| Index: src/hydrogen.cc
|
| diff --git a/src/hydrogen.cc b/src/hydrogen.cc
|
| index 54e44c077011845addf101f2726818ec2b06316f..ca1bc7b482954545305f9eddb4e94ae8bebe0367 100644
|
| --- a/src/hydrogen.cc
|
| +++ b/src/hydrogen.cc
|
| @@ -694,6 +694,7 @@ HGraph::HGraph(CompilationInfo* info)
|
| blocks_(8, info->zone()),
|
| values_(16, info->zone()),
|
| phi_list_(NULL),
|
| + uint32_instructions_(NULL),
|
| info_(info),
|
| zone_(info->zone()),
|
| is_recursive_(false) {
|
| @@ -2723,6 +2724,226 @@ void HGraph::MarkDeoptimizeOnUndefined() {
|
| }
|
|
|
|
|
| +// Discover instructions that can be marked with kUint32 flag allowing
|
| +// them to produce full range uint32 values.
|
| +class Uint32Analysis BASE_EMBEDDED {
|
| + public:
|
| + explicit Uint32Analysis(Zone* zone) : zone_(zone), phis_(4, zone) { }
|
| +
|
| + void Analyze(HInstruction* current);
|
| +
|
| + void UnmarkUnsafePhis();
|
| +
|
| + private:
|
| + bool IsSafeUint32Use(HValue* val, HValue* use);
|
| + bool Uint32UsesAreSafe(HValue* uint32val);
|
| + bool CheckPhiOperands(HPhi* phi);
|
| + void UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist);
|
| +
|
| + Zone* zone_;
|
| + ZoneList<HPhi*> phis_;
|
| +};
|
| +
|
| +
|
| +bool Uint32Analysis::IsSafeUint32Use(HValue* val, HValue* use) {
|
| + // Operations that operatate on bits are safe.
|
| + if (use->IsBitwise() ||
|
| + use->IsShl() ||
|
| + use->IsSar() ||
|
| + use->IsShr() ||
|
| + use->IsBitNot()) {
|
| + return true;
|
| + } else if (use->IsChange() || use->IsSimulate()) {
|
| + // Conversions and deoptimization have special support for unt32.
|
| + return true;
|
| + } else if (use->IsStoreKeyedSpecializedArrayElement()) {
|
| + // Storing a value into an external integer array is a bit level operation.
|
| + HStoreKeyedSpecializedArrayElement* store =
|
| + HStoreKeyedSpecializedArrayElement::cast(use);
|
| +
|
| + if (store->value() == val) {
|
| + // Clamping or a conversion to double should have beed inserted.
|
| + ASSERT(store->elements_kind() != EXTERNAL_PIXEL_ELEMENTS);
|
| + ASSERT(store->elements_kind() != EXTERNAL_FLOAT_ELEMENTS);
|
| + ASSERT(store->elements_kind() != EXTERNAL_DOUBLE_ELEMENTS);
|
| + return true;
|
| + }
|
| + }
|
| +
|
| + return false;
|
| +}
|
| +
|
| +
|
| +// Iterate over all uses and verify that they are uint32 safe: either don't
|
| +// distinguish between int32 and uint32 due to their bitwise nature or
|
| +// have special support for uint32 values.
|
| +// Encountered phis are optimisitically treated as safe uint32 uses,
|
| +// marked with kUint32 flag and collected in the phis_ list. A separate
|
| +// path will be performed later by UnmarkUnsafePhis to clear kUint32 from
|
| +// phis that are not actually uint32-safe (it requries fix point iteration).
|
| +bool Uint32Analysis::Uint32UsesAreSafe(HValue* uint32val) {
|
| + bool collect_phi_uses = false;
|
| + for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) {
|
| + HValue* use = it.value();
|
| +
|
| + if (use->IsPhi()) {
|
| + if (!use->CheckFlag(HInstruction::kUint32)) {
|
| + // There is a phi use of this value from a phis that is not yet
|
| + // collected in phis_ array. Separate pass is required.
|
| + collect_phi_uses = true;
|
| + }
|
| +
|
| + // Optimistically treat phis as uint32 safe.
|
| + continue;
|
| + }
|
| +
|
| + if (!IsSafeUint32Use(uint32val, use)) {
|
| + return false;
|
| + }
|
| + }
|
| +
|
| + if (collect_phi_uses) {
|
| + for (HUseIterator it(uint32val->uses()); !it.Done(); it.Advance()) {
|
| + HValue* use = it.value();
|
| +
|
| + // There is a phi use of this value from a phis that is not yet
|
| + // collected in phis_ array. Separate pass is required.
|
| + if (use->IsPhi() && !use->CheckFlag(HInstruction::kUint32)) {
|
| + use->SetFlag(HInstruction::kUint32);
|
| + phis_.Add(HPhi::cast(use), zone_);
|
| + }
|
| + }
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// Analyze instruction and mark it with kUint32 if all its uses are uint32
|
| +// safe.
|
| +void Uint32Analysis::Analyze(HInstruction* current) {
|
| + if (Uint32UsesAreSafe(current)) current->SetFlag(HInstruction::kUint32);
|
| +}
|
| +
|
| +
|
| +// Check if all operands to the given phi are marked with kUint32 flag.
|
| +bool Uint32Analysis::CheckPhiOperands(HPhi* phi) {
|
| + if (!phi->CheckFlag(HInstruction::kUint32)) {
|
| + // This phi is not uint32 safe. No need to check operands.
|
| + return false;
|
| + }
|
| +
|
| + for (int j = 0; j < phi->OperandCount(); j++) {
|
| + HValue* operand = phi->OperandAt(j);
|
| + if (!operand->CheckFlag(HInstruction::kUint32)) {
|
| + // Lazyly mark constants that fit into uint32 range with kUint32 flag.
|
| + if (operand->IsConstant() &&
|
| + HConstant::cast(operand)->IsUint32()) {
|
| + operand->SetFlag(HInstruction::kUint32);
|
| + continue;
|
| + }
|
| +
|
| + // This phi is not safe, some operands are not uint32 values.
|
| + return false;
|
| + }
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// Remove kUint32 flag from the phi itself and its operands. If any operand
|
| +// was a phi marked with kUint32 place it into a worklist for
|
| +// transitive clearing of kUint32 flag.
|
| +void Uint32Analysis::UnmarkPhi(HPhi* phi, ZoneList<HPhi*>* worklist) {
|
| + phi->ClearFlag(HInstruction::kUint32);
|
| + for (int j = 0; j < phi->OperandCount(); j++) {
|
| + HValue* operand = phi->OperandAt(j);
|
| + if (operand->CheckFlag(HInstruction::kUint32)) {
|
| + operand->ClearFlag(HInstruction::kUint32);
|
| + if (operand->IsPhi()) {
|
| + worklist->Add(HPhi::cast(operand), zone_);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Uint32Analysis::UnmarkUnsafePhis() {
|
| + // No phis were collected. Nothing to do.
|
| + if (phis_.length() == 0) return;
|
| +
|
| + // Worklist used to transitively clear kUint32 from phis that
|
| + // are used as arguments to other phis.
|
| + ZoneList<HPhi*> worklist(phis_.length(), zone_);
|
| +
|
| + // Phi can be used as a uint32 value if and only if
|
| + // all its operands are uint32 values and all its
|
| + // uses are uint32 safe.
|
| +
|
| + // Iterate over collected phis and unmark those that
|
| + // are unsafe. When unmarking phi unmark its operands
|
| + // and add it to the worklist if it is a phi as well.
|
| + // Phis that are still marked as safe are shifted down
|
| + // so that all safe phis form a prefix of the phis_ array.
|
| + int phi_count = 0;
|
| + for (int i = 0; i < phis_.length(); i++) {
|
| + HPhi* phi = phis_[i];
|
| +
|
| + if (CheckPhiOperands(phi) && Uint32UsesAreSafe(phi)) {
|
| + phis_[phi_count++] = phi;
|
| + } else {
|
| + UnmarkPhi(phi, &worklist);
|
| + }
|
| + }
|
| +
|
| + // Now phis array contains only those phis that have safe
|
| + // non-phi uses. Start transitively clearing kUint32 flag
|
| + // from phi operands of discovered non-safe phies until
|
| + // only safe phies are left.
|
| + while (!worklist.is_empty()) {
|
| + while (!worklist.is_empty()) {
|
| + HPhi* phi = worklist.RemoveLast();
|
| + UnmarkPhi(phi, &worklist);
|
| + }
|
| +
|
| + // Check if any operands to safe phies were unmarked
|
| + // turning a safe phi into unsafe. The same value
|
| + // can flow into several phis.
|
| + int new_phi_count = 0;
|
| + for (int i = 0; i < phi_count; i++) {
|
| + HPhi* phi = phis_[i];
|
| +
|
| + if (CheckPhiOperands(phi)) {
|
| + phis_[new_phi_count++] = phi;
|
| + } else {
|
| + UnmarkPhi(phi, &worklist);
|
| + }
|
| + }
|
| + phi_count = new_phi_count;
|
| + }
|
| +}
|
| +
|
| +
|
| +void HGraph::ComputeSafeUint32Operations() {
|
| + if (!FLAG_opt_safe_uint32_operations || uint32_instructions_ == NULL) {
|
| + return;
|
| + }
|
| +
|
| + Uint32Analysis analysis(zone());
|
| + for (int i = 0; i < uint32_instructions_->length(); ++i) {
|
| + HInstruction* current = uint32_instructions_->at(i);
|
| + if (current->IsLinked()) analysis.Analyze(current);
|
| + }
|
| +
|
| + // Some phis might have been optimistically marked with kUint32 flag.
|
| + // Remove this flag from those phis that are unsafe and propagate
|
| + // this information transitively potentially clearing kUint32 flag
|
| + // from some non-phi operations that are used as operands to unsafe phis.
|
| + analysis.UnmarkUnsafePhis();
|
| +}
|
| +
|
| +
|
| void HGraph::ComputeMinusZeroChecks() {
|
| BitVector visited(GetMaximumValueID(), zone());
|
| for (int i = 0; i < blocks_.length(); ++i) {
|
| @@ -3131,6 +3352,12 @@ bool HGraph::Optimize(SmartArrayPointer<char>* bailout_reason) {
|
| InsertRepresentationChanges();
|
|
|
| InitializeInferredTypes();
|
| +
|
| + // Must be performed before canonicalization to ensure that Canonicalize
|
| + // will not remove semantically meaningful ToInt32 operations e.g. BIT_OR with
|
| + // zero.
|
| + ComputeSafeUint32Operations();
|
| +
|
| Canonicalize();
|
|
|
| // Perform common subexpression elimination and loop-invariant code motion.
|
| @@ -5824,8 +6051,14 @@ HInstruction* HGraphBuilder::BuildExternalArrayElementAccess(
|
| external_elements, checked_key, val, elements_kind);
|
| } else {
|
| ASSERT(val == NULL);
|
| - return new(zone()) HLoadKeyedSpecializedArrayElement(
|
| - external_elements, checked_key, dependency, elements_kind);
|
| + HLoadKeyedSpecializedArrayElement* load =
|
| + new(zone()) HLoadKeyedSpecializedArrayElement(
|
| + external_elements, checked_key, dependency, elements_kind);
|
| + if (FLAG_opt_safe_uint32_operations &&
|
| + elements_kind == EXTERNAL_UNSIGNED_INT_ELEMENTS) {
|
| + graph()->RecordUint32Instruction(load);
|
| + }
|
| + return load;
|
| }
|
| }
|
|
|
| @@ -8010,6 +8243,9 @@ HInstruction* HGraphBuilder::BuildBinaryOperation(BinaryOperation* expr,
|
| break;
|
| case Token::SHR:
|
| instr = HShr::NewHShr(zone(), context, left, right);
|
| + if (FLAG_opt_safe_uint32_operations && instr->IsShr()) {
|
| + graph()->RecordUint32Instruction(instr);
|
| + }
|
| break;
|
| case Token::SHL:
|
| instr = HShl::NewHShl(zone(), context, left, right);
|
|
|