Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(645)

Unified Diff: chrome/common/metrics/entropy_provider_unittest.cc

Issue 10830318: Use a different algorithm with the low entropy source for field trials. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: Created 8 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: chrome/common/metrics/entropy_provider_unittest.cc
===================================================================
--- chrome/common/metrics/entropy_provider_unittest.cc (revision 0)
+++ chrome/common/metrics/entropy_provider_unittest.cc (revision 0)
@@ -0,0 +1,274 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <cmath>
+#include <limits>
+#include <numeric>
+
+#include "base/basictypes.h"
+#include "base/guid.h"
+#include "base/memory/scoped_ptr.h"
+#include "base/rand_util.h"
+#include "base/string_number_conversions.h"
+#include "chrome/common/metrics/entropy_provider.h"
+#include "testing/gtest/include/gtest/gtest.h"
+
+namespace {
+
+// Computes the standard deviation of distribution |values|.
+double ComputeStandardDeviation(const std::vector<int>& values) {
+ const int sum = std::accumulate(values.begin(), values.end(), 0.0);
+ const int mean = sum / values.size();
Ilya Sherman 2012/08/21 03:42:27 nit: Should this be a double rather than an int?
Alexei Svitkine (slow) 2012/08/21 14:25:49 Changed to use doubles throughout the function. (
+ const int sum_of_squares = std::inner_product(values.begin(), values.end(),
+ values.begin(), 0.0);
+ const double variance = static_cast<double>(sum_of_squares) /
+ values.size() - (mean * mean);
+ return std::sqrt(variance);
+}
+
+} // namespace
+
+
+class EntropyProviderTest : public testing::Test {
+ public:
+ // Computes SHA1-based entropy for the given |trial_name| based on
+ // |entropy_source|
+ double GenerateSHA1Entropy(const std::string& entropy_source,
+ const std::string& trial_name) {
+ SHA1EntropyProvider sha1_provider(entropy_source);
+ return sha1_provider.GetEntropyForTrial(trial_name);
+ }
+
+ // Generates permutation-based entropy for the given |trial_name| based on
+ // |entropy_source| which must be in the range [0, entropy_max).
+ double GeneratePermutedEntropy(uint16 entropy_source,
+ size_t entropy_max,
+ const std::string& trial_name) {
+ PermutedEntropyProvider permuted_provider(entropy_source, entropy_max);
+ return permuted_provider.GetEntropyForTrial(trial_name);
+ }
+};
+
+
+TEST_F(EntropyProviderTest, UseOneTimeRandomizationSHA1) {
+ // Simply asserts that two trials using one-time randomization
+ // that have different names, normally generate different results.
+ //
+ // Note that depending on the one-time random initialization, they
+ // _might_ actually give the same result, but we know that given
+ // the particular client_id we use for unit tests they won't.
+ base::FieldTrialList field_trial_list(new SHA1EntropyProvider("client_id"));
+ scoped_refptr<base::FieldTrial> trials[] = {
+ base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ };
+
+ for (size_t i = 0; i < arraysize(trials); ++i) {
+ trials[i]->UseOneTimeRandomization();
+
+ for (int j = 0; j < 100; ++j)
+ trials[i]->AppendGroup("", 1);
+ }
+
+ // The trials are most likely to give different results since they have
+ // different names.
+ ASSERT_NE(trials[0]->group(), trials[1]->group());
+ ASSERT_NE(trials[0]->group_name(), trials[1]->group_name());
+}
+
+TEST_F(EntropyProviderTest, UseOneTimeRandomizationPermuted) {
+ // Simply asserts that two trials using one-time randomization
+ // that have different names, normally generate different results.
+ //
+ // Note that depending on the one-time random initialization, they
+ // _might_ actually give the same result, but we know that given
+ // the particular client_id we use for unit tests they won't.
+ const size_t kMaxLowEntropySize = (1 << 13);
+ base::FieldTrialList field_trial_list(
+ new PermutedEntropyProvider(1234, kMaxLowEntropySize));
+ scoped_refptr<base::FieldTrial> trials[] = {
+ base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default",
+ base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL),
+ };
+
+ for (size_t i = 0; i < arraysize(trials); ++i) {
+ trials[i]->UseOneTimeRandomization();
+
+ for (int j = 0; j < 100; ++j)
+ trials[i]->AppendGroup("", 1);
+ }
+
+ // The trials are most likely to give different results since they have
+ // different names.
+ ASSERT_NE(trials[0]->group(), trials[1]->group());
+ ASSERT_NE(trials[0]->group_name(), trials[1]->group_name());
+}
+
+TEST_F(EntropyProviderTest, SHA1Entropy) {
+ const double results[] = {
+ GenerateSHA1Entropy("hi", "1"),
+ GenerateSHA1Entropy("there", "1"),
+ };
+ ASSERT_NE(results[0], results[1]);
+ for (size_t i = 0; i < arraysize(results); ++i) {
+ ASSERT_LE(0.0, results[i]);
+ ASSERT_GT(1.0, results[i]);
+ }
+
+ ASSERT_EQ(GenerateSHA1Entropy("yo", "1"),
+ GenerateSHA1Entropy("yo", "1"));
+ ASSERT_NE(GenerateSHA1Entropy("yo", "something"),
+ GenerateSHA1Entropy("yo", "else"));
+}
+
+TEST_F(EntropyProviderTest, PermutedEntropy) {
+ const size_t kMaxLowEntropySize = (1 << 13);
+ const double results[] = {
+ GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"),
+ GeneratePermutedEntropy(4321, kMaxLowEntropySize, "1"),
+ };
+ ASSERT_NE(results[0], results[1]);
+ for (size_t i = 0; i < arraysize(results); ++i) {
+ ASSERT_LE(0.0, results[i]);
+ ASSERT_GT(1.0, results[i]);
+ }
+
+ ASSERT_EQ(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"),
+ GeneratePermutedEntropy(1234, kMaxLowEntropySize, "1"));
+ ASSERT_NE(GeneratePermutedEntropy(1234, kMaxLowEntropySize, "something"),
+ GeneratePermutedEntropy(1234, kMaxLowEntropySize, "else"));
+}
+
+TEST_F(EntropyProviderTest, SHA1EntropyIsUniform) {
+ const size_t kMaxLowEntropySize = (1 << 13);
+ const int kBucketCount = 20;
+ const int kIterationCount = 100000;
Ilya Sherman 2012/08/21 03:42:27 nit: size_t throughout?
Alexei Svitkine (slow) 2012/08/21 14:25:49 Done.
+
+ const std::string trial_names[] = {
+ "TestTrial",
+ "AnotherTestTrial",
+ "NewTabButton",
+ };
+
+ for (size_t i = 0; i < arraysize(trial_names); ++i) {
+ std::vector<int> distribution(kBucketCount);
+
+ for (int j = 0; j < kIterationCount; ++j) {
+ // Use a random GUID + 13 bits of entropy to match how the
+ // SHA1EntropyProvider is used in metrics_service.cc.
+ const int low_entropy_source =
+ static_cast<uint16>(base::RandInt(0, kMaxLowEntropySize - 1));
+ const std::string high_entropy_source =
+ base::GenerateGUID() + base::IntToString(low_entropy_source);
+ const double entropy_value =
+ GenerateSHA1Entropy(high_entropy_source, trial_names[i]);
+ const int bucket = static_cast<int>(kBucketCount * entropy_value);
+ ASSERT_LT(bucket, kBucketCount);
+ distribution[bucket] += 1;
+ }
+
+ int min_value = std::numeric_limits<int>::max();
+ int max_value = std::numeric_limits<int>::min();
+ for (int j = 0; j < kBucketCount; ++j) {
+ min_value = std::min(min_value, distribution[j]);
+ max_value = std::max(max_value, distribution[j]);
+ }
+
+ // TODO(asvitkine): Figure out pass / fail criteria.
+ printf("min = %d, max = %d, stddev = %f\n", min_value, max_value,
+ ComputeStandardDeviation(distribution));
+ }
+}
+
+TEST_F(EntropyProviderTest, PermutedEntropyIsUniform) {
+ const size_t kMaxLowEntropySize = (1 << 13);
+ const int kBucketCount = 20;
+ const int kIterationCount = 100000;
+
+ const std::string trial_names[] = {
+ "TestTrial",
+ "AnotherTestTrial",
+ "NewTabButton",
+ };
+
+ for (size_t i = 0; i < arraysize(trial_names); ++i) {
+ std::vector<int> distribution(kBucketCount);
+
+ // Note: Given a trial name, the computed mapping will be the same.
+ // As a performance optimization, pre-compute the mapping once per trial
+ // name and index into it each iteration.
Ilya Sherman 2012/08/21 03:42:27 Is this performance optimization needed for the te
Alexei Svitkine (slow) 2012/08/21 14:25:49 Unfortunately, yes it is needed. Without it, this
+ std::vector<uint16> mapping(kMaxLowEntropySize);
+ metrics_internal::PermuteMappingUsingTrialName(trial_names[i], &mapping);
+
+ for (int j = 0; j < kIterationCount; ++j) {
+ const int low_entropy_source =
+ static_cast<uint16>(base::RandInt(0, kMaxLowEntropySize - 1));
+ const double entropy_value =
+ mapping[low_entropy_source] / static_cast<double>(kMaxLowEntropySize);
+ const int bucket = static_cast<int>(kBucketCount * entropy_value);
+ ASSERT_LT(bucket, kBucketCount);
+ distribution[bucket] += 1;
+ }
+
+ int min_value = std::numeric_limits<int>::max();
+ int max_value = std::numeric_limits<int>::min();
+ for (int j = 0; j < kBucketCount; ++j) {
+ min_value = std::min(min_value, distribution[j]);
+ max_value = std::max(max_value, distribution[j]);
+ }
+
+ // TODO(asvitkine): Figure out pass / fail criteria.
+ printf("min = %d, max = %d, stddev = %f\n", min_value, max_value,
+ ComputeStandardDeviation(distribution));
+ }
+}
+
+TEST_F(EntropyProviderTest, SeededRandGeneratorIsUniform) {
+ // Verifies that SeededRandGenerator has a uniform distribution.
+ //
+ // Mirrors RandUtilTest.RandGeneratorIsUniform in base/rand_util_unittest.cc.
+
+ const uint32 kTopOfRange = (std::numeric_limits<uint32>::max() / 4ULL) * 3ULL;
+ const uint32 kExpectedAverage = kTopOfRange / 2ULL;
+ const uint32 kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2%
+ const int kMinAttempts = 1000;
+ const int kMaxAttempts = 1000000;
+
+ const std::string trial_names[] = {
+ "TestTrial",
+ "AnotherTestTrial",
+ "NewTabButton",
+ };
+
+ for (size_t i = 0; i < arraysize(trial_names); ++i) {
+ const uint32 seed = metrics_internal::HashName(trial_names[i]);
+ metrics_internal::SeededRandGenerator rand_generator(seed);
+
+ double cumulative_average = 0.0;
+ int count = 0;
+ while (count < kMaxAttempts) {
+ uint32 value = rand_generator(kTopOfRange);
+ cumulative_average = (count * cumulative_average + value) / (count + 1);
+
+ // Don't quit too quickly for things to start converging, or we may have
+ // a false positive.
+ if (count > kMinAttempts &&
+ kExpectedAverage - kAllowedVariance < cumulative_average &&
+ cumulative_average < kExpectedAverage + kAllowedVariance) {
+ break;
+ }
+
+ ++count;
+ }
+
+ ASSERT_LT(count, kMaxAttempts) << "Expected average was " <<
+ kExpectedAverage << ", average ended at " << cumulative_average <<
+ ", for trial " << trial_names[i];
+ }
+}
+

Powered by Google App Engine
This is Rietveld 408576698