OLD | NEW |
---|---|
1 /* This Source Code Form is subject to the terms of the Mozilla Public | 1 /* This Source Code Form is subject to the terms of the Mozilla Public |
2 * License, v. 2.0. If a copy of the MPL was not distributed with this | 2 * License, v. 2.0. If a copy of the MPL was not distributed with this |
3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ | 3 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ |
4 | 4 |
5 /* | 5 /* |
6 * PQG parameter generation/verification. Based on FIPS 186-1. | 6 * PQG parameter generation/verification. Based on FIPS 186-3. |
7 * | 7 * |
8 * $Id: pqg.c,v 1.18 2012/04/25 14:49:43 gerv%gerv.net Exp $ | 8 * $Id: pqg.c,v 1.21 2012/06/25 17:30:17 rrelyea%redhat.com Exp $ |
9 */ | 9 */ |
10 #ifdef FREEBL_NO_DEPEND | 10 #ifdef FREEBL_NO_DEPEND |
11 #include "stubs.h" | 11 #include "stubs.h" |
12 #endif | 12 #endif |
13 | 13 |
14 #include "prerr.h" | 14 #include "prerr.h" |
15 #include "secerr.h" | 15 #include "secerr.h" |
16 | 16 |
17 #include "prtypes.h" | 17 #include "prtypes.h" |
18 #include "blapi.h" | 18 #include "blapi.h" |
19 #include "secitem.h" | 19 #include "secitem.h" |
20 #include "mpi.h" | 20 #include "mpi.h" |
21 #include "mpprime.h" | 21 #include "mpprime.h" |
22 #include "mplogic.h" | 22 #include "mplogic.h" |
23 #include "secmpi.h" | 23 #include "secmpi.h" |
24 | 24 |
25 #define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */ | 25 #define MAX_ITERATIONS 1000 /* Maximum number of iterations of primegen */ |
26 #define PQG_Q_PRIMALITY_TESTS 18 /* from HAC table 4.4 */ | 26 |
27 #define PQG_P_PRIMALITY_TESTS 5 /* from HAC table 4.4 */ | 27 typedef enum { |
28 | 28 FIPS186_1_TYPE,» » /* Probablistic */ |
29 /* XXX to be replaced by define in blapit.h */ | 29 FIPS186_3_TYPE,» » /* Probablistic */ |
30 #define BITS_IN_Q 160 | 30 FIPS186_3_ST_TYPE» » /* Shawe-Taylor provable */ |
31 | 31 } pqgGenType; |
32 /* For FIPS-compliance testing. | 32 |
33 ** The following array holds the seed defined in FIPS 186-1 appendix 5. | 33 /* |
34 ** This seed is used to generate P and Q according to appendix 2; use of | 34 * These test iterations are quite a bit larger than we previously had. |
35 ** this seed will exactly generate the PQG specified in appendix 2. | 35 * This is because FIPS 186-3 is worried about the primes in PQG generation. |
36 */ | 36 * It may be possible to purposefully construct composites which more |
37 #ifdef FIPS_186_1_A5_TEST | 37 * iterations of Miller-Rabin than the for your normal randomly selected |
wtc
2012/09/26 00:21:09
This sentence also has typos. I don't know how to
| |
38 static const unsigned char fips_186_1_a5_pqseed[] = { | 38 * numbers.There are 3 ways to counter this: 1) use one of the cool provably |
Ryan Sleevi
2012/09/25 21:56:55
typo: numbers.There -> numbers. There
| |
39 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, | 39 * prime algorithms (which would require a lot more work than DSA-2 deservers. |
40 0xb6, 0x21, 0x1b, 0x40, 0x62, 0xba, 0x32, 0x24, | 40 * 2) add a Lucas primality test (which requires coding a Lucas primality test, |
41 0xe0, 0x42, 0x7d, 0xd3 | 41 * or 3) use a larger M-R test count. I chose the latter. It increases the time |
Ryan Sleevi
2012/09/25 21:56:55
nit: "latter" in lists with > 2 items = weird way
wtc
2012/09/26 00:21:09
Should I change this to "the last"?
| |
42 }; | 42 * that it takes to prove the selected prime, but it shouldn't increase the |
43 #endif | 43 * overall time to run the algorithm (non-primes should still faile M-R |
44 * realively quickly). If you want to get that last bit of performance, | |
45 * implement Lucas and adjust these two functions. See FIPS 186-3 Appendix C | |
46 * and F for more information. | |
47 */ | |
48 int prime_testcount_p(int L, int N) | |
49 { | |
50 switch (L) { | |
51 case 1024: | |
52 » return 40; | |
53 case 2048: | |
54 » return 56; | |
55 case 3072: | |
56 » return 64; | |
57 default: | |
58 » break; | |
59 } | |
60 return 50; /* L = 512-960 */ | |
61 } | |
62 | |
63 /* The q numbers are different if you run M-R followd by Lucas. I created | |
64 * a separate function so if someone wanted to add the Lucas check, they | |
65 * could do so fairly easily */ | |
66 int prime_testcount_q(int L, int N) | |
67 { | |
68 return prime_testcount_p(L,N); | |
69 } | |
70 | |
71 /* | |
72 * generic function to make sure our input matches DSA2 requirements | |
73 * this gives us one place to go if we need to bump the requirements in the | |
74 * future. | |
75 */ | |
76 SECStatus static | |
77 pqg_validate_dsa2(unsigned int L, unsigned int N) | |
78 { | |
79 | |
80 switch (L) { | |
81 case 1024: | |
82 » if (N != DSA1_Q_BITS) { | |
83 » PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
84 » return SECFailure; | |
85 » } | |
86 » break; | |
87 case 2048: | |
88 » if ((N != 224) && (N != 256)) { | |
89 » PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
90 » return SECFailure; | |
91 » } | |
92 » break; | |
93 case 3072: | |
94 » if (N != 256) { | |
95 » PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
96 » return SECFailure; | |
97 » } | |
98 » break; | |
99 default: | |
100 » PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
101 » return SECFailure; | |
102 } | |
103 return SECSuccess; | |
104 } | |
105 | |
106 /* | |
107 * Select the lowest hash algorithm usable | |
108 */ | |
109 static HASH_HashType | |
110 getFirstHash(unsigned int L, unsigned int N) | |
111 { | |
112 if (N < 224) { | |
113 » return HASH_AlgSHA1; | |
114 } | |
115 if (N < 256) { | |
116 » return HASH_AlgSHA224; | |
117 } | |
118 if (N < 384) { | |
119 » return HASH_AlgSHA256; | |
120 } | |
121 if (N < 512) { | |
122 » return HASH_AlgSHA384; | |
123 } | |
124 return HASH_AlgSHA512; | |
125 } | |
126 | |
127 /* | |
128 * find the next usable hash algorthim | |
129 */ | |
130 static HASH_HashType | |
131 getNextHash(HASH_HashType hashtype) | |
132 { | |
133 switch (hashtype) { | |
134 case HASH_AlgSHA1: | |
135 » hashtype = HASH_AlgSHA224; | |
136 » break; | |
137 case HASH_AlgSHA224: | |
138 » hashtype = HASH_AlgSHA256; | |
139 » break; | |
140 case HASH_AlgSHA256: | |
141 » hashtype = HASH_AlgSHA384; | |
142 » break; | |
143 case HASH_AlgSHA384: | |
144 » hashtype = HASH_AlgSHA512; | |
145 » break; | |
146 case HASH_AlgSHA512: | |
147 default: | |
148 » hashtype = HASH_AlgTOTAL; | |
149 » break; | |
150 } | |
151 return hashtype; | |
152 } | |
153 | |
154 | |
155 unsigned int | |
156 PQG_GetLength(const SECItem *obj) | |
157 { | |
158 unsigned int len = obj->len; | |
159 | |
160 if (obj->data == NULL) { | |
161 » return 0; | |
162 } | |
163 if (len > 1 && obj->data[0] == 0) { | |
164 » len--; | |
165 } | |
166 return len; | |
167 } | |
168 | |
169 SECStatus | |
170 PQG_Check(const PQGParams *params) | |
171 { | |
172 unsigned int L,N; | |
173 SECStatus rv = SECSuccess; | |
174 | |
175 if (params == NULL) { | |
176 » PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
177 » return SECFailure; | |
178 } | |
179 | |
180 L = PQG_GetLength(¶ms->prime)*BITS_PER_BYTE; | |
181 N = PQG_GetLength(¶ms->subPrime)*BITS_PER_BYTE; | |
182 | |
183 if (L < 1024) { | |
184 » int j; | |
185 | |
186 » /* handle DSA1 pqg parameters with less thatn 1024 bits*/ | |
187 » if ( N != DSA1_Q_BITS ) { | |
188 » PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
189 » return SECFailure; | |
190 » } | |
191 » j = PQG_PBITS_TO_INDEX(L); | |
192 » if ( j >= 0 && j <= 8 ) { | |
193 » PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
194 » rv = SECFailure; | |
195 » } | |
196 } else { | |
197 » /* handle DSA2 parameters (includes DSA1, 1024 bits) */ | |
198 » rv = pqg_validate_dsa2(L, N); | |
199 } | |
200 return rv; | |
201 } | |
202 | |
203 HASH_HashType | |
204 PQG_GetHashType(const PQGParams *params) | |
205 { | |
206 unsigned int L,N; | |
207 | |
208 if (params == NULL) { | |
209 » PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
210 » return SECFailure; | |
211 } | |
212 | |
213 L = PQG_GetLength(¶ms->prime)*BITS_PER_BYTE; | |
214 N = PQG_GetLength(¶ms->subPrime)*BITS_PER_BYTE; | |
215 return getFirstHash(L, N); | |
216 } | |
217 | |
218 static unsigned int | |
219 HASH_ResultLen(HASH_HashType type) | |
220 { | |
221 const SECHashObject *hash_obj = HASH_GetRawHashObject(type); | |
222 if (hash_obj == NULL) { | |
223 » return 0; | |
224 } | |
225 return hash_obj->length; | |
226 } | |
227 | |
228 static SECStatus | |
229 HASH_HashBuf(HASH_HashType type, unsigned char *dest, | |
230 » const unsigned char *src, PRUint32 src_len) | |
231 { | |
232 const SECHashObject *hash_obj = HASH_GetRawHashObject(type); | |
233 void *hashcx = NULL; | |
234 unsigned int dummy; | |
235 | |
236 if (hash_obj == NULL) { | |
237 » return SECFailure; | |
238 } | |
239 | |
240 hashcx = hash_obj->create(); | |
241 if (hashcx == NULL) { | |
242 » return SECFailure; | |
243 } | |
244 hash_obj->begin(hashcx); | |
245 hash_obj->update(hashcx,src,src_len); | |
246 hash_obj->end(hashcx,dest, &dummy, hash_obj->length); | |
247 hash_obj->destroy(hashcx, PR_TRUE); | |
248 return SECSuccess; | |
249 } | |
44 | 250 |
45 /* Get a seed for generating P and Q. If in testing mode, copy in the | 251 /* Get a seed for generating P and Q. If in testing mode, copy in the |
46 ** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the | 252 ** seed from FIPS 186-1 appendix 5. Otherwise, obtain bytes from the |
47 ** global random number generator. | 253 ** global random number generator. |
48 */ | 254 */ |
49 static SECStatus | 255 static SECStatus |
50 getPQseed(SECItem *seed, PRArenaPool* arena) | 256 getPQseed(SECItem *seed, PRArenaPool* arena) |
51 { | 257 { |
52 SECStatus rv; | 258 SECStatus rv; |
53 | 259 |
54 if (!seed->data) { | 260 if (!seed->data) { |
55 seed->data = (unsigned char*)PORT_ArenaZAlloc(arena, seed->len); | 261 seed->data = (unsigned char*)PORT_ArenaZAlloc(arena, seed->len); |
56 } | 262 } |
57 if (!seed->data) { | 263 if (!seed->data) { |
58 PORT_SetError(SEC_ERROR_NO_MEMORY); | 264 PORT_SetError(SEC_ERROR_NO_MEMORY); |
59 return SECFailure; | 265 return SECFailure; |
60 } | 266 } |
61 #ifdef FIPS_186_1_A5_TEST | |
62 memcpy(seed->data, fips_186_1_a5_pqseed, seed->len); | |
63 return SECSuccess; | |
64 #else | |
65 rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len); | 267 rv = RNG_GenerateGlobalRandomBytes(seed->data, seed->len); |
66 /* | 268 /* |
67 * NIST CMVP disallows a sequence of 20 bytes with the most | 269 * NIST CMVP disallows a sequence of 20 bytes with the most |
68 * significant byte equal to 0. Perhaps they interpret | 270 * significant byte equal to 0. Perhaps they interpret |
69 * "a sequence of at least 160 bits" as "a number >= 2^159". | 271 * "a sequence of at least 160 bits" as "a number >= 2^159". |
70 * So we always set the most significant bit to 1. (bug 334533) | 272 * So we always set the most significant bit to 1. (bug 334533) |
71 */ | 273 */ |
72 seed->data[0] |= 0x80; | 274 seed->data[0] |= 0x80; |
73 return rv; | 275 return rv; |
74 #endif | |
75 } | 276 } |
76 | 277 |
77 /* Generate a candidate h value. If in testing mode, use the h value | 278 /* Generate a candidate h value. If in testing mode, use the h value |
78 ** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes | 279 ** specified in FIPS 186-1 appendix 5, h = 2. Otherwise, obtain bytes |
79 ** from the global random number generator. | 280 ** from the global random number generator. |
80 */ | 281 */ |
81 static SECStatus | 282 static SECStatus |
82 generate_h_candidate(SECItem *hit, mp_int *H) | 283 generate_h_candidate(SECItem *hit, mp_int *H) |
83 { | 284 { |
84 SECStatus rv = SECSuccess; | 285 SECStatus rv = SECSuccess; |
85 mp_err err = MP_OKAY; | 286 mp_err err = MP_OKAY; |
86 #ifdef FIPS_186_1_A5_TEST | 287 #ifdef FIPS_186_1_A5_TEST |
87 memset(hit->data, 0, hit->len); | 288 memset(hit->data, 0, hit->len); |
88 hit->data[hit->len-1] = 0x02; | 289 hit->data[hit->len-1] = 0x02; |
89 #else | 290 #else |
90 rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len); | 291 rv = RNG_GenerateGlobalRandomBytes(hit->data, hit->len); |
91 #endif | 292 #endif |
92 if (rv) | 293 if (rv) |
93 return SECFailure; | 294 return SECFailure; |
94 err = mp_read_unsigned_octets(H, hit->data, hit->len); | 295 err = mp_read_unsigned_octets(H, hit->data, hit->len); |
95 if (err) { | 296 if (err) { |
96 MP_TO_SEC_ERROR(err); | 297 MP_TO_SEC_ERROR(err); |
97 return SECFailure; | 298 return SECFailure; |
98 } | 299 } |
99 return SECSuccess; | 300 return SECSuccess; |
100 } | 301 } |
101 | 302 |
102 /* Compute SHA[(SEED + addend) mod 2**g] | |
103 ** Result is placed in shaOutBuf. | |
104 ** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 . | |
105 */ | |
106 static SECStatus | 303 static SECStatus |
107 addToSeedThenSHA(const SECItem * seed, | 304 addToSeed(const SECItem * seed, |
108 unsigned long addend, | 305 unsigned long addend, |
109 int g, | 306 int seedlen, /* g in 186-1 */ |
110 unsigned char * shaOutBuf) | 307 SECItem * seedout) |
111 { | 308 { |
112 SECItem str = { 0, 0, 0 }; | |
113 mp_int s, sum, modulus, tmp; | 309 mp_int s, sum, modulus, tmp; |
114 mp_err err = MP_OKAY; | 310 mp_err err = MP_OKAY; |
115 SECStatus rv = SECSuccess; | 311 SECStatus rv = SECSuccess; |
116 MP_DIGITS(&s) = 0; | 312 MP_DIGITS(&s) = 0; |
117 MP_DIGITS(&sum) = 0; | 313 MP_DIGITS(&sum) = 0; |
118 MP_DIGITS(&modulus) = 0; | 314 MP_DIGITS(&modulus) = 0; |
119 MP_DIGITS(&tmp) = 0; | 315 MP_DIGITS(&tmp) = 0; |
120 CHECK_MPI_OK( mp_init(&s) ); | 316 CHECK_MPI_OK( mp_init(&s) ); |
121 CHECK_MPI_OK( mp_init(&sum) ); | 317 CHECK_MPI_OK( mp_init(&sum) ); |
122 CHECK_MPI_OK( mp_init(&modulus) ); | 318 CHECK_MPI_OK( mp_init(&modulus) ); |
123 SECITEM_TO_MPINT(*seed, &s); /* s = seed */ | 319 SECITEM_TO_MPINT(*seed, &s); /* s = seed */ |
124 /* seed += addend */ | 320 /* seed += addend */ |
125 if (addend < MP_DIGIT_MAX) { | 321 if (addend < MP_DIGIT_MAX) { |
126 CHECK_MPI_OK( mp_add_d(&s, (mp_digit)addend, &s) ); | 322 CHECK_MPI_OK( mp_add_d(&s, (mp_digit)addend, &s) ); |
127 } else { | 323 } else { |
128 CHECK_MPI_OK( mp_init(&tmp) ); | 324 CHECK_MPI_OK( mp_init(&tmp) ); |
129 CHECK_MPI_OK( mp_set_ulong(&tmp, addend) ); | 325 CHECK_MPI_OK( mp_set_ulong(&tmp, addend) ); |
130 CHECK_MPI_OK( mp_add(&s, &tmp, &s) ); | 326 CHECK_MPI_OK( mp_add(&s, &tmp, &s) ); |
131 } | 327 } |
132 CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)g, NULL, &sum) );/*sum = s mod 2**g */ | 328 /*sum = s mod 2**seedlen */ |
133 MPINT_TO_SECITEM(&sum, &str, NULL); | 329 CHECK_MPI_OK( mp_div_2d(&s, (mp_digit)seedlen, NULL, &sum) ); |
134 rv = SHA1_HashBuf(shaOutBuf, str.data, str.len); /* SHA1 hash result */ | 330 if (seedout->data != NULL) { |
331 » SECITEM_ZfreeItem(seedout, PR_FALSE); | |
332 } | |
333 MPINT_TO_SECITEM(&sum, seedout, NULL); | |
135 cleanup: | 334 cleanup: |
136 mp_clear(&s); | 335 mp_clear(&s); |
137 mp_clear(&sum); | 336 mp_clear(&sum); |
138 mp_clear(&modulus); | 337 mp_clear(&modulus); |
139 mp_clear(&tmp); | 338 mp_clear(&tmp); |
140 if (str.data) | |
141 SECITEM_ZfreeItem(&str, PR_FALSE); | |
142 if (err) { | 339 if (err) { |
143 MP_TO_SEC_ERROR(err); | 340 MP_TO_SEC_ERROR(err); |
144 return SECFailure; | 341 return SECFailure; |
145 } | 342 } |
146 return rv; | 343 return rv; |
147 } | 344 } |
148 | 345 |
346 /* Compute Hash[(SEED + addend) mod 2**g] | |
347 ** Result is placed in shaOutBuf. | |
348 ** This computation is used in steps 2 and 7 of FIPS 186 Appendix 2.2 and | |
349 ** step 11.2 of FIPS 186-3 Appendix A.1.1.2 . | |
350 */ | |
351 static SECStatus | |
352 addToSeedThenHash( HASH_HashType hashtype, | |
353 const SECItem * seed, | |
354 unsigned long addend, | |
355 int seedlen, /* g in 186-1 */ | |
356 unsigned char * hashOutBuf) | |
357 { | |
358 SECItem str = { 0, 0, 0 }; | |
359 SECStatus rv; | |
360 rv = addToSeed(seed, addend, seedlen, &str); | |
361 if (rv != SECSuccess) { | |
362 return rv; | |
363 } | |
364 rv = HASH_HashBuf(hashtype, hashOutBuf, str.data, str.len);/* hash result */ | |
365 if (str.data) | |
366 SECITEM_ZfreeItem(&str, PR_FALSE); | |
367 return rv; | |
368 } | |
369 | |
149 /* | 370 /* |
150 ** Perform steps 2 and 3 of FIPS 186, appendix 2.2. | 371 ** Perform steps 2 and 3 of FIPS 186-1, appendix 2.2. |
151 ** Generate Q from seed. | 372 ** Generate Q from seed. |
152 */ | 373 */ |
153 static SECStatus | 374 static SECStatus |
154 makeQfromSeed( | 375 makeQfromSeed( |
155 unsigned int g, /* input. Length of seed in bits. */ | 376 unsigned int g, /* input. Length of seed in bits. */ |
156 const SECItem * seed, /* input. */ | 377 const SECItem * seed, /* input. */ |
157 mp_int * Q) /* output. */ | 378 mp_int * Q) /* output. */ |
158 { | 379 { |
159 unsigned char sha1[SHA1_LENGTH]; | 380 unsigned char sha1[SHA1_LENGTH]; |
160 unsigned char sha2[SHA1_LENGTH]; | 381 unsigned char sha2[SHA1_LENGTH]; |
161 unsigned char U[SHA1_LENGTH]; | 382 unsigned char U[SHA1_LENGTH]; |
162 SECStatus rv = SECSuccess; | 383 SECStatus rv = SECSuccess; |
163 mp_err err = MP_OKAY; | 384 mp_err err = MP_OKAY; |
164 int i; | 385 int i; |
165 /* ****************************************************************** | 386 /* ****************************************************************** |
166 ** Step 2. | 387 ** Step 2. |
167 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]." | 388 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]." |
168 **/ | 389 **/ |
169 CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) ); | 390 CHECK_SEC_OK( SHA1_HashBuf(sha1, seed->data, seed->len) ); |
170 CHECK_SEC_OK( addToSeedThenSHA(seed, 1, g, sha2) ); | 391 CHECK_SEC_OK( addToSeedThenHash(HASH_AlgSHA1, seed, 1, g, sha2) ); |
171 for (i=0; i<SHA1_LENGTH; ++i) | 392 for (i=0; i<SHA1_LENGTH; ++i) |
172 U[i] = sha1[i] ^ sha2[i]; | 393 U[i] = sha1[i] ^ sha2[i]; |
173 /* ****************************************************************** | 394 /* ****************************************************************** |
174 ** Step 3. | 395 ** Step 3. |
175 ** "Form Q from U by setting the most signficant bit (the 2**159 bit) | 396 ** "Form Q from U by setting the most signficant bit (the 2**159 bit) |
176 ** and the least signficant bit to 1. In terms of boolean operations, | 397 ** and the least signficant bit to 1. In terms of boolean operations, |
177 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160." | 398 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160." |
178 */ | 399 */ |
179 U[0] |= 0x80; /* U is MSB first */ | 400 U[0] |= 0x80; /* U is MSB first */ |
180 U[SHA1_LENGTH-1] |= 0x01; | 401 U[SHA1_LENGTH-1] |= 0x01; |
181 err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH); | 402 err = mp_read_unsigned_octets(Q, U, SHA1_LENGTH); |
182 cleanup: | 403 cleanup: |
183 memset(U, 0, SHA1_LENGTH); | 404 memset(U, 0, SHA1_LENGTH); |
184 memset(sha1, 0, SHA1_LENGTH); | 405 memset(sha1, 0, SHA1_LENGTH); |
185 memset(sha2, 0, SHA1_LENGTH); | 406 memset(sha2, 0, SHA1_LENGTH); |
186 if (err) { | 407 if (err) { |
187 MP_TO_SEC_ERROR(err); | 408 MP_TO_SEC_ERROR(err); |
188 return SECFailure; | 409 return SECFailure; |
189 } | 410 } |
190 return rv; | 411 return rv; |
191 } | 412 } |
192 | 413 |
193 /* Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2. | 414 /* |
415 ** Perform steps 6 and 7 of FIPS 186-3, appendix A.1.1.2. | |
416 ** Generate Q from seed. | |
417 */ | |
418 static SECStatus | |
419 makeQ2fromSeed( | |
420 HASH_HashType hashtype, /* selected Hashing algorithm */ | |
421 unsigned int N, /* input. Length of q in bits. */ | |
422 const SECItem * seed, /* input. */ | |
423 mp_int * Q) /* output. */ | |
424 { | |
425 unsigned char U[HASH_LENGTH_MAX]; | |
426 SECStatus rv = SECSuccess; | |
427 mp_err err = MP_OKAY; | |
428 int N_bytes = N/BITS_PER_BYTE; /* length of N in bytes rather than bits */ | |
429 int hashLen = HASH_ResultLen(hashtype); | |
430 int offset = 0; | |
431 | |
432 /* ****************************************************************** | |
433 ** Step 6. | |
434 ** "Compute U = hash[SEED] mod 2**N-1]." | |
435 **/ | |
436 CHECK_SEC_OK( HASH_HashBuf(hashtype, U, seed->data, seed->len) ); | |
437 /* mod 2**N . Step 7 will explicitly set the top bit to 1, so no need | |
438 * to handle mod 2**N-1 */ | |
439 if (hashLen > N_bytes) { | |
440 offset = hashLen - N_bytes; | |
441 } | |
442 /* ****************************************************************** | |
443 ** Step 7. | |
444 ** computed_q = 2**(N-1) + U + 1 - (U mod 2) | |
445 ** | |
446 ** This is the same as: | |
447 ** computed_q = 2**(N-1) | U | 1; | |
448 */ | |
449 U[offset] |= 0x80; /* U is MSB first */ | |
450 U[hashLen-1] |= 0x01; | |
451 err = mp_read_unsigned_octets(Q, &U[offset], N_bytes); | |
452 cleanup: | |
453 memset(U, 0, HASH_LENGTH_MAX); | |
454 if (err) { | |
455 MP_TO_SEC_ERROR(err); | |
456 return SECFailure; | |
457 } | |
458 return rv; | |
459 } | |
460 | |
461 /* | |
462 ** Perform steps from FIPS 186-3, Appendix A.1.2.1 and Appendix C.6 | |
463 ** | |
464 ** This generates a provable prime from two smaller prime. The resulting | |
465 ** prime p will have q0 as a multiple of p-1. q0 can be 1. | |
466 ** | |
467 ** This implments steps 4 thorough 22 of FIPS 186-3 A.1.2.1 and | |
468 ** steps 16 through 34 of FIPS 186-2 C.6 | |
469 */ | |
470 #define MAX_ST_SEED_BITS HASH_LENGTH_MAX*BITS_PER_BYTE | |
471 SECStatus | |
472 makePrimefromPrimesShaweTaylor( | |
473 HASH_HashType hashtype, /* selected Hashing algorithm */ | |
474 unsigned int length, /* input. Length of prime in bits. */ | |
475 mp_int * c0, /* seed prime */ | |
476 mp_int * q, /* sub prime, can be 1 */ | |
477 mp_int * prime, /* output. */ | |
478 SECItem * prime_seed, /* input/output. */ | |
479 int * prime_gen_counter) /* input/output. */ | |
480 { | |
481 mp_int c; | |
482 mp_int c0_2; | |
483 mp_int t; | |
484 mp_int a; | |
485 mp_int z; | |
486 mp_int two_length_minus_1; | |
487 SECStatus rv = SECFailure; | |
488 int hashlen = HASH_ResultLen(hashtype); | |
489 int outlen = hashlen*BITS_PER_BYTE; | |
490 int offset; | |
491 unsigned char bit, mask; | |
492 /* x needs to hold roundup(L/outlen)*outlen. | |
493 * This can be no larger than L+outlen-1, So we set it's size to | |
494 * our max L + max outlen and know we are safe */ | |
495 unsigned char x[DSA_MAX_P_BITS/8+HASH_LENGTH_MAX]; | |
496 mp_err err = MP_OKAY; | |
497 int i; | |
498 int iterations; | |
499 int old_counter; | |
500 | |
501 MP_DIGITS(&c) = 0; | |
502 MP_DIGITS(&c0_2) = 0; | |
503 MP_DIGITS(&t) = 0; | |
504 MP_DIGITS(&a) = 0; | |
505 MP_DIGITS(&z) = 0; | |
506 MP_DIGITS(&two_length_minus_1) = 0; | |
507 CHECK_MPI_OK( mp_init(&c) ); | |
508 CHECK_MPI_OK( mp_init(&c0_2) ); | |
509 CHECK_MPI_OK( mp_init(&t) ); | |
510 CHECK_MPI_OK( mp_init(&a) ); | |
511 CHECK_MPI_OK( mp_init(&z) ); | |
512 CHECK_MPI_OK( mp_init(&two_length_minus_1) ); | |
513 | |
514 | |
515 /* | |
516 ** There is a slight mapping of variable names depending on which | |
517 ** FIPS 186 steps are being carried out. The mapping is as follows: | |
518 ** variable A.1.2.1 C.6 | |
519 ** c0 p0 c0 | |
520 ** q q 1 | |
521 ** c p c | |
522 ** c0_2 2*p0*q 2*c0 | |
523 ** length L length | |
524 ** prime_seed pseed prime_seed | |
525 ** prime_gen_counter pgen_counter prime_gen_counter | |
526 ** | |
527 ** Also note: or iterations variable is actually iterations+1, since | |
528 ** iterations+1 works better in C. | |
529 */ | |
530 | |
531 /* Step 4/16 iterations = ceiling(length/outlen)-1 */ | |
532 iterations = (length+outlen-1)/outlen; /* NOTE: iterations +1 */ | |
533 /* Step 5/17 old_counter = prime_gen_counter */ | |
534 old_counter = *prime_gen_counter; | |
535 /* | |
536 ** Comment: Generate a pseudorandom integer x in the interval | |
537 ** [2**(lenght-1), 2**length]. | |
538 ** | |
539 ** Step 6/18 x = 0 | |
540 */ | |
541 PORT_Memset(x, 0, sizeof(x)); | |
542 /* | |
543 ** Step 7/19 for i = 0 to iterations do | |
544 ** x = x + (HASH(prime_seed + i) * 2^(i*outlen)) | |
545 */ | |
546 for (i=0; i < iterations; i++) { | |
547 /* is bigger than prime_seed should get to */ | |
548 CHECK_SEC_OK( addToSeedThenHash(hashtype, prime_seed, i, | |
549 MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen])); | |
550 } | |
551 /* Step 8/20 prime_seed = prime_seed + iterations + 1 */ | |
552 CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS, | |
553 prime_seed)); | |
554 /* | |
555 ** Step 9/21 x = 2 ** (length-1) + x mod 2 ** (length-1) | |
556 ** | |
557 ** This step mathematically sets the high bit and clears out | |
558 ** all the other bits higher than length. 'x' is stored | |
559 ** in the x array, MSB first. The above formula gives us an 'x' | |
560 ** which is length bytes long and has the high bit set. We also know | |
561 ** that length <= iterations*outlen since | |
562 ** iterations=ceiling(length/outlen). First we find the offset in | |
563 ** bytes into the array where the high bit is. | |
564 */ | |
565 offset = (outlen*iterations - length)/BITS_PER_BYTE; | |
566 /* now we want to set the 'high bit', since length may not be a | |
567 * multiple of 8,*/ | |
568 bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */ | |
569 /* we need to zero out the rest of the bits in the byte above */ | |
570 mask = (bit-1); | |
571 /* now we set it */ | |
572 x[offset] = (mask & x[offset]) | bit; | |
573 /* | |
574 ** Comment: Generate a candidate prime c in the interval | |
575 ** [2**(lenght-1), 2**length]. | |
576 ** | |
577 ** Step 10 t = ceiling(x/(2q(p0))) | |
578 ** Step 22 t = ceiling(x/(2(c0))) | |
579 */ | |
580 CHECK_MPI_OK( mp_read_unsigned_octets(&t, &x[offset], | |
581 hashlen*iterations - offset ) ); /* t = x */ | |
582 CHECK_MPI_OK( mp_mul(c0, q, &c0_2) ); /* c0_2 is now c0*q */ | |
583 CHECK_MPI_OK( mp_add(&c0_2, &c0_2, &c0_2) ); /* c0_2 is now 2*q*c0 */ | |
584 CHECK_MPI_OK( mp_add(&t, &c0_2, &t) ); /* t = x+2*q*c0 */ | |
585 CHECK_MPI_OK( mp_sub_d(&t, (mp_digit) 1, &t) ); /* t = x+2*q*c0 -1 */ | |
586 /* t = floor((x+2qc0-1)/2qc0) = ceil(x/2qc0) */ | |
587 CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) ); | |
588 /* | |
589 ** step 11: if (2tqp0 +1 > 2**length), then t = ceiling(2**(length-1)/2qp0) | |
590 ** step 12: t = 2tqp0 +1. | |
591 ** | |
592 ** step 23: if (2tc0 +1 > 2**length), then t = ceiling(2**(length-1)/2c0) | |
593 ** step 24: t = 2tc0 +1. | |
594 */ | |
595 CHECK_MPI_OK( mp_2expt(&two_length_minus_1, length-1) ); | |
596 step_23: | |
597 CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); /* c = t*2qc0 */ | |
598 CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/ | |
599 if (mpl_significant_bits(&c) > length) { /* if c > 2**length */ | |
600 CHECK_MPI_OK( mp_sub_d(&c0_2, (mp_digit) 1, &t) ); /* t = 2qc0-1 */ | |
601 /* t = 2**(length-1) + 2qc0 -1 */ | |
602 CHECK_MPI_OK( mp_add(&two_length_minus_1,&t, &t) ); | |
603 /* t = floor((2**(length-1)+2qc0 -1)/2qco) | |
604 * = ceil(2**(lenght-2)/2qc0) */ | |
605 CHECK_MPI_OK( mp_div(&t, &c0_2, &t, NULL) ); | |
606 CHECK_MPI_OK( mp_mul(&t, &c0_2, &c) ); | |
607 CHECK_MPI_OK( mp_add_d(&c, (mp_digit)1, &c) ); /* c= 2tqc0 + 1*/ | |
608 } | |
609 /* Step 13/25 prime_gen_counter = prime_gen_counter + 1*/ | |
610 (*prime_gen_counter)++; | |
611 /* | |
612 ** Comment: Test the candidate prime c for primality; first pick an | |
613 ** integer a between 2 and c-2. | |
614 ** | |
615 ** Step 14/26 a=0 | |
616 */ | |
617 PORT_Memset(x, 0, sizeof(x)); /* use x for a */ | |
618 /* | |
619 ** Step 15/27 for i = 0 to iterations do | |
620 ** a = a + (HASH(prime_seed + i) * 2^(i*outlen)) | |
621 ** | |
622 ** NOTE: we reuse the x array for 'a' initially. | |
623 */ | |
624 for (i=0; i < iterations; i++) { | |
625 /* MAX_ST_SEED_BITS is bigger than prime_seed should get to */ | |
626 CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, i, | |
627 MAX_ST_SEED_BITS,&x[(iterations - i - 1)*hashlen])); | |
628 } | |
629 /* Step 16/28 prime_seed = prime_seed + iterations + 1 */ | |
630 CHECK_SEC_OK(addToSeed(prime_seed, iterations, MAX_ST_SEED_BITS, | |
631 prime_seed)); | |
632 /* Step 17/29 a = 2 + (a mod (c-3)). */ | |
633 CHECK_MPI_OK( mp_read_unsigned_octets(&a, x, iterations*hashlen) ); | |
634 CHECK_MPI_OK( mp_sub_d(&c, (mp_digit) 3, &z) ); /* z = c -3 */ | |
635 CHECK_MPI_OK( mp_mod(&a, &z, &a) ); /* a = a mod c -3 */ | |
636 CHECK_MPI_OK( mp_add_d(&a, (mp_digit) 2, &a) ); /* a = 2 + a mod c -3 */ | |
637 /* | |
638 ** Step 18 z = a**(2tq) mod p. | |
639 ** Step 30 z = a**(2t) mod c. | |
640 */ | |
641 CHECK_MPI_OK( mp_mul(&t, q, &z) ); /* z = tq */ | |
642 CHECK_MPI_OK( mp_add(&z, &z, &z) ); /* z = 2tq */ | |
643 CHECK_MPI_OK( mp_exptmod(&a, &z, &c, &z) ); /* z = a**(2tq) mod c */ | |
644 /* | |
645 ** Step 19 if (( 1 == GCD(z-1,p)) and ( 1 == z**p0 mod p )), then | |
646 ** Step 31 if (( 1 == GCD(z-1,c)) and ( 1 == z**c0 mod c )), then | |
647 */ | |
648 CHECK_MPI_OK( mp_sub_d(&z, (mp_digit) 1, &a) ); | |
649 CHECK_MPI_OK( mp_gcd(&a,&c,&a )); | |
650 if (mp_cmp_d(&a, (mp_digit)1) == 0) { | |
651 CHECK_MPI_OK( mp_exptmod(&z, c0, &c, &a) ); | |
652 if (mp_cmp_d(&a, (mp_digit)1) == 0) { | |
653 /* Step 31.1 prime = c */ | |
654 CHECK_MPI_OK( mp_copy(&c, prime) ); | |
655 /* | |
656 ** Step 31.2 return Success, prime, prime_seed, | |
657 ** prime_gen_counter | |
658 */ | |
659 rv = SECSuccess; | |
660 goto cleanup; | |
661 } | |
662 } | |
663 /* | |
664 ** Step 20/32 If (prime_gen_counter > 4 * length + old_counter then | |
665 ** return (FAILURE, 0, 0, 0). | |
666 ** NOTE: the test is reversed, so we fall through on failure to the | |
667 ** cleanup routine | |
668 */ | |
669 if (*prime_gen_counter < (4*length + old_counter)) { | |
670 /* Step 21/33 t = t + 1 */ | |
671 CHECK_MPI_OK( mp_add_d(&t, (mp_digit) 1, &t) ); | |
672 /* Step 22/34 Go to step 23/11 */ | |
673 goto step_23; | |
674 } | |
675 | |
676 /* if (prime_gencont > (4*length + old_counter), fall through to failure */ | |
677 rv = SECFailure; /* really is already set, but paranoia is good */ | |
678 | |
679 cleanup: | |
680 mp_clear(&c); | |
681 mp_clear(&c0_2); | |
682 mp_clear(&t); | |
683 mp_clear(&a); | |
684 mp_clear(&z); | |
685 mp_clear(&two_length_minus_1); | |
686 if (err) { | |
687 MP_TO_SEC_ERROR(err); | |
688 rv = SECFailure; | |
689 } | |
690 if (rv == SECFailure) { | |
691 mp_zero(prime); | |
692 if (prime_seed->data) { | |
693 SECITEM_FreeItem(prime_seed, PR_FALSE); | |
694 } | |
695 *prime_gen_counter = 0; | |
696 } | |
697 return rv; | |
698 } | |
699 | |
700 /* | |
701 ** Perform steps from FIPS 186-3, Appendix C.6 | |
702 ** | |
703 ** This generates a provable prime from a seed | |
704 */ | |
705 SECStatus | |
706 makePrimefromSeedShaweTaylor( | |
707 HASH_HashType hashtype, /* selected Hashing algorithm */ | |
708 unsigned int length, /* input. Length of prime in bits. */ | |
709 const SECItem * input_seed, /* input. */ | |
710 mp_int * prime, /* output. */ | |
711 SECItem * prime_seed, /* output. */ | |
712 int * prime_gen_counter) /* output. */ | |
713 { | |
714 mp_int c; | |
715 mp_int c0; | |
716 mp_int one; | |
717 SECStatus rv = SECFailure; | |
718 int hashlen = HASH_ResultLen(hashtype); | |
719 int outlen = hashlen*BITS_PER_BYTE; | |
720 int offset; | |
721 unsigned char bit, mask; | |
722 unsigned char x[HASH_LENGTH_MAX*2]; | |
723 mp_digit dummy; | |
724 mp_err err = MP_OKAY; | |
725 int i; | |
726 | |
727 MP_DIGITS(&c) = 0; | |
728 MP_DIGITS(&c0) = 0; | |
729 MP_DIGITS(&one) = 0; | |
730 CHECK_MPI_OK( mp_init(&c) ); | |
731 CHECK_MPI_OK( mp_init(&c0) ); | |
732 CHECK_MPI_OK( mp_init(&one) ); | |
733 | |
734 /* Step 1. if length < 2 then return (FAILURE, 0, 0, 0) */ | |
735 if (length < 2) { | |
736 rv = SECFailure; | |
737 goto cleanup; | |
738 } | |
739 /* Step 2. if length >= 33 then goto step 14 */ | |
740 if (length >= 33) { | |
741 mp_zero(&one); | |
742 CHECK_MPI_OK( mp_add_d(&one, (mp_digit) 1, &one) ); | |
743 | |
744 /* Step 14 (status, c0, prime_seed, prime_gen_counter) = | |
745 ** (ST_Random_Prime((ceil(length/2)+1, input_seed) | |
746 */ | |
747 rv = makePrimefromSeedShaweTaylor(hashtype, (length+1)/2+1, | |
748 input_seed, &c0, prime_seed, prime_gen_counter); | |
749 /* Step 15 if FAILURE is returned, return (FAILURE, 0, 0, 0). */ | |
750 if (rv != SECSuccess) { | |
751 goto cleanup; | |
752 } | |
753 /* Steps 16-34 */ | |
754 rv = makePrimefromPrimesShaweTaylor(hashtype,length, &c0, &one, | |
755 prime, prime_seed, prime_gen_counter); | |
756 goto cleanup; /* we're done, one way or the other */ | |
757 } | |
758 /* Step 3 prime_seed = input_seed */ | |
759 CHECK_SEC_OK(SECITEM_CopyItem(NULL, prime_seed, input_seed)); | |
760 /* Step 4 prime_gen_count = 0 */ | |
761 *prime_gen_counter = 0; | |
762 | |
763 step_5: | |
764 /* Step 5 c = Hash(prime_seed) xor Hash(prime_seed+1). */ | |
765 CHECK_SEC_OK(HASH_HashBuf(hashtype, x, prime_seed->data, prime_seed->len) ); | |
766 CHECK_SEC_OK(addToSeedThenHash(hashtype, prime_seed, 1, | |
767 MAX_ST_SEED_BITS, &x[hashlen]) ); | |
768 for (i=0; i < hashlen; i++) { | |
769 x[i] = x[i] ^ x[i+hashlen]; | |
770 } | |
771 /* Step 6 c = 2**length-1 + c mod 2**length-1 */ | |
772 /* This step mathematically sets the high bit and clears out | |
773 ** all the other bits higher than length. Right now c is stored | |
774 ** in the x array, MSB first. The above formula gives us a c which | |
775 ** is length bytes long and has the high bit set. We also know that | |
776 ** length < outlen since the smallest outlen is 160 bits and the largest | |
777 ** length at this point is 32 bits. So first we find the offset in bytes | |
778 ** into the array where the high bit is. | |
779 */ | |
780 offset = (outlen - length)/BITS_PER_BYTE; | |
781 /* now we want to set the 'high bit'. We have to calculate this since | |
782 * length may not be a multiple of 8.*/ | |
783 bit = 1 << ((length-1) & 0x7); /* select the proper bit in the byte */ | |
784 /* we need to zero out the rest of the bits in the byte above */ | |
785 mask = (bit-1); | |
786 /* now we set it */ | |
787 x[offset] = (mask & x[offset]) | bit; | |
788 /* Step 7 c = c*floor(c/2) + 1 */ | |
789 /* set the low bit. much easier to find (the end of the array) */ | |
790 x[hashlen-1] |= 1; | |
791 /* now that we've set our bits, we can create our candidate "c" */ | |
792 CHECK_MPI_OK( mp_read_unsigned_octets(&c, &x[offset], hashlen-offset) ); | |
793 /* Step 8 prime_gen_counter = prime_gen_counter + 1 */ | |
794 (*prime_gen_counter)++; | |
795 /* Step 9 prime_seed = prime_seed + 2 */ | |
796 CHECK_SEC_OK(addToSeed(prime_seed, 2, MAX_ST_SEED_BITS, prime_seed)); | |
797 /* Step 10 Perform deterministic primality test on c. For example, since | |
798 ** c is small, it's primality can be tested by trial division, See | |
799 ** See Appendic C.7. | |
800 ** | |
801 ** We in fact test with trial division. mpi has a built int trial divider | |
802 ** that divides all divisors up to 2^16. | |
803 */ | |
804 if (prime_tab[prime_tab_size-1] < 0xFFF1) { | |
805 /* we aren't testing all the primes between 0 and 2^16, we really | |
806 * can't use this construction. Just fail. */ | |
807 rv = SECFailure; | |
808 goto cleanup; | |
809 } | |
810 dummy = prime_tab_size; | |
811 err = mpp_divis_primes(&c, &dummy); | |
812 /* Step 11 if c is prime then */ | |
813 if (err == MP_NO) { | |
814 /* Step 11.1 prime = c */ | |
815 CHECK_MPI_OK( mp_copy(&c, prime) ); | |
816 /* Step 11.2 return SUCCESS prime, prime_seed, prime_gen_counter */ | |
817 err = MP_OKAY; | |
818 rv = SECSuccess; | |
819 goto cleanup; | |
820 } else if (err != MP_YES) { | |
821 goto cleanup; /* function failed, bail out */ | |
822 } else { | |
823 /* reset mp_err */ | |
824 err = MP_OKAY; | |
825 } | |
826 /* | |
827 ** Step 12 if (prime_gen_counter > (4*len)) | |
828 ** then return (FAILURE, 0, 0, 0)) | |
829 ** Step 13 goto step 5 | |
830 */ | |
831 if (*prime_gen_counter <= (4*length)) { | |
832 goto step_5; | |
833 } | |
834 /* if (prime_gencont > 4*length), fall through to failure */ | |
835 rv = SECFailure; /* really is already set, but paranoia is good */ | |
836 | |
837 cleanup: | |
838 mp_clear(&c); | |
839 mp_clear(&c0); | |
840 mp_clear(&one); | |
841 if (err) { | |
842 MP_TO_SEC_ERROR(err); | |
843 rv = SECFailure; | |
844 } | |
845 if (rv == SECFailure) { | |
846 mp_zero(prime); | |
847 if (prime_seed->data) { | |
848 SECITEM_FreeItem(prime_seed, PR_FALSE); | |
849 } | |
850 *prime_gen_counter = 0; | |
851 } | |
852 return rv; | |
853 } | |
854 | |
855 | |
856 /* | |
857 * Find a Q and algorithm from Seed. | |
858 */ | |
859 static SECStatus | |
860 findQfromSeed( | |
861 unsigned int L, /* input. Length of p in bits. */ | |
862 unsigned int N, /* input. Length of q in bits. */ | |
863 unsigned int g, /* input. Length of seed in bits. */ | |
864 const SECItem * seed, /* input. */ | |
865 mp_int * Q, /* input. */ | |
866 mp_int * Q_, /* output. */ | |
867 int * qseed_len, /* output */ | |
868 HASH_HashType *hashtypePtr, /* output. Hash uses */ | |
869 pqgGenType *typePtr) /* output. Generation Type used */ | |
870 { | |
871 HASH_HashType hashtype; | |
872 SECItem firstseed = { 0, 0, 0 }; | |
873 SECItem qseed = { 0, 0, 0 }; | |
874 SECStatus rv; | |
875 | |
876 *qseed_len = 0; /* only set if FIPS186_3_ST_TYPE */ | |
877 | |
878 /* handle legacy small DSA first can only be FIPS186_1_TYPE */ | |
879 if (L < 1024) { | |
880 rv =makeQfromSeed(g,seed,Q_); | |
881 if ((rv == SECSuccess) && (mp_cmp(Q,Q_) == 0)) { | |
882 *hashtypePtr = HASH_AlgSHA1; | |
883 *typePtr = FIPS186_1_TYPE; | |
884 return SECSuccess; | |
885 } | |
886 return SECFailure; | |
887 } | |
888 /* 1024 could use FIPS186_1 or FIPS186_3 algorithms, we need to try | |
889 * them both */ | |
890 if (L == 1024) { | |
891 rv = makeQfromSeed(g,seed,Q_); | |
892 if (rv == SECSuccess) { | |
893 if (mp_cmp(Q,Q_) == 0) { | |
894 *hashtypePtr = HASH_AlgSHA1; | |
895 *typePtr = FIPS186_1_TYPE; | |
896 return SECSuccess; | |
897 } | |
898 } | |
899 /* fall through for FIPS186_3 types */ | |
900 } | |
901 /* at this point we know we aren't using FIPS186_1, start trying FIPS186_3 | |
902 * with appropriate hash types */ | |
903 for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL; | |
904 hashtype=getNextHash(hashtype)) { | |
905 rv = makeQ2fromSeed(hashtype, N, seed, Q_); | |
906 if (rv != SECSuccess) { | |
907 continue; | |
908 } | |
909 if (mp_cmp(Q,Q_) == 0) { | |
910 *hashtypePtr = hashtype; | |
911 *typePtr = FIPS186_3_TYPE; | |
912 return SECSuccess; | |
913 } | |
914 } | |
915 /* | |
916 * OK finally try FIPS186_3 Shawe-Taylor | |
917 */ | |
918 firstseed = *seed; | |
919 firstseed.len = seed->len/3; | |
920 for (hashtype = getFirstHash(L,N); hashtype != HASH_AlgTOTAL; | |
921 hashtype=getNextHash(hashtype)) { | |
922 int count; | |
923 | |
924 rv = makePrimefromSeedShaweTaylor(hashtype, N, &firstseed, Q_, | |
925 &qseed, &count); | |
926 if (rv != SECSuccess) { | |
927 continue; | |
928 } | |
929 if (mp_cmp(Q,Q_) == 0) { | |
930 /* check qseed as well... */ | |
931 int offset = seed->len - qseed.len; | |
932 if ((offset < 0) || | |
933 (PORT_Memcmp(&seed->data[offset],qseed.data,qseed.len) != 0)) { | |
934 /* we found q, but the seeds don't match. This isn't an | |
935 * accident, someone has been tweeking with the seeds, just | |
936 * fail a this point. */ | |
937 SECITEM_FreeItem(&qseed,PR_FALSE); | |
938 return SECFailure; | |
939 } | |
940 *qseed_len = qseed.len; | |
941 *hashtypePtr = hashtype; | |
942 *typePtr = FIPS186_3_ST_TYPE; | |
943 SECITEM_FreeItem(&qseed, PR_FALSE); | |
944 return SECSuccess; | |
945 } | |
946 SECITEM_FreeItem(&qseed, PR_FALSE); | |
947 } | |
948 /* no hash algorithms found which match seed to Q, fail */ | |
949 return SECFailure; | |
950 } | |
951 | |
952 | |
953 | |
954 /* | |
955 ** Perform steps 7, 8 and 9 of FIPS 186, appendix 2.2. | |
956 ** which are the same as steps 11.1-11.5 of FIPS 186-2, App A.1.1.2 | |
194 ** Generate P from Q, seed, L, and offset. | 957 ** Generate P from Q, seed, L, and offset. |
195 */ | 958 */ |
196 static SECStatus | 959 static SECStatus |
197 makePfromQandSeed( | 960 makePfromQandSeed( |
961 HASH_HashType hashtype, /* selected Hashing algorithm */ | |
198 unsigned int L, /* Length of P in bits. Per FIPS 186. */ | 962 unsigned int L, /* Length of P in bits. Per FIPS 186. */ |
199 unsigned int offset, /* Per FIPS 186, appendix 2.2. */ | 963 unsigned int N, /* Length of Q in bits. Per FIPS 186. */ |
200 unsigned int g, /* input. Length of seed in bits. */ | 964 unsigned int offset, /* Per FIPS 186, App 2.2. & 186-3 App A.1.1.2 */ |
965 unsigned int seedlen, /* input. Length of seed in bits. (g in 186-1)*/ | |
201 const SECItem * seed, /* input. */ | 966 const SECItem * seed, /* input. */ |
202 const mp_int * Q, /* input. */ | 967 const mp_int * Q, /* input. */ |
203 mp_int * P) /* output. */ | 968 mp_int * P) /* output. */ |
204 { | 969 { |
205 unsigned int k; /* Per FIPS 186, appendix 2.2. */ | 970 unsigned int j; /* Per FIPS 186-3 App. A.1.1.2 (k in 186-1)*/ |
206 unsigned int n; /* Per FIPS 186, appendix 2.2. */ | 971 unsigned int n; /* Per FIPS 186, appendix 2.2. */ |
207 mp_digit b; /* Per FIPS 186, appendix 2.2. */ | 972 mp_digit b; /* Per FIPS 186, appendix 2.2. */ |
208 unsigned char V_k[SHA1_LENGTH]; | 973 unsigned int outlen; /* Per FIPS 186-3 App. A.1.1.2 */ |
974 unsigned int hashlen; /* outlen in bytes */ | |
975 unsigned char V_j[HASH_LENGTH_MAX]; | |
209 mp_int W, X, c, twoQ, V_n, tmp; | 976 mp_int W, X, c, twoQ, V_n, tmp; |
210 mp_err err = MP_OKAY; | 977 mp_err err = MP_OKAY; |
211 SECStatus rv = SECSuccess; | 978 SECStatus rv = SECSuccess; |
212 /* Initialize bignums */ | 979 /* Initialize bignums */ |
213 MP_DIGITS(&W) = 0; | 980 MP_DIGITS(&W) = 0; |
214 MP_DIGITS(&X) = 0; | 981 MP_DIGITS(&X) = 0; |
215 MP_DIGITS(&c) = 0; | 982 MP_DIGITS(&c) = 0; |
216 MP_DIGITS(&twoQ) = 0; | 983 MP_DIGITS(&twoQ) = 0; |
217 MP_DIGITS(&V_n) = 0; | 984 MP_DIGITS(&V_n) = 0; |
218 MP_DIGITS(&tmp) = 0; | 985 MP_DIGITS(&tmp) = 0; |
219 CHECK_MPI_OK( mp_init(&W) ); | 986 CHECK_MPI_OK( mp_init(&W) ); |
220 CHECK_MPI_OK( mp_init(&X) ); | 987 CHECK_MPI_OK( mp_init(&X) ); |
221 CHECK_MPI_OK( mp_init(&c) ); | 988 CHECK_MPI_OK( mp_init(&c) ); |
222 CHECK_MPI_OK( mp_init(&twoQ) ); | 989 CHECK_MPI_OK( mp_init(&twoQ) ); |
223 CHECK_MPI_OK( mp_init(&tmp) ); | 990 CHECK_MPI_OK( mp_init(&tmp) ); |
224 CHECK_MPI_OK( mp_init(&V_n) ); | 991 CHECK_MPI_OK( mp_init(&V_n) ); |
225 /* L - 1 = n*160 + b */ | 992 |
226 n = (L - 1) / BITS_IN_Q; | 993 hashlen = HASH_ResultLen(hashtype); |
227 b = (L - 1) % BITS_IN_Q; | 994 outlen = hashlen*BITS_PER_BYTE; |
995 | |
996 /* L - 1 = n*outlen + b */ | |
997 n = (L - 1) / outlen; | |
998 b = (L - 1) % outlen; | |
999 | |
228 /* ****************************************************************** | 1000 /* ****************************************************************** |
229 ** Step 7. | 1001 ** Step 11.1 (Step 7 in 186-1) |
230 ** "for k = 0 ... n let | 1002 ** "for j = 0 ... n let |
231 ** V_k = SHA[(SEED + offset + k) mod 2**g]." | 1003 ** V_j = SHA[(SEED + offset + j) mod 2**seedlen]." |
232 ** | 1004 ** |
233 ** Step 8. | 1005 ** Step 11.2 (Step 8 in 186-1) |
234 ** "Let W be the integer | 1006 ** "W = V_0 + (V_1 * 2**outlen) + ... + (V_n-1 * 2**((n-1)*outlen)) |
235 ** W = V_0 + (V_1 * 2**160) + ... + (V_n-1 * 2**((n-1)*160)) | 1007 ** + ((V_n mod 2**b) * 2**(n*outlen)) |
236 ** + ((V_n mod 2**b) * 2**(n*160)) | |
237 */ | 1008 */ |
238 for (k=0; k<n; ++k) { /* Do the first n terms of V_k */ | 1009 for (j=0; j<n; ++j) { /* Do the first n terms of V_j */ |
239 » /* Do step 7 for iteration k. | 1010 » /* Do step 11.1 for iteration j. |
240 » ** V_k = SHA[(seed + offset + k) mod 2**g] | 1011 » ** V_j = HASH[(seed + offset + j) mod 2**g] |
241 */ | 1012 */ |
242 » CHECK_SEC_OK( addToSeedThenSHA(seed, offset + k, g, V_k) ); | 1013 » CHECK_SEC_OK( addToSeedThenHash(hashtype,seed,offset+j, seedlen, V_j) ); |
243 » /* Do step 8 for iteration k. | 1014 » /* Do step 11.2 for iteration j. |
244 » ** W += V_k * 2**(k*160) | 1015 » ** W += V_j * 2**(j*outlen) |
245 */ | 1016 */ |
246 » OCTETS_TO_MPINT(V_k, &tmp, SHA1_LENGTH); /* get bignum V_k */ | 1017 » OCTETS_TO_MPINT(V_j, &tmp, hashlen); /* get bignum V_j */ |
247 » CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, k*160) ); /* tmp = V_k << k*160 */ | 1018 » CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, j*outlen) );/* tmp=V_j << j*outlen */ |
248 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ | 1019 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ |
249 } | 1020 } |
250 /* Step 8, continued. | 1021 /* Step 11.2, continued. |
251 ** [W += ((V_n mod 2**b) * 2**(n*160))] | 1022 ** [W += ((V_n mod 2**b) * 2**(n*outlen))] |
252 */ | 1023 */ |
253 CHECK_SEC_OK( addToSeedThenSHA(seed, offset + n, g, V_k) ); | 1024 CHECK_SEC_OK( addToSeedThenHash(hashtype, seed, offset + n, seedlen, V_j) ); |
254 OCTETS_TO_MPINT(V_k, &V_n, SHA1_LENGTH); /* get bignum V_n */ | 1025 OCTETS_TO_MPINT(V_j, &V_n, hashlen); /* get bignum V_n */ |
255 CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */ | 1026 CHECK_MPI_OK( mp_div_2d(&V_n, b, NULL, &tmp) ); /* tmp = V_n mod 2**b */ |
256 CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*160) ); /* tmp = tmp << n*160 */ | 1027 CHECK_MPI_OK( mpl_lsh(&tmp, &tmp, n*outlen) ); /* tmp = tmp << n*outlen */ |
257 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ | 1028 CHECK_MPI_OK( mp_add(&W, &tmp, &W) ); /* W += tmp */ |
258 /* Step 8, continued. | 1029 /* Step 11.3, (Step 8 in 186-1) |
259 ** "and let X = W + 2**(L-1). | 1030 ** "X = W + 2**(L-1). |
260 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L." | 1031 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L." |
261 */ | 1032 */ |
262 CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */ | 1033 CHECK_MPI_OK( mpl_set_bit(&X, (mp_size)(L-1), 1) ); /* X = 2**(L-1) */ |
263 CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */ | 1034 CHECK_MPI_OK( mp_add(&X, &W, &X) ); /* X += W */ |
264 /************************************************************* | 1035 /************************************************************* |
265 ** Step 9. | 1036 ** Step 11.4. (Step 9 in 186-1) |
266 ** "Let c = X mod 2q and set p = X - (c - 1). | 1037 ** "c = X mod 2q" |
267 ** Note that p is congruent to 1 mod 2q." | |
268 */ | 1038 */ |
269 CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */ | 1039 CHECK_MPI_OK( mp_mul_2(Q, &twoQ) ); /* 2q */ |
270 CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */ | 1040 CHECK_MPI_OK( mp_mod(&X, &twoQ, &c) ); /* c = X mod 2q */ |
1041 /************************************************************* | |
1042 ** Step 11.5. (Step 9 in 186-1) | |
1043 ** "p = X - (c - 1). | |
1044 ** Note that p is congruent to 1 mod 2q." | |
1045 */ | |
271 CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */ | 1046 CHECK_MPI_OK( mp_sub_d(&c, 1, &c) ); /* c -= 1 */ |
272 CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */ | 1047 CHECK_MPI_OK( mp_sub(&X, &c, P) ); /* P = X - c */ |
273 cleanup: | 1048 cleanup: |
274 mp_clear(&W); | 1049 mp_clear(&W); |
275 mp_clear(&X); | 1050 mp_clear(&X); |
276 mp_clear(&c); | 1051 mp_clear(&c); |
277 mp_clear(&twoQ); | 1052 mp_clear(&twoQ); |
278 mp_clear(&V_n); | 1053 mp_clear(&V_n); |
279 mp_clear(&tmp); | 1054 mp_clear(&tmp); |
280 if (err) { | 1055 if (err) { |
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
326 cleanup: | 1101 cleanup: |
327 mp_clear(&exp); | 1102 mp_clear(&exp); |
328 mp_clear(&pm1); | 1103 mp_clear(&pm1); |
329 if (err) { | 1104 if (err) { |
330 MP_TO_SEC_ERROR(err); | 1105 MP_TO_SEC_ERROR(err); |
331 rv = SECFailure; | 1106 rv = SECFailure; |
332 } | 1107 } |
333 return rv; | 1108 return rv; |
334 } | 1109 } |
335 | 1110 |
336 SECStatus | 1111 /* |
337 PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy) | 1112 ** Generate G from seed, index, P, and Q. |
1113 */ | |
1114 static SECStatus | |
1115 makeGfromIndex(HASH_HashType hashtype, | |
1116 » » const mp_int *P,» /* input. */ | |
1117 » const mp_int *Q,» /* input. */ | |
1118 const SECItem *seed,» /* input. */ | |
1119 » » unsigned char index,» /* input. */ | |
1120 » » mp_int *G)» » /* input/output */ | |
338 { | 1121 { |
339 unsigned int L; /* Length of P in bits. Per FIPS 186. */ | 1122 mp_int e, pm1, W; |
340 unsigned int seedBytes; | 1123 unsigned int count; |
1124 unsigned char data[HASH_LENGTH_MAX]; | |
1125 unsigned int len; | |
1126 mp_err err = MP_OKAY; | |
1127 SECStatus rv = SECSuccess; | |
1128 const SECHashObject *hashobj; | |
1129 void *hashcx = NULL; | |
341 | 1130 |
342 if (j > 8 || !pParams || !pVfy) { | 1131 MP_DIGITS(&e) = 0; |
343 » PORT_SetError(SEC_ERROR_INVALID_ARGS); | 1132 MP_DIGITS(&pm1) = 0; |
344 return SECFailure; | 1133 MP_DIGITS(&W) = 0; |
1134 CHECK_MPI_OK( mp_init(&e) ); | |
1135 CHECK_MPI_OK( mp_init(&pm1) ); | |
1136 CHECK_MPI_OK( mp_init(&W) ); | |
1137 | |
1138 /* initialize our hash stuff */ | |
1139 hashobj = HASH_GetRawHashObject(hashtype); | |
1140 if (hashobj == NULL) { | |
1141 » /* shouldn't happen */ | |
1142 » PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); | |
1143 » rv = SECFailure; | |
1144 » goto cleanup; | |
345 } | 1145 } |
346 L = 512 + (j * 64); /* bits in P */ | 1146 hashcx = hashobj->create(); |
347 seedBytes = L/8; | 1147 if (hashcx == NULL) { |
348 return PQG_ParamGenSeedLen(j, seedBytes, pParams, pVfy); | 1148 » rv = SECFailure; |
1149 » goto cleanup; | |
1150 } | |
1151 | |
1152 CHECK_MPI_OK( mp_sub_d(P, 1, &pm1) ); /* P - 1 */ | |
1153 /* Step 3 e = (p-1)/q */ | |
1154 CHECK_MPI_OK( mp_div(&pm1, Q, &e, NULL) ); /* e = (P-1)/Q */ | |
1155 /* Steps 4, 5, and 6 */ | |
1156 /* count is a 16 bit value in the spec. We actually represent count | |
1157 * as more than 16 bits so we can easily detect the 16 bit overflow */ | |
1158 #define MAX_COUNT 0x10000 | |
1159 for (count = 1; count < MAX_COUNT; count++) { | |
1160 » /* step 7 | |
1161 » * U = domain_param_seed || "ggen" || index || count | |
1162 * step 8 | |
1163 » * W = HASH(U) | |
1164 » */ | |
1165 » hashobj->begin(hashcx); | |
1166 » hashobj->update(hashcx,seed->data,seed->len); | |
1167 » hashobj->update(hashcx, (unsigned char *)"ggen", 4); | |
1168 » hashobj->update(hashcx,&index, 1); | |
1169 » data[0] = (count >> 8) & 0xff; | |
1170 » data[1] = count & 0xff; | |
1171 » hashobj->update(hashcx, data, 2); | |
1172 » hashobj->end(hashcx, data, &len, sizeof(data)); | |
1173 » OCTETS_TO_MPINT(data, &W, len); | |
1174 » /* step 9. g = W**e mod p */ | |
1175 » CHECK_MPI_OK( mp_exptmod(&W, &e, P, G) ); | |
1176 » /* step 10. if (g < 2) then goto step 5 */ | |
1177 » /* NOTE: this weird construct is to keep the flow according to the spec. | |
1178 » * the continue puts us back to step 5 of the for loop */ | |
1179 » if (mp_cmp_d(G, 2) < 0) { | |
1180 » continue; | |
1181 » } | |
1182 » break; /* step 11 follows step 10 if the test condition is false */ | |
1183 } | |
1184 if (count >= MAX_COUNT) { | |
1185 » rv = SECFailure; /* last part of step 6 */ | |
1186 } | |
1187 /* step 11. | |
1188 * return valid G */ | |
1189 cleanup: | |
1190 PORT_Memset(data, 0, sizeof(data)); | |
1191 if (hashcx) { | |
1192 » hashobj->destroy(hashcx, PR_TRUE); | |
1193 } | |
1194 mp_clear(&e); | |
1195 mp_clear(&pm1); | |
1196 mp_clear(&W); | |
1197 if (err) { | |
1198 » MP_TO_SEC_ERROR(err); | |
1199 » rv = SECFailure; | |
1200 } | |
1201 return rv; | |
349 } | 1202 } |
350 | 1203 |
351 /* This code uses labels and gotos, so that it can follow the numbered | 1204 /* This code uses labels and gotos, so that it can follow the numbered |
352 ** steps in the algorithms from FIPS 186 appendix 2.2 very closely, | 1205 ** steps in the algorithms from FIPS 186-3 appendix A.1.1.2 very closely, |
353 ** and so that the correctness of this code can be easily verified. | 1206 ** and so that the correctness of this code can be easily verified. |
354 ** So, please forgive the ugly c code. | 1207 ** So, please forgive the ugly c code. |
355 **/ | 1208 **/ |
356 SECStatus | 1209 static SECStatus |
357 PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes, | 1210 pqg_ParamGen(unsigned int L, unsigned int N, pqgGenType type, |
358 PQGParams **pParams, PQGVerify **pVfy) | 1211 » unsigned int seedBytes, PQGParams **pParams, PQGVerify **pVfy) |
359 { | 1212 { |
360 unsigned int L; /* Length of P in bits. Per FIPS 186. */ | 1213 unsigned int n; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ |
361 unsigned int n; /* Per FIPS 186, appendix 2.2. */ | 1214 unsigned int b; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ |
362 unsigned int b; /* Per FIPS 186, appendix 2.2. */ | 1215 unsigned int seedlen; /* Per FIPS 186-3 app A.1.1.2 (was 'g' 186-1)*/ |
363 unsigned int g; /* Per FIPS 186, appendix 2.2. */ | 1216 unsigned int counter; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ |
364 unsigned int counter; /* Per FIPS 186, appendix 2.2. */ | 1217 unsigned int offset; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ |
365 unsigned int offset; /* Per FIPS 186, appendix 2.2. */ | 1218 unsigned int outlen; /* Per FIPS 186-3, appendix A.1.1.2. */ |
366 SECItem *seed; /* Per FIPS 186, appendix 2.2. */ | 1219 unsigned int maxCount; |
1220 HASH_HashType hashtype; | |
1221 SECItem *seed; /* Per FIPS 186, app 2.2. 186-3 app A.1.1.2 */ | |
367 PRArenaPool *arena = NULL; | 1222 PRArenaPool *arena = NULL; |
368 PQGParams *params = NULL; | 1223 PQGParams *params = NULL; |
369 PQGVerify *verify = NULL; | 1224 PQGVerify *verify = NULL; |
370 PRBool passed; | 1225 PRBool passed; |
371 SECItem hit = { 0, 0, 0 }; | 1226 SECItem hit = { 0, 0, 0 }; |
372 mp_int P, Q, G, H, l; | 1227 mp_int P, Q, G, H, l; |
373 mp_err err = MP_OKAY; | 1228 mp_err err = MP_OKAY; |
374 SECStatus rv = SECFailure; | 1229 SECStatus rv = SECFailure; |
375 int iterations = 0; | 1230 int iterations = 0; |
376 if (j > 8 || seedBytes < 20 || !pParams || !pVfy) { | 1231 |
1232 | |
1233 /* Step 1. L and N already checked by caller*/ | |
1234 /* Step 2. if (seedlen < N) return INVALID; */ | |
1235 if (seedBytes < N/BITS_PER_BYTE || !pParams || !pVfy) { | |
377 PORT_SetError(SEC_ERROR_INVALID_ARGS); | 1236 PORT_SetError(SEC_ERROR_INVALID_ARGS); |
378 return SECFailure; | 1237 return SECFailure; |
379 } | 1238 } |
380 /* Initialize an arena for the params. */ | 1239 /* Initialize an arena for the params. */ |
381 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); | 1240 arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE); |
382 if (!arena) { | 1241 if (!arena) { |
383 PORT_SetError(SEC_ERROR_NO_MEMORY); | 1242 PORT_SetError(SEC_ERROR_NO_MEMORY); |
384 return SECFailure; | 1243 return SECFailure; |
385 } | 1244 } |
386 params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams)); | 1245 params = (PQGParams *)PORT_ArenaZAlloc(arena, sizeof(PQGParams)); |
(...skipping 24 matching lines...) Expand all Loading... | |
411 MP_DIGITS(&P) = 0; | 1270 MP_DIGITS(&P) = 0; |
412 MP_DIGITS(&Q) = 0; | 1271 MP_DIGITS(&Q) = 0; |
413 MP_DIGITS(&G) = 0; | 1272 MP_DIGITS(&G) = 0; |
414 MP_DIGITS(&H) = 0; | 1273 MP_DIGITS(&H) = 0; |
415 MP_DIGITS(&l) = 0; | 1274 MP_DIGITS(&l) = 0; |
416 CHECK_MPI_OK( mp_init(&P) ); | 1275 CHECK_MPI_OK( mp_init(&P) ); |
417 CHECK_MPI_OK( mp_init(&Q) ); | 1276 CHECK_MPI_OK( mp_init(&Q) ); |
418 CHECK_MPI_OK( mp_init(&G) ); | 1277 CHECK_MPI_OK( mp_init(&G) ); |
419 CHECK_MPI_OK( mp_init(&H) ); | 1278 CHECK_MPI_OK( mp_init(&H) ); |
420 CHECK_MPI_OK( mp_init(&l) ); | 1279 CHECK_MPI_OK( mp_init(&l) ); |
421 /* Compute lengths. */ | 1280 |
422 L = 512 + (j * 64); /* bits in P */ | 1281 /* Select Hash and Compute lengths. */ |
423 n = (L - 1) / BITS_IN_Q; /* BITS_IN_Q is 160 */ | 1282 /* getFirstHash gives us the smallest acceptable hash for this key |
424 b = (L - 1) % BITS_IN_Q; | 1283 * strength */ |
425 g = seedBytes * BITS_PER_BYTE; /* bits in seed, NOT G of PQG. */ | 1284 hashtype = getFirstHash(L,N); |
426 step_1: | 1285 outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE; |
1286 | |
1287 /* Step 3: n = Ceil(L/outlen)-1; (same as n = Floor((L-1)/outlen)) */ | |
1288 n = (L - 1) / outlen; | |
1289 /* Step 4: b = L -1 - (n*outlen); (same as n = (L-1) mod outlen) */ | |
1290 b = (L - 1) % outlen; | |
1291 seedlen = seedBytes * BITS_PER_BYTE; /* bits in seed */ | |
1292 step_5: | |
427 /* ****************************************************************** | 1293 /* ****************************************************************** |
428 ** Step 1. | 1294 ** Step 5. (Step 1 in 186-1) |
429 ** "Choose an abitrary sequence of at least 160 bits and call it SEED. | 1295 ** "Choose an abitrary sequence of at least N bits and call it SEED. |
430 ** Let g be the length of SEED in bits." | 1296 ** Let g be the length of SEED in bits." |
431 */ | 1297 */ |
432 if (++iterations > MAX_ITERATIONS) { /* give up after a while */ | 1298 if (++iterations > MAX_ITERATIONS) { /* give up after a while */ |
433 PORT_SetError(SEC_ERROR_NEED_RANDOM); | 1299 PORT_SetError(SEC_ERROR_NEED_RANDOM); |
434 goto cleanup; | 1300 goto cleanup; |
435 } | 1301 } |
436 seed->len = seedBytes; | 1302 seed->len = seedBytes; |
437 CHECK_SEC_OK( getPQseed(seed, verify->arena) ); | 1303 CHECK_SEC_OK( getPQseed(seed, verify->arena) ); |
438 /* ****************************************************************** | 1304 /* ****************************************************************** |
439 ** Step 2. | 1305 ** Step 6. (Step 2 in 186-1) |
440 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]." | |
441 ** | 1306 ** |
442 ** Step 3. | 1307 ** "Compute U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]. (186-1)" |
1308 ** "Compute U = HASH[SEED] 2**(N-1). (186-3)" | |
1309 ** | |
1310 ** Step 7. (Step 3 in 186-1) | |
443 ** "Form Q from U by setting the most signficant bit (the 2**159 bit) | 1311 ** "Form Q from U by setting the most signficant bit (the 2**159 bit) |
444 ** and the least signficant bit to 1. In terms of boolean operations, | 1312 ** and the least signficant bit to 1. In terms of boolean operations, |
445 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160." | 1313 ** Q = U OR 2**159 OR 1. Note that 2**159 < Q < 2**160. (186-1)" |
1314 ** | |
1315 ** "q = 2**(N-1) + U + 1 - (U mod 2) (186-3) | |
1316 ** | |
1317 ** Note: Both formulations are the same for U < 2**(N-1) and N=160 | |
446 */ | 1318 */ |
447 CHECK_SEC_OK( makeQfromSeed(g, seed, &Q) ); | 1319 if (type == FIPS186_1_TYPE) { |
1320 » CHECK_SEC_OK( makeQfromSeed(seedlen, seed, &Q) ); | |
1321 } else { | |
1322 » CHECK_SEC_OK( makeQ2fromSeed(hashtype, N, seed, &Q) ); | |
1323 } | |
448 /* ****************************************************************** | 1324 /* ****************************************************************** |
449 ** Step 4. | 1325 ** Step 8. (Step 4 in 186-1) |
450 ** "Use a robust primality testing algorithm to test whether q is prime." | 1326 ** "Use a robust primality testing algorithm to test whether q is prime." |
451 ** | 1327 ** |
452 ** Appendix 2.1 states that a Rabin test with at least 50 iterations | 1328 ** Appendix 2.1 states that a Rabin test with at least 50 iterations |
453 ** "will give an acceptable probability of error." | 1329 ** "will give an acceptable probability of error." |
454 */ | 1330 */ |
455 /*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/ | 1331 /*CHECK_SEC_OK( prm_RabinTest(&Q, &passed) );*/ |
456 err = mpp_pprime(&Q, PQG_Q_PRIMALITY_TESTS); | 1332 err = mpp_pprime(&Q, prime_testcount_q(L,N)); |
457 passed = (err == MP_YES) ? SECSuccess : SECFailure; | 1333 passed = (err == MP_YES) ? SECSuccess : SECFailure; |
458 /* ****************************************************************** | 1334 /* ****************************************************************** |
459 ** Step 5. "If q is not prime, goto step 1." | 1335 ** Step 9. (Step 5 in 186-1) "If q is not prime, goto step 5 (1 in 186-1)." |
460 */ | 1336 */ |
461 if (passed != SECSuccess) | 1337 if (passed != SECSuccess) |
462 goto step_1; | 1338 goto step_5; |
463 /* ****************************************************************** | 1339 /* ****************************************************************** |
464 ** Step 6. "Let counter = 0 and offset = 2." | 1340 ** Step 10. |
1341 ** offset = 1; | |
1342 **( Step 6b 186-1)"Let counter = 0 and offset = 2." | |
465 */ | 1343 */ |
466 counter = 0; | 1344 offset = (type == FIPS186_1_TYPE) ? 2 : 1; |
467 offset = 2; | 1345 /* |
468 step_7: | 1346 ** Step 11. (Step 6a,13a,14 in 186-1) |
1347 ** For counter - 0 to (4L-1) do | |
1348 ** | |
1349 */ | |
1350 maxCount = L >= 1024 ? (4*L - 1) : 4095; | |
1351 for (counter = 0; counter <= maxCount; counter++) { | |
1352 » /* ****************************************************************** | |
1353 » ** Step 11.1 (Step 7 in 186-1) | |
1354 » ** "for j = 0 ... n let | |
1355 » ** V_j = HASH[(SEED + offset + j) mod 2**seedlen]." | |
1356 » ** | |
1357 » ** Step 11.2 (Step 8 in 186-1) | |
1358 » ** "W = V_0 + V_1*2**outlen+...+ V_n-1 * 2**((n-1)*outlen) + | |
1359 » ** ((Vn* mod 2**b)*2**(n*outlen))" | |
1360 » ** Step 11.3 (Step 8 in 186-1) | |
1361 » ** "X = W + 2**(L-1) | |
1362 » ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L." | |
1363 » ** | |
1364 » ** Step 11.4 (Step 9 in 186-1). | |
1365 » ** "c = X mod 2q" | |
1366 » ** | |
1367 » ** Step 11.5 (Step 9 in 186-1). | |
1368 » ** " p = X - (c - 1). | |
1369 » ** Note that p is congruent to 1 mod 2q." | |
1370 » */ | |
1371 » CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, seedlen, | |
1372 » » » » » seed, &Q, &P) ); | |
1373 » /************************************************************* | |
1374 » ** Step 11.6. (Step 10 in 186-1) | |
1375 » ** "if p < 2**(L-1), then goto step 11.9. (step 13 in 186-1)" | |
1376 » */ | |
1377 » CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */ | |
1378 » if (mp_cmp(&P, &l) < 0) | |
1379 goto step_11_9; | |
1380 » /************************************************************ | |
1381 » ** Step 11.7 (step 11 in 186-1) | |
1382 » ** "Perform a robust primality test on p." | |
1383 » */ | |
1384 » /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/ | |
1385 » err = mpp_pprime(&P, prime_testcount_p(L, N)); | |
1386 » passed = (err == MP_YES) ? SECSuccess : SECFailure; | |
1387 » /* ****************************************************************** | |
1388 » ** Step 11.8. "If p is determined to be primed return VALID | |
1389 ** values of p, q, seed and counter." | |
1390 » */ | |
1391 » if (passed == SECSuccess) | |
1392 » break; | |
1393 step_11_9: | |
1394 » /* ****************************************************************** | |
1395 » ** Step 11.9. "offset = offset + n + 1." | |
1396 » */ | |
1397 » offset += n + 1; | |
1398 } | |
469 /* ****************************************************************** | 1399 /* ****************************************************************** |
470 ** Step 7. | 1400 ** Step 12. "goto step 5." |
471 ** "for k = 0 ... n let | |
472 ** V_k = SHA[(SEED + offset + k) mod 2**g]." | |
473 ** | 1401 ** |
474 ** Step 8. | 1402 ** NOTE: if counter <= maxCount, then we exited the loop at Step 11.8 |
475 ** "Let W be the sum of (V_k * 2**(k*160)) for k = 0 ... n | 1403 ** and now need to return p,q, seed, and counter. |
476 ** and let X = W + 2**(L-1). | |
477 ** Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L." | |
478 ** | |
479 ** Step 9. | |
480 ** "Let c = X mod 2q and set p = X - (c - 1). | |
481 ** Note that p is congruent to 1 mod 2q." | |
482 */ | 1404 */ |
483 CHECK_SEC_OK( makePfromQandSeed(L, offset, g, seed, &Q, &P) ); | 1405 if (counter > maxCount) |
484 /************************************************************* | 1406 » goto step_5; |
485 ** Step 10. | 1407 /* ****************************************************************** |
486 ** "if p < 2**(L-1), then goto step 13." | 1408 ** returning p, q, seed and counter |
487 */ | 1409 */ |
488 CHECK_MPI_OK( mpl_set_bit(&l, (mp_size)(L-1), 1) ); /* l = 2**(L-1) */ | 1410 if (type == FIPS186_1_TYPE) { |
489 if (mp_cmp(&P, &l) < 0) | 1411 » /* Generate g, This is called the "Unverifiable Generation of g |
490 goto step_13; | 1412 » * in FIPA186-3 Appedix A.2.1. For compatibility we maintain |
491 /************************************************************ | 1413 » * this version of the code */ |
492 ** Step 11. | 1414 » SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */ |
493 ** "Perform a robust primality test on p." | 1415 » if (!hit.data) goto cleanup; |
494 */ | 1416 » do { |
495 /*CHECK_SEC_OK( prm_RabinTest(&P, &passed) );*/ | 1417 » /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */ |
496 err = mpp_pprime(&P, PQG_P_PRIMALITY_TESTS); | 1418 » CHECK_SEC_OK( generate_h_candidate(&hit, &H) ); |
497 passed = (err == MP_YES) ? SECSuccess : SECFailure; | 1419 CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) ); |
498 /* ****************************************************************** | 1420 » } while (passed != PR_TRUE); |
499 ** Step 12. "If p passes the test performed in step 11, go to step 15." | 1421 MPINT_TO_SECITEM(&H, &verify->h, verify->arena); |
500 */ | 1422 } else { |
501 if (passed == SECSuccess) | 1423 » unsigned char index = 1; /* default to 1 */ |
502 goto step_15; | 1424 » verify->h.data = (unsigned char *)PORT_ArenaZAlloc(verify->arena, 1); |
503 step_13: | 1425 » if (verify->h.data == NULL) { goto cleanup; } |
504 /* ****************************************************************** | 1426 » verify->h.len = 1; |
505 ** Step 13. "Let counter = counter + 1 and offset = offset + n + 1." | 1427 » verify->h.data[0] = index; |
506 */ | 1428 » /* Generate g, using the FIPS 186-3 Appendix A.23 */ |
507 counter++; | 1429 » CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, seed, index, &G) ); |
508 offset += n + 1; | 1430 } |
509 /* ****************************************************************** | |
510 ** Step 14. "If counter >= 4096 goto step 1, otherwise go to step 7." | |
511 */ | |
512 if (counter >= 4096) | |
513 goto step_1; | |
514 goto step_7; | |
515 step_15: | |
516 /* ****************************************************************** | |
517 ** Step 15. | |
518 ** "Save the value of SEED and the value of counter for use | |
519 ** in certifying the proper generation of p and q." | |
520 */ | |
521 /* Generate h. */ | |
522 SECITEM_AllocItem(NULL, &hit, L/8); /* h is no longer than p */ | |
523 if (!hit.data) goto cleanup; | |
524 do { | |
525 » /* loop generate h until 1<h<p-1 and (h**[(p-1)/q])mod p > 1 */ | |
526 » CHECK_SEC_OK( generate_h_candidate(&hit, &H) ); | |
527 CHECK_SEC_OK( makeGfromH(&P, &Q, &H, &G, &passed) ); | |
528 } while (passed != PR_TRUE); | |
529 /* All generation is done. Now, save the PQG params. */ | 1431 /* All generation is done. Now, save the PQG params. */ |
530 MPINT_TO_SECITEM(&P, ¶ms->prime, params->arena); | 1432 MPINT_TO_SECITEM(&P, ¶ms->prime, params->arena); |
531 MPINT_TO_SECITEM(&Q, ¶ms->subPrime, params->arena); | 1433 MPINT_TO_SECITEM(&Q, ¶ms->subPrime, params->arena); |
532 MPINT_TO_SECITEM(&G, ¶ms->base, params->arena); | 1434 MPINT_TO_SECITEM(&G, ¶ms->base, params->arena); |
533 MPINT_TO_SECITEM(&H, &verify->h, verify->arena); | |
534 verify->counter = counter; | 1435 verify->counter = counter; |
535 *pParams = params; | 1436 *pParams = params; |
536 *pVfy = verify; | 1437 *pVfy = verify; |
537 cleanup: | 1438 cleanup: |
538 mp_clear(&P); | 1439 mp_clear(&P); |
539 mp_clear(&Q); | 1440 mp_clear(&Q); |
540 mp_clear(&G); | 1441 mp_clear(&G); |
541 mp_clear(&H); | 1442 mp_clear(&H); |
542 mp_clear(&l); | 1443 mp_clear(&l); |
543 if (err) { | 1444 if (err) { |
544 MP_TO_SEC_ERROR(err); | 1445 MP_TO_SEC_ERROR(err); |
545 rv = SECFailure; | 1446 rv = SECFailure; |
546 } | 1447 } |
547 if (rv) { | 1448 if (rv) { |
548 PORT_FreeArena(params->arena, PR_TRUE); | 1449 PORT_FreeArena(params->arena, PR_TRUE); |
549 PORT_FreeArena(verify->arena, PR_TRUE); | 1450 PORT_FreeArena(verify->arena, PR_TRUE); |
550 } | 1451 } |
551 if (hit.data) { | 1452 if (hit.data) { |
552 SECITEM_FreeItem(&hit, PR_FALSE); | 1453 SECITEM_FreeItem(&hit, PR_FALSE); |
553 } | 1454 } |
554 return rv; | 1455 return rv; |
555 } | 1456 } |
556 | 1457 |
1458 SECStatus | |
1459 PQG_ParamGen(unsigned int j, PQGParams **pParams, PQGVerify **pVfy) | |
1460 { | |
1461 unsigned int L; /* Length of P in bits. Per FIPS 186. */ | |
1462 unsigned int seedBytes; | |
1463 | |
1464 if (j > 8 || !pParams || !pVfy) { | |
1465 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1466 return SECFailure; | |
1467 } | |
1468 L = 512 + (j * 64); /* bits in P */ | |
1469 seedBytes = L/8; | |
1470 return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes, | |
1471 pParams, pVfy); | |
1472 } | |
1473 | |
1474 SECStatus | |
1475 PQG_ParamGenSeedLen(unsigned int j, unsigned int seedBytes, | |
1476 PQGParams **pParams, PQGVerify **pVfy) | |
1477 { | |
1478 unsigned int L; /* Length of P in bits. Per FIPS 186. */ | |
1479 | |
1480 if (j > 8 || !pParams || !pVfy) { | |
1481 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1482 return SECFailure; | |
1483 } | |
1484 L = 512 + (j * 64); /* bits in P */ | |
1485 return pqg_ParamGen(L, DSA1_Q_BITS, FIPS186_1_TYPE, seedBytes, | |
1486 pParams, pVfy); | |
1487 } | |
1488 | |
1489 SECStatus | |
1490 PQG_ParamGenV2(unsigned int L, unsigned int N, unsigned int seedBytes, | |
1491 PQGParams **pParams, PQGVerify **pVfy) | |
1492 { | |
1493 if (pqg_validate_dsa2(L,N) != SECSuccess) { | |
1494 /* error code already set */ | |
1495 return SECFailure; | |
1496 } | |
1497 return pqg_ParamGen(L, N, FIPS186_3_TYPE, seedBytes, pParams, pVfy); | |
1498 } | |
1499 | |
1500 | |
1501 /* | |
1502 * verify can use vfy structures returned from either FIPS186-1 or | |
1503 * FIPS186-2, and can handle differences in selected Hash functions to | |
1504 * generate the parameters. | |
1505 */ | |
557 SECStatus | 1506 SECStatus |
558 PQG_VerifyParams(const PQGParams *params, | 1507 PQG_VerifyParams(const PQGParams *params, |
559 const PQGVerify *vfy, SECStatus *result) | 1508 const PQGVerify *vfy, SECStatus *result) |
560 { | 1509 { |
561 SECStatus rv = SECSuccess; | 1510 SECStatus rv = SECSuccess; |
562 int passed; | 1511 unsigned int g, n, L, N, offset, outlen; |
563 unsigned int g, n, L, offset; | 1512 mp_int p0, P, Q, G, P_, Q_, G_, r, h; |
564 mp_int P, Q, G, P_, Q_, G_, r, h; | |
565 mp_err err = MP_OKAY; | 1513 mp_err err = MP_OKAY; |
566 int j; | 1514 int j; |
1515 unsigned int counter_max = 0; /* handle legacy L < 1024 */ | |
1516 int qseed_len; | |
1517 SECItem pseed_ = {0, 0, 0}; | |
1518 HASH_HashType hashtype; | |
1519 pqgGenType type; | |
1520 | |
567 #define CHECKPARAM(cond) \ | 1521 #define CHECKPARAM(cond) \ |
568 if (!(cond)) { \ | 1522 if (!(cond)) { \ |
569 *result = SECFailure; \ | 1523 *result = SECFailure; \ |
570 goto cleanup; \ | 1524 goto cleanup; \ |
571 } | 1525 } |
572 if (!params || !vfy || !result) { | 1526 if (!params || !vfy || !result) { |
573 PORT_SetError(SEC_ERROR_INVALID_ARGS); | 1527 PORT_SetError(SEC_ERROR_INVALID_ARGS); |
574 return SECFailure; | 1528 return SECFailure; |
575 } | 1529 } |
1530 /* always need at least p, q, and seed for any meaningful check */ | |
1531 if ((params->prime.len == 0) || (params->subPrime.len == 0) || | |
1532 (vfy->seed.len == 0)) { | |
1533 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1534 return SECFailure; | |
1535 } | |
1536 /* we want to either check PQ or G or both. If we don't have G, make | |
1537 * sure we have count so we can check P. */ | |
1538 if ((params->base.len == 0) && (vfy->counter == -1)) { | |
1539 PORT_SetError(SEC_ERROR_INVALID_ARGS); | |
1540 return SECFailure; | |
1541 } | |
1542 | |
1543 MP_DIGITS(&p0) = 0; | |
576 MP_DIGITS(&P) = 0; | 1544 MP_DIGITS(&P) = 0; |
577 MP_DIGITS(&Q) = 0; | 1545 MP_DIGITS(&Q) = 0; |
578 MP_DIGITS(&G) = 0; | 1546 MP_DIGITS(&G) = 0; |
579 MP_DIGITS(&P_) = 0; | 1547 MP_DIGITS(&P_) = 0; |
580 MP_DIGITS(&Q_) = 0; | 1548 MP_DIGITS(&Q_) = 0; |
581 MP_DIGITS(&G_) = 0; | 1549 MP_DIGITS(&G_) = 0; |
582 MP_DIGITS(&r) = 0; | 1550 MP_DIGITS(&r) = 0; |
583 MP_DIGITS(&h) = 0; | 1551 MP_DIGITS(&h) = 0; |
1552 CHECK_MPI_OK( mp_init(&p0) ); | |
584 CHECK_MPI_OK( mp_init(&P) ); | 1553 CHECK_MPI_OK( mp_init(&P) ); |
585 CHECK_MPI_OK( mp_init(&Q) ); | 1554 CHECK_MPI_OK( mp_init(&Q) ); |
586 CHECK_MPI_OK( mp_init(&G) ); | 1555 CHECK_MPI_OK( mp_init(&G) ); |
587 CHECK_MPI_OK( mp_init(&P_) ); | 1556 CHECK_MPI_OK( mp_init(&P_) ); |
588 CHECK_MPI_OK( mp_init(&Q_) ); | 1557 CHECK_MPI_OK( mp_init(&Q_) ); |
589 CHECK_MPI_OK( mp_init(&G_) ); | 1558 CHECK_MPI_OK( mp_init(&G_) ); |
590 CHECK_MPI_OK( mp_init(&r) ); | 1559 CHECK_MPI_OK( mp_init(&r) ); |
591 CHECK_MPI_OK( mp_init(&h) ); | 1560 CHECK_MPI_OK( mp_init(&h) ); |
592 *result = SECSuccess; | 1561 *result = SECSuccess; |
593 SECITEM_TO_MPINT(params->prime, &P); | 1562 SECITEM_TO_MPINT(params->prime, &P); |
594 SECITEM_TO_MPINT(params->subPrime, &Q); | 1563 SECITEM_TO_MPINT(params->subPrime, &Q); |
595 SECITEM_TO_MPINT(params->base, &G); | 1564 /* if G isn't specified, just check P and Q */ |
596 /* 1. Q is 160 bits long. */ | 1565 if (params->base.len != 0) { |
597 CHECKPARAM( mpl_significant_bits(&Q) == 160 ); | 1566 » SECITEM_TO_MPINT(params->base, &G); |
598 /* 2. P is one of the 9 valid lengths. */ | 1567 } |
1568 /* 1. Check (L,N) pair */ | |
1569 N = mpl_significant_bits(&Q); | |
599 L = mpl_significant_bits(&P); | 1570 L = mpl_significant_bits(&P); |
600 j = PQG_PBITS_TO_INDEX(L); | 1571 if (L < 1024) { |
601 CHECKPARAM( j >= 0 && j <= 8 ); | 1572 » /* handle DSA1 pqg parameters with less thatn 1024 bits*/ |
1573 » CHECKPARAM( N == DSA1_Q_BITS ); | |
1574 » j = PQG_PBITS_TO_INDEX(L); | |
1575 » CHECKPARAM( j >= 0 && j <= 8 ); | |
1576 » counter_max = 4096; | |
1577 } else { | |
1578 » /* handle DSA2 parameters (includes DSA1, 1024 bits) */ | |
1579 » CHECKPARAM(pqg_validate_dsa2(L, N) == SECSuccess); | |
1580 » counter_max = 4*L; | |
1581 } | |
602 /* 3. G < P */ | 1582 /* 3. G < P */ |
603 CHECKPARAM( mp_cmp(&G, &P) < 0 ); | 1583 if (params->base.len != 0) { |
1584 » CHECKPARAM( mp_cmp(&G, &P) < 0 ); | |
1585 } | |
604 /* 4. P % Q == 1 */ | 1586 /* 4. P % Q == 1 */ |
605 CHECK_MPI_OK( mp_mod(&P, &Q, &r) ); | 1587 CHECK_MPI_OK( mp_mod(&P, &Q, &r) ); |
606 CHECKPARAM( mp_cmp_d(&r, 1) == 0 ); | 1588 CHECKPARAM( mp_cmp_d(&r, 1) == 0 ); |
607 /* 5. Q is prime */ | 1589 /* 5. Q is prime */ |
608 CHECKPARAM( mpp_pprime(&Q, PQG_Q_PRIMALITY_TESTS) == MP_YES ); | 1590 CHECKPARAM( mpp_pprime(&Q, prime_testcount_q(L,N)) == MP_YES ); |
609 /* 6. P is prime */ | 1591 /* 6. P is prime */ |
610 CHECKPARAM( mpp_pprime(&P, PQG_P_PRIMALITY_TESTS) == MP_YES ); | 1592 CHECKPARAM( mpp_pprime(&P, prime_testcount_p(L,N)) == MP_YES ); |
611 /* Steps 7-12 are done only if the optional PQGVerify is supplied. */ | 1593 /* Steps 7-12 are done only if the optional PQGVerify is supplied. */ |
612 /* 7. counter < 4096 */ | 1594 /* continue processing P */ |
613 CHECKPARAM( vfy->counter < 4096 ); | 1595 /* 7. counter < 4*L */ |
614 /* 8. g >= 160 and g < 2048 (g is length of seed in bits) */ | 1596 CHECKPARAM( (vfy->counter == -1) || (vfy->counter < counter_max) ); |
1597 /* 8. g >= N and g < 2*L (g is length of seed in bits) */ | |
615 g = vfy->seed.len * 8; | 1598 g = vfy->seed.len * 8; |
616 CHECKPARAM( g >= 160 && g < 2048 ); | 1599 CHECKPARAM( g >= N && g < counter_max/2 ); |
617 /* 9. Q generated from SEED matches Q in PQGParams. */ | 1600 /* 9. Q generated from SEED matches Q in PQGParams. */ |
618 CHECK_SEC_OK( makeQfromSeed(g, &vfy->seed, &Q_) ); | 1601 /* This function checks all possible hash and generation types to |
1602 * find a Q_ which matches Q. */ | |
1603 CHECKPARAM( findQfromSeed(L, N, g, &vfy->seed, &Q, &Q_, &qseed_len, | |
1604 » » » » » &hashtype, &type) == SECSuccess ); | |
619 CHECKPARAM( mp_cmp(&Q, &Q_) == 0 ); | 1605 CHECKPARAM( mp_cmp(&Q, &Q_) == 0 ); |
620 /* 10. P generated from (L, counter, g, SEED, Q) matches P in PQGParams. */ | 1606 if (type == FIPS186_3_ST_TYPE) { |
621 n = (L - 1) / BITS_IN_Q; | 1607 » SECItem qseed = { 0, 0, 0 }; |
622 offset = vfy->counter * (n + 1) + 2; | 1608 » SECItem pseed = { 0, 0, 0 }; |
623 CHECK_SEC_OK( makePfromQandSeed(L, offset, g, &vfy->seed, &Q, &P_) ); | 1609 » int first_seed_len; |
624 CHECKPARAM( mp_cmp(&P, &P_) == 0 ); | 1610 » int pgen_counter = 0; |
625 /* Next two are optional: if h == 0 ignore */ | 1611 |
626 if (vfy->h.len == 0) goto cleanup; | 1612 » /* extract pseed and qseed from domain_parameter_seed, which is |
627 /* 11. 1 < h < P-1 */ | 1613 » * first_seed || pseed || qseed. qseed is first_seed + small_integer |
628 SECITEM_TO_MPINT(vfy->h, &h); | 1614 » * pseed is qseed + small_integer. This means most of the time |
629 CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); /* P is prime, p-1 == zero 1st bit */ | 1615 » * first_seed.len == qseed.len == pseed.len. Rarely qseed.len and/or |
630 CHECKPARAM( mp_cmp_d(&h, 1) > 0 && mp_cmp(&h, &P) ); | 1616 » * pseed.len will be one greater than first_seed.len, so we can |
1617 » * depend on the fact that | |
1618 » * first_seed.len = floor(domain_parameter_seed.len/3). | |
1619 » * findQfromSeed returned qseed.len, so we can calculate pseed.len as | |
1620 » * pseed.len = domain_parameter_seed.len - first_seed.len - qseed.len | |
1621 » * this is probably over kill, since 99.999% of the time they will all | |
1622 » * be equal. | |
1623 » * | |
1624 » * With the lengths, we can now find the offsets; | |
1625 » * first_seed.data = domain_parameter_seed.data + 0 | |
1626 » * pseed.data = domain_parameter_seed.data + first_seed.len | |
1627 » * qseed.data = domain_parameter_seed.data | |
1628 » * + domain_paramter_seed.len - qseed.len | |
1629 » * | |
1630 » */ | |
1631 » first_seed_len = vfy->seed.len/3; | |
1632 » CHECKPARAM(qseed_len < vfy->seed.len); | |
1633 » CHECKPARAM(first_seed_len*8 > N-1); | |
1634 » CHECKPARAM(first_seed_len+qseed_len < vfy->seed.len); | |
1635 » qseed.len = qseed_len; | |
1636 » qseed.data = vfy->seed.data + vfy->seed.len - qseed.len; | |
1637 » pseed.len = vfy->seed.len - (first_seed_len+qseed_len); | |
1638 » pseed.data = vfy->seed.data + first_seed_len; | |
1639 | |
1640 » /* | |
1641 » * now complete FIPS 186-3 A.1.2.1.2. Step 1 was completed | |
1642 » * above in our initial checks, Step 2 was completed by | |
1643 » * findQfromSeed */ | |
1644 | |
1645 » /* Step 3 (status, c0, prime_seed, prime_gen_counter) = | |
1646 » ** (ST_Random_Prime((ceil(length/2)+1, input_seed) | |
1647 » */ | |
1648 » CHECK_SEC_OK( makePrimefromSeedShaweTaylor(hashtype, (L+1)/2+1, | |
1649 » » » &qseed, &p0, &pseed_, &pgen_counter) ); | |
1650 » /* Steps 4-22 FIPS 186-3 appendix A.1.2.1.2 */ | |
1651 » CHECK_SEC_OK( makePrimefromPrimesShaweTaylor(hashtype, L, | |
1652 » » &p0, &Q_, &P_, &pseed_, &pgen_counter) ); | |
1653 » CHECKPARAM( mp_cmp(&P, &P_) == 0 ); | |
1654 » /* make sure pseed wasn't tampered with (since it is part of | |
1655 » * calculating G) */ | |
1656 » CHECKPARAM( SECITEM_CompareItem(&pseed, &pseed_) == SECEqual ); | |
1657 } else if (vfy->counter == -1) { | |
1658 » /* If counter is set to -1, we are really only verifying G, skip | |
1659 » * the remainder of the checks for P */ | |
1660 » CHECKPARAM(type != FIPS186_1_TYPE); /* we only do this for DSA2 */ | |
1661 } else { | |
1662 » /* 10. P generated from (L, counter, g, SEED, Q) matches P | |
1663 » * in PQGParams. */ | |
1664 » outlen = HASH_ResultLen(hashtype)*BITS_PER_BYTE; | |
1665 » n = (L - 1) / outlen; | |
1666 » offset = vfy->counter * (n + 1) + ((type == FIPS186_1_TYPE) ? 2 : 1); | |
1667 » CHECK_SEC_OK( makePfromQandSeed(hashtype, L, N, offset, g, &vfy->seed, | |
1668 » » » » » &Q, &P_) ); | |
1669 » CHECKPARAM( mp_cmp(&P, &P_) == 0 ); | |
1670 } | |
1671 | |
1672 /* now check G, skip if don't have a g */ | |
1673 if (params->base.len == 0) goto cleanup; | |
1674 | |
1675 /* first Always check that G is OK FIPS186-3 A.2.2 & A.2.4*/ | |
1676 /* 1. 2 < G < P-1 */ | |
1677 /* P is prime, p-1 == zero 1st bit */ | |
1678 CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); | |
1679 CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) < 0 ); | |
631 CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */ | 1680 CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */ |
632 /* 12. G generated from h matches G in PQGParams. */ | 1681 /* 2. verify g**q mod p == 1 */ |
633 CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) ); | 1682 CHECK_MPI_OK( mp_exptmod(&G, &Q, &P, &h) ); /* h = G ** Q mod P */ |
634 CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 ); | 1683 CHECKPARAM(mp_cmp_d(&h, 1) == 0); |
1684 | |
1685 /* no h, the above is the best we can do */ | |
1686 if (vfy->h.len == 0) { | |
1687 » if (type != FIPS186_1_TYPE) { | |
1688 » *result = SECWouldBlock; | |
1689 » } | |
1690 » goto cleanup; | |
1691 } | |
1692 | |
1693 /* | |
1694 * If h is one byte and FIPS186-3 was used to generate Q (we've verified | |
1695 * Q was generated from seed already, then we assume that FIPS 186-3 | |
1696 * appendix A.2.3 was used to generate G. Otherwise we assume A.2.1 was | |
1697 * used to generate G. | |
1698 */ | |
1699 if ((vfy->h.len == 1) && (type != FIPS186_1_TYPE)) { | |
1700 » /* A.2.3 */ | |
1701 » CHECK_SEC_OK(makeGfromIndex(hashtype, &P, &Q, &vfy->seed, | |
1702 » » » » vfy->h.data[0], &G_) ); | |
1703 » CHECKPARAM( mp_cmp(&G, &G_) == 0 ); | |
1704 } else { | |
1705 » int passed; | |
1706 » /* A.2.1 */ | |
1707 » SECITEM_TO_MPINT(vfy->h, &h); | |
1708 » /* 11. 1 < h < P-1 */ | |
1709 » /* P is prime, p-1 == zero 1st bit */ | |
1710 » CHECK_MPI_OK( mpl_set_bit(&P, 0, 0) ); | |
1711 » CHECKPARAM( mp_cmp_d(&G, 2) > 0 && mp_cmp(&G, &P) ); | |
1712 » CHECK_MPI_OK( mpl_set_bit(&P, 0, 1) ); /* set it back */ | |
1713 » /* 12. G generated from h matches G in PQGParams. */ | |
1714 » CHECK_SEC_OK( makeGfromH(&P, &Q, &h, &G_, &passed) ); | |
1715 » CHECKPARAM( passed && mp_cmp(&G, &G_) == 0 ); | |
1716 } | |
635 cleanup: | 1717 cleanup: |
1718 mp_clear(&p0); | |
636 mp_clear(&P); | 1719 mp_clear(&P); |
637 mp_clear(&Q); | 1720 mp_clear(&Q); |
638 mp_clear(&G); | 1721 mp_clear(&G); |
639 mp_clear(&P_); | 1722 mp_clear(&P_); |
640 mp_clear(&Q_); | 1723 mp_clear(&Q_); |
641 mp_clear(&G_); | 1724 mp_clear(&G_); |
642 mp_clear(&r); | 1725 mp_clear(&r); |
643 mp_clear(&h); | 1726 mp_clear(&h); |
1727 if (pseed_.data) { | |
1728 SECITEM_FreeItem(&pseed_,PR_FALSE); | |
1729 } | |
644 if (err) { | 1730 if (err) { |
645 MP_TO_SEC_ERROR(err); | 1731 MP_TO_SEC_ERROR(err); |
646 rv = SECFailure; | 1732 rv = SECFailure; |
647 } | 1733 } |
648 return rv; | 1734 return rv; |
649 } | 1735 } |
650 | 1736 |
651 /************************************************************************** | 1737 /************************************************************************** |
652 * Free the PQGParams struct and the things it points to. * | 1738 * Free the PQGParams struct and the things it points to. * |
653 **************************************************************************/ | 1739 **************************************************************************/ |
(...skipping 22 matching lines...) Expand all Loading... | |
676 if (vfy == NULL) | 1762 if (vfy == NULL) |
677 return; | 1763 return; |
678 if (vfy->arena != NULL) { | 1764 if (vfy->arena != NULL) { |
679 PORT_FreeArena(vfy->arena, PR_FALSE); /* don't zero it */ | 1765 PORT_FreeArena(vfy->arena, PR_FALSE); /* don't zero it */ |
680 } else { | 1766 } else { |
681 SECITEM_FreeItem(&vfy->seed, PR_FALSE); /* don't free seed */ | 1767 SECITEM_FreeItem(&vfy->seed, PR_FALSE); /* don't free seed */ |
682 SECITEM_FreeItem(&vfy->h, PR_FALSE); /* don't free h */ | 1768 SECITEM_FreeItem(&vfy->h, PR_FALSE); /* don't free h */ |
683 PORT_Free(vfy); | 1769 PORT_Free(vfy); |
684 } | 1770 } |
685 } | 1771 } |
OLD | NEW |