (count >= MAX_COUNT) {
1185 » rv = SECFailure; /* last part of step 6 */
1186 }
1187 /* step 11.
1188 * return valid G */
1189 cleanup:
1190 PORT_Memset(data, 0, sizeof(data));
1191 if (hashcx) {
1192 » hashobj->destroy(hashcx, PR_TRUE);
1193 }
1194 mp_clear(&e);
1195 mp_clear(&pm1);
1196 mp_clear(&W);
1197 if (err) {
1198 » MP_TO_SEC_ERROR(err);
1199 » rv = SECFailure;
1200 }
1201 return rv;
349 } 1202 }
350 1203
351 /* This code uses labels and gotos, so that it can follow the numbered 1204 /* This code uses labels and gotos, so that it can follow the numbered
352 ** steps in the algorithms from FIPS 186 appendix 2.2 very closely, 1205 ** steps in the algorithms from FIPS 186-3 appendix A.1.1.2 very closely,
353 ** and so that the correctness of this code can be easily verified. 1206 ** and so that the correctness of this code can be easily verified.
354 ** So, please forgive the ugly c code. 1207 ** So, please forgive the ugly c code.
355 **/ 1208 **/
356 SECStatus 1209 static SECStatus
357 PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes, 1210 pqg_ParamGen(unsigned int L, unsigned int N, pqgGenType type,
358 PQGParams **pParams, PQGVerify **pVfy) 1211 » unsigned int seedBytes, PQGParams **pParams, PQGVerify **pVfy)
359 { 1212 {
360 unsigned int L; /* Length of P in bits. Per FIPS 186. */ 1213 unsigned int n; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
361 unsigned int n; /* Per FIPS 186, appendix 2.2. */ 1214 unsigned int b; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
362 unsigned int b; /* Per FIPS 186, appendix 2.2. */ 1215 unsigned int seedlen; /* Per FIPS 186-3 app A.1.1.2 (was 'g' 186-1)*/
363 unsigned int g; /* Per FIPS 186, appendix 2.2. */ 1216 unsigned int counter; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
364 unsigned int counter; /* Per FIPS 186, appendix 2.2. */ 1217 unsigned int offset; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
365 unsigned int offset; /* Per FIPS 186, appendix 2.2. */ 1218 unsigned int outlen; /* Per FIPS 186-3, appendix A.1.1.2. */
366 SECItem *seed; /* Per FIPS 186, appendix 2.2. */ 1219 unsigned int maxCount;
1220 HASH_HashType hashtype;
1221 SECItem *seed; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */
367 PRArenaPool *arena = NULL; 1222 PRArenaPool *arena = NULL;
368 PQGParams *params = NULL; 1223 PQGParams *params = NULL;
369 PQGVerify *verify = NULL; 1224 PQGVerify *verify = NULL;
370 PRBool passed; 1225 PRBool passed;
371 SECItem hit = { 0, 0, 0 }; 1226 SECItem hit = { 0, 0, 0 };
372 mp_int P, Q, G, H, l; 1227 mp_int P, Q, G, H, l;
373 mp_err err = MP_OKAY; 1228 mp_err err = MP_OKAY;
374 SECStatus rv = SECFailure; 1229 SECStatus rv = SECFailure;
375 int iterations = 0; 1230 int iterations = 0;
376 if (j > 8 || seedBytes < 20 || !pParams || !pVfy) { 1231
1232
1233 /* Step 1. L and N already checked by caller*/
1234 /* Step 2. if (seedlen < N) return INVALID; */
1235 if (seedBytes < N/BITS_PER_BYTE || !pParams || !pVfy) {
377 PORT_SetError(SEC_ERROR_INVALID_ARGS); 1236 PORT_SetError(SEC_ERROR_INVALID_ARGS);
378 return SECFailure; 1237 return SECFailure;
379 } 1238 }
380 /* Initialize an arena for the params. */ 1239 /* Initialize an arena for the params. */
381 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); 1240 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE);
382 if (!arena) { 1241 if (!arena) {
383 PORT_SetError(SEC_ERROR_NO_MEMORY); 1242 PORT_SetError(SEC_ERROR_NO_MEMORY);
384 return SECFailure; 1243 return SECFailure;
385 } 1244 }
386 params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams)); 1245 params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams));
(...skipping 24 matching lines...) Expand all
411 MP_DIGITS(&P) = 0; 1270 MP_DIGITS(&P) = 0;
412 MP_DIGITS(&Q) = 0; 1271 MP_DIGITS(&Q) = 0;
413 MP_DIGITS(&G) = 0; 1272 MP_DIGITS(&G) = 0;
414 MP_DIGITS(&H) = 0; 1273 MP_DIGITS(&H) = 0;
415 MP_DIGITS(&l) = 0; 1274 MP_DIGITS(&l) = 0;
416 CHECK_MPI_OK( mp_init(&P) ); 1275 CHECK_MPI_OK( mp_init(&P) );
417 CHECK_MPI_OK( mp_init(&Q) ); 1276 CHECK_MPI_OK( mp_init(&Q) );
418 CHECK_MPI_OK( mp_init(&G) ); 1277 CHECK_MPI_OK( mp_init(&G) );
419 CHECK_MPI_OK( mp_init(&H) ); 1278 CHECK_MPI_OK( mp_init(&H) );
420 CHECK_MPI_OK( mp_init(&l) ); 1279 CHECK_MPI_OK( mp_init(&l) );
421 /* Compute lengths. */ 1280
422 L = 512 + (j * 64); /* bits in P */ 1281 /* Select Hash and Compute lengths. */
423 n = (L - 1) / BITS_IN_Q; /* BITS_IN_Q is 160 */ 1282 /* getFirstHash gives us the smallest acceptable hash for this key
424 b = (L - 1) % BITS_IN_Q; 1283 * strength */
425 g = seedBytes * BITS_PER_BYTE; /* bits in seed, NOT G of PQG. */ 1284 hashtype = getFirstHash(L,N);
426 step_1: 1285 outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE;
1286
1287 /* Step 3: n = Ceil(L/outlen)-1; (same as n = Floor((L-1)/outlen)) */
1288 n = (L - 1) / outlen;
1289 /* Step 4: b = L -1 - (n*outlen); (same as n = (L-1) mod outlen) */
1290 b = (L - 1) % outlen;
1291 seedlen = seedBytes * BITS_PER_BYTE; /* bits in seed */
1292 step_5:
427 /* ****************************************************************** 1293 /* ******************************************************************
428 ** Step 1. 1294 ** Step 5. (Step 1 in 186-1)
429 ** "Choose an abitrary sequence of at least 160 bits and call it SEED. 1295 ** "Choose an abitrary sequence of at least N bits and call it SEED.
430 ** Let g be the length of SEED in bits." 1296 ** Let g be the length of SEED in bits."
431 */ 1297 */
432 if (++iterations > MAX_ITERATIONS) { /* give up after a while */ 1298 if (++iterations > MAX_ITERATIONS) { /* give up after a while */
433 PORT_SetError(SEC_ERROR_NEED_RANDOM); 1299 PORT_SetError(SEC_ERROR_NEED_RANDOM);
434 goto cleanup; 1300 goto cleanup;
435 } 1301 }
436 seed->len = seedBytes; 1302 seed->len = seedBytes;
437 CHECK_SEC_OK( getPQseed(seed, verify->arena) ); 1303 CHECK_SEC_OK( getPQseed(seed, verify->arena) );
438 /* ****************************************************************** 1304 /* ******************************************************************
439 ** Step 2. 1305 ** Step 6. (Step 2 in 186-1)
440 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]."
441 ** 1306 **
442 ** Step 3. 1307 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]. (186-1)"
1308 ** "Compute U = HASH[SEED] 2**(N-1). (186-3)"
1309 **
1310 ** Step 7. (Step 3 in 186-1)
443 ** "Form Q from U by setting the most signficant bit (the 2**159 bit) 1311 ** "Form Q from U by setting the most signficant bit (the 2**159 bit)
444 ** and the least signficant bit to 1. In terms of boolean operations, 1312 ** and the least signficant bit to 1. In terms of boolean operations,
445 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160." 1313 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160. (186-1)"
1314 **
1315 ** "q = 2**(N-1) + U + 1 - (U mod 2) (186-3)
1316 **
1317 ** Note: Both formulations are the same for U < 2**(N-1) and N=160
446 */ 1318 */
447 CHECK_SEC_OK( makeQfromSeed(g, seed, &Q) ); 1319 if (type == FIPS186_1_TYPE) {
1320 » CHECK_SEC_OK( makeQfromSeed(seedlen, seed, &Q) );
1321 } else {
1322 » CHECK_SEC_OK( makeQ2fromSeed(hashtype, N, seed, &Q) );
1323 }
448 /* ****************************************************************** 1324 /* ******************************************************************
449 ** Step 4. 1325 ** Step 8. (Step 4 in 186-1)
450 ** "Use a robust primality testing algorithm to test whether q is prime." 1326 ** "Use a robust primality testing algorithm to test whether q is prime."
451 ** 1327 **
452 ** Appendix 2.1 states that a Rabin test with at least 50 iterations 1328 ** Appendix 2.1 states that a Rabin test with at least 50 iterations
453 ** "will give an acceptable probability of error." 1329 ** "will give an acceptable probability of error."
454 */ 1330 */
455 /*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/ 1331 /*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/
456 err = mpp_pprime(&Q, PQG_Q_PRIMALITY_TESTS); 1332 err = mpp_pprime(&Q, prime_testcount_q(L,N));
457 passed = (err == MP_YES) ? SECSuccess : SECFailure; 1333 passed = (err == MP_YES) ? SECSuccess : SECFailure;
458 /* ****************************************************************** 1334 /* ******************************************************************
459 ** Step 5. "If q is not prime, goto step 1." 1335 ** Step 9. (Step 5 in 186-1) "If q is not prime, goto step 5 (1 in 186-1)."
460 */ 1336 */
461 if (passed != SECSuccess) 1337 if (passed != SECSuccess)
462 goto step_1; 1338 goto step_5;
463 /* ****************************************************************** 1339 /* ******************************************************************
464 ** Step 6. "Let counter = 0 and offset = 2." 1340 ** Step 10.
1341 ** offset = 1;
1342 **( Step 6b 186-1)"Let counter = 0 and offset = 2."
465 */ 1343 */
466 counter = 0; 1344 offset = (type == FIPS186_1_TYPE) ? 2 : 1;
467 offset = 2; 1345 /*
468 step_7: 1346 ** Step 11. (Step 6a,13a,14 in 186-1)
1347 ** For counter - 0 to (4L-1) do
1348 **
1349 */
1350 maxCount = L >= 1024 ? (4*L - 1) : 4095;
1351 for (counter = 0; counter <= maxCount; counter++) {
1352 » /* ******************************************************************
1353 » ** Step 11.1 (Step 7 in 186-1)
1354 » ** "for j = 0 ... n let
1355 » ** V_j = HASH[(SEED + offset + j) mod 2**seedlen]."
1356 » **
1357 » ** Step 11.2 (Step 8 in 186-1)
1358 » ** "W = V_0 + V_1*2**outlen+...+ V_n-1 * 2**((n-1)*outlen) +
1359 » ** ((Vn* mod 2**b)*2**(n*outlen))"
1360 » ** Step 11.3 (Step 8 in 186-1)
1361 » ** "X = W + 2**(L-1)
1362 » ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
1363 » **
1364 » ** Step 11.4 (Step 9 in 186-1).
1365 » ** "c = X mod 2q"
1366 » **
1367 » ** Step 11.5 (Step 9 in 186-1).
1368 » ** " p = X - (c - 1).
1369 » ** Note that p is congruent to 1 mod 2q."
1370 » */
1371 » CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, seedlen,
1372 » » » » » seed, &Q, &P) );
1373 » /*************************************************************
1374 » ** Step 11.6. (Step 10 in 186-1)
1375 » ** "if p < 2**(L-1), then goto step 11.9. (step 13 in 186-1)"
1376 » */
1377 » CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */
1378 » if (mp_cmp(&P, &l) < 0)
1379 goto step_11_9;
1380 » /************************************************************
1381 » ** Step 11.7 (step 11 in 186-1)
1382 » ** "Perform a robust primality test on p."
1383 » */
1384 » /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/
1385 » err = mpp_pprime(&P, prime_testcount_p(L, N));
1386 » passed = (err == MP_YES) ? SECSuccess : SECFailure;
1387 » /* ******************************************************************
1388 » ** Step 11.8. "If p is determined to be primed return VALID
1389 ** values of p, q, seed and counter."
1390 » */
1391 » if (passed == SECSuccess)
1392 » break;
1393 step_11_9:
1394 » /* ******************************************************************
1395 » ** Step 11.9. "offset = offset + n + 1."
1396 » */
1397 » offset += n + 1;
1398 }
469 /* ****************************************************************** 1399 /* ******************************************************************
470 ** Step 7. 1400 ** Step 12. "goto step 5."
471 ** "for k = 0 ... n let
472 ** V_k = SHA[(SEED + offset + k) mod 2**g]."
473 ** 1401 **
474 ** Step 8. 1402 ** NOTE: if counter <= maxCount, then we exited the loop at Step 11.8
475 ** "Let W be the sum of (V_k * 2**(k*160)) for k = 0 ... n 1403 ** and now need to return p,q, seed, and counter.
476 ** and let X = W + 2**(L-1).
477 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L."
478 **
479 ** Step 9.
480 ** "Let c = X mod 2q and set p = X - (c - 1).
481 ** Note that p is congruent to 1 mod 2q."
482 */ 1404 */
483 CHECK_SEC_OK( makePfromQandSeed(L, offset, g, seed, &Q, &P) ); 1405 if (counter > maxCount)
484 /************************************************************* 1406 » goto step_5;
485 ** Step 10. 1407 /* ******************************************************************
486 ** "if p < 2**(L-1), then goto step 13." 1408 ** returning p, q, seed and counter
487 */ 1409 */
488 CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */ 1410 if (type == FIPS186_1_TYPE) {
489 if (mp_cmp(&P, &l) < 0) 1411 » /* Generate g, This is called the "Unverifiable Generation of g
490 goto step_13; 1412 » * in FIPA186-3 Appedix A.2.1. For compatibility we maintain
491 /************************************************************ 1413 » * this version of the code */
492 ** Step 11. 1414 » SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */
493 ** "Perform a robust primality test on p." 1415 » if (!hit.data) goto cleanup;
494 */ 1416 » do {
495 /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/ 1417 » /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */
496 err = mpp_pprime(&P, PQG_P_PRIMALITY_TESTS); 1418 » CHECK_SEC_OK( generate_h_candidate(&hit, &H) );
497 passed = (err == MP_YES) ? SECSuccess : SECFailure; 1419 CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) );
498 /* ****************************************************************** 1420 » } while (passed != PR_TRUE);
499 ** Step 12. "If p passes the test performed in step 11, go to step 15." 1421 MPINT_TO_SECITEM(&H, &verify->h, verify->arena);
500 */ 1422 } else {
501 if (passed == SECSuccess) 1423 » unsigned char index = 1; /* default to 1 */
502 goto step_15; 1424 » verify->h.data = (unsigned char *)PORT_ArenaZAlloc(verify->arena, 1);
503 step_13: 1425 » if (verify->h.data == NULL) { goto cleanup; }
504 /* ****************************************************************** 1426 » verify->h.len = 1;
505 ** Step 13. "Let counter = counter + 1 and offset = offset + n + 1." 1427 » verify->h.data[0] = index;
506 */ 1428 » /* Generate g, using the FIPS 186-3 Appendix A.23 */
507 counter++; 1429 » CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, seed, index, &G) );
508 offset += n + 1; 1430 }
509 /* ******************************************************************
510 ** Step 14. "If counter >= 4096 goto step 1, otherwise go to step 7."
511 */
512 if (counter >= 4096)
513 goto step_1;
514 goto step_7;
515 step_15:
516 /* ******************************************************************
517 ** Step 15.
518 ** "Save the value of SEED and the value of counter for use
519 ** in certifying the proper generation of p and q."
520 */
521 /* Generate h. */
522 SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */
523 if (!hit.data) goto cleanup;
524 do {
525 » /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */
526 » CHECK_SEC_OK( generate_h_candidate(&hit, &H) );
527 CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) );
528 } while (passed != PR_TRUE);
529 /* All generation is done. Now, save the PQG params. */ 1431 /* All generation is done. Now, save the PQG params. */
530 MPINT_TO_SECITEM(&P, &params->prime, params->arena); 1432 MPINT_TO_SECITEM(&P, &params->prime, params->arena);
531 MPINT_TO_SECITEM(&Q, &params->subPrime, params->arena); 1433 MPINT_TO_SECITEM(&Q, &params->subPrime, params->arena);
532 MPINT_TO_SECITEM(&G, &params->base, params->arena); 1434 MPINT_TO_SECITEM(&G, &params->base, params->arena);
533 MPINT_TO_SECITEM(&H, &verify->h, verify->arena);
534 verify->counter = counter; 1435 verify->counter = counter;
535 *pParams = params; 1436 *pParams = params;
536 *pVfy = verify; 1437 *pVfy = verify;
537 cleanup: 1438 cleanup:
538 mp_clear(&P); 1439 mp_clear(&P);
539 mp_clear(&Q); 1440 mp_clear(&Q);
540 mp_clear(&G); 1441 mp_clear(&G);
541 mp_clear(&H); 1442 mp_clear(&H);
542 mp_clear(&l); 1443 mp_clear(&l);
543 if (err) { 1444 if (err) {
544 MP_TO_SEC_ERROR(err); 1445 MP_TO_SEC_ERROR(err);
545 rv = SECFailure; 1446 rv = SECFailure;
546 } 1447 }
547 if (rv) { 1448 if (rv) {
548 PORT_FreeArena(params->arena, PR_TRUE); 1449 PORT_FreeArena(params->arena, PR_TRUE);
549 PORT_FreeArena(verify->arena, PR_TRUE); 1450 PORT_FreeArena(verify->arena, PR_TRUE);
550 } 1451 }
551 if (hit.data) { 1452 if (hit.data) {
552 SECITEM_FreeItem(&hit, PR_FALSE); 1453 SECITEM_FreeItem(&hit, PR_FALSE);
553 } 1454 }
554 return rv; 1455 return rv;
555 } 1456 }
556 1457
1458 SECStatus
1459 PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy)
1460 {
1461 unsigned int L; /* Length of P in bits. Per FIPS 186. */
1462 unsigned int seedBytes;
1463
1464 if (j > 8 || !pParams || !pVfy) {
1465 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1466 return SECFailure;
1467 }
1468 L = 512 + (j * 64); /* bits in P */
1469 seedBytes = L/8;
1470 return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
1471 pParams, pVfy);
1472 }
1473
1474 SECStatus
1475 PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes,
1476 PQGParams **pParams, PQGVerify **pVfy)
1477 {
1478 unsigned int L; /* Length of P in bits. Per FIPS 186. */
1479
1480 if (j > 8 || !pParams || !pVfy) {
1481 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1482 return SECFailure;
1483 }
1484 L = 512 + (j * 64); /* bits in P */
1485 return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes,
1486 pParams, pVfy);
1487 }
1488
1489 SECStatus
1490 PQG_ParamGenV2(unsigned int L, unsigned int N, unsigned int seedBytes,
1491 PQGParams **pParams, PQGVerify **pVfy)
1492 {
1493 if (pqg_validate_dsa2(L,N) != SECSuccess) {
1494 /* error code already set */
1495 return SECFailure;
1496 }
1497 return pqg_ParamGen(L, N, FIPS186_3_TYPE, seedBytes, pParams, pVfy);
1498 }
1499
1500
1501 /*
1502 * verify can use vfy structures returned from either FIPS186-1 or
1503 * FIPS186-2, and can handle differences in selected Hash functions to
1504 * generate the parameters.
1505 */
557 SECStatus 1506 SECStatus
558 PQG_VerifyParams(const PQGParams *params, 1507 PQG_VerifyParams(const PQGParams *params,
559 const PQGVerify *vfy, SECStatus *result) 1508 const PQGVerify *vfy, SECStatus *result)
560 { 1509 {
561 SECStatus rv = SECSuccess; 1510 SECStatus rv = SECSuccess;
562 int passed; 1511 unsigned int g, n, L, N, offset, outlen;
563 unsigned int g, n, L, offset; 1512 mp_int p0, P, Q, G, P_, Q_, G_, r, h;
564 mp_int P, Q, G, P_, Q_, G_, r, h;
565 mp_err err = MP_OKAY; 1513 mp_err err = MP_OKAY;
566 int j; 1514 int j;
1515 unsigned int counter_max = 0; /* handle legacy L < 1024 */
1516 int qseed_len;
1517 SECItem pseed_ = {0, 0, 0};
1518 HASH_HashType hashtype;
1519 pqgGenType type;
1520
567 #define CHECKPARAM(cond) \ 1521 #define CHECKPARAM(cond) \
568 if (!(cond)) { \ 1522 if (!(cond)) { \
569 *result = SECFailure; \ 1523 *result = SECFailure; \
570 goto cleanup; \ 1524 goto cleanup; \
571 } 1525 }
572 if (!params || !vfy || !result) { 1526 if (!params || !vfy || !result) {
573 PORT_SetError(SEC_ERROR_INVALID_ARGS); 1527 PORT_SetError(SEC_ERROR_INVALID_ARGS);
574 return SECFailure; 1528 return SECFailure;
575 } 1529 }
1530 /* always need at least p, q, and seed for any meaningful check */
1531 if ((params->prime.len == 0) || (params->subPrime.len == 0) ||
1532 (vfy->seed.len == 0)) {
1533 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1534 return SECFailure;
1535 }
1536 /* we want to either check PQ or G or both. If we don't have G, make
1537 * sure we have count so we can check P. */
1538 if ((params->base.len == 0) && (vfy->counter == -1)) {
1539 PORT_SetError(SEC_ERROR_INVALID_ARGS);
1540 return SECFailure;
1541 }
1542
1543 MP_DIGITS(&p0) = 0;
576 MP_DIGITS(&P) = 0; 1544 MP_DIGITS(&P) = 0;
577 MP_DIGITS(&Q) = 0; 1545 MP_DIGITS(&Q) = 0;
578 MP_DIGITS(&G) = 0; 1546 MP_DIGITS(&G) = 0;
579 MP_DIGITS(&P_) = 0; 1547 MP_DIGITS(&P_) = 0;
580 MP_DIGITS(&Q_) = 0; 1548 MP_DIGITS(&Q_) = 0;
581 MP_DIGITS(&G_) = 0; 1549 MP_DIGITS(&G_) = 0;
582 MP_DIGITS(&r) = 0; 1550 MP_DIGITS(&r) = 0;
583 MP_DIGITS(&h) = 0; 1551 MP_DIGITS(&h) = 0;
1552 CHECK_MPI_OK( mp_init(&p0) );
584 CHECK_MPI_OK( mp_init(&P) ); 1553 CHECK_MPI_OK( mp_init(&P) );
585 CHECK_MPI_OK( mp_init(&Q) ); 1554 CHECK_MPI_OK( mp_init(&Q) );
586 CHECK_MPI_OK( mp_init(&G) ); 1555 CHECK_MPI_OK( mp_init(&G) );
587 CHECK_MPI_OK( mp_init(&P_) ); 1556 CHECK_MPI_OK( mp_init(&P_) );
588 CHECK_MPI_OK( mp_init(&Q_) ); 1557 CHECK_MPI_OK( mp_init(&Q_) );
589 CHECK_MPI_OK( mp_init(&G_) ); 1558 CHECK_MPI_OK( mp_init(&G_) );
590 CHECK_MPI_OK( mp_init(&r) ); 1559 CHECK_MPI_OK( mp_init(&r) );
591 CHECK_MPI_OK( mp_init(&h) ); 1560 CHECK_MPI_OK( mp_init(&h) );
592 *result = SECSuccess; 1561 *result = SECSuccess;
593 SECITEM_TO_MPINT(params->prime, &P); 1562 SECITEM_TO_MPINT(params->prime, &P);
594 SECITEM_TO_MPINT(params->subPrime, &Q); 1563 SECITEM_TO_MPINT(params->subPrime, &Q);
595 SECITEM_TO_MPINT(params->base, &G); 1564 /* if G isn't specified, just check P and Q */
596 /* 1. Q is 160 bits long. */ 1565 if (params->base.len != 0) {
597 CHECKPARAM( mpl_significant_bits(&Q) == 160 ); 1566 » SECITEM_TO_MPINT(params->base, &G);
598 /* 2. P is one of the 9 valid lengths. */ 1567 }
1568 /* 1. Check (L,N) pair */
1569 N = mpl_significant_bits(&Q);
599 L = mpl_significant_bits(&P); 1570 L = mpl_significant_bits(&P);
600 j = PQG_PBITS_TO_INDEX(L); 1571 if (L < 1024) {
601 CHECKPARAM( j >= 0 && j <= 8 ); 1572 » /* handle DSA1 pqg parameters with less thatn 1024 bits*/
1573 » CHECKPARAM( N == DSA1_Q_BITS );
1574 » j = PQG_PBITS_TO_INDEX(L);
1575 » CHECKPARAM( j >= 0 && j <= 8 );
1576 » counter_max = 4096;
1577 } else {
1578 » /* handle DSA2 parameters (includes DSA1, 1024 bits) */
1579 » CHECKPARAM(pqg_validate_dsa2(L, N) == SECSuccess);
1580 » counter_max = 4*L;
1581 }
602 /* 3. G < P */ 1582 /* 3. G < P */
603 CHECKPARAM( mp_cmp(&G, &P) < 0 ); 1583 if (params->base.len != 0) {
1584 » CHECKPARAM( mp_cmp(&G, &P) < 0 );
1585 }
604 /* 4. P % Q == 1 */ 1586 /* 4. P % Q == 1 */
605 CHECK_MPI_OK( mp_mod(&P, &Q, &r) ); 1587 CHECK_MPI_OK( mp_mod(&P, &Q, &r) );
606 CHECKPARAM( mp_cmp_d(&r, 1) == 0 ); 1588 CHECKPARAM( mp_cmp_d(&r, 1) == 0 );
607 /* 5. Q is prime */ 1589 /* 5. Q is prime */
608 CHECKPARAM( mpp_pprime(&Q, PQG_Q_PRIMALITY_TESTS) == MP_YES ); 1590 CHECKPARAM( mpp_pprime(&Q, prime_testcount_q(L,N)) == MP_YES );
609 /* 6. P is prime */ 1591 /* 6. P is prime */
610 CHECKPARAM( mpp_pprime(&P, PQG_P_PRIMALITY_TESTS) == MP_YES ); 1592 CHECKPARAM( mpp_pprime(&P, prime_testcount_p(L,N)) == MP_YES );
611 /* Steps 7-12 are done only if the optional PQGVerify is supplied. */ 1593 /* Steps 7-12 are done only if the optional PQGVerify is supplied. */
612 /* 7. counter < 4096 */ 1594 /* continue processing P */
613 CHECKPARAM( vfy->counter < 4096 ); 1595 /* 7. counter < 4*L */
614 /* 8. g >= 160 and g < 2048 (g is length of seed in bits) */ 1596 CHECKPARAM( (vfy->counter == -1) || (vfy->counter < counter_max) );
1597 /* 8. g >= N and g < 2*L (g is length of seed in bits) */
615 g = vfy->seed.len * 8; 1598 g = vfy->seed.len * 8;
616 CHECKPARAM( g >= 160 && g < 2048 ); 1599 CHECKPARAM( g >= N && g < counter_max/2 );
617 /* 9. Q generated from SEED matches Q in PQGParams. */ 1600 /* 9. Q generated from SEED matches Q in PQGParams. */
618 CHECK_SEC_OK( makeQfromSeed(g, &vfy->seed, &Q_) ); 1601 /* This function checks all possible hash and generation types to
1602 * find a Q_ which matches Q. */
1603 CHECKPARAM( findQfromSeed(L, N, g, &vfy->seed, &Q, &Q_, &qseed_len,
1604 » » » » » &hashtype, &type) == SECSuccess );
619 CHECKPARAM( mp_cmp(&Q, &Q_) == 0 ); 1605 CHECKPARAM( mp_cmp(&Q, &Q_) == 0 );
620 /* 10. P generated from (L, counter, g, SEED, Q) matches P in PQGParams. */ 1606 if (type == FIPS186_3_ST_TYPE) {
621 n = (L - 1) / BITS_IN_Q; 1607 » SECItem qseed = { 0, 0, 0 };
622 offset = vfy->counter * (n + 1) + 2; 1608 » SECItem pseed = { 0, 0, 0 };
623 CHECK_SEC_OK( makePfromQandSeed(L, offset, g, &vfy->seed, &Q, &P_) ); 1609 » int first_seed_len;
624 CHECKPARAM( mp_cmp(&P, &P_) == 0 ); 1610 » int pgen_counter = 0;
625 /* Next two are optional: if h == 0 ignore */ 1611
626 if (vfy->h.len == 0) goto cleanup; 1612 » /* extract pseed and qseed from domain_parameter_seed, which is
627 /* 11. 1 < h < P-1 */ 1613 » * first_seed || pseed || qseed. qseed is first_seed + small_integer
628 SECITEM_TO_MPINT(vfy->h, &h); 1614 » * pseed is qseed + small_integer. This means most of the time
629 CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); /* P is prime, p-1 == zero 1st bit */ 1615 » * first_seed.len == qseed.len == pseed.len. Rarely qseed.len and/or
630 CHECKPARAM( mp_cmp_d(&h, 1) > 0 && mp_cmp(&h, &P) ); 1616 » * pseed.len will be one greater than first_seed.len, so we can
1617 » * depend on the fact that
1618 » * first_seed.len = floor(domain_parameter_seed.len/3).
1619 » * findQfromSeed returned qseed.len, so we can calculate pseed.len as
1620 » * pseed.len = domain_parameter_seed.len - first_seed.len - qseed.len
1621 » * this is probably over kill, since 99.999% of the time they will all
1622 » * be equal.
1623 » *
1624 » * With the lengths, we can now find the offsets;
1625 » * first_seed.data = domain_parameter_seed.data + 0
1626 » * pseed.data = domain_parameter_seed.data + first_seed.len
1627 » * qseed.data = domain_parameter_seed.data
1628 » * + domain_paramter_seed.len - qseed.len
1629 » *
1630 » */
1631 » first_seed_len = vfy->seed.len/3;
1632 » CHECKPARAM(qseed_len < vfy->seed.len);
1633 » CHECKPARAM(first_seed_len*8 > N-1);
1634 » CHECKPARAM(first_seed_len+qseed_len < vfy->seed.len);
1635 » qseed.len = qseed_len;
1636 » qseed.data = vfy->seed.data + vfy->seed.len - qseed.len;
1637 » pseed.len = vfy->seed.len - (first_seed_len+qseed_len);
1638 » pseed.data = vfy->seed.data + first_seed_len;
1639
1640 » /*
1641 » * now complete FIPS 186-3 A.1.2.1.2. Step 1 was completed
1642 » * above in our initial checks, Step 2 was completed by
1643 » * findQfromSeed */
1644
1645 » /* Step 3 (status, c0, prime_seed, prime_gen_counter) =
1646 » ** (ST_Random_Prime((ceil(length/2)+1, input_seed)
1647 » */
1648 » CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1,
1649 » » » &qseed, &p0, &pseed_, &pgen_counter) );
1650 » /* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */
1651 » CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L,
1652 » » &p0, &Q_, &P_, &pseed_, &pgen_counter) );
1653 » CHECKPARAM( mp_cmp(&P, &P_) == 0 );
1654 » /* make sure pseed wasn't tampered with (since it is part of
1655 » * calculating G) */
1656 » CHECKPARAM( SECITEM_CompareItem(&pseed, &pseed_) == SECEqual );
1657 } else if (vfy->counter == -1) {
1658 » /* If counter is set to -1, we are really only verifying G, skip
1659 » * the remainder of the checks for P */
1660 » CHECKPARAM(type != FIPS186_1_TYPE); /* we only do this for DSA2 */
1661 } else {
1662 » /* 10. P generated from (L, counter, g, SEED, Q) matches P
1663 » * in PQGParams. */
1664 » outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE;
1665 » n = (L - 1) / outlen;
1666 » offset = vfy->counter * (n + 1) + ((type == FIPS186_1_TYPE) ? 2 : 1);
1667 » CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, g, &vfy->seed,
1668 » » » » » &Q, &P_) );
1669 » CHECKPARAM( mp_cmp(&P, &P_) == 0 );
1670 }
1671
1672 /* now check G, skip if don't have a g */
1673 if (params->base.len == 0) goto cleanup;
1674
1675 /* first Always check that G is OK FIPS186-3 A.2.2 & A.2.4*/
1676 /* 1. 2 < G < P-1 */
1677 /* P is prime, p-1 == zero 1st bit */
1678 CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) );
1679 CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) < 0 );
631 CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */ 1680 CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */
632 /* 12. G generated from h matches G in PQGParams. */ 1681 /* 2. verify g**q mod p == 1 */
633 CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) ); 1682 CHECK_MPI_OK( mp_exptmod(&G, &Q, &P, &h) ); /* h = G ** Q mod P */
634 CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 ); 1683 CHECKPARAM(mp_cmp_d(&h, 1) == 0);
1684
1685 /* no h, the above is the best we can do */
1686 if (vfy->h.len == 0) {
1687 » if (type != FIPS186_1_TYPE) {
1688 » *result = SECWouldBlock;
1689 » }
1690 » goto cleanup;
1691 }
1692
1693 /*
1694 * If h is one byte and FIPS186-3 was used to generate Q (we've verified
1695 * Q was generated from seed already, then we assume that FIPS 186-3
1696 * appendix A.2.3 was used to generate G. Otherwise we assume A.2.1 was
1697 * used to generate G.
1698 */
1699 if ((vfy->h.len == 1) && (type != FIPS186_1_TYPE)) {
1700 » /* A.2.3 */
1701 » CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, &vfy->seed,
1702 » » » » vfy->h.data[0], &G_) );
1703 » CHECKPARAM( mp_cmp(&G, &G_) == 0 );
1704 } else {
1705 » int passed;
1706 » /* A.2.1 */
1707 » SECITEM_TO_MPINT(vfy->h, &h);
1708 » /* 11. 1 < h < P-1 */
1709 » /* P is prime, p-1 == zero 1st bit */
1710 » CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) );
1711 » CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) );
1712 » CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */
1713 » /* 12. G generated from h matches G in PQGParams. */
1714 » CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) );
1715 » CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 );
1716 }
635 cleanup: 1717 cleanup:
1718 mp_clear(&p0);
636 mp_clear(&P); 1719 mp_clear(&P);
637 mp_clear(&Q); 1720 mp_clear(&Q);
638 mp_clear(&G); 1721 mp_clear(&G);
639 mp_clear(&P_); 1722 mp_clear(&P_);
640 mp_clear(&Q_); 1723 mp_clear(&Q_);
641 mp_clear(&G_); 1724 mp_clear(&G_);
642 mp_clear(&r); 1725 mp_clear(&r);
643 mp_clear(&h); 1726 mp_clear(&h);
1727 if (pseed_.data) {
1728 SECITEM_FreeItem(&pseed_,PR_FALSE);
1729 }
644 if (err) { 1730 if (err) {
645 MP_TO_SEC_ERROR(err); 1731 MP_TO_SEC_ERROR(err);
646 rv = SECFailure; 1732 rv = SECFailure;
647 } 1733 }
648 return rv; 1734 return rv;
649 } 1735 }
650 1736
651 /************************************************************************** 1737 /**************************************************************************
652 * Free the PQGParams struct and the things it points to. * 1738 * Free the PQGParams struct and the things it points to. *
653 **************************************************************************/ 1739 **************************************************************************/
(...skipping 22 matching lines...) Expand all
676 if (vfy == NULL) 1762 if (vfy == NULL)
677 return; 1763 return;
678 if (vfy->arena != NULL) { 1764 if (vfy->arena != NULL) {
679 PORT_FreeArena(vfy->arena, PR_FALSE); /* don't zero it */ 1765 PORT_FreeArena(vfy->arena, PR_FALSE); /* don't zero it */
680 } else { 1766 } else {
681 SECITEM_FreeItem(&vfy->seed, PR_FALSE); /* don't free seed */ 1767 SECITEM_FreeItem(&vfy->seed, PR_FALSE); /* don't free seed */
682 SECITEM_FreeItem(&vfy->h, PR_FALSE); /* don't free h */ 1768 SECITEM_FreeItem(&vfy->h, PR_FALSE); /* don't free h */
683 PORT_Free(vfy); 1769 PORT_Free(vfy);
684 } 1770 }
685 } 1771 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698