OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include <limits> |
| 6 |
| 7 #include "base/basictypes.h" |
| 8 #include "base/memory/scoped_ptr.h" |
| 9 #include "base/rand_util.h" |
| 10 #include "base/string_number_conversions.h" |
| 11 #include "chrome/common/metrics/entropy_provider.h" |
| 12 #include "testing/gtest/include/gtest/gtest.h" |
| 13 |
| 14 class EntropyProviderTest : public testing::Test { |
| 15 public: |
| 16 // Computes SHA1-based entropy for the given |trial_name| based on |
| 17 // |entropy_source| |
| 18 double GenerateSHA1Entropy(const std::string& entropy_source, |
| 19 const std::string& trial_name) { |
| 20 scoped_ptr<SHA1EntropyProvider> sha1_provider( |
| 21 new SHA1EntropyProvider(entropy_source)); |
| 22 return sha1_provider->GetEntropyForTrial(trial_name); |
| 23 } |
| 24 |
| 25 // Generates permutation-based entropy for the given |trial_name| based on |
| 26 // |entropy_source| which must be in the range [0, entropy_max). |
| 27 double GeneratePermutedEntropy(uint16 entropy_source, |
| 28 size_t entropy_max, |
| 29 const std::string& trial_name) { |
| 30 scoped_ptr<PermutedEntropyProvider> permuted_provider( |
| 31 new PermutedEntropyProvider(entropy_source, entropy_max)); |
| 32 return permuted_provider->GetEntropyForTrial(trial_name); |
| 33 } |
| 34 }; |
| 35 |
| 36 |
| 37 TEST_F(EntropyProviderTest, UseOneTimeRandomizationSHA1) { |
| 38 // Simply asserts that two trials using one-time randomization |
| 39 // that have different names, normally generate different results. |
| 40 // |
| 41 // Note that depending on the one-time random initialization, they |
| 42 // _might_ actually give the same result, but we know that given |
| 43 // the particular client_id we use for unit tests they won't. |
| 44 base::FieldTrialList field_trial_list(new SHA1EntropyProvider("client_id")); |
| 45 scoped_refptr<base::FieldTrial> trials[] = { |
| 46 base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default", |
| 47 base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL), |
| 48 base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default", |
| 49 base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL), |
| 50 }; |
| 51 |
| 52 for (size_t i = 0; i < arraysize(trials); ++i) { |
| 53 trials[i]->UseOneTimeRandomization(); |
| 54 |
| 55 for (int j = 0; j < 100; ++j) |
| 56 trials[i]->AppendGroup("", 1); |
| 57 } |
| 58 |
| 59 // The trials are most likely to give different results since they have |
| 60 // different names. |
| 61 ASSERT_NE(trials[0]->group(), trials[1]->group()); |
| 62 ASSERT_NE(trials[0]->group_name(), trials[1]->group_name()); |
| 63 } |
| 64 |
| 65 TEST_F(EntropyProviderTest, UseOneTimeRandomizationPermuted) { |
| 66 // Simply asserts that two trials using one-time randomization |
| 67 // that have different names, normally generate different results. |
| 68 // |
| 69 // Note that depending on the one-time random initialization, they |
| 70 // _might_ actually give the same result, but we know that given |
| 71 // the particular client_id we use for unit tests they won't. |
| 72 const size_t kMaxEntropySize = (1 << 13); |
| 73 base::FieldTrialList field_trial_list( |
| 74 new PermutedEntropyProvider(1234, kMaxEntropySize)); |
| 75 scoped_refptr<base::FieldTrial> trials[] = { |
| 76 base::FieldTrialList::FactoryGetFieldTrial("one", 100, "default", |
| 77 base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL), |
| 78 base::FieldTrialList::FactoryGetFieldTrial("two", 100, "default", |
| 79 base::FieldTrialList::kExpirationYearInFuture, 1, 1, NULL), |
| 80 }; |
| 81 |
| 82 for (size_t i = 0; i < arraysize(trials); ++i) { |
| 83 trials[i]->UseOneTimeRandomization(); |
| 84 |
| 85 for (int j = 0; j < 100; ++j) |
| 86 trials[i]->AppendGroup("", 1); |
| 87 } |
| 88 |
| 89 // The trials are most likely to give different results since they have |
| 90 // different names. |
| 91 ASSERT_NE(trials[0]->group(), trials[1]->group()); |
| 92 ASSERT_NE(trials[0]->group_name(), trials[1]->group_name()); |
| 93 } |
| 94 |
| 95 TEST_F(EntropyProviderTest, SHA1Entropy) { |
| 96 double results[] = { |
| 97 GenerateSHA1Entropy("hi", "1"), |
| 98 GenerateSHA1Entropy("there", "1"), |
| 99 }; |
| 100 ASSERT_NE(results[0], results[1]); |
| 101 for (size_t i = 0; i < arraysize(results); ++i) { |
| 102 ASSERT_LE(0.0, results[i]); |
| 103 ASSERT_GT(1.0, results[i]); |
| 104 } |
| 105 |
| 106 ASSERT_EQ(GenerateSHA1Entropy("yo", "1"), |
| 107 GenerateSHA1Entropy("yo", "1")); |
| 108 ASSERT_NE(GenerateSHA1Entropy("yo", "something"), |
| 109 GenerateSHA1Entropy("yo", "else")); |
| 110 } |
| 111 |
| 112 TEST_F(EntropyProviderTest, PermutedEntropy) { |
| 113 const size_t kMaxEntropySize = (1 << 13); |
| 114 double results[] = { |
| 115 GeneratePermutedEntropy(1234, kMaxEntropySize, "1"), |
| 116 GeneratePermutedEntropy(4321, kMaxEntropySize, "1"), |
| 117 }; |
| 118 ASSERT_NE(results[0], results[1]); |
| 119 for (size_t i = 0; i < arraysize(results); ++i) { |
| 120 ASSERT_LE(0.0, results[i]); |
| 121 ASSERT_GT(1.0, results[i]); |
| 122 } |
| 123 |
| 124 ASSERT_EQ(GeneratePermutedEntropy(1234, kMaxEntropySize, "1"), |
| 125 GeneratePermutedEntropy(1234, kMaxEntropySize, "1")); |
| 126 ASSERT_NE(GeneratePermutedEntropy(1234, kMaxEntropySize, "something"), |
| 127 GeneratePermutedEntropy(1234, kMaxEntropySize, "else")); |
| 128 } |
| 129 |
| 130 TEST_F(EntropyProviderTest, SHA1EntropyIsUniform) { |
| 131 // Choose a random start number but go sequentially from there, so |
| 132 // that each test tries a different range but we never provide uniformly |
| 133 // distributed input data. |
| 134 int current_number = base::RandInt(0, std::numeric_limits<int>::max()); |
| 135 |
| 136 // The expected value of a random distribution is the average over all |
| 137 // samples as the number of samples approaches infinity. For a uniform |
| 138 // distribution from [0.0, 1.0) this would be 0.5. |
| 139 // |
| 140 // We do kSamplesBetweenChecks at a time and check if the value has converged |
| 141 // to a narrow interval around 0.5. A non-uniform distribution would likely |
| 142 // converge at something different, or not converge consistently within this |
| 143 // range (i.e. the test would start timing out occasionally). |
| 144 int kSamplesBetweenChecks = 300; |
| 145 int num_samples = 0; |
| 146 double total_value = 0.0; |
| 147 while (true) { |
| 148 for (int i = 0; i < kSamplesBetweenChecks; ++i) { |
| 149 total_value += GenerateSHA1Entropy( |
| 150 base::IntToString(current_number++), "salt"); |
| 151 num_samples++; |
| 152 } |
| 153 |
| 154 double average = total_value / num_samples; |
| 155 double kExpectedMin = 0.48; |
| 156 double kExpectedMax = 0.52; |
| 157 |
| 158 if (num_samples > 1000 && |
| 159 (average < kExpectedMin || average > kExpectedMax)) { |
| 160 // Only printed once we have enough samples that it's very unlikely |
| 161 // things haven't converged. |
| 162 printf("After %d samples, the average was %f, outside the expected\n" |
| 163 "range (%f, %f). We will add more samples and check after every\n" |
| 164 "%d samples. If the average does not converge, something\n" |
| 165 "is broken. If it does converge, the test will pass.\n", |
| 166 num_samples, average, |
| 167 kExpectedMin, kExpectedMax, kSamplesBetweenChecks); |
| 168 } else { |
| 169 // Success. |
| 170 break; |
| 171 } |
| 172 } |
| 173 } |
| 174 |
| 175 TEST_F(EntropyProviderTest, PermutedEntropyIsUniform) { |
| 176 // Choose a random start number but go sequentially from there, so |
| 177 // that each test tries a different range but we never provide uniformly |
| 178 // distributed input data. |
| 179 const size_t kMaxEntropySize = (1 << 13); |
| 180 int current_number = base::RandInt(0, kMaxEntropySize - 1); |
| 181 |
| 182 // The expected value of a random distribution is the average over all |
| 183 // samples as the number of samples approaches infinity. For a uniform |
| 184 // distribution from [0.0, 1.0) this would be 0.5. |
| 185 // |
| 186 // We do kSamplesBetweenChecks at a time and check if the value has converged |
| 187 // to a narrow interval around 0.5. A non-uniform distribution would likely |
| 188 // converge at something different, or not converge consistently within this |
| 189 // range (i.e. the test would start timing out occasionally). |
| 190 int kSamplesBetweenChecks = 300; |
| 191 int num_samples = 0; |
| 192 double total_value = 0.0; |
| 193 while (true) { |
| 194 for (int i = 0; i < kSamplesBetweenChecks; ++i) { |
| 195 total_value += GeneratePermutedEntropy(current_number++ % kMaxEntropySize, |
| 196 kMaxEntropySize, "salt"); |
| 197 num_samples++; |
| 198 } |
| 199 |
| 200 double average = total_value / num_samples; |
| 201 double kExpectedMin = 0.48; |
| 202 double kExpectedMax = 0.52; |
| 203 |
| 204 if (num_samples > 1000 && |
| 205 (average < kExpectedMin || average > kExpectedMax)) { |
| 206 // Only printed once we have enough samples that it's very unlikely |
| 207 // things haven't converged. |
| 208 printf("After %d samples, the average was %f, outside the expected\n" |
| 209 "range (%f, %f). We will add more samples and check after every\n" |
| 210 "%d samples. If the average does not converge, something\n" |
| 211 "is broken. If it does converge, the test will pass.\n", |
| 212 num_samples, average, |
| 213 kExpectedMin, kExpectedMax, kSamplesBetweenChecks); |
| 214 } else { |
| 215 // Success. |
| 216 break; |
| 217 } |
| 218 } |
| 219 } |
| 220 |
| 221 TEST(RandUtilTest, SeededRandGeneratorIsUniform) { |
| 222 // Verifies. that SeededRandGenerator has a uniform distribution. |
| 223 // |
| 224 // Mirrors RandUtilTest.RandGeneratorIsUniform in base/rand_util_unittest.cc. |
| 225 |
| 226 const uint64 kTopOfRange = (std::numeric_limits<uint64>::max() / 4ULL) * 3ULL; |
| 227 const uint64 kExpectedAverage = kTopOfRange / 2ULL; |
| 228 const uint64 kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2% |
| 229 const int kMinAttempts = 1000; |
| 230 const int kMaxAttempts = 1000000; |
| 231 |
| 232 const std::string trial_names[] = { |
| 233 "TestTrial", |
| 234 "AnotherTestTrial", |
| 235 "NewTabButton", |
| 236 }; |
| 237 |
| 238 for (size_t i = 0; i < arraysize(trial_names); ++i) { |
| 239 const uint32 seed = internal::HashName(trial_names[i]); |
| 240 internal::SeededRandGenerator rand_generator(seed); |
| 241 |
| 242 double cumulative_average = 0.0; |
| 243 int count = 0; |
| 244 while (count < kMaxAttempts) { |
| 245 uint64 value = rand_generator(kTopOfRange); |
| 246 cumulative_average = (count * cumulative_average + value) / (count + 1); |
| 247 |
| 248 // Don't quit too quickly for things to start converging, or we may have |
| 249 // a false positive. |
| 250 if (count > kMinAttempts && |
| 251 kExpectedAverage - kAllowedVariance < cumulative_average && |
| 252 cumulative_average < kExpectedAverage + kAllowedVariance) { |
| 253 break; |
| 254 } |
| 255 |
| 256 ++count; |
| 257 } |
| 258 |
| 259 ASSERT_LT(count, kMaxAttempts) << "Expected average was " << |
| 260 kExpectedAverage << ", average ended at " << cumulative_average; |
| 261 } |
| 262 } |
| 263 |
OLD | NEW |