OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <limits> | |
6 | |
7 #include "base/basictypes.h" | |
8 #include "base/memory/scoped_ptr.h" | |
9 #include "base/rand_util.h" | |
10 #include "base/string_number_conversions.h" | |
11 #include "chrome/common/metrics/entropy_provider.h" | |
12 #include "testing/gtest/include/gtest/gtest.h" | |
13 | |
14 class EntropyProviderTest : public testing::Test { | |
15 public: | |
16 // Computes SHA1-based entropy for the given |trial_name| based on | |
17 // |entropy_source| | |
18 double GenerateSHA1Entropy(const std::string& entropy_source, | |
19 const std::string& trial_name) { | |
20 scoped_ptr<SHA1EntropyProvider> sha1_provider( | |
21 new SHA1EntropyProvider(entropy_source)); | |
22 return sha1_provider->GetEntropyForTrial(trial_name); | |
23 } | |
24 | |
25 // Generates permutation-based entropy for the given |trial_name| based on | |
26 // |entropy_source| which must be in the range [0, entropy_max). | |
27 double GeneratePermutedEntropy(uint16 entropy_source, | |
28 size_t entropy_max, | |
29 const std::string& trial_name) { | |
30 scoped_ptr<PermutedEntropyProvider> permuted_provider( | |
31 new PermutedEntropyProvider(entropy_source, entropy_max)); | |
Ilya Sherman
2012/08/17 07:34:28
nit: Why not just stack-allocate this guy?
Alexei Svitkine (slow)
2012/08/17 14:08:59
Good point. Done.
| |
32 return permuted_provider->GetEntropyForTrial(trial_name); | |
33 } | |
34 }; | |
35 | |
36 | |
37 TEST_F(EntropyProviderTest, UseOneTimeRandomizationSHA1) { | |
38 // Simply asserts that two trials using one-time randomization | |
39 // that have different names, normally generate different results. | |
40 // | |
41 // Note that depending on the one-time random initialization, they | |
42 // _might_ actually give the same result, but we know that given | |
43 // the particular client_id we use for unit tests they won't. | |
44 base::FieldTrialList field_trial_list(new SHA1EntropyProvider("client_id")); | |
45 scoped_refptr<base::FieldTrial> trials[] = { | |
46 base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default", | |
47 base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL), | |
48 base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default", | |
49 base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL), | |
50 }; | |
51 | |
52 for (size_t i = 0; i < arraysize(trials); ++i) { | |
53 trials[i]->UseOneTimeRandomization(); | |
54 | |
55 for (int j = 0; j < 100; ++j) | |
56 trials[i]->AppendGroup("", 1); | |
57 } | |
58 | |
59 // The trials are most likely to give different results since they have | |
60 // different names. | |
61 ASSERT_NE(trials[0]->group(), trials[1]->group()); | |
62 ASSERT_NE(trials[0]->group_name(), trials[1]->group_name()); | |
63 } | |
64 | |
65 TEST_F(EntropyProviderTest, UseOneTimeRandomizationPermuted) { | |
66 // Simply asserts that two trials using one-time randomization | |
67 // that have different names, normally generate different results. | |
68 // | |
69 // Note that depending on the one-time random initialization, they | |
70 // _might_ actually give the same result, but we know that given | |
71 // the particular client_id we use for unit tests they won't. | |
72 const size_t kMaxEntropySize = (1 << 13); | |
73 base::FieldTrialList field_trial_list( | |
74 new PermutedEntropyProvider(1234, kMaxEntropySize)); | |
75 scoped_refptr<base::FieldTrial> trials[] = { | |
76 base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default", | |
77 base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL), | |
78 base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default", | |
79 base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL), | |
80 }; | |
81 | |
82 for (size_t i = 0; i < arraysize(trials); ++i) { | |
83 trials[i]->UseOneTimeRandomization(); | |
84 | |
85 for (int j = 0; j < 100; ++j) | |
86 trials[i]->AppendGroup("", 1); | |
87 } | |
88 | |
89 // The trials are most likely to give different results since they have | |
90 // different names. | |
91 ASSERT_NE(trials[0]->group(), trials[1]->group()); | |
92 ASSERT_NE(trials[0]->group_name(), trials[1]->group_name()); | |
93 } | |
94 | |
95 TEST_F(EntropyProviderTest, SHA1Entropy) { | |
96 double results[] = { | |
97 GenerateSHA1Entropy("hi", "1"), | |
98 GenerateSHA1Entropy("there", "1"), | |
99 }; | |
100 ASSERT_NE(results[0], results[1]); | |
101 for (size_t i = 0; i < arraysize(results); ++i) { | |
102 ASSERT_LE(0.0, results[i]); | |
103 ASSERT_GT(1.0, results[i]); | |
104 } | |
105 | |
106 ASSERT_EQ(GenerateSHA1Entropy("yo", "1"), | |
107 GenerateSHA1Entropy("yo", "1")); | |
108 ASSERT_NE(GenerateSHA1Entropy("yo", "something"), | |
109 GenerateSHA1Entropy("yo", "else")); | |
110 } | |
111 | |
112 TEST_F(EntropyProviderTest, PermutedEntropy) { | |
113 const size_t kMaxEntropySize = (1 << 13); | |
114 double results[] = { | |
115 GeneratePermutedEntropy(1234, kMaxEntropySize, "1"), | |
116 GeneratePermutedEntropy(4321, kMaxEntropySize, "1"), | |
117 }; | |
118 ASSERT_NE(results[0], results[1]); | |
119 for (size_t i = 0; i < arraysize(results); ++i) { | |
120 ASSERT_LE(0.0, results[i]); | |
121 ASSERT_GT(1.0, results[i]); | |
122 } | |
123 | |
124 ASSERT_EQ(GeneratePermutedEntropy(1234, kMaxEntropySize, "1"), | |
125 GeneratePermutedEntropy(1234, kMaxEntropySize, "1")); | |
126 ASSERT_NE(GeneratePermutedEntropy(1234, kMaxEntropySize, "something"), | |
127 GeneratePermutedEntropy(1234, kMaxEntropySize, "else")); | |
128 } | |
129 | |
130 TEST_F(EntropyProviderTest, SHA1EntropyIsUniform) { | |
131 // Choose a random start number but go sequentially from there, so | |
132 // that each test tries a different range but we never provide uniformly | |
133 // distributed input data. | |
134 int current_number = base::RandInt(0, std::numeric_limits<int>::max()); | |
Ilya Sherman
2012/08/17 07:34:28
We should print the seed on failure, so that failu
| |
135 | |
136 // The expected value of a random distribution is the average over all | |
137 // samples as the number of samples approaches infinity. For a uniform | |
138 // distribution from [0.0, 1.0) this would be 0.5. | |
139 // | |
140 // We do kSamplesBetweenChecks at a time and check if the value has converged | |
141 // to a narrow interval around 0.5. A non-uniform distribution would likely | |
142 // converge at something different, or not converge consistently within this | |
143 // range (i.e. the test would start timing out occasionally). | |
Ilya Sherman
2012/08/17 07:34:28
Hmm, this sounds like it's just checking that the
Alexei Svitkine (slow)
2012/08/20 16:02:55
I've now replaces this test with one that distribu
| |
144 int kSamplesBetweenChecks = 300; | |
145 int num_samples = 0; | |
146 double total_value = 0.0; | |
147 while (true) { | |
Ilya Sherman
2012/08/17 07:34:28
Rather than having a while (true) loop, let's figu
| |
148 for (int i = 0; i < kSamplesBetweenChecks; ++i) { | |
149 total_value += GenerateSHA1Entropy( | |
150 base::IntToString(current_number++), "salt"); | |
151 num_samples++; | |
152 } | |
153 | |
154 double average = total_value / num_samples; | |
155 double kExpectedMin = 0.48; | |
156 double kExpectedMax = 0.52; | |
Ilya Sherman
2012/08/17 07:34:28
This is a pretty big range for the high-entropy so
| |
157 | |
158 if (num_samples > 1000 && | |
159 (average < kExpectedMin || average > kExpectedMax)) { | |
160 // Only printed once we have enough samples that it's very unlikely | |
161 // things haven't converged. | |
162 printf("After %d samples, the average was %f, outside the expected\n" | |
163 "range (%f, %f). We will add more samples and check after every\n" | |
164 "%d samples. If the average does not converge, something\n" | |
165 "is broken. If it does converge, the test will pass.\n", | |
166 num_samples, average, | |
167 kExpectedMin, kExpectedMax, kSamplesBetweenChecks); | |
168 } else { | |
169 // Success. | |
170 break; | |
171 } | |
172 } | |
173 } | |
174 | |
175 TEST_F(EntropyProviderTest, PermutedEntropyIsUniform) { | |
176 // Choose a random start number but go sequentially from there, so | |
177 // that each test tries a different range but we never provide uniformly | |
178 // distributed input data. | |
179 const size_t kMaxEntropySize = (1 << 13); | |
180 int current_number = base::RandInt(0, kMaxEntropySize - 1); | |
181 | |
182 // The expected value of a random distribution is the average over all | |
183 // samples as the number of samples approaches infinity. For a uniform | |
184 // distribution from [0.0, 1.0) this would be 0.5. | |
185 // | |
186 // We do kSamplesBetweenChecks at a time and check if the value has converged | |
187 // to a narrow interval around 0.5. A non-uniform distribution would likely | |
188 // converge at something different, or not converge consistently within this | |
189 // range (i.e. the test would start timing out occasionally). | |
190 int kSamplesBetweenChecks = 300; | |
191 int num_samples = 0; | |
192 double total_value = 0.0; | |
193 while (true) { | |
194 for (int i = 0; i < kSamplesBetweenChecks; ++i) { | |
195 total_value += GeneratePermutedEntropy(current_number++ % kMaxEntropySize, | |
196 kMaxEntropySize, "salt"); | |
197 num_samples++; | |
198 } | |
199 | |
200 double average = total_value / num_samples; | |
201 double kExpectedMin = 0.48; | |
202 double kExpectedMax = 0.52; | |
203 | |
204 if (num_samples > 1000 && | |
205 (average < kExpectedMin || average > kExpectedMax)) { | |
206 // Only printed once we have enough samples that it's very unlikely | |
207 // things haven't converged. | |
208 printf("After %d samples, the average was %f, outside the expected\n" | |
209 "range (%f, %f). We will add more samples and check after every\n" | |
210 "%d samples. If the average does not converge, something\n" | |
211 "is broken. If it does converge, the test will pass.\n", | |
212 num_samples, average, | |
213 kExpectedMin, kExpectedMax, kSamplesBetweenChecks); | |
214 } else { | |
215 // Success. | |
216 break; | |
217 } | |
218 } | |
219 } | |
220 | |
221 TEST_F(EntropyProviderTest, SeededRandGeneratorIsUniform) { | |
222 // Verifies. that SeededRandGenerator has a uniform distribution. | |
223 // | |
224 // Mirrors RandUtilTest.RandGeneratorIsUniform in base/rand_util_unittest.cc. | |
225 | |
226 const uint32 kTopOfRange = (std::numeric_limits<uint32>::max() / 4ULL) * 3ULL; | |
227 const uint32 kExpectedAverage = kTopOfRange / 2ULL; | |
228 const uint32 kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2% | |
229 const int kMinAttempts = 1000; | |
230 const int kMaxAttempts = 1000000; | |
231 | |
232 const std::string trial_names[] = { | |
233 "TestTrial", | |
234 "AnotherTestTrial", | |
235 "NewTabButton", | |
236 }; | |
237 | |
238 for (size_t i = 0; i < arraysize(trial_names); ++i) { | |
239 const uint32 seed = internal::HashName(trial_names[i]); | |
240 internal::SeededRandGenerator rand_generator(seed); | |
241 | |
242 double cumulative_average = 0.0; | |
243 int count = 0; | |
244 while (count < kMaxAttempts) { | |
245 uint32 value = rand_generator(kTopOfRange); | |
246 cumulative_average = (count * cumulative_average + value) / (count + 1); | |
247 | |
248 // Don't quit too quickly for things to start converging, or we may have | |
249 // a false positive. | |
250 if (count > kMinAttempts && | |
251 kExpectedAverage - kAllowedVariance < cumulative_average && | |
252 cumulative_average < kExpectedAverage + kAllowedVariance) { | |
253 break; | |
254 } | |
255 | |
256 ++count; | |
257 } | |
258 | |
259 ASSERT_LT(count, kMaxAttempts) << "Expected average was " << | |
260 kExpectedAverage << ", average ended at " << cumulative_average; | |
261 } | |
262 } | |
263 | |
OLD | NEW |